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EQUIVARIANT COMPLETE SEGAL SPACES
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Abstract
In this paper we give a model for equivariant (∞, 1)-categories.

We modify an approach of Shimakawa for equivariant Γ-spaces
to the setting of simplicial spaces. We then adapt Rezk’s Segal
and completeness conditions to fit with this setting.

1. Introduction

Two areas of much recent interest in homotopy theory have been that of homotopi-
cal categories, or (∞, 1)-categories, and that of equivariant homotopy theory. In this
paper, we investigate an approach to merging these two areas by considering equiv-
ariant homotopical categories. Specifically, we consider the complete Segal spaces of
Rezk [7] and incorporate actions by discrete or topological groups.

Our method for modeling these objects is inspired by Shimakawa’s model for equiv-
ariant Γ-spaces [10]. Originating with Segal’s work in [9], many constructions using
the category Γ of finite sets have analogues for the category Δ of finite ordered sets.
Segal considered Γ-spaces, or contravariant functors from Γ to the category of spaces
satisfying a so-called Segal condition; the space associated to a singleton set then
inherits the structure of an infinite loop space. Imposing a similar condition for func-
tors from Δ instead, we obtain topological monoids, or, with some modification, the
Segal spaces of Rezk [7].

Given a group G, Shimakawa considers Γ-G-spaces, or contravariant functors from
Γ to the category of spaces equipped with a G-action. Here, we replace Γ with Δ
to obtain Segal G-spaces. Applying Rezk’s completeness condition, we get a model
for G-equivariant complete Segal spaces. Alternatively, we could ask that the degree
zero space of a Segal G-space be discrete, leading to a theory of G-equivariant Segal
categories. Because we work in the setting of model categories, these results can also
be considered to be a generalization of the work of Santhanam [8].

A more abstract approach to this problem is taken by the first-named author in
[1], where most of the known models for (∞, 1)-categories are shown to satisfy an
axiomatization for when a model category has an associated model category of G-
objects where weak equivalences are defined via fixed-point functors [2, 11]. There
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we consider the case of the action of discrete groups G for any model for (∞, 1)-
categories, and for the action of simplicial groups G on the models that have the
additional structure of a simplicial model category—namely, Segal categories and
complete Segal spaces. Here, we regard complete Segal spaces topologically rather
than simplicially, and so extend to a case where we have the structure of a topological
model category and hence can consider actions by compact Lie groups.
In Section 2, we give a brief review of the homotopy theory of G-spaces and of

simplicial methods. In Section 3, we introduce (complete) Segal G-spaces. Then, in
Section 4, we show that an equivariant version of Rezk’s classifying diagram produces
examples from G-categories. Finally, in Section 5, we connect our approach here with
that of Stephan for general topological model categories.
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2. Background

2.1. The model structure for G-spaces
Let T op denote the category of compactly generated Hausdorff topological spaces.

Quillen proved in [6] that T op admits a model structure in which a map f : X → Y of
topological spaces is a weak equivalence if f induces isomorphisms f∗ : πi(X)→ πi(Y )
for all i � 0, a fibration if it is a Serre fibration, and a cofibration if it has the left
lifting property with respect to the acyclic fibrations [3, 7.10.6]. This model structure
is additionally cofibrantly generated, with the sets of inclusion maps

I = {Sn−1 → Dn | n � 0}
and

J = {i0 : Dn → Dn × I | n � 0}
as generating cofibrations and generating acyclic cofibrations, respectively.
Given a group G, let GT op denote the category of G-spaces and G-maps. Given a

G-space X and a subgroup H of G, define the fixed-point subspace

XH = {x ∈ X | h·x = x for all h ∈ H} ⊆ X.

The product G/H ×X is a G-space with the diagonal action γ(gH, x) = (γgH, γx)
for all γ ∈ G.
Let X and Y be G-spaces. Regarding X and Y as objects of T op, we have the

mapping space MapT op(X,Y ). However, the G-actions on X and Y induce a G-action
on MapT op(X,Y ) by conjugation; given a map f : X → Y , define g· f by

(g· f)(x) = g· f(g−1·x).
The space of G-maps MapGT op(X,Y ) is then defined to be MapT op(X,Y )G, so that
GT op is enriched over T op.
While the mapping spaces in GT op admit G-actions, the category GT op is not

enriched in itself. Rather, it is enriched in T opG, the category whose objects are the G-
spaces and whose morphisms are all continuous maps. (Observe also that the category
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T opG is enriched in GT op.) More details about enriched equivariant categories can be
found in [5, II.1]. However, in this paper we only use the fact that GT op is topological.

Definition 2.1. A category C is topological if it is enriched in the category T op,
i.e., if for any objects X and Y of C, there is a space MapC(X,Y ) together with an
associative, continuous composition.

We recall the following definition.

Definition 2.2. A model category M is a topological model category if it is a topo-
logical category satisfying the following conditions.

1. The categoryM is tensored and cotensored over T op, so that, given any objects
X and Y of M and topological space A, there are objects X ⊗A and Y A of M
such that there are natural homeomorphisms

MapM(X ⊗A, Y ) ∼= MapT op(A,MapM(X,Y )) ∼= MapM(X,Y A).

2. If i : A → B is a cofibration and p : X → Y is a fibration inM, then the induced
map of topological spaces

MapM(i∗, p∗) : MapM(B,X)→ MapM(A,X)×MapM(A,Y ) MapM(B, Y )

is a fibration which is a weak equivalence if either i or p is.

When we consider topological model categories, we use the notation Maph(X,Y )
to denote the homotopy invariant mapping space, given by taking the mapping space
Map(Xc, Y f ), where Xc is a cofibrant replacement for X and Y f is a fibrant replace-
ment for Y .

Theorem 2.3 ([3, 9.3.7]). The following conditions are equivalent for a model cate-
gory M that is tensored and cotensored over T op.

1. The model category M is a topological model category.

2. (Pushout-product axiom) If i : A → B is a cofibration in M and j : C → D is a
cofibration in T op, then the induced map

A×D ∪A⊗C B ⊗ C → B ⊗D

is a cofibration in M which is an acyclic cofibration if either i or j is.

Remark 2.4. Observe that we are using exponential notation for two purposes here,
both for the fixed points of an action and for cotensoring with a space. We hope that
the usage is clear from the context; typically groups are denoted here by G or H.

We have the following relationship between T op and its equivariant analogue
GT op.

Lemma 2.5. For any subgroup H of G, there is an adjunction

G/H × (−) : T op � GT op : (−)H .

Specifically, for a G-space X and a space A with trivial G-action, there is a homeo-
morphism

MapGT op(G/H ×A,X) ∼= MapT op(A,XH).
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Proof. Given a G-map f : G/H ×A → X, define the map f� : A → XH by f�(a) =
f(H, a). Alternatively, given a map f : A → XH , define a G-map f � : G/H ×A → X
by f �(gH, a) = g· f(a). One can check that these two constructions are inverse to one
another, giving the desired isomorphism of sets.

This adjunction can be used to define sets of generating cofibrations and generating
acyclic cofibrations for GT op, giving it the structure of a cofibrantly generated model
category. Namely, these sets are

IG = {G/H × Sn−1 → G/H ×Dn | n � 0, H � G}

and

JG = {G/H ×Dn → G/H ×Dn × I | n � 0, H � G},

respectively.

Theorem 2.6 ([4, III.1.8]). The category GT op admits the structure of a cofibrantly
generated, cellular, proper topological model category, where a G-map f : X → Y is a
weak equivalence or fibration if the induced map fH : XH → Y H is a weak equivalence
or fibration in T op for every subgroup H of G. The sets IG and JG defined above are
sets of generating cofibrations and generating acyclic cofibrations, respectively.

2.2. Simplicial objects

Recall that Δ is the category whose objects are finite ordered sets [n] = {1 � · · · �
n} and whose morphisms are weakly order-preserving functions. A simplicial set is a
functor Δop → Sets, where Sets denotes the category of sets. More generally, given
a category C, a simplicial object in C is a functor Δop → C. In this paper, we are
mostly interested in the case where C is the category of G-spaces described above.
We denote the category of simplicial objects in C by CΔop

.

If C has the additional structure of a model category, then one can consider model
structures on CΔop

. One can always take the projective model structure, in which
the weak equivalences and fibrations are taken to be levelwise weak equivalences and
fibrations, respectively, in C [3, 11.6.1].

Because Δop has the additional structure of a Reedy category [3, 15.1.2], we can
also consider the Reedy model structure on CΔop

[3, 15.3.4], which again has weak
equivalences defined levelwise.

3. Segal G-spaces

In this section, we consider certain kinds of simplicial objects in the category of
G-spaces. We begin with some terminology.

Definition 3.1. Let G be a group. A simplicial G-space is a functor Δop → GT op.

Let GT opΔ
op

denote the category of simplicial G-spaces. This category is enriched
in topological spaces; we can describe the enrichment as follows. We topologize the
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set HomGT opΔop (X,Y ) as a subspace of the product space
∏

[n]

MapGT op(Xn, Yn).

Furthermore, this category is tensored and cotensored in T op; given a simplicial G-
space X and topological space A, define X ⊗A by (X ⊗A)n = Xn ×A with the
diagonal action, and define XA by (XA)n = MapT op(A,Xn) with G-action given by
conjugation. Using these definitions, one can check that there are homeomorphisms

MapGT opΔop (X ⊗A, Y ) ∼= MapT op(A,MapGT opΔop (X,Y )) ∼= MapGT opΔop (X,Y A).

Consider GT opΔ
op

with the projective model structure. We can extend Lemma 2.5
to the following result.

Theorem 3.2. The adjunction

G/H ×− : T op � GT op : (−)H

lifts to an adjunction

T opΔ
op � GT opΔ

op

where, given any simplicial G-space X and any simplicial space A, there is a homeo-
morphism

MapGT opΔop (G/H ×A,X) ∼= MapT opΔop (A,XH).

Here, XH : Δop → T op denotes the functor defined by (XH)n = (Xn)
H , where on the

right-hand side we take the usual H-fixed points of the space Xn. Furthermore, this
adjunction defines a Quillen pair between projective model structures.

Now, we want to consider simplicial G-spaces that behave like categories (with a
G-action) up to homotopy. More specifically, we would like to show that the Segal
spaces of Rezk [7], which are simplicial objects in the category of simplicial sets, can
be defined in the setting of simplicial G-spaces. Thus, our first goal is to understand
Segal maps in simplicial G-spaces.
Recall that in Δ there are maps αi : [1]→ [n] for 0 � i � n− 1 defined by 0 	→ i

and 1 	→ i+ 1 which in turn give maps αi : [n]→ [1] in Δop. Given a simplicial G-
space X, we get induced maps X(αi) : Xn → X1.

Definition 3.3. Let X be a simplicial G-space. For any n � 2, the Segal map

ϕn : Xn → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
n

,

is induced by all the maps X(αi).

More precisely, for each n � 0 define the simplicial set

G(n) =

n−1⋃
i=0

αiΔ[1] ⊆ Δ[1]

equipped with a trivial G-action. Regard G(n) as a discrete simplicial space. Then
the Segal map ϕn can be obtained as

MaphGT opΔop (Δ[n], X)→ MaphGT opΔop (G(n), X).
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Definition 3.4. A Reedy fibrant simplicial G-space is a Segal G-space if the Segal
maps are G-equivalences for all n � 2.

Recall that, given a model category, one can localize with respect to a set of maps to
obtain a new model structure on the same category, such that all maps in the given
set become weak equivalences. The cofibrations stay the same, but the fibrations
change accordingly. The new fibrant objects are called local objects with respect to
the localized model structure, and a map is a weak equivalence precisely if it is a local
equivalence, or map A → B such that the map

Maph(B,W )→ Maph(A,W )

is a weak equivalence of simplicial sets for any local object W [3, 3.1.1]. In the case
of (non-equivariant) simplicial spaces, one can obtain a model structure by localizing
the Reedy model structure with respect to the set

S = {G(n)→ Δ[n] | n � 2}
so that the fibrant objects are precisely the Segal spaces [7].
Applying the adjunction between simplicial spaces and simplicial G-spaces, the

Segal G-spaces should be local objects with respect to the set of maps

SG = {G/H ×G(n)→ G/H ×Δ[n] | n � 2, H � G}.
Theorem 3.5. There is a topological model structure GSeT op on the category of
functors Δop → GT op whose fibrant objects are precisely the Segal G-spaces.

Proof. We localize the Reedy model structure with respect to the set SG; the existence
of the localized model structure follows from [3, 4.1.1]. It remains to check that the
local objects are the Segal G-spaces, and that this model structure is topological.
To check that the local objects are as described, first observe that, since the functor

(−)H is a right adjoint and hence preserves pullbacks, we know that

(X1 ×X0 · · · ×X0 X1)
H = (XH)1 ×(X0)H · · · ×(X0)H (X1)

H .

Then we have the following chain of weak equivalences:

XH
n

∼= MaphT op(Δ
0, XH

n )

∼= MaphT opΔop (Δ[n], XH)

∼= MaphGT opΔop (G/H ×Δ[n], X)


 MaphGT opΔop (G/H ×G(n), X)

∼= Maph(G/H ×Δ[1], X)×Maph(G/H×Δ[0],X) · · ·
· · · ×Maph(G/H×Δ[0],X) Map

h(G/H ×Δ[1], X)

∼= MaphT opΔop (Δ[1], XH)×Maph(Δ[0],XH) · · ·
· · · ×Maph(Δ[0],XH) Map

h
T opΔop (Δ[1], XH)

∼= MaphT op(Δ
0, XH

1 )×Maph(Δ0,XH
0 ) · · · ×Maph(Δ0,XH

0 ) Map
h
T op(Δ

0, XH
1 )

∼= XH
1 ×XH

0
· · · ×XH

0
XH

1 .

It follows that the local objects are precisely the Segal G-spaces.
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We now turn to proving that GSeT op is a topological model category. We know
that the underlying category GT opΔ

op

is topological and both tensored and coten-
sored over T op. Therefore, we need only verify the pushout-product axiom. Suppose
that i : A → B is a cofibration in GSeT op and j : C → D is a cofibration in T op.
Since the Reedy model structure is topological, and cofibrations do not change under
localizations, we know that the pushout-product map

A⊗D ∪A⊗C B ⊗ C → B ⊗D

is a cofibration in GSeT op. It only remains to check that if i or j is a weak equivalence,
then so is the pushout-product map.

LetW be an SG-local object, i.e., a Segal G-space. Then the induced map of spaces

Maph(B ⊗D,W )→ Maph(A⊗D ∪A⊗C B ⊗ C,W )

is a weak equivalence if and only if the diagram

Maph(B ⊗D,W ) ��

��

Maph(B ⊗ C,W )

��
Maph(A⊗D,W ) �� Maph(A⊗ C,W )

is a homotopy pullback square. However, this square is equivalent to the square

Maph(B,WD) ��

��

Maph(B,WC)

��
Maph(A,WD) �� Maph(A,WC).

(1)

Let us first verify that WC and WD are still SG-local. Given any subgroup H of
G, consider the diagram

(WC)Hn ��

�
��

(WC)H1 ×(WC)H0
· · · ×(WC)H0

(WC)H1

�
��

MaphT op(C,W
H
n )

� �� Maph(C,WH
1 )×Maph(C,WH

0 ) · · · ×Maph(C,WH
0 ) Map

h(C,WH
1 ).

Observe that the space in the bottom right-hand corner is weakly equivalent to

Maph(C,WH
1 ×WH

0
· · · ×WH

0
WH

1 ).

The bottom horizontal arrow is a weak equivalence since W is an SG-local object, so
it follows that the top horizontal map must also be a weak equivalence. Therefore,
WC is SG-local.

Now suppose that i : A → B is an SG-local equivalence. Then, since W
C and WD

are SG-local, the vertical arrows in (1) are weak equivalences; since they are also
fibrations, we get that the diagram (1) is a (homotopy) pullback square.

Finally, suppose instead that j : C → D is an acyclic cofibration in T op. Then
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observe that there are weak equivalences

(WD)Hn 
 MaphT op(D,WH
n ) 
 MaphT op(C,W

H
n ) 
 (WC)Hn .

Therefore, the map WD → WC is a levelwise weak equivalence. It follows that the
horizontal maps in (1) are acyclic fibrations and therefore the diagram is a (homotopy)
pullback square.

We now turn to complete Segal G-spaces. Let E be the nerve of the category with
two objects and a single isomorphism between them, regarded as a discrete simplicial
space. Complete Segal spaces are those Segal spaces that are additionally local with
respect to the inclusion Δ[0]→ E. In the equivariant setting, we want to localize with
respect to the set

T = {G/H ×Δ[0]→ G/H × E | H � G}.

Theorem 3.6. There is a topological model structure GCST op on the category of
simplicial G-spaces in which the fibrant objects are precisely the complete Segal G-
spaces.

Proof. We localize the model category GSeSp with respect to the set T . Establishing
that the model structure is topological can be done similarly to the proof for GSeSp.

We conclude this section by applying some of the language of simplicial G-cate-
gories to Segal G-spaces.

For a Segal G-space W , define the objects of W to be the set of points in W ,
denoted by ob(W ). Given x, y ∈ ob(W ), define the mapping G-space between them
to be the pullback

mapGW (x, y) ��

��

W1

��
{(x, y)} �� W0 ×W0.

SinceW is assumed to be Reedy fibrant, the right-hand vertical map is a fibration, so
that the mapping space is actually a homotopy pullback in the category of G-spaces.
Given an object x, define its identity map to be idx = s0(x) ∈ mapGW (x, x)0.

Just as in the case of ordinary Segal spaces [7], one can define (non-unique) com-
position of mapping G-spaces, homotopy equivalences, and the homotopy G-category
of a Segal G-space.

4. Complete Segal G-spaces from G-categories

In this section, we generalize the classifying diagram and classification diagram
constructions of Rezk [7] to the G-equivariant setting.

Let C be a small category equipped with an action of G, which can be thought
of as a functor G → Cat. Then nerve(C) is a simplicial G-set; the action is given by
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(g·F )(i) = g·F (i) for any g ∈ G, F : [n]→ C, and 0 � i � n. Taking the classifying
space

B(C) = |nerve(C)|
gives a G-space.
Let C[n] denote the category whose objects are functors [n]→ C and whose mor-

phisms are natural transformations. Let iso(C)[n] denote the maximal subgroupoid of
C[n].

Definition 4.1. Given a small G-category C, define its G-classifying diagram NG(C)
to be the simplicial G-space defined by

NG(C)n = B(iso(C)[n]).

Proposition 4.2. For any small G-category C, the G-classifying diagram NG(C) is
a complete Segal G-space.

Proof. We know that the G-classifying diagram is a complete Segal space, using Rezk
[7]. Since it is defined by classifying spaces at each level, which inherit a G-action,
we get a complete Segal G-space.

Example 4.3. Let C be a small category and GC its category of G-objects, or functors
G → C, for some discrete group G. Then we can regard GC as a G-category, or
functor G → Cat, as follows. On the level of objects, we can think of GC as defining
a functor that takes the single object of G to the category GC. Given any morphism
g ∈ G, it defines an automorphism of GC that is the identity on any object F : G → C
(taking the object of G to some object C of C) but sends a morphism defined by
(h 	→ (h : C → C)) to the morphism (h 	→ (hg : C → C)).
Thus, we can take the classifying diagram NG(GC) and obtain a complete Segal

G-space.

More generally, let M be a model category or a category with weak equivalences
equipped with a G-action. Let we(M)[n] be the category whose objects are the func-
tors [n]→ M and whose morphisms are natural transformations given by levelwise
weak equivalences in M.

Definition 4.4. Given a model category or category with weak equivalences M
equipped with a G-action, define its G-classification diagram to be the simplicial
G-space NG(M) defined by

NG(M)n = B(we(M)[n]).

The following result was proved by Rezk [7, 8.3] for the non-equivariant case. It is
expected that his argument still holds in the setting of G-spaces. However, the proof
requires a thorough treatment of G-model categories and their simplicial localization,
taken equivariantly, so we leave it for future work and simply state it as a conjecture
here.

Conjecture 4.5. Let M be a model category or category with weak equivalences
equipped with a G-action. Then a Reedy fibrant replacement of its G-classification
diagram is a complete Segal G-space.
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5. Connection to the functor approach

In this section, we compare the approach that we have taken in this paper to the
approach of Stephan, which regards G-objects in a category C and functors G → C.
We begin with a statement of his main result.

Theorem 5.1 ([11, 2]). Let G be a discrete group, and let C be a cofibrantly generated
model category. Suppose that, for each subgroup H of G, the fixed-point functor (−)H
satisfies the following cellularity conditions:

1. the functor (−)H preserves filtered colimits of diagrams in CG,

2. the functor (−)H preserves pushouts of diagrams where one arrow is of the form

G/K ⊗ f : G/K ⊗A → G/K ⊗B

for some subgroup K of G and f a generating cofibration of C, and
3. for any subgroup K of G and object A of C, the induced map

(G/H)K ⊗A → (G/H ⊗A)K

is an isomorphism in C.
Then the category CG admits a model structure in which a map X → Y is a weak
equivalence if, for every subgroup H of G, the map XH → Y H is a weak equivalence
in C. Fibrations are defined analogously.

We have been working in the case that C = CSS, the model structure for com-
plete Segal spaces, but taken as simplicial objects in T op rather than in SSets. It
is immediate from results of Stephan, but stated in [1], that the three conditions
are satisfied in the simplicial setting. In the topological setting, we can use the fact
that the category T op satisfies the conditions and apply levelwise. Observe that, for
a discrete group, this model structure coincides with the one we give in this paper.
However, Stephan also includes the following result, so that we can extend to the

case where G is a compact Lie group.

Theorem 5.2 ([11]). Let G be a compact Lie group, and let C be a cofibrantly gener-
ated topological model category. Suppose that, for each subgroup H of G, the fixed-point
functor (−)H satisfies the cellularity conditions of Theorem 5.1. Then the category
CG admits the above model structure and is a topological model category.

Corollary 5.3. For any compact Lie group G, the category of simplicial G-spaces
admits the structure of a topological model category in which the fibrant objects are
the complete Segal G-spaces.
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