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HOMOLOGY CYCLES IN MANIFOLDS WITH
LOCALLY STANDARD TORUS ACTIONS

ANTON AYZENBERG

(communicated by Donald M. Davis)

Abstract
We describe the homology of a closed manifold X with a

locally standard action of a half-dimensional torus under the
assumption that proper faces of its orbit space Q are acyclic
and the free part of action is trivial. There are three types
of homology classes in X: (1) classes of face submanifolds,
(2) k-dimensional classes of Q lifted to X and swept by actions
of subtori of dimensions < k, and (3) relative k-classes of Q
modulo ∂Q lifted, in appropriate way, toX and swept by actions
of subtori of dimensions � k. The submodule spanned by face
classes is an ideal in H∗(X) with respect to the intersection
product. As a ring it is isomorphic to (Z[SQ]/Θ)/W , where
Z[SQ] is the face ring of the Buchsbaum simplicial poset dual
to Q, Θ is an ideal generated by a linear system of parame-
ters, and W is a submodule lying in the socle of Z[SQ]/Θ. The
intersection product in homology is described in terms of the
product in the face ring and intersection products on the orbit
space and on the torus. Manifolds with torus actions provide a
topological interpretation for the results of Novik and Swartz
concerning socles of Buchsbaum face rings.

1. Introduction

An action of a compact torus Tn on a smooth compact manifold M of dimension
2n is called locally standard if it is locally isomorphic to the standard action of
Tn on Cn. The orbit space Q = M/Tn is a manifold with corners whose open k-
dimensional faces correspond to k-dimensional orbits of the action. If Q is a simple
polytope, the manifold M is called quasitoric. The theory of such manifolds was
created by Davis and Januszkiewicz [8], and further developed in many other works.
Up to equivariant homeomorphism, a quasitoric manifold is determined by a so-
called characteristic pair, which consists of a simple polytope (an orbit space) and
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a characteristic function (an information on stabilizers of the action). Yoshida [16]
proved a natural extention of this classification: every manifold with locally standard
torus action is equivariantly homeomorphic to the quotient model X = Y/∼, where
Y is a principal Tn-bundle over Q and ∼ is an equivalence relation determined by
the characteristic function.

Quasitoric manifolds are topological counterparts of several familiar notions, such
as complete smooth toric varieties or toric symplectic manifolds, and topology of such
spaces is well studied. However, several constructions had appeared in differential
geometry in the recent years, providing examples of manifolds with locally standard
actions that are not quasitoric. These constructions include toric origami manifolds
and toric log-symplectic manifolds. Thus there seems to be a need in the better
understanding of topology in a larger classes of examples.

This paper is the third in a series of works where we study the topology of X
under the assumption that proper faces of the orbit space are acyclic and Y is a
trivial bundle—that is, Y = Q× Tn. Previous papers [1, 2] were devoted to the
homological spectral sequence associated with the filtration of orbit types on X. Here
we discuss the geometrical structure of homology classes on X and linear relations
on them.

In the case when all faces of Q, including Q itself, are acyclic (which is a slight
generalization of the quasitoric case), the topology of the corresponding manifold
X is known [9]. In this case the equivariant cohomology H∗

T (X;Z) is isomorphic to
the face ring Z[SQ], where SQ is a simplicial poset dual to the orbit space. As a
ring, equivariant cohomology is generated by equivariant classes, Poincare dual to
face submanifolds of X, and these generators correspond to the standard genera-
tors of the face ring. The spectral sequence of the Borel fibration ETn ×T X → BTn

collapses at a second page, and the fiber inclusion ι : X ↪→ ETn ×T X induces a sur-
jective ring homomorphism ι∗ : H∗

T (X;Z) → H∗(X;Z), whose kernel is the image of
H+(BTn;Z) under π∗. Thus H∗(X;Z) ∼= Z[SQ]/(θ1, . . . , θn), where θi are the images
of the generators vi of the ring H∗(BTn;Z) ∼= Z[v1, . . . , vn]. The sequence (θ1, . . . , θn)
is a linear system of parameters in Z[SQ]. The poset SQ is Cohen–Macaulay, and thus
(θ1, . . . , θn) is a regular sequence, and we have dimH2k(X) = hk(SQ), while the coho-
mology in odd degrees vanishes.

In the case when only proper faces of Q are acyclic, this approach does not work.
The spectral sequence of the Borel fibration does not collapse at a second page. There
still exists a ring homomorphism H∗

T (X;Z)/(π∗H+(BTn;Z)) → H∗(X;Z), but it is
neither injective nor surjective.

However, there is an apparent connection between topology of spaces with torus
actions and the theory of face rings even in more general situations. In [3] we proved
the ring isomorphism

H∗
T (X;Z) ∼= Z[SQ]⊕H∗(Q;Z), (1)

where the degree 0 components of summands are identified.
When all proper faces of Q are acyclic, the dual simplicial poset SQ is Buchsbaum.

A standard tool in combinatorics and commutative algebra devised to study Buchs-
baum simplicial posets is the h′-vector. By definition, h′-numbers of a Buchsbaum
simplicial poset S are the dimensions of homogeneous components of the quotient
algebra k[S]/(θ1, . . . , θn), where θ1, . . . , θn is a linear system of parameters. These
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numbers do not depend on the system of parameters, and can be expressed in terms
of the ordinary h-numbers and Betti numbers of S according to Schenzel [14] (for
simplicial complexes), and Novik–Swartz [11] (for simplicial posets); see formula (3),
below.

Previously we proved that dim(EX)2q,q = h′
n−q(SQ), where (EX)∗∗,∗ is the spectral

sequence in homology associated with the orbit type filtration on X. In this paper
we describe the geometrical structure of H∗(X).

Theorem 1.1. Homology classes of X are of three different types:

1. The classes of face submanifolds. We call them face classes.

2. The classes, represented by k-cycles of Q, lifted to X and swept by actions of
l-dimensional subtori with l < k. These classes will be called spine classes.

3. The classes, represented by relative k-cycles of Q modulo ∂Q with k < n, lifted
in an appropriate way to X and swept by actions of l-dimensional subtori with
l � k. These classes will be called diaphragm classes.

Linear relations on face classes are of two types: the relations appearing in the ring
Z[SQ]/(θ1, . . . , θn), and additional relations lying in a socle of Z[SQ]/(θ1, . . . , θn).

Intersections of face classes are encoded by the product in the face ring of SQ.
Proper face classes span the ideal of H∗(X;Z) with respect to the intersection product.
Intersections of other classes are described via the intersection products on Q and Tn.

More precise statements are given by Propositions 2.9, 4.1, 5.6, 6.2, 6.3, and 6.4.
Face classes and the elements ofHk(Q, ∂Q) swept by the action of the whole group Tn

are equivariant. This gives an independent geometrical evidence for the formula (1).
Additional relations on face classes are represented by certain elements of the

group k[SQ]/(θ1, . . . , θn). These elements have a specific form, and in Theorem 4.6
we prove that all elements of such form lie in the socle of k[SQ]/(θ1, . . . , θn). This
gives a geometrical intuition behind the result of Novik and Swartz [11].

The paper may be briefly outlined as follows. In Section 2 we review the basic
definitions and our previous results. Section 3 contains technical preparations for the
subsequent sections. In particular, we discuss orientation issues and prove Lemma 3.3,
which is used in many places throughout the paper. Section 4 is devoted to linear
relations on face classes in H∗(X). We give precise formulas for these relations, and
in particular describe the kernel of the composite map

Z[SQ]/(θ1, . . . , θn) ↪→ H∗
T (X;Z)/(π∗H+(BTn;Z)) → H∗(X;Z).

In Section 5 we realize non-face classes of X as embedded pseudomanifolds. These
geometrical constructions imply a partial description of intersection theory on X,
which is given in Section 6. Two examples are discussed in Section 7. A very particular
4-dimensional example is worked out, and the reader is encouraged to refer to this
example while reading the other parts of the paper. The second example is more
general: the technique is applied to the class of orientable toric origami manifolds
with acyclic proper faces of the orbit space, and we rediscover some results of [3] by

a new method. In the last section we introduce a supplementary space X̂ that can
be considered as a Tn-invariant tubular neighborhood of the union of characteristic
submanifolds in X. By using the intersection theory on X̂, we prove that certain
elements of k[SQ]/(θ1, . . . , θn) lie in the socle.
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2. Definitions and previous results

2.1. Manifolds with locally standard actions
An action of Tn on a (compact connected smooth) manifold M2n is called locally

standard if M has an atlas of Tn-invariant charts, each equivalent to an open Tn-
invariant subset of the standard action of Tn on Cn ∼= R2n, up to some automorphism
of torus. We refer to the monograph of Buchstaber and Panov [6] or to the work of
Yoshida [16] for details relevant to our study. The orbit space of a locally standard
action is a compact connected n-dimensional manifold with corners with the property
that every codimension k face of Q belongs to exactly k facets (such manifolds with
corners were called nice by Masuda and Panov [9], or manifolds with faces elsewhere).

Definition 2.1. A finite partially ordered set (poset) S is called simplicial if (1) there
exists a unique minimal element 0̂ ∈ S, and (2) for each element J ∈ S the interval
{I ∈ S | I � J} is isomorphic to the poset of faces of a k-simplex for some number k,
called the dimension of J .

The elements of S are called simplices. Simplices of dimension 0 are called vertices.
The number |I| = dim I + 1 is equal to the number of vertices of I and is called the
rank of I. The set of vertices of a simplicial poset ∗ or a simplex ∗ will be denoted by
Vert(∗).

Every manifold Q with corners determines a poset SQ whose elements are the faces
of Q ordered by reversed inclusion. When Q is a nice connected manifold with corners,
SQ is a simplicial poset. For convenience we denote abstract elements of SQ by I, J ,
etc., and the corresponding faces of Q by FI , FJ , etc. There holds dimFI = n− |I|,
where n is the dimension ofQ. The minimal element of SQ corresponds to the maximal
face of Q—that is, Q itself—and vertices of SQ correspond to facets of Q. The set of
facets of Q will be denoted by Fac(Q).

Let Q be the orbit space of locally standard action, and let x be a point in the
interior of a facet F ∈ Fac(Q). Then the stabilizer of x, denoted by λ(F ), is a 1-
dimensional toric subgroup in Tn. If FI is a codimension k face of Q lying in the facets
F1, . . . , Fk ∈ Fac(Q), then the stabilizer of x ∈ F ◦

I is the k-dimensional torus TI =
λ(F1)× · · · × λ(Fk) ⊂ Tn, where the product is free inside Tn. This puts a specific
restriction on subgroups λ(F ). In general, a map

λ : Fac(Q) → {1-dimensional toric subgroups of Tn}

is called a characteristic function if, whenever facets F1, . . . , Fk have a non-empty
intersection, the map

λ(F1)× · · · × λ(Fk) → Tn,

induced by inclusions λ(Fi) ↪→ Tn, is injective and splits. This condition is called
(∗)-condition (the terminology goes back to Davis and Januszkiewicz [8]). Let i ∈
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Vert(SQ) be the vertex of SQ, and Ti = λ(Fi) be the value of characteristic function.
Let ωi ∈ H1(T

n; k) ∼= kn denote the fundamental class of 1-dimensional subtorus Ti.
This class is defined uniquely up to sign. Here k is the ground ring, and is either Z

or a field.

Let μ : M → Q be the projection to the orbit space. The free part of the action has
the form μ|Q◦ : μ−1(Q◦) → Q◦, whereQ◦ = Q \ ∂Q is the interior of the manifold with
corners. The free part is a principal torus bundle over Q◦. It can be uniquely extended
overQ and determines a principal Tn-bundle ρ : Y → Q. Therefore, any manifold with
locally standard action defines three objects: the nice manifold with corners Q, the
principal torus bundle ρ : Y → Q, and the characteristic function λ. One can recover
M , up to equivariant homeomorphism, from these data by the following standard
construction.

Construction 2.2 (Quotient construction). Let ρ : Y → Q be a principal Tn-bundle
over a nice manifold with corners, and let λ be a characteristic function on Fac(Q).

Consider the space X
def

= Y/ ∼, where y1 ∼ y2 if and only if ρ(y1) = ρ(y2) ∈ F ◦
I for

some face FI of Q, and y1, y2 lie in the same TI -orbit of the Tn-action on Y . Let
f : Y → X denote the quotient map.

Every manifold M with locally standard torus action is equivariantly homeomor-
phic to its model X [16, Cor. 2]. In the rest of the paper we use the model X instead
of M .

Remark 2.3. We work with a smooth manifold with corners Q and smooth manifolds
X ∼= M , but this is done basically to simplify the exposition. The quotient model
X = (Q× Tn)/∼ can obviously be defined for a larger class of spaces. If Q is a
homology manifold with a simple stratification of the boundary, and the faces are
homology manifolds with boundaries as well, then X is a closed homology manifold.
The results of the paper are valid in this setting.

2.2. Filtrations

There are natural topological filtrations on Q, Y , and X. Namely, Qk ⊆ Q is the
union of k-dimensional faces of Q, Yk = ρ−1(Qk) ⊆ Y , and Xk = f(Yk) ⊂ X is the
union of toric orbits of dimension at most k. The maps μ : X → Q, ρ : Y → Q, and
f : Y → X respect these filtrations. The homological spectral sequences produced by
these filtrations are denoted by (EQ)

∗
∗,∗, (EY )

∗
∗,∗, and (EX)∗∗,∗. The map f induces

the morphism of spectral sequences fr
∗ : (EY )

r → (EX)r.

The subsets ρ−1(FI) ⊂ Y and μ−1(FI) ⊂ X, which cover the face FI ⊂ Q, are
denoted by YI and XI , respectively. Note that the subset XI is a closed submani-
fold of X of codimension 2|I|. It is called a face submanifold. Face submanifolds of
codimension 2 are called characteristic submanifolds. They correspond to facets of Q.

The first page of (EQ)
∗
∗,∗ has the form

(EQ)
1
p,q = Hp+q(Qp, Qp−1) ∼=

⊕
I∈SQ,dimFI=p

Hp+q(FI , ∂FI),
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and the first differential (dQ)
1 is the sum of the maps

mq
I,J : Hq+dimFI

(FI , ∂FI) → Hq+dimFI−1(∂FI) →

→ Hq+dimFI−1(∂FI , ∂FI \ F
◦
J )

∼= Hq+dimFJ
(FJ , ∂FJ ), (2)

defined for every face FI and FJ ∈ Fac(FI). Here the first map is the connecting
homomorphism in the homology exact sequence of (FI , ∂FI), and the last isomor-
phism is due to excision. If the coefficient ring in the notation of (co)homology is
omitted, it is supposed to be the ground ring k.

2.3. The case of acyclic proper faces
Further on we impose two restrictions on X mentioned in the introduction. First,

we assume that Q is an orientable manifold and all its proper faces are acyclic (over
k). Second, the principal torus bundle Y → Q is assumed to be trivial. Thus X =
(Q× Tn)/∼. The following propositions were proved in [1, 2].

Proposition 2.4. The poset SQ is a Buchsbaum simplicial poset (over k). Moreover,
the geometrical realization |SQ| is an orientable homology manifold.

Proposition 2.5. There exists a homological spectral sequence (ĖQ)
r
p,q ⇒ Hp+q(Q),

(ḋQ)
r : (ĖQ)

r
p,q → (ĖQ)

r
p−r,q+r−1 with the following properties:

1. (ĖQ)
1 = H((EQ)

1, d−Q), where the differential d−Q : (EQ)
1
p,q → (EQ)

1
p−1,q coin-

cides with (dQ)
1 for p < n, and vanishes otherwise.

2. The module (ĖQ)
r
∗,∗ coincides with (EQ)

r
∗,∗ for r � 2.

3. (ĖQ)
1
p,q =

⎧⎪⎨
⎪⎩
Hp(∂Q), if q = 0, p < n;

Hq+n(Q, ∂Q), if p = n, q � 0;

0, otherwise.

4. Nontrivial differentials for r � 1 have the form (ḋQ)
r : (ĖQ)

r
n,1−r → (ĖQ)

r
n−r,0

and coincide with the connecting homomorphisms δn+1−r : Hn+1−r(Q, ∂Q) →
Hn−r(∂Q) in the long exact sequence of the pair (Q, ∂Q).

Let Λ∗ denote the homology module of a torus: Λ∗ =
⊕

s Λs, Λs = Hs(T
n).

Proposition 2.6. There exists a homological spectral sequence (ĖY )
r
p,q ⇒ Hp+q(Y )

such that:

1. (ĖY )
1 = H((EY )

1, d−Y ), where the differential d−Y : (EY )
1
p,q → (EY )

1
p−1,q coin-

cides with (dY )
1 for p < n, and vanishes otherwise.

2. (ĖY )
r = (EY )

r for r � 2.

3. (ĖY )
r
p,q =

⊕
q1+q2=q(ĖQ)

r
p,q1

⊗ Λq2 and (ḋY )
r = (ḋQ)

r ⊗ idΛ for r � 1.

Proposition 2.7. There exists a homological spectral sequence (ĖX)rp,q ⇒ Hp+q(X)

and the morphism of spectral sequences ḟr
∗ : (ĖY )

r
∗,∗ → (ĖX)r∗,∗ such that:

1. (ĖX)1 = H((EX)1, d−X) where the differential d−X : (EX)1p,q → (EX)1p−1,q coin-

cides with (dX)1 for p < n, and vanishes otherwise. The map ḟ1
∗ is induced by

f1
∗ : (EY )

1 → (EX)1.
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2. (ĖX)r = (EX)r and ḟr
∗ = fr

∗ for r � 2.

3. (EX)1p,q = (ĖX)1p,q = 0 for p < q.

4. ḟ1
∗ : (ĖY )

1
p,q → (ĖX)1p,q is an isomorphism for p > q and injective for p = q.

5. As a consequence of previous items, for r � 1, the differentials (ḋX)r are either
isomorphic to (ḋY )

r (when they hit the cells with p > q), or isomorphic to the
composition of (ḋY )

r with ḟr
∗ (when they hit the cells with p = q), or zero (oth-

erwise).

6. The ranks of diagonal terms at a second page are the h′-numbers of the poset
SQ dual to the orbit space: dim(ĖX)2q,q = dim(EX)2q,q = h′

n−q(SQ).

Recall the combinatorial definition of h′-numbers.

Definition 2.8. Let S be a pure simplicial poset, dimS = n− 1. Let fk be the the
number of k-dimensional simplices in S. An array (f−1 = 1, f0, . . . , fn−1) is called the
f -vector of S. h-numbers are defined by the formula

h0s
n + h1s

n−1 + · · ·+ hn = f−1(s− 1)n + f0(s− 1)n−1 + · · ·+ fn−1.

Let β̃k(S) = dim H̃k(S). h
′-numbers are defined by

h′
k = hk +

(
n

k

)⎛
⎝k−1∑

j=1

(−1)k−j−1β̃j−1(S)

⎞
⎠ for 0 � k � n. (3)

Propositions 2.5–2.7 yield the description of H∗(X). Let Hk,l(Y ) denote the k-
module Hk(Q)⊗ Λl. By Künneth’s formula, Hj(Y ) ∼=

⊕
k+l=j Hk,l(Y ).

Proposition 2.9.Over a field, there exists a decomposition Hj(X)∼=
⊕

k+l=jHk,l(X)
and k-module homomorphisms f∗ : Hk,l(Y ) → Hk,l(X) with the following properties:

1. If k > l, then f∗ : Hk,l(Y ) → Hk,l(X) is an isomorphism. In particular,
Hk,l(X) ∼= Hk(Q)⊗ Λl.

2. If k < l, there exists an isomorphism Hk,l(X) ∼= Hk(Q, ∂Q)⊗ Λl.

3. If k < n, the module Hk,k(X) fits in the short exact sequence

0 → (ĖX)∞k,k → Hk,k(X) → Hk(Q, ∂Q)⊗ Λk → 0.

4. Hn,n(X) ∼= k.

5. Bigraded Poincare duality holds: Hk,l(X) ∼= Hn−k,n−l(X).

Later, in Section 5, we will show that this proposition remains valid over Z.

3. Preliminary computations

3.1. Orientations

We use the notation I
k
< J whenever simplices I, J ∈ S satisfy I < J and |J | −

|I| = k. For each pair I
2
< J , there are exactly two simplices J ′ �= J ′′ in between:

I
1
< J ′, J ′′

1
< J . For every simplicial poset, there exists a “sign convention” that means
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that an incidence number [J :I] = ±1 is associated with any pair I
1
< J ∈ S, and the

relation [J :J ′] · [J ′ :I] + [J :J ′′] · [J ′′ :I] = 0 holds for any I
2
< J .

The choice of a sign convention is equivalent to the choice of orientations of all
nonempty simplices. By the orientation of a simplex in an abstract simplicial poset
we mean the rule that tells whether a given total ordering of the vertices of I is
positive or negative, so that even permutations of an ordering preserve the sign and

odd permutations change it. If I
1
< J , then there is exactly one vertex i of J that

is not in I. Given the orientations of simplices I and J , and given some positive
ordering i1 < · · · < is of the vertices of I, we set [J :I] to be +1 if i < i1 < · · · < is
is a positive ordering on Vert(J), and −1 otherwise. The construction works in the
opposite direction in an obvious way: incidence signs determine orientations of all
simplices by induction.

Fix arbitrary orientations of the orbit space Q and the torus Tn. Together they
determine an orientation of Y = Q× Tn and X = Y/∼. Also choose an omniorienta-
tion, which means the orientations of all characteristic submanifolds. A choice of an
omniorientation determines the characteristic values ωi ∈ H1(T

n;Z) without ambi-
guity of sign. To perform explicit calculations with the spectral sequences (ĖX)∗ and
(ĖY )

∗ we also need to orient all faces of Q.

Construction 3.1. An orientation of a simplex I ∈ SQ determines an orientation of a
face FI ⊂ Q by the following convention. Let i1, . . . , in−q be the vertices of I, listed
in a positive order. The face FI lies in the intersection of facets Fi1 , . . . , Fin−q

. The
normal bundles νi to facets Fi have natural orientations, in which inward normal
directions are positive. Orient FI in such way that TxFI ⊕ νi1 ⊕ · · · ⊕ νin−q

∼= TxQ is
positive with respect to the orientation of Q. Thus there are distinguished elements
[FI ] ∈ HdimFI

(FI , ∂FI). It can be seen that the homomorphism

m0
I,J : HdimFI

(FI , ∂FI) → HdimFJ
(FJ , ∂FJ )

(see (2)) maps [FI ] to [J :I] · [FJ ].

A choice of omniorientation and orientations of simplices determines an orientation
of each orbit Tn/TI as follows.

Construction 3.2. Let i1, . . . , in−q be the vertices of I, listed in a positive order.
The module H1(T

n/TI) is naturally identified with Λ1/LI , where LI is a submodule
of Λ1 = H1(T

n) generated by ωi1 , . . . , ωin−q
. We say that the basis [γ1], . . . , [γq] ∈

H1(T
n/TI), [γl] = γl + LI determines the positive orientation of H1(T

n/TI) if the
basis (ωi1 , . . . , ωin−q

, γ1, . . . , γq) determines the positive orientation of Λ1. This ori-
entation of Tn/TI determines a distinguished fundamental class ΩI ∈ Hq(T

n/TI).

The omniorientation and the orientation of S together determine the class of each
face submanifold: [XI ] = [FI ]⊗ ΩI . Note that both orientations [FI ] and [ΩI ] depend
on the orientation of I by construction. Thus [XI ] does not actually depend on the
sign convention on SQ and depends only on the omniorientation.

3.2. Arithmetics of torus quotients
Let us fix a coordinate representation of the torus Tn = T ({1}) × · · · × T ({n}),

where each T ({j}) is a 1-dimensional torus with a chosen orientation. For a subset A =
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{j1 < · · · < jq} ⊆ [n] we denote the coordinate subtorus T ({j1}) × · · · × T ({jq}) ⊆ Tn

by T (A).
The coordinate splitting gives a positive basis e1, . . . , en of the module Λ1 =

H1(T
n), where ej is the fundamental class of T ({j}). For a vertex i ∈ Vert(S) let

(λi,1, . . . , λi,n) denote the coordinates of ωi = [λ(Fi)] ∈ Λ1 in this basis.

Lemma 3.3. Let I ∈ SQ \ 0̂ be a simplex with the vertices {i1, . . . , in−q} listed in a
positive order. Let A = {j1 < · · · < jq} ⊂ [n] be a subset of indices, and let eA = ej1 ∧
· · · ∧ ejq ∈ Hq(T

n;Z) be the fundamental class of the coordinate subtorus T (A) ⊆ Tn.
Consider the map � : Tn → Tn/TI . Then �∗(eA) = CI,AΩI ∈ Hq(T

n/TI ;Z) and the
constant CI,A is equal to

sgnA det (λi,j)i∈{i1,...,in−q}
j∈[n]\A

,

where sgnA = ±1 depends only on A ⊂ [n]. When q = 0, the constant CI,A equals ±1
depending on the positivity of the basis ωi1 , . . . , ωin .

Proof. For q = 0 the statement is obvious, so we assume q �= 0. Choose arbitrary
vectors γ1, . . . , γq such that (bl) = (ωi1 , . . . , ωin−q

, γ1, . . . , γq) is a positive basis of the
lattice H1(T

n,Z). Thus bl = Uel, where U is the matrix of the form

U =

⎛
⎜⎜⎜⎝
λi1,1 · · · λin−q,1 ∗ · · · ∗
λi1,2 · · · λin−q,2 ∗ · · · ∗
...

. . .
...

...
. . .

...
λi1,n · · · λin−q,n ∗ · · · ∗

⎞
⎟⎟⎟⎠

We have detU = 1 since both bases are positive. Consider the inverse matrix V =
U−1. We have

eA = ej1 ∧ · · · ∧ ejq =
∑

M={α1<...<αq}⊂[n]

det (Vj,α)j∈A
α∈M

bα1
∧ . . . ∧ bαq

.

After taking the quotient Λ/〈ωi1 , . . . , ωin−q
〉, all summands with M �= {n− q + 1, . . .

. . . , n} vanish. When M = {n− q + 1, . . . , n}, the element bn−q+1 ∧ · · · ∧ bn = γ1 ∧
· · · ∧ γq maps to ΩI . Thus

CI,A = det (Vj,α)j∈A
α∈{n−q+1,...,n}

.

Now apply Jacobi’s identity (see, e.g., [4]):

det (Vj,α)j∈A
α∈{n−q+1,...,n}

=
(−1)sgn

detU
det (Ur,s)r∈{1,...,n−q}

s∈[n]\A

,

where sgn =
∑n−q

r=1 r +
∑

s∈[n]\A s. Since the first n− q columns of U are exactly the
vectors λi,j , this observation completes the proof.

3.3. Face ring and a linear system of parameters
Recall the definition of a face ring (for details refer to [15] or [5]). Let I1 ∨ I2 denote

the set of least upper bounds of simplices I1, I2 ∈ S, and let I1 ∩ I2 ∈ S denote the
intersection of simplices (it is well defined and unique when I1 ∨ I2 �= ∅).
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Definition 3.4. The face ring k[S] is the quotient of the polynomial ring k[{vI}],
generated by variables {vI | I ∈ S}, deg vI = 2|I|, by the relations

vI1 · vI2 = vI1∩I2 ·
∑

J∈I1∨I2

vJ , v∅ = 1.

The sum over an empty set is assumed to be 0.

Let [m] = {1, . . . ,m} be the set of vertices of S, and let k[m] = k[v1, . . . , vm] be
the graded ring of polynomials with deg vi = 2. The ring homomorphism k[m] → k[S]
sending vi to vi determines the structure of k[m]-module on k[S].

Every characteristic function on Q determines the set of linear forms {θ1, . . . , θn} ⊂
k[SQ], where θj =

∑
i∈Vert(SQ) λi,jvi. If J ∈ S is a maximal simplex, i.e., |J | = n, then

the matrix (λi,j)i�J
j∈[n]

is invertible over k (4)

by the (∗)-condition. This condition is equivalent to the statement that the sequence
{θ1, . . . , θn} is a linear system of parameters in k[S] [6, Lm.3.5.8]. This sequence
generates an ideal (θ1, . . . , θn) ⊂ k[S], which will be denoted by Θ.

A face ring k[S] is an algebra with straightening law [15]. As a k-module, it has
an additive basis

{Pσ = vI1 · vI2 · . . . · vIt | σ = (I1 � I2 � · · · � It ∈ S)}.

Lemma 3.5. The elements [vI ] = vI +Θ span the k-module k[S]/Θ.

Proof. Take any element Pσ with |σ| � 2. Using relations in the face ring, we can
express Pσ = vI1 · . . . · vIt as vi · vI1\i · . . . · vIt for a vertex i � I1 by the following

reason. Let J ∈ i ∨ (I1 \ i), J �= I. Suppose that J ∨ I2 �= ∅. Then a simplex Ĩ ∈
J ∨ I2 would contain two simplices I1 and J having the same set of vertices. This
contradicts to the fact that S

�Ĩ
is a boolean lattice. Therefore, we have J ∨ I2 = ∅

and vJ · vI2 = 0 for any J ∈ i ∨ (I1 \ i), J �= I. Thus vI1 · vI2 = vi · vI1\i · vI2 from the
relations in the face ring.

The element vi can be expressed as
∑

i′�It
ai′vi′ modulo Θ according to (4) (we

exclude all vi corresponding to the vertices of some maximal simplex J � It). Thus

vivIt is expressed as a combination of vI′

t
with I ′t

1
> It. Therefore, modulo the ideal Θ,

the element Pσ is expressed as a linear combination of elements Pσ′ that have either
smaller length t (in case |I1| = 1) or smaller I1 (in case |I1| > 1). By iterating this
descending process, we express the element Pσ +Θ ∈ k[S]/Θ as a linear combination
of [vI ].

4. Linear relations on face classes

Let H∗
T (X) be a Tn-equivariant cohomology ring of X. Any proper face of Q is

acyclic, and therefore any face has a vertex. Hence, there exists a homomorphism
k[SQ] ↪→ H∗

T (X), which sends the generator vI to the cohomology class, equivariant
Poincare dual to [XI ] (refer to [9, Lm. 6.4] for details). The fiber inclusion in the Borel
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construction, X → X ×T ETn, induces the ring homomorphism H∗
T (X) → H∗(X).

The subspace of H∗(X), Poincare dual to the image of the homomorphism

g : k[SQ] → H∗
T (X) → H∗(X)

is generated by the elements [XI ], the fundamental classes of face submanifolds. Note
that the elements [XI ] = [FI ]⊗ ΩI can also be considered as the free generators of
the k-module ⊕

q

(EX)1q,q =
⊕
q

⊕
|I|=n−q

Hq(FI , ∂FI)⊗Hq(T
n/TI).

Therefore, the submodule of H∗(X) generated by [XI ] coincides with the submodule⊕
q(EX)∞q,q ⊂ H∗(X). We call classes [XI ] the face classes of X.
In the following let 〈[XI ]〉 denote the free k-module generated by the elements [XI ],

I ∈ SQ.

Proposition 4.1. Let CI,A be the constants defined in Lemma 3.3. The submodule
of H∗(X) generated by the face classes has linear relations of the following two types:

1. For each J ∈ S, |J | = n− q − 1, and for each subset A ⊂ [n], |A| = q, there is
a relation RJ,A = 0, where

RJ,A =
∑

I,I
1
>J

[I :J ]CI,A[XI ].

2. Let q � n− 2, and let β ∈ Hq(∂Q) be a homology class lying in the
image of the connecting homomorphism δq+1 : Hq+1(Q, ∂Q) → Hq(∂Q). Let∑

I,|I|=n−q BI [FI ] be a cellular chain representing β (such representation exists

since every face of ∂Q is acyclic, thus may be considered as a homological cell).
Then, for each subset A ⊂ [n], |A| = q, there is a relation R′

β,A = 0, where

R′
β,A =

∑
I,|I|=n−q

BICI,A[XI ].

Proof. The proof follows from the structure of homological spectral sequences of X
and Y . The module

⊕
q(EX)1q,q is freely generated by [XI ]. Relations on [XI ] in

H∗(X) appear as the images of differentials landing at
⊕

q(EX)1q,q. The relation RJ,A

is the image of the element

[FJ ]⊗ [T (A)] ∈ Hq+1(FJ , ∂FJ )⊗Hq(T
n/TJ ) ⊂ (EX)1q+1,q

under the differential (dX)1 : (EX)1q+1,q → (EX)1q,q. Thus relations of the first type
span the image of the first differentials hitting (EX)1q,q.

Let us prove that images of higher differentials are generated by R′
β,A. Higher

differentials (dQ)
�2 coincide with δ∗+1 : H∗+1(Q, ∂Q) → H∗(∂Q) by Proposition 2.5.

The differentials (dY )
�2 coincide with δ∗+1 ⊗ idΛ by Proposition 2.6. Thus the image

of (dY )
�2 in (EY )

2
q,q is generated by the elements β ⊗ [T (A)], which are, in turn, the

homology classes of the elements(∑
|I|=n−q

BI [FI ]

)
⊗ [T (A)] ∈ (EY )

1
q,q.

By Proposition 2.7, the differential (dX)r landing at (EX)∗q,q coincides with the com-
position of (dY )

r and inclusion f2
r . The map f1

∗ : (EY )
1
q,q → (EX)1q,q is the sum of the
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maps

id⊗� : Hq(FI , ∂FI)⊗Hq(T
n) → Hq(FI , ∂FI)⊗Hq(T

n/TI)

over all simplices I of rank n− q. Thus

fr
∗ (β ⊗ [T (A)]) =

[
f1
∗

(∑
|I|=n−q

BI [FI ]⊗ [T (A)]

)]
= R′

β,A

by Lemma 3.3.

Remark 4.2. The element R′
β,A ∈

⊕
q(EX)2q,q does not depend on a cellular chain,

representing β. Proposition 2.7 also implies that relations {R′
β,A} are linearly inde-

pendent in (EX)2q,q when β runs over some basis of Im δq+1 and A runs over all subsets
of [n] of cardinality q.

Our next goal is to check that relations of the first type are exactly the relations
in the quotient ring k[SQ]/Θ.

Proposition 4.3. Let ϕ : 〈[XI ]〉 → k[SQ] be the degree-reversing linear map, which
sends the generator [XI ] to vI . Then ϕ descends to the isomorphism of k-modules

ϕ̃ : 〈[XI ]〉/〈RJ,A〉 → k[SQ]/Θ.

Proof. (1) At first we prove that ϕ̃ is well defined by showing that the element

ϕ(RJ,A) =
∑

I,I
1
>J

[I :J ]CI,AvI ∈ k[SQ]

lies in Θ. Let s = |J | and, consequently, |I| = s+ 1, |A| = n− s− 1. Let [n] \A =
{α1 < · · · < αs+1}, and let {j1, . . . , js} be the vertices of J listed in a positive order.
Consider the s× (s+ 1) matrix

D =

⎛
⎜⎝
λj1,α1

. . . λj1,αs+1

...
. . .

...
λjs,α1

. . . λjs,αs+1

⎞
⎟⎠

Denote by Dl the square submatrix obtained from D by deleting the lth column, and
let al = (−1)l+1 detDl. We claim that

ϕ(RJ,A) = ±vJ · (a1θα1
+ · · ·+ as+1θαs+1

) ∈ Θ.

Indeed, after expanding each θl as
∑

i∈Vert(S) λi,lvi, all elements of the form vJvi with

i < J cancel (the coefficients of these terms are determinants of matrices with two
coinciding rows). Other terms give∑

I
1
>J,i=I\J

(a1λi,α1
+ · · ·+ as+1λi,αs+1

)vI .

The coefficient of vI is equal to

det

⎛
⎜⎜⎜⎝

λi,α1
. . . λi,αs+1

λj1,α1
. . . λj1,αs+1

...
. . .

...
λjs,α1

. . . λjs,αs+1

⎞
⎟⎟⎟⎠

by the cofactor expansion along the first row. This determinant is equal to
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sgnA [I :J ]CI,A since the ordering i < j1 < · · · < js of rows is either positive or nega-
tive depending on the incidence sign [I :J ].

(2) ϕ̃ is surjective by Lemma 3.5.

(3) Ranks of both spaces are equal. Indeed, dim〈[XI ] | |I| = n− q〉/〈RJ,A〉 =
dim(EX)2q,q = h′

n−q(SQ) by Proposition 2.7. By Proposition 2.4, the poset SQ is
Buchsbaum. Thus dim(k[SQ]/Θ)n−q = h′

n−q(SQ) according to Schenzel’s theorem
([14], [11, Prop.6.3]).

(4) If k is a field, the statement is proved. Let us denote the map ϕ̃ defined over
k by ϕ̃k. The points (1),(2) work over Z, and thus ϕ̃Z is well defined and surjective.
For any field k the functor ⊗k is right exact; hence ϕ̃k = ϕ̃Z ⊗ k. Since ϕ̃Z ⊗Q is an
isomorphism, Ker ϕ̃Z is a torsion subgroup. If Ker ϕ̃Z contains a summand Z/rZ �= 0,
then tensoring with Fp, where p is a prime factor of r, implies that Ker ϕ̃Z ⊗ Fp �= 0
is the kernel of ϕ̃Fp

, which gives a contraction. Thus Ker ϕ̃Z = 0.

The Poincare duality on X implies the following.

Corollary 4.4. The map g : k[SQ] → H∗(X) factors through k[SQ]/Θ and the kernel
of the homomorphism g̃ : k[SQ]/Θ → H∗(X) is additively generated by the elements

L′
β,A =

∑
I,|I|=n−q

BICI,AvI ,

where q � n− 2, β ∈ Im(δq+1 : Hq+1(Q, ∂Q) → Hq(∂Q)) is a homology class repre-
sented by a cellular chain

∑
I,|I|=n−q BI [FI ] in ∂Q and A ⊂ [n], |A| = q.

Remark 4.5. The ideal Θ ⊂ k[SQ] coincides with the image of the homomorphism
H+(BTn) → H∗

T (X). So the fact that Θ vanishes in H∗(X) is not surprising. But
we want to emphasize that Θ vanishes already at the second term of the spectral
sequence, while other relations in H∗(X) demonstrate the effects of higher differen-
tials.

Note that the elements R′
β,A =

∑
I,|I|=n−q BICI,A[XI ] ∈ (EX)2q,q and

L′
β,A =

∑
I,|I|=n−q

BICI,AvI ∈ k[SQ]/Θ

can be defined for any homology class β ∈ Hq(∂Q) (not only for the image of the
connecting homomorphism).

Theorem 4.6. For every β ∈ Hq(∂Q), q � n− 1 and A ⊂ [n], |A| = q, the element
L′
β,A ∈ k[SQ]/Θ lies in a socle of k[SQ]/Θ.

Recall that the socle of a moduleM over the polynomial ring k[m] is the submodule

SocM
def

= {y ∈ M | k[m]+ · y = 0},

where k[m]+ is the maximal graded ideal of k[m].

We postpone the proof of Theorem 4.6 to Section 8.
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5. Non-face classes of X

5.1. Spine and diaphragm classes
In this section we give a geometrical description of homology classes of Q different

from face classes.

Construction 5.1. Let η ∈ Hk(Q) be a homology class of Q, and let a ∈ Hl(T
n), l < k,

be a homology class of Tn represented by a subtorus T (a) ⊂ Tn. They determine
the homology class η ⊗ a ∈ Hk,l(Y ) ∼= Hk(Q)⊗Hl(T

n). Thus they determine the
class Spη,a = f∗(η ⊗ [T (a)]) ∈ Hk+l(X) via the isomorphism f∗ : Hk,l(Y ) → Hk,l(X)
asserted by point (1) of Proposition 2.9. The classes of this form will be called spine
classes. If η is represented by an embedded pseudomanifold N ⊂ Q (we may assume
that N lies in the interior of Q), then the spine class Spη,a is represented by the

pseudomanifold N × T (a) ⊂ X.

Construction 5.2. Let ζ ∈ Hk(Q, ∂Q) be a relative homology class for k < n. Suppose
that ζ is represented by embedded pseudomanifold L ⊂ Q of dimension k with the
boundary ∂L ⊂ ∂Q (the boundary ∂L may be empty). Every proper face of Q is
acyclic, and thus may be considered as a homological cell of ∂Q. Therefore, we may
assume that ∂L ⊂ Qk−1. We also assume that L \ ∂L ⊂ Q \ ∂Q. For each class a ∈
Hl(T

n), represented by an l-dimensional subtorus T (a), consider the subset ZL,a =
(L× T (a))/∼ of the manifold X.

Proposition 5.3. 1. If l � k, the subset ZL,a is a pseudomanifold. Thus it rep-
resents a well-defined element DfL,a = [ZL,a] ∈ Hk+l(X), which will be called a
diaphragm class.

2. If l > k, the class DfL,a∈Hk+l(X) depends only on the class ζ=[L]∈Hk(Q, ∂Q)
but not on its representative L.

Proof. The set ((L \ ∂L)× T (a))/∼= (L \ ∂L)× T (a) is a pseudomanifold of dimen-
sion k + l. The exceptional locus (∂L× T (a))/∼ has dimension at most k + l − 2.
Indeed, we have ∂L ⊂ Qk−1; thus, under the projection map (∂L× T (a))/∼→ ∂L,
every point x ∈ ∂L has a preimage of the form T (a)/TI with |I| � n− k + 1. This set
has dimension at most l − 1 since l + (n− k + 1) > n (recall that l � k by assump-
tion). Thus the total dimension of exceptional locus is at most dim ∂L+ (l − 1) =
k + l − 2.

The second statement can be proved similarly. Let (L1, ∂L1) and (L2, ∂L2) be
two pseudomanifolds representing the same element ζ ∈ Hk(Q, ∂Q). There exists a
pseudomanifold bordism between them—that is, a pseudomanifold with boundary Ξ,
dimΞ = k + 1 and a map φ : Ξ → Q such that L1, L2 are disjoint submanifolds of ∂Ξ,
the restriction of φ to Lε is the inclusion Lε ↪→ Q, and φ(∂Ξ \ (L◦

1 � L◦
2)) ⊂ ∂Q (this

follows from the geometrical definition of homology; see [13, App. A.2]). By acyclicity
of proper faces we may again assume that φ(∂Ξ \ (L◦

1 � L◦
2)) lies in the stratum Qk.

Similar to the first statement, we can consider the space (Ξ× T (a))/∼ of dimension
k + l + 1. This space is a pseudomanifold with boundary, and the boundary is exactly
the difference ZL1,a − ZL2,a. Thus DfL1,a = DfL2,a in H∗(X).

Thus for k < l there is a well-defined homology class Dfζ,a
def

= DfL,a ∈ Hk,l(X)
depending on ζ ∈ Hk(Q, ∂Q) and a ∈ Hl(T

n). These classes span the homology mod-
ules Hk,l(X) for k < l and correspond to point (2) of Proposition 2.9.
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When k = l < n we call the classes DfL,a extremal diaphragm classes. In this case
the situation is different: the classes DfL,a depend not only on the homology class of
L but on the representative L itself. Nevertheless, if L1 and L2 represent the same
class in Hk(Q, ∂Q), then the classes DfL1,a,DfL2,a ∈ Hk,k(X) coincide modulo face
classes, as proved below. Our goal is to derive exact formulas; thus we restrict to the
case when homology class a ∈ Hl(T

n) is represented by a coordinate subtorus T (A)

for A ⊂ [n], |A| = l.

Construction 5.4. Let φε : (Lε, ∂Lε) → (Q, ∂Q), ε = 1, 2, be two pseudomanifolds rep-
resenting the same element ζ ∈ Hk(Q, ∂Q), k < n. As in the proof of Proposition 5.3,
consider a pseudomanifold bordism (Ξ, ∂Ξ) between L1 and L2, and the map φ : Ξ →
Q, which sends the boundary ∂L into the union of L1, L2, and Qk. The skeletal strat-
ification of Q induces a stratification on Ξ. The restriction of the map φ sends Ξk−1

to Qk−1. Let δ be the connecting homomorphism δ : Hk+1(Ξ, ∂Ξ) → Hk(∂Ξ,Ξk−1) in
the long exact sequence of the triple (Ξ, ∂Ξ,Ξk−1). The composite homomorphism

Hk+1(Ξ, ∂Ξ)
δ
−→ Hk(∂Ξ,Ξk−1) ∼=

Hk(L1, ∂L1)⊕Hk(L2, ∂L2)⊕Hk(∂Ξ \ (L◦
1 ∪ L◦

2), ∂Ξk−1)
id⊕ id⊕φ∗

−−−−−−−→

Hk(L1, ∂L1)⊕Hk(L2, ∂L2)⊕Hk(Qk, Qk−1)

maps the fundamental class [Ξ] ∈ Hk+1(Ξ, ∂Ξ) to the element⎛
⎝[L1],−[L2],

∑
I,dimFI=k

DI [FI ]

⎞
⎠ (5)

for some coefficients DI ∈ k.

Proposition 5.5. Let L1, L2 be two pseudomanifolds representing the same class ζ ∈
Hk(Q, ∂Q), k < n. Consider any subset A ⊂ [n], |A| = k, and let a ∈ Hk(T

n) be the
fundamental class of the coordinate subtorus T (A). Then there is a relation in H2k(X):

DfL1,a −DfL2,a +
∑

I,dimFI=k

DICI,A[XI ] = 0. (6)

The numbers DI are given by (5), and the numbers CI,A were defined in Lemma 3.3.

Proof. Consider the space (Ξ× T (A))/ ≈ and the map φ× ι : (Ξ× T (A))/ ≈→ X =
(Q× Tn)/∼, where the relation ≈ is induced from ∼ by the map φ, and ι : T (A) → Tn

is the inclusion map. The space (Ξ× T (A))/ ≈ is a pseudomanifold with boundary,
and its boundary represents the element (6) in homology.

Therefore, up to face classes, the middle homology group Hk,k(X) coincides with
Hk(Q, ∂Q)⊗Hk(T

n) for k < n. This is exactly the statement of Proposition 2.9,
point (3).
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5.2. Integral coefficients
Proposition 2.9 was stated only over a field. On the other hand, the geometrical

constructions of the previous subsection yield the additive homomorphisms over Z⊕
k>l

Hk(Q)⊗Hl(T
n) → H∗(X),

⊕
k<l

Hk(Q, ∂Q)⊗Hl(T
n) → H∗(X).

Let Hk,l(X;Z) ⊂ H∗(X;Z) denote the image of the group Hk(Q;Z)⊗Hl(T
n;Z)

when k > l, or the image of the group Hk(Q, ∂Q;Z)⊗Hl(T
n;Z) when k < l, and let

Hk,k(X;Z) denote the the subgroup ofH∗(X;Z) generated by all extremal diaphragm
classes and all face classes. Then we have a decompositionH∗(X;Z)∼=

⊕
k,l Hk,l(X;Z)

over integers, since it holds over any field. This proves the following proposition.

Proposition 5.6. Proposition 2.9 holds over Z. Homology groups of X are generated
by face classes, spine classes, and diaphragm classes. The groups Hk,l(X;Z) for k > l
are generated by spine classes; the groups Hk,l(X;Z) for k < l are generated by non-
extremal diaphragm classes; the short exact sequence

0 → (ĖX)∞k,k → Hk,k(X;Z) → Hk(Q, ∂Q;Z)⊗Hk(T
n;Z) → 0

identifies the quotient of Hk,k(X;Z) by the face classes with the group of extremal
diaphragm classes when k < n.

6. Intersections in H∗(X)

Remark 6.1. In construction 5.1 we defined the classes Spη,a for each η ∈ Hk(Q) and
a ∈ Hl(T

n) under the assumption k > l. The same construction can be applied for
any k and l. If η is represented by a pseudomanifold N lying in the interior of Q,
and a is represented by a subtorus, then the product N × T (a) is a pseudomanifold
in X, and thus represents an element [N × T (a)] ∈ Hk+l(X). Although for k � l this
element is not a spine class, we keep denoting it Spη,a. By construction, if k � l, the
class Spη,a coincides with the diaphragm class DfN,a, and in particular if k < l, there
holds Spη,a = Dfη′,a, where η′ is the image of η in Hk(Q, ∂Q).

Let ∩ : Hk(M)⊗Hl(M) → Hk+l−dimM (M) denote the intersection product on a
closed manifold M , the operation that is Poincare dual to the cup-product in coho-
mology. From the geometrical structure of face classes (and also from Corollary 4.4)
follows:

Proposition 6.2. If I1, I2 ∈ SQ, then [XI1 ] ∩ [XI2 ] = [XI1∩I2 ] ∩
∑

J∈I1∨I2
[XJ ].

Intersections of spine and diaphragm classes can also be described geometrically.
There are intersection products ∩ : Hk1

(Q)⊗Hk2
(Q, ∂Q) → Hk1+k2−n(Q) and

∩ : Hl1(T
n)⊗Hl2(T

n) → Hl1+l2−n(T
n). By the construction of homology classes in

X we have the following properties of the intersection product on H∗(X).

Proposition 6.3. 1. The classes Spη,a ∈Hk1,l1(X), k1 > l1, andDfL,b ∈Hk2,l2(X),
k2 � l2, satisfy

Spη,a ∩DfL,b = Spη∩[L],a∩b .

Since dim(η ∩ [L]) = k1 + k2 − n and dim(a ∩ b) = l1 + l2 − n, the element
Spη∩[L],a∩b is either a spine class (if k1 + k2 > l1 + l2) or a diaphragm class
conventionally defined in Remark 6.1 (if k1 + k2 � l1 + l2).
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2. The classes Spη1,a1
∈Hk1,l1(X), k1 > l1, and Spη2,a2

∈Hk2,l2(X), k2 > l2, satisfy

Spη1,a1
∩ Spη2,a2

= Spη1∩η2,a1∩a2
.

The result is a spine class.

3. Spine classes do not meet face classes: Spη,a ∩[XI ] = 0.

Proposition 6.4. The linear span of proper face classes [XI ] is an ideal of H∗(X)
with respect to the intersection product.

Proof. Suppose I �= 0̂, and let ı : XI ↪→ X be the inclusion of a face submanifold.
Let κ be a cohomology class Poincare dual to a diaphragm class Df in X. Then
[XI ] ∩Df = [XI ]�κ = ı∗(ı

∗(κ)�[XI ]). Since XI is a manifold with locally standard
action whose orbit space is acyclic together with all faces, the face classes of XI span
its homology. Hence the class ı∗(κ)�[XI ] ∈ H∗(XI) is a linear combination of face
classes in H∗(XI) and therefore ı∗(ı

∗(κ)�[XI ]) is a linear combination of face classes
in H∗(X).

Remark 6.5. Intersections of diaphragm classes with themselves and with face classes
are more difficult to describe in general. Nevertheless, in practice one can use the
following trick (cf. the discussion of a similar problem in [3, Sect. 8]). Suppose the
task is to compute DfL,a ∩[XI ]. If L ∩ FI = ∅, then the intersection product is 0. If
not, find another representative L′ such that [L′] = [L] ∈ H∗(Q, ∂Q) and L′ ∩ FI = ∅.
Then, by Proposition 5.5, DfL,a = DfL′,a +Σ, where Σ is a linear combination of face
classes. Thus we have DfL,a ∩[XI ] = DfL′,a ∩[XI ] + Σ ∩ [XI ] = Σ ∩ [XI ], which can
be computed by Proposition 6.2.

7. Examples

7.1. One concrete example
It is similar to the one studied by Poddar and Sarkar in [12, Th. 3.1]. Let Q be a

square with triangular hole. Orientations of facets and values of characteristic function
are assigned to Q as shown in Figure 1 (left). Homology groups of the corresponding
4-dimensional manifold X = (Q× T 2)/∼ are described below.

F4

(
3
1

)

F1

(
1
0

)
F3

(
1
0

)
F2

(
0
1

)

F7

(
−3
−5

)
F5

(
2
3

)
F6

(
1
2

)

(
3
1

)

N

L

L′

Ξ

Figure 1: Structure of Q and values of characteristic function
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(1) Face classes. These are the following: the fundamental class [X] ∈ H4(X); the
classes of characteristic submanifolds [X1], [X2], . . . , [X7] ∈ H1,1(X) ⊂ H2(X), which
correspond to the sides of Q; and the classes of fixed points of the action

[X12], [X23], [X34], [X14], [X56], [X67], [X57] ∈ H0,0(X) = H0(X),

which correspond to the vertices of Q. Relations on these classes are given by Propo-
sition 4.1. The first-type relations in H2(X) are

[X1] + [X3] + 3[X4] + 2[X5] + [X6]− 3[X7] = 0,

[X2] + [X4] + 3[X5] + 2[X6]− 5[X7] = 0

(the coefficients are, respectively, first and second coordinates of the values of char-
acteristic function). The first type relations on the classes [Xij ] are encoded by the
sides of of the orbit space. These relations are the following:

[X12] = −[X23] = [X34] = −[X14], [X56] = [X67] = [X57].

To find relations of the second type, we need to pick a homology class in the image
of δ1 : H1(Q, ∂Q) → H0(∂Q). Take, for example, the class, represented by the chain
[F14]− [F57]. It induces the relation of second type:

[X14]− [X57] = 0.

Thus all fixed points represent the same up to sign generator [pt] ∈ H0(X). Cer-
tainly, this easily follows from the connectivity of X, but we wanted to emphasize the
different nature of two types of relations.

(2) Spine classes. Consider a submanifold N ⊂ Q representing the generator η ∈
H1(Q) (Figure 1, right). Together with the class of a point [T (∅)] ∈ H0(T

2) it deter-
mines a spine class Spη,∅ ∈ H1,0(X) = H1(X). Geometrically, Spη,∅ is represented
by a submanifold N ⊂ Q lifted by a zero-section map Q ↪→ X.

(3) Diaphragm classes. Consider a submanifold L representing the generator of
H1(Q, ∂Q) and assume that ∂L lies in the 0-skeleton of Q (Figure 1, right). For each
subset A = {1}, {2}, {1, 2} we have a homology class in H1,|A|(X) represented by a

pseudomanifold (L× T (A))/∼. Thus we have the generators

DfL,1 = [(L× T ({1}))/∼], DfL,2 = [(L× T ({2}))/∼]

ofH1,1(X) ⊂ H2(X) and the generator DfL,{12} = [(L× T 2)/∼] ofH1,2(X) = H3(X).
Let L′ be another submanifold representing the same homology class in H1(Q, ∂Q).
Consider a bordism Ξ between L and L′ shown on the figure. We have DfL,{12} =
DfL′,{12} in H3(X) since (Ξ× T 2)/∼ is a pseudomanifold bordism between (L×
T 2)/∼ and (L′ × T 2)/∼.

We have a relation δΞ = −[L] + [L′] + [F4] + [F6] + [F7] that induces the relations

−DfL,1 +DfL′,1 +1[X4] + 2[X6]− 5[X7] = 0,

−DfL,2 +DfL′,2 +3[X4] + 1[X6]− 3[X7] = 0

in H2(X). These relations are the boundaries of (Ξ× T ({1}))/∼ and (Ξ× T ({2}))/∼
respectively. The coefficients are the complimentary coordinates of the characteristic
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function: for the class encoded by the first coordinate subtorus, we take the sec-
ond coordinate, and vice versa. In this computation we applied the formula for the
coefficients CI,A asserted by Lemma 3.3.

(4) Intersections of classes. It is easily seen that the classes SpN,∅ and DfL,{1,2} are
transversal, and their intersection induces a nondegenerate pairing between H1(X)
and H3(X).

L
L′

L′′

Figure 2: Different representatives of diaphragm classes

Let us compute the intersection of DfL,1 with DfL,2 to demonstrate the idea
sketched in Remark 6.5. Consider the auxiliary intervals L′ and L′′ shown on Figure 2.
Similar to the previous computations we get

DfL,1 = DfL′,1 +1[X4]− 5[X7], DfL,2 = DfL′′,2 −1[X1]− 2[X5].

Thus

DfL,1 ∩DfL,2 = (DfL′,1 +[X4]− 5[X7]) ∩ (DfL′′,2 −[X1]− 2[X5])
= −[X4] ∩ [X1] + 10[X7] ∩ [X5] = −[X14] + 10[X57] = 9[pt] ∈ H0(X).

7.2. Toric origami manifolds
In this subsection we apply our method to the class of toric origami manifolds and

show that some results of [3] can be derived from the spectral sequence of the orbit
type filtration. The toric origami manifolds were introduced in differential geome-
try by Cannas da Silva, Guillemin, and Pires [7] as generalizations of symplectic
toric manifolds. The precise geometrical definition is irrelevant to our study, but we
review the essential topological properties. An orientable toric origami manifold X is
a manifold with locally standard torus action; its orbit space Q = X/Tn is homotopy
equivalent to a graph Γ, and the inclusion of any face in the orbit space is homo-
topy equivalent to an inclusion of some subgraph in Γ. As before, there is a principal
torus bundle Y → Q such that X = Y/∼. Since Q is homotopy equivalent to a graph,
H2(Q,Zn) = 0, so the Euler class of Y vanishes. Thus in the origami case there always
holds X = Q× Tn/∼.

Now we restrict to the case when all proper faces of Q are acyclic. Since the
faces are homotopy equivalent to graphs, they are contractible. Let b1 = dimH1(Q) =
dimH1(Γ). The Poincare–Lefchetz duality implies

Hq(Q, ∂Q;Z) ∼= Hn−q(Q;Z) ∼=

⎧⎪⎨
⎪⎩
Z, if q = n;

Zb1 , if q = n− 1;

0, otherwise.
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Let us describe the connecting homomorphisms δi : Hi(Q, ∂Q;Z) → Hi−1(∂Q;Z). For
simplicity we discuss the case n � 4; dimensions 2 and 3 can be done similarly.
When n � 4, lacunas in the exact sequence of the pair (Q, ∂Q) imply that the map
δi : Hi(Q, ∂Q;Z) → Hi−1(∂Q;Z) is an isomorphism for i = n− 1, n, and trivial oth-
erwise. Thus we have

Hi(∂Q;Z) ∼=

⎧⎪⎨
⎪⎩
Z, if i = 0 or n− 1;

Zb1 , if i = 1 or n− 2;

0, otherwise.
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)
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)
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)
b1

1(EX)2∗,∗

0

0

Figure 3: Homology spectral sequence of the orbit type filtration in the case of an
orientable origami manifold with acyclic proper faces of the orbit space. Only the
ranks of modules are written to save space.

Proposition 2.7 implies that (EX)2p,q has the form shown schematically in Figure 3.
The differential (dX)2 hitting the marked position produces relations R′

β,A of the sec-

ond type on the classes [XI ] ∈ H2n−4(X;Z). These relations are explicitly described
by Proposition 4.1, and the number of independent relations is

(
n
2

)
b1. Dually, this

consideration shows that the map Z[SQ]/Θ → H∗(X;Z) has a nontrivial kernel of
dimension

(
n
2

)
b1 in degree 4.

In addition, there are non-face classes (nondiagonal terms in the spectral sequence)
as follows:
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1. There are b1 1-dimensional spine classes, which are as the liftings of cycles in Γ.

2. There are b1 diaphragm classes of codimension 1 given by the generators of
Hn−1(Q, ∂Q;Z) ∼= H1(Γ) swept by the action of the whole torus. These classes
are equivariant. There is a nondegenerate intersection pairing between these
classes and the spine classes.

3. There are nb1 extremal diaphragm classes of codimension 2. These are given by
the generators of Hn−1(Q, ∂Q;Z) lifted to X and swept by actions of (n− 1)-
dimensional subtori. The choice of these classes is not canonical.

8. Collar model

In this section we prove Theorem 4.6, stated in Section 4, using an auxiliary
space X̂.

Construction 8.1. Consider the space Q̂= ∂Q× [0, 1], which is an (n−1)-dimensional

manifold with boundary. The boundary ∂Q̂ has the form ∂0Q̂ � ∂1Q̂, where ∂εQ̂ =
∂Q× {ε}, ε = 0, 1. We may identify ∂0Q̂ with ∂Q and consider the filtration

Q0 ⊂ Q1 ⊂ · · · ⊂ Qn−1 = ∂Q = ∂0Q̂ ⊂ Q̂.

The space Q̂ can be considered as a collar of ∂Q inside Q.
Consider the space Ŷ = Q̂× Tn and the identification space X̂ = Ŷ /∼. The rela-

tion ∼ identifies points over ∂0Q̂ as in Construction 2.2, while no identifications are
imposed over ∂1Q̂. The space X̂ is a manifold with boundary. Its boundary con-
sists of points over ∂1Q. The space X̂ can be considered as a Tn-invariant tubular
neighborhood of the union of all characteristic submanifolds in X. There are natural
topological filtrations on Ŷ and X̂ induced by the filtration on Q̂.

In the terminology of [2] the space X̂ is a Buchsbaum pseudo-cell complex, and

thus Propositions 2.5 and 2.6 and items (1)–(5) of Proposition 2.7 hold for Q̂, Ŷ , and

X̂. The nth column of all spectral sequences vanishes since H∗(Q̂, ∂0Q̂) = 0. Thus
the spectral sequences (Ė

Q̂
)r, (Ė

Ŷ
)r, (Ė

X̂
)r collapse at first pages and, consequently,

the spectral sequences (E
Q̂
)r, (E

Ŷ
)r, (E

X̂
)r collapse at second pages.

For each I ∈ SQ, with dimFI = q < n there is a distinguished element [XI ] ∈

H2q(X̂q, X̂q−1) = (E
X̂
)1q,q. It survives in the spectral sequence and represents the

fundamental class of the face submanifold XI ⊂ X̂. Linear relations on classes [XI ]

in H∗(X̂) are described as in Section 4. When q = n− 1, there are no relations on
[XI ] since there are no differentials landing at the cell (E

X̂
)1n−1,n−1. For q < n− 1

the relations on [XI ] are the images of (d
X̂
)1 : (E

X̂
)1q+1,q → (E

X̂
)1q,q. These differen-

tials coincide with (dX)1 and thus, for |I| > 1, the relations on [XI ] are exactly RJ,A,
defined in Proposition 4.1. Hence Proposition 4.3 implies the following.

Lemma 8.2. Let V∗ denote the submodule of H∗(X̂) generated by the face classes
[XI ], I �= 0̂. Then there exists a degree-reversing linear map

ϕ̃ : V2q → (k[SQ]/Θ)2(n−q)

that sends [XI ] to vI . It is an isomorphism for q < n− 1 and surjective for q = n− 1.
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This map is a ring homomorphism with respect to the intersection product on X̂ and
the product in the face ring.

Now we are in position to give a geometrical proof of Theorem 4.6.

Proof. We need to show that the element L′
β,A lies in a socle of k[SQ]/Θ—that is,

L′
β,A · vi = 0 for any vertex i ∈ Vert(SQ). By Lemma 8.2 it is enough to show that

R′
β,A ∩ [Fi] = 0 in H∗(X̂).

Consider a geometrical cycle N ⊂ ∂0Q̂ representing β. Now we allow N to be any
representative, and do not require that it lies in the stratum Qq. Consider the cycle

N × T (A) in ∂0Q̂× Tn, and the corresponding cycle (N × T (A))/∼ in X̂. The latter

cycle represents the class R′
β,A ∈ H2q(X̂) by definition. We can move the cycle N ⊂ Q̂

away from the boundary ∂0Q̂. Thus N ∩ [Fi] = ∅ and therefore R′
β,A ∩ [Xi] = 0 in

H∗(X̂).

Remark 8.3. The same argument proves that L′
β,A · vI = 0 for any simplex I ∈ SQ \ 0̂.

This fact does not directly follow from Theorem 4.6, since the map k[m] → k[SQ]/Θ
may be nonsurjective in general.

Remark 8.4. The only reason why we considered the collar model X̂ instead of X is
that there are no additional relations in H∗(X̂) compared with k[SQ]/Θ. The space

X̂ captures the properties of k[SQ]/Θ more precisely than X. On the other hand,

X̂ is a manifold with boundary and thus has a geometrical intersection theory. This
makes it an object worth studying.

Remark 8.5. The classes R′
β,A ∈ (EX)2q,q are the images of the classes β × [T (A)] ∈

Hq(∂Q)×Hq(T
n) under the homomorphism ḟ1

∗ : (ĖŶ
)1q,q → (Ė

X̂
)1q,q. This homomor-

phism is injective by Proposition 2.7; thus the construction gives an inclusion

Hq(∂Q)⊗Hq(T
n) ↪→ Soc(k[SQ]/Θ)2(n−q)

for each q�n− 2. When q=n− 1, the mapHn−1(∂Q)⊗Hn−1(T
n)→ Soc(k[SQ]/Θ)2

has kernel of the form 〈[∂Q]〉 ⊗Hn−1(T
n), where [∂Q] is the fundamental class of ∂Q.

Note that ∂Q may be disconnected, and thus there could exist classes in Hn−1(∂Q)
different from [∂Q]. Nevertheless, there exists an injective map

(Hn−1(∂Q)/〈[∂Q]〉)⊗Hn−1(T
n) ↪→ Soc(k[SQ]/Θ)2.

These statements reprove the result of Novik and Swartz [11, Th. 3.5] in the case of
homology manifolds.
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