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ON COHOMOLOGY THEORY OF (DI)GRAPHS
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(communicated by Donald M. Davis)

Abstract
To a digraph with a choice of certain integral basis, we con-

struct a CW complex, whose integral singular cohomology is
canonically isomorphic to the path cohomology of the digraph
that was studied recently. The homotopy type of the CW com-
plex turns out to be independent of the choice of basis. The con-
struction is functorial, and it makes many of the recently proved
properties of digraph cohomology and homotopy manifest. Fur-
thermore, one gets an expected formula for the cup product of
forms on a digraph. On the other hand, we present an approach
using sheaf theory to reformulate (di)graph cohomologies. The
investigation of the digraph path cohomology from this sheaf
theory framework leads to a subtle version of Poincare lemma
for digraphs, which follows from the construction of the CW
complex.

1. Introduction

In the past few years, there has been rapidly growing interest in developing geo-
metric concepts in the context of graphs beyond spectral graph theory. See, for exam-
ple, [6] for a short exposition. In particular, there exist several attempts to define the
homology and cohomology of (di)graphs—for example, via cliques [2] or via path
algebra [9, 3]. One potential application of such ideas concerns topological phases in
condensed matter physics; see, for example, [11].

Our first purpose here is to try to better understand the path cohomology of
digraphs [9]. This is an interesting theory that is expected to play the role of singular
cohomology, or in some nice cases de Rham cohomology, for digraphs. Chapters 5,
6, and 7 of [9] discuss some of its nice but perhaps combinatorially subtle proper-
ties, and more basic properties regarding homotopy are proved in [10], by applying
ideas of traditional algebraic topology to digraphs. In this paper, we construct a CW
complex from a digraph with a given choice of integral basis of a certain kind, whose
integral singular cohomology is canonically isomorphic to the path cohomology of
digraphs. We will see that this construction gives rise to a functor from the category
of digraphs to a skeleton of the homotopy category of CW complexes, preserving
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products. Some immediate consequences of the existence of this functor include that
the path cohomology of digraphs is homotopy invariant, that the Künneth formula
holds, and that there exists a functorial cup product on the path cohomology that
can be lifted to the level of forms, as [10, 9] proved. Furthermore, one can then define
arbitrary higher homotopy groups for a digraph to be those of the CW complex, as in
[10], but in a possibly different way. In addition, we get a very simple formula for the
cup product of forms on the digraph, which is actually implicitly contained in [10],
but here we understand the formula in a more geometric way. We hope these results
will be the beginning of a systematic investigation, exploring the connection between
digraph theory and topology. This construction may be thought of as a generaliza-
tion of associating a simplicial complex to a graph, but is much more subtle, and has
better categorial behavior. Intuitively, it may be viewed as, in some sense, an inverse
construction to a particular generalized concept of triangulation of a manifold, which
we hope to investigate in future works.

As the combinatorial Laplacian is a central object in (di)graph theory, one clear
motivation for developing (di)graph cohomology theories is, in particular, to get inter-
esting (di)graph analogues of the Laplacian acting on differential forms, as a foun-
dation for later developments. Some known cohomology theories of (di)graphs are
similar to the conventional cohomologies for topological spaces, but at the same time
also seem to exhibit some different and perhaps puzzling features at first glance. Also,
one should ask how these different cohomology theories may be treated in a uniform
way. The second purpose of this paper, starting with Section 4, is to use sheaf theory
to study (di)graph cohomology theories, with the hope of treating different theories
within a single framework. It turns out that there is a Poincare lemma for the path
cohomology of digraphs, which follows from the construction of the CW complex men-
tioned in the previous paragraph. Our approach here is partly inspired by a recent
study of topologies on a graph [7], and our motivation partly lies in the hope that
the sheaf theory idea might eventually lead to a much-hoped cohomological proof of
the Riemann–Roch theorem for graphs [1].
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2. From digraph to CW complex

In this section, we follow the notation in [9], with some modifications that we
will mention. Let G be a finite digraph. By a primitive allowed k-path, we mean
an ordered sequence of vertices i0i1 . . . ik, such that isis+1 is a directed edge in G,
for s = 0, 1, . . . , k − 1. We say this primitive allowed path is regular, iff all these
vertices are different from each other. Note that this regularity condition is more
restrictive than the one used in [9, Section 2.3]. There are several reasons we prefer
this regularity condition: e.g., with this new condition, the homology groups are now
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obviously bounded above, and the Lefschetz fixed-point theorem holds,1 both of which
are not true with the old regularity condition. On the other hand, we will make some
remarks about relaxing our regularity condition at the end of this section, to extend
the applicability of our construction. We let Ak(G) denote the space of regular allowed
k-paths, which, by definition, is the free Z-module generated by all regular primitive
k-paths, and let Ωk(G) denote the submodule of ∂-invariant regular allowed k-paths
defined recursively, as in [9, section 3.3]; recall that this means the subspace of Ak(G)
consisting of elements whose boundary is an element of Ak−1(G). We also use Ω(G)
to denote the direct sum of Ωk(G) for all k. When no confusion will arise, we omit G
and write Ak and Ωk. We call k the length of the path. Note that Ak(G) = 0 when
k � |G|.

For any P =
∑m

k=1 ckpk ∈ Ωk(G), where pk, k = 1, 2, . . . ,m, are primitive regular
allowed paths, we define w(P ) =

∑m

k=1 |ck| to be the width of the path P . For each pk,
we define its support to be the subgraph it defines—namely, the minimal subgraph of
G, such that pk is an allowed path in the subgraph. We define the support of P to be
the union of the support of each pk, where ck is nonzero, and denote it by Supp(P ).
We say P is minimal iff there do not exist integers dk, k = 1, 2, . . . ,m, such that
|ck − dk| � |ck| and |dk| � |ck| for each k = 1, 2, . . . ,m, and P ′ =

∑m

k=1 dkpk ∈ Ωk,
and w(P ′) < w(P ). In this definition, if such a P ′ exists, we say that P ′ is strictly
smaller than P . Note that Supp(P ′) ⊂ Supp(P ), and we have also that P − P ′ ∈ Ωk

is strictly smaller than P . Therefore, it is clear that any element in Ωk(G) is a linear
combination of minimal elements.

Lemma 2.1. Any minimal path is a linear combination of primitive paths with the
same starting and ending vertices.

Proof. Given any two primitive paths with different starting vertices that both show
up in a ∂-invariant path, if some of their boundary components possibly cancel
through a string of other primitive paths, then at certain step one has to change
the starting vertex, and therefore the cancellation is not useful in eliminating non-
∂-invariant paths, in the sense that there exists a strictly smaller ∂-invariant path
consisting of primitive paths all starting with the same vertex. The same argument
applies to the ending vertex.

Now we are going to construct cells from minimal paths and construct a CW
complex given a choice of the integral basis of Ω(G) consisting of minimal paths,
whose existence is a corollary of Lemma 2.3, below, which we will prove together
with Lemma 2.2 simultaneously by induction.

Lemma 2.2. Any minimal path P is a linear combination of primitive paths, with
coefficients being either 1 or −1.

Lemma 2.3. Any minimal integral relation among minimal paths of a fixed length
is of the form

∑m

i=1 λiPi = 0, where all the coefficients λi are either 1 or −1. Here,
the definition of minimal integral relations are the same as that in the definition of
minimal paths—in an obvious sense that it cannot be written as a sum of two strictly
smaller relations.

1We will explain this briefly in Section 5.
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Note that Lemma 2.3 implies that any rational basis of Ω(G) consisting of minimal
paths is an integral basis; thus it implies the following:

Corollary 2.4. There exists an integral basis of Ω(G) consisting of minimal paths.

For path length k = 1, both lemmas are obviously true, and, furthermore, one
associates a k-cell to any minimal path of length k, by filling in a (k − 1)-sphere
corresponding to the union of cells associated with boundary components of the path,
meaning that the boundary of the path decomposes uniquely as a sum of smaller
minimal paths of length k − 1, to each of which we have associated a cell, and the
cell association commutes with the boundary operation. Now suppose all of these
statements are true for path length up to k − 1, and take P to be a minimal path
of length k. As ∂P is a path, it can be decomposed into a sum of minimal paths
of length k − 1, where all the paths are smaller than or equal to ∂P , for which
there are associated k − 1 cells. The union of these cells, counting multiplicity, is a
sum of closed manifolds, as ∂∂P = 0. Note: the reader can convince himself/herself
that each minimal path of length k − 2 that shows up as a boundary component of a
boundary component of P appears even times as expected, and in particular there are
no singularities on these manifolds. We construct a height function on it as follows:
By Lemma 2.1, the starting and ending vertices of any minimal path are unique.
First of all, there is a height function on edges, given by piecewise-linearly extending
the integer-valued length function defined on vertices, given by the position it sits
in a primitive path component (note that this position number is the same for any
primitive path one chooses, as a consequence of the obvious fact that any primitive
path of maximal length in the support of a minimal path must be a component of the
minimal path). We proceed by extending the height function to disks and so on, as
we can always extend the height function from a sphere to the ball it bounds. Take
any of these closed manifolds and call it M . We can make a small perturbation to
make the height function become a Morse function on M . We single out a subset E1

of the set of vertices in the support of P , consisting of vertices such that any path
in the support of P connecting the vertex to the ending vertex E is of length 1. We
define another subset S1 in the symmetric way, with respect to the starting vertex. It
is clear that the only possible critical points of this height function are the starting
and ending vertices, and vertices in E1 and S1, as aside from them there is always a
direction in which the function is strictly monotonic. Now suppose a vertex W in E1

is a critical point; then E cannot lie on M . Take any primitive path component p of
P (whose support after truncating E is in M) that goes through W ,2and let us write
it as p = SqWE. Then qW as a boundary component of SqW has to be cancelled by
a boundary component of a primitive path in a minimal path associated with M , all
of which consist of primitive paths of length k − 1 that do not go through E. So the
only such possible primitive path that has a boundary component cancelling it is itself
with a different orientation, which is a contradiction. For the same reason, vertices in
S1 cannot actually be critical points. Therefore, the only possible critical points are
S and E, which implies that M is a (k − 1)-sphere and S, E are in its support. Now
take all length k primitive paths in the support of M , defined by the union of the
support of k − 1 minimal paths associated with M , with orientation determined by

2Such a primitive path has to exist in the situation.
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orientations of boundary components; then we get a ∂-invariant k-path that is smaller
than or equal to P . Recall that any maximal-length primitive path in the support of
P is a primitive component of P . Also note that for any primitive path of length k,
all of its boundary components must have support in a single sphere, as otherwise
there have to exist boundary components that do not belong to any of the spheres,
which is impossible. On the other hand, any primitive (k − 1)-path associated with
M must be a boundary component of a primitive k-path with support in M , as a
consequence of the fact that any longest primitive path in the support of M must
have length k. So the path we just constructed has to be equal to P as P is minimal,
and therefore ∂P corresponds to a single (k − 1)-sphere. This implies Lemma 2.2 for
P , and that the decomposition of ∂P into a sum of minimal elements is unique. On
the other hand, we can fill in the sphere to get a k-cell for P . This cell association
clearly commutes with the operation of taking boundary, by construction.

Let us choose an integral basis for each Ωj(G) consisting of minimal paths, for j

up to k − 1, where Lemma 2.3 is true by inductive hypothesis. We now construct a
(k − 1)-skeleton together with some k-cells that we will later use in the induction.
For this purpose, we need to possibly exclude cells associated with minimal paths
that are not elements of the basis chosen, and some cells may need to be modified
accordingly.

Again, for any vertex, one associates a zero-cell. For any edge, one associates a
one-cell with boundary given by the boundary of the edge.

Suppose again that for all minimal paths in our basis of length up to i− 1, (i � k)
one has associated cells of the corresponding dimension (by filling in a sphere that
is associated with the boundary of the path) so one has a CW complex with cell
dimensions up to i− 1. Now pick any designated minimal path P of length i—it must
have a single starting vertex S and a single ending vertex E by Lemma 2.1. Again,
minimality of P and Lemma 2.2 imply that the boundary of P can be decomposed
uniquely into an integral linear combination of minimal paths, with all coefficients
being 1 or −1. For any minimal path P ′ of length i− 1 that shows up in the linear
combination, if it is in our chosen basis, we have already assigned a (i− 1)-cell to it.
Otherwise, it is a unique integral linear combination of basis elements, with coefficients
being 1 or −1 by Lemma 2.3.

If we union the cells in the previous paragraph associated with basis elements in
the linear combination, we get a manifold with boundary being an (i− 2)-sphere
specified by the union of all (i− 2)-dimensional cells associated with ∂P ′.3For any
such manifold, we can again construct a Morse height function by gluing together
individual such functions on cells associated with each minimal element—note that
the height function is constructed in a way that enables one to glue. Then the same
argument shows that it is an (i− 1)-disk: e.g., one can attach another (i− 1)-cell
with the (i− 2)-sphere, to get a manifold without boundary, and then use the same
Morse theory argument.

Therefore, for each minimal path that shows up in the above decomposition of the
boundary of P , there corresponds a piece of the already existing CW complex home-
omorphic to an (i− 1)-disk, with boundary as we described. So again the bound-
ary of these disks cancel, and therefore the union of all of them is a manifold of

3Note that a choice of basis is important for this to be true.
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dimension i− 1. Note: one has to show further that each (i− 1)-cell associated with
basis elements that shows up has multiplicity 1 (or −1), when taking all the P ′ into
account. This can be done by first restricting our attention to all the P ′ that share
the same starting and ending vertices. Each of these P ′ corresponds to a previously
constructed (i− 1)-cell. One sees that the union of these cells is homeomorphic to a
(i− 1)-disk, as a consequence of the fact that all these (i− 1)-cells of different start-
ing and ending vertices union to form a manifold without singularity. Then, if any of
the (i− 1)-cells aforementioned has greater multiplicity, by an argument similar to
that in the inductive proof of Lemma 2.3, below, a sphere must be present, resulting
from gluing together cells associated with certain basis elements that show up, so one
creates a nontrivial linear relation among basis elements, which is impossible. Now
the same Morse height function argument shows that this manifold is homeomorphic
to a (i− 1)-sphere, and therefore one can fill it in with an i-cell.

The previous induction goes up to i = k. To continue, we have yet to finish our
inductive proof of Lemma 2.3 for length k. Suppose we have a minimal integral
relation among minimal paths of length k; then obviously we have unique starting and
ending vertices for all primitive paths involved in this relation. So any such integral
relation gives rise to a geometric consequence such that the union of all these cells
that we have just constructed corresponding to the minimal paths that show up in
the relation, counting multiplicity, is a sum of manifolds without boundary.4 For any
such manifold, we can again construct a Morse height function by gluing together
individual such functions on cells associated with each minimal element; then the
same argument shows that it is a sphere, and therefore corresponds to a minimal
relation, as one easily convinces oneself. So any minimal relation corresponds to a
single sphere. Lemma 2.3 is thus evident for k-paths. Our induction is thus complete.

Therefore, we can choose a basis for Ωk(G) consisting of minimal paths, and this
inductive procedure continues until one associates a cell to each basis element one has
chosen, and therefore ends up with a k-skeleton. Now one can simply take k to be the
upper bound where Ωk(G) is nonzero, and one ends up with a CW complex associated
with a choice of integral basis of Ω(G) consisting of minimal paths. It is evident from
the construction that the cell association still commutes with the boundary operator
and the integral singular cohomology of the CW complex is canonically isomorphic
to the digraph path cohomology.

Our next step is to construct a homotopy between any such CW complexes. For
this purpose, we focus on each k step by step, where k is the length of path.

Next, we let a1, . . . , as be any other integral basis of Ωk(G) consisting of minimal
elements. Then the change of basis from b1, . . . , bs to a1, . . . , as can be done in a
sequence of s steps, where each step can be expressed in the form c1, c2, . . . , cs →
d1, c2, . . . , cs; this change corresponds to a change of a single basis element from c1
to d1, corresponding to a minimal integral relation expressing d1 as an integral linear
combination involving c1 of the basis elements c1, c2, . . . , cs. By Lemma 2.3 and its
proof, we see there is the following continuous map of topological spaces that we can
define: c1 corresponds to a cell. Write it as the unique integral linear combination
of d1, c2, . . . , cs. We “collapse” this c1 cell onto the union of cells corresponding to

4Again, a choice of basis that we have already done up to length k − 1 is important for this to be
true.
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this integral linear combination, which can be viewed as a refinement of the c1 cell
prescribed by this linear relation. This procedure does not affect cells of strictly lower
dimensions, and it is clear that this “collapsing” can be extended to a continuous
map of the two CW complexes corresponding to these two different basis: i.e., one
extends this map in an obvious way to higher dimensional cells. There is of course a
continuous map in the reversed direction by collapsing from the second basis to the
first basis. One checks directly that the composition of these two maps is homotopic
to the identity map, basically by “slowly pulling the string back.” Therefore, any such
collapsing is a homotopy.

Therefore, for each digraph G, one assigns a CW complex unique up to homotopy.
We next explain that this assignment is functorial, meaning that it defines a functor
from the category of digraphs, where morphisms are defined in a particularly strict
sense that we will explain below, to a skeleton of the homotopy category of CW com-
plexes. For this homotopy category, we mean that the objects are CW complexes,
while the morphisms are homotopy classes of continuous maps of topological spaces.
Given any map from G to another digraph G1 (which means that vertex maps to ver-
tex and directed edge maps to directed edge) that preserves the incidence relations
among directed edges and vertices. For our first discussion below, we do not allow
different vertices to map to the same vertex, and we only establish the functoriality
below in this narrow sense. We will see the discussion can probably be extended in a
larger category, where functoriality in a broader sense should hold. It is clear that any
minimal path is mapped to a linear combination of allowed ∂-invariant paths of the
same length, which is a sum of minimal paths. Picking any integral basis of Ω(G) and
Ω(G1) consisting of minimal paths, and denoting by TG and TG1

the corresponding
CW complexes, we construct a continuous map from TG to TG1

inductively: First,
vertices and directed edges are mapped to their images. Now suppose cells corre-
sponding to minimal paths of length strictly less than k are mapped; then for any
minimal path P of length k in the chosen basis, the image can be decomposed as a
sum of minimal paths of G1, again with coefficients being 1 or −1, which themselves
then correspond to unions of k-cells in TG1

homeomorphic to k-disks with boundary
corresponding to the boundary of the minimal paths, and furthermore any basis ele-
ment that appears is with multiplicity 1 or −1. Thus one can homeomorphically map
the k-cell associated to P , to the union of these k-cells, in terms of a refinement (sub-
division) of the cell, which gives the desired map inductively. Note that this procedure
does not affect maps of cells of strictly lower dimensions that are already defined. It
is then routine to check the functorial properties, as refinements compose in a desired
way.

When directed edges are allowed to collapse, and, in particular, different vertices
are allowed to map to the same vertex, a digraph may be mapped to a multi-digraph,
which means multi-edges with arbitrary orientations and self-loops are allowed.5 In
the larger category of multi-digraphs, a morphism is defined to be a map that takes
vertices to vertices, and directed edges to directed edges, such that it preserves the
incidence relations among directed edges and vertices. To extend our discussion to this
larger category, we need to relax our definition of a path and the regularity condition,

5It can also happen that a digraph still maps to a digraph, but our previous discussion may encounter
problems of degeneration.
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Figure 1: The CW complex of this digraph is a cube.
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Figure 2: The CW complex of this digraph is a triangular prism.
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Figure 3: The CW complex of this digraph is a 2-sphere.

in a precise way that allows paths that result from various kinds of degenerations.
We exhibit in the following a candidate choice of such definitions.

Definition 2.5. A virtual primitive path is an ordered string of vertices V0V1 · · ·Vs,
together with the following data: for any pair of consecutive vertices Vk, Vk+1 in the
string (k = 0, 1, . . . , s− 1), either one specifies a directed edge connecting them or
VkVk+1 is not a directed edge, and, furthermore, for any consecutive pairs of vertices
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Figure 4: Choosing any integral basis of Ω2(G) consisting of minimal 2-paths, the
CW complex of this digraph is formed by two 2-cells glued along two 1-cells via an
identification, and it is homotopic to a point. Note that if one naively constructs the
CW complex by associating a cell to each minimal path, one would get a 2-sphere
instead, which would have a different cohomology than the path cohomology.

in any string of vertices that appear as a (formal) component of ∂(P ), or boundary
components of boundary components, and so on, one either specifies a directed edge
connecting them or there is no directed edge between them. These specifications have
to be done in a way compatible with all incidence relations among paths.

Definition 2.6. A primitive path is a virtual primitive path, such that for any pair
of consecutive vertices Vk, Vk+1 in the string (k = 0, 1, . . . , s− 1), either we specified
a directed edge connecting them or VkVk+1 is not a directed edge but Vk = Vk+1.

Definition 2.7. If a primitive path satisfies the additional condition that any directed
edge appears at most once as a segment of the path and any virtual primitive path
of length 1 less appears at most once in the formal components of ∂(P ) before any
cancellation, then we call it a regular primitive path.

Definition 2.8. A path is an integral linear combination of regular primitive paths,
and a ∂-invariant path is a path, whose ∂ is a linear combination of primitive paths.
The space of ∂-invariant paths is denoted by Ω.

Remark 2.9. This definition reflects the fact that it is possible that some boundary
components of a cell collapse while the cell itself stays a cell. So we do not require all
boundary components to be regular.

Now we can formulate the following:

Question 2.10. Generalize the construction of the CW complex to multi-digraphs,
so that functoriality holds in the broader sense stated. One may need to define the
cohomology with a little more care, similar to what is done in [9], to account for
the new regularity condition. The cells in this more general setting could probably
be regarded as obtained by certain contractions from the cells in the old setting.
For functoriality, given two multi-digraphs G, G1, a morphism between them, and a
minimal path P in G, one in general may need to contract the cells associated with P

in the way prescribed by the multi-digraph morphism and then do the map described
above to match the choice of integral basis of the second multi-digraph. Note that a
cell may be mapped to lower-dimensional cells in general.
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Remark 2.11. Note that for the category of digraphs with morphism defined in our
narrow sense the resulting CW complex has the property that any attaching map is
an obvious homeomorphism. However, things will be more complicated in the bigger
category of multi-digraphs.

Returning to digraphs, by Chapter 7 of [9] it is evident that given an integral
basis for two digraphs, their product is an integral basis of the product digraph, and
furthermore that taking boundaries of products of paths satisfies the Leibniz rule,
which implies that our association of a CW complex to a digraph preserves products.

Remark 2.12. As we have seen, one can associate a cell to any minimal path, and
thus actually construct a CW complex in a canonical way from G without a choice
of integral basis as above, and the construction also probably will have all these nice
functorial properties. However, the cohomology of this new CW complex will get
additional contributions from linear relations among minimal paths, which perhaps
makes this construction less appealing.

3. Some immediate consequences

It then follows from standard algebraic topology that a homotopy between digraphs
induces isomorphisms of cohomology groups, and that the Künneth formula holds for
digraph cohomology. Furthermore, one can define arbitrary higher homotopy groups
of a digraph in terms of that of the CW complex. On the other hand, the cohomology
of digraphs becomes a functorial graded ring as that of the CW complex is such a
graded ring under the cup product. It turns out that this product can be lifted to the
level of forms, which are defined to be elements in Ωk, the dual of Ωk, and the lift
still respects associativity and the Leibniz rule and is functorial. Most of these are
first proved in [9, 10]. We show below that a very simple formula exists for this lifted
product,6 which may be relevant, for example, in studying some gauge field theories
on the digraph.

One sees from the construction of the CW complex that, for any minimal path
in the chosen basis P =

∑m

k=1 ckpk ∈ Ωk(G), where pk, k = 1, 2, . . . ,m, are primitive
regular allowed paths, there exists a unique subdivision of cells, given by adding edges
to connect all previously non-neighboring pairs of vertices in every pk in the same
direction of the path so that each pk becomes a complete graph. After this subdivision,
the cell associated with P is divided into a sum of simplexes, each associated with a
pk with the newly connected edges. One can do this subdivision to all cells associated
with basis elements in a consistent way, and then the CW complex becomes a simpli-
cial complex whose simplicial cohomology is canonically isomorphic to the singular
cohomology of the CW complex. The cup product in this simplicial complex has the
well-known simple formula in terms of simplexes, which then translates into the cor-
responding formula for the cup product in the CW complex restricted to the cells
we are considering. Unravelling the definitions, one sees that this restriction actually
gives rise to the formula for the functorial cup product of forms on digraphs. Let
α ∈ Ωp(G), and β ∈ Ωq(G), and k = p+ q. Suppose pk = V0 · · ·Vp+q. We let pk|0···p

6The formula is actually implicitly contained in [10], but here we provide a more geometric under-
standing of it.
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and pk|p···p+q denote the allowed paths V0 · · ·Vp and Vp · · ·Vp+q, respectively, result-
ing from truncating pk in the way described. Then we have the formula for the cup
product α ∪ β on P as follows:

α ∪ β(P ) =

m∑

k=1

ckα(pk|0···p)β(pk|p···p+q).

Note that the above formula does not make sense at a first glance, as each individual
truncation may not be in Ω; however, the formula is understood in the sense that one
needs to first merge together all terms with the same truncation in the arguments7 in
the above sum. Then it is an easy exercise to show that it indeed makes sense after
the merging. One sees also from this formula that it is independent of our choice of
basis.

Regarding the homotopy invariance property, note that a homotopy of two maps of
digraphs is defined in direct analogy with the corresponding concept in topology [10],
and applying our functor, any such homotopy gives rise to a homotopy between two
continuous maps of the CW complexes associated with the two digraphs, therefore
inducing isomorphic maps on cohomology groups. Furthermore, since homotopy of
digraphs becomes homotopy of the CW complexes, the functor provides a tool to
study homotopy properties of digraphs.

4. Clique cohomology

In this section, we start to use sheaf theory to reformulate some known (di)graph
cohomology theories. We first illustrate the ideas with the example of clique coho-
mology, and here we try to follow notations in [6].

Let G be a finite graph.8 Let Gk denote the set of all Kk+1 subgraphs of G, and
G = ∪∞k=0Gk. By a topology T on a graph G, we actually mean a topology T on the
set G. Given any topology, one can consider the category of sheaves of abelian groups
on G. Sheaf cohomology is well defined, as any such category has enough injectives.
However, it is crucial that one chooses a suitable topology for all applications that
follow. To mimic the case of usual continuous geometry, here we consider the unit ball
topology, which is defined by a topology subbasis as the set of all unit balls, whose
definition we state below:9

For any vertex v ∈ G, we define its unit ball subgraph Bv as the subgraph of G
generated by v and all of its neighbors. In other words, it is the largest subgraph of
G containing only these vertices. For each Bv, we canonically associate a subset Bv

of G as follows: x ∈ G lives in Bv if and only if x is a subgraph of Bv.
It is clear from definition that these Bv give a subbasis of topology. Note that Bv is

a cone; therefore, one has Hi(Bv) = 0, for all i > 0—here Hi is the graph cohomology
functor defined by the clique complex. For any x ∈ G, let us denote by Ux the smallest
open subset containing x, which always exists as there are finitely many such open
sets. By our choice of topology, Ux corresponds uniquely to a subgraph Ux in the same

7Namely, the same α(pk|0...p) or β(pk|p...p+q).
8More generally, the following theory also works for an infinite graph all of whose vertices have finite
degree.
9Note there probably exist other good choices of topology for our purpose here.
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sense that Bv corresponds to Bv—y ∈ G lives in Ux if and only if y is a subgraph of
Ux. We have the following characterization of Ux:

Lemma 4.1. Ux is the intersection of maximal complete subgraphs containing x.

Proof. Suppose a vertex v does not belong to some maximal complete subgraph K

containing x. Then there exists a vertex w in K such that w is not connected to v

by an edge. Then Bw contains Ux, but, on the other hand, v is not in Bw. So v is
not in Ux, which implies that Ux ⊂ K, and so Ux is contained in the intersection of
maximal complete subgraphs ∩K containing x. Conversely, if v1 is a vertex such that
Bv1

contains x, then the complete graph K1 containing both v1 and x is a subgraph
of G. Consider the maximal complete subgraph K2 of G containing K1: we have
that K2 ⊂ Bv1

by the definition of the unit ball subgraph. So ∩K ⊂ K2 ⊂ Bv1
, which

proves the inclusion in the other direction.

As a consequence, we have the following

Corollary 4.2. Ux is a complete subgraph, and, in particular, Hi(Ux) = 0 for any
i > 0.

Take A to be any abelian group; next, we construct a flasque resolution of the
constant sheaf A on G with values in A.

Take U ⊂ G an open subset. Let Uk denote Gk ∩ U . Define Ck(U) to be the abelian
group of continuous functions, from Uk to A, where Uk is equipped with the subset
topology (which actually does not matter) and A the trivial topology. It is easy to
check from the definition that the assignment U → Ck(U) defines a flasque sheaf
Ck on G. The differential of the clique complex gives rise to a differential mapping
Ck to Ck+1, making it into a complex of sheaves. Furthermore, any section of the
constant sheaf A on U is a function that is constant on every connected component
of U and thus can be mapped to a section of C0(U) by associating the vertices in
each connected component with the corresponding constant value in A. We have the
following:

Lemma 4.3. Ck gives a flasque resolution of the constant sheaf.

Proof. The exactness at A and C0 is obvious. At general Ck, we look at each stalk.
Unraveling the definition, the exactness after taking stalks reduces to Corollary 4.2.

Taking global sections, we therefore have the following:

Theorem 4.4. There is a canonical isomorphism Hi(G,A) ∼= Hi(G,A), where
Hi(G,A) denotes the graph cohomology defined by cliques, taking values in A.

Next, we consider Čech cohomology. Taking a finite open cover Ui, i = 1, 2, . . . , s,
of G, one forms the Čech complex for any sheaf F of abelian groups. As will be
expected, we have the following:

Lemma 4.5. For each i, there is a natural map Ȟi(G,F)→ Hi(G,F), functorial
in F .

Proof. See [5, III.4].
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Take F = A. Take a finite open cover Ui, i = 1, 2, . . . , s, of G such that any inter-
section has trivial higher cohomology. We as usual have the following:

Theorem 4.6. The natural map above gives an isomorphism Ȟi(G,A) ∼= Hi(G,A).

Proof. See proof of Theorem 4.5 on page 222 of [5].

Remark 4.7. Note that such an open covering always exists, and 4.1 provides a canon-
ical one as such, by 4.2 and 4.4 and the evident fact that the subset topology on any
open set corresponding to a subgraph coincides with the unit ball topology of the
subgraph.

Remark 4.8. Let us look at how the graph cohomology may be glued from smaller
pieces, at least in principle. Let U be any open subset of G corresponding to a subgraph
U . Let us denote the closed subset Y = G − U . Then all statements of exercises 2.3
and 2.4 on page 212 of [5] apply. In particular, taking F = k, we get the following
long exact sequence:

0→ H0
Y(G, k)→ H0(G, k)→ H0(U , k)→ H1

Y(G, k)→ · · · ,

where Hi(G, k) and Hi(U , k) are naturally isomorphic to the usual graph cohomology,
as we have seen. The additional piece Hi

Y(G, k) may be analyzed by the same flasque
resolution 4.3. Furthermore, this cohomology with support in Y satisfies the excision
and Mayer–Vietoris sequence. A tricky thing is that the combinatorial translation of
such statements may not be nice or very useful in general.

5. Some comments

If one regards a graph G simply as a one-dimensional simplicial complex and
considers its simplicial cohomology, the procedure can again be discretized in the
same way: one takes the set G′ = G0 ∪ G1 and takes all the star graphs [7] as the
subbases of topology; then, in the same way, one can show that the cohomology of
the constant sheaf realizes this trivial version of graph cohomology.

Next, let us take a look at a simple version of the Lefschetz fixed-point theorem
for graphs [8],10which states that for any automorphism f of a graph G, one defines
its Lefschetz number as

Λ(f) =

∞∑

i=0

(−1)iTr(f∗ : Hi(G, k)→ Hi(G, k)).

Then if Λ(f) is nonzero, f has at least one fixed simplex, where k is any ground
field and Hi(G, k) is graph cohomology taking values in k. The proof of this can be
reduced to the familiar case of simplicial complexes, or one shows as usual that it is
a consequence of linear algebra.

From our framework, for any injective graph homomorphism φ : G1 → G2, since
it maps cliques to cliques, one has an induced continuous map of topological spaces
G1 → G2, which we still denote by φ if no confusion arises. In particular, if φ = f

10One can also consider more elaborate versions, but here we take the simplest version for the
purpose of illustration.
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is an automorphism of G, f is continuous as a map from G to itself. On the other
hand, by 4.4, the definition of Λ(f) can also be stated using Hi(G, k). Therefore, the
above Lefschetz theorem for graphs is equivalent to a Lefschetz theorem for f and
the topological space G with Lefschetz number defined by the sheaf cohomology. It
looks to be an interesting question to elaborate on this observation, from the point
of view of finite set topology.

Also one notes that the same theorem holds for digraphs: with regard to Lemma 2.1,
a morphism of digraphs that has no fixed vertices has to have zero trace in Ωk, and
thus its Lefschetz number has to be zero.

6. Path cohomology

For all k, choose any integral basis of Ωk(G) consisting of minimal elements, and
let us call it Bk. Let XG denote the union of these basis elements as a set. For any
path P ∈ XG of length k, we denote by GP the smallest subgraph of G, such that
P ∈ Ωk(GP ). For each P , we define UP inductively to be the union of {P} and UQ,
where Q is any element in XG that appears as a direct summand of an element in
Ωk(GP ). We define a topology T on XG by claiming all UP to form a subbasis of
topology. We then have the following:

Lemma 6.1. UP is the smallest open subset containing P , and UP1
∩ UP2

=
∪x∈UP1

∩UP2
Ux.

Proof. Check by the definitions.

Thus we have:

Corollary 6.2. UP form a basis of topology.

Remark 6.3. The definition ofXG and UP is carefully chosen so as to take into account
the subtle issues involved in the definition of the path cohomology.

For any k, we define a sheaf Ck of abelian groups on the topological space XG as
follows: for any open set U , one assigns the abelian group of integer valued Z-linear
functions on the Z-module spanned by the set of length k elements in U . It is obvious
that Ck is a flasque sheaf. It is straightforward to check that the sheaves Ck form a
complex of sheaves via the natural differential. Therefore, taking global sections, the
cohomology of this complex of sheaves computes the path cohomology of digraphs.
We have the following lemma.

Lemma 6.4 (Poincare lemma). Ck is a flasque resolution of the constant sheaf.

And a simpler version:

Lemma 6.5 (Poincare lemma: baby version). For any P ∈ XG, we have H
i(GP ) = 0

for all i > 0.

Proof. The combinatorics of both lemmas are subtle, and the authors only know
a combinatorial proof of the baby version lemma. On the other hand, unravelling
the definitions, they evidently follow from the construction of the CW complex in
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Section 2—namely, it follows from the proof that in the inductive process of con-
structing the CW complex, or in associating a cell to any minimal path, ∂P gives rise
to a (k − 1)-sphere, for P a minimal k-path.

Thus we have:

Theorem 6.6. The cohomology of the constant sheaf on XG is naturally isomorphic
to the path cohomology of G.

7. Computation: a first discussion

In this section, we are concerned with the computation of the CW complex and
the cohomology, and try to get some first understanding of the complexity. We have
the following:

Lemma 7.1. For digraphs with a uniform bound on the vertex degree, if one fixes k,
then the time complexity of computing a basis of Ωk consisting of minimal paths, and
thus the k skeleton of the CW complex, is quadratic.

Proof. Let D denote the uniform bound of vertex degree, and let n be the number
of vertices of the digraph. By Lemma 2.1, any minimal path has unique starting and
ending vertices. There are at most n(n− 1) choices of these ordered pairs of vertices.
For each such choice, there are at most Dk−1 many primitive paths of length k

with the given starting and ending vertices, and once all these primitive paths are
enumerated, one is left with another finite calculation to determine a rational basis of
minimal paths with given starting and ending vertices (think of Lemma 2.2). These
basis elements combine to give a desired basis of Ωk consisting of minimal paths.

Remark 7.2. The proof that the homotopy type of the CW complex is determined by
the digraph obviously also shows that the same is true for any k skeleton.

In the following, we present a recursive scheme for computing a basis of Ωk con-
sisting of minimal paths.

Take any minimal path P of length k, and with starting vertex S and ending
vertex E. As before, we single out a subset E1 of the set of vertices in the support
of P , consisting of vertices such that any path in the support of P connecting the
vertex to E is of length 1. It is then clear that, for any vertex W1 in E1, if one groups
together all primitive paths in P going through W1 taking signs into account and
truncates E from them, then one gets a path P ′ of length k − 1, and, furthermore,
P ′ is ∂-invariant: the proof of this is essentially the same as that of Lemma 2.1. So P ′

can be written uniquely as a sum of basis elements of length k − 1 that has already
been computed, again with all the coefficients being either 1 or −1, and, furthermore,
the union of these (k − 1)-cells corresponding to the basis elements that show up
is homeomorphic to a (k − 1)-disk. (See previous arguments in constructing the CW
complex.) For P ′, one again defines a set E2 to be the subset of vertices in the support
of P ′ such that any path connecting the vetex to W1 is of length 1. One then sees
that in order for P to be ∂-invariant, it is necessary and sufficient that for any vertex
W2 in E2 that is not connected to E by a directed edge and any primitive path P ′′

in P ′ that goes through W2, there exists another vertex W in E1 such that, once
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one expresses the same truncation of (signed) summation of all primitive paths of
P that goes through W in terms of the unique linear combination of length k − 1
basis elements chosen, there exists one basis element in the linear combination that
contains a primitive path given by switching the ending vertex of P ′′ from W1 to
W , with appropriate sign, so that boundary components of these two primitive paths
given by deleting W1 and W cancel as desired. In this way, one finds all ∂-invariant
paths of length k between S and E, and then one goes on to find the minimal ones,
and a rational thus integral basis, for which efficient and straightforward algorithms
exist.

Remark 7.3. It is clear that the above recursive scheme will be more efficient than a
basic brute force algorithm, following from the proof of Lemma 7.1. It is a problem
to carefully study the complexity of such an algorithm in more general situations.
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