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LIN-WANG TYPE FORMULA FOR THE HAEFLIGER INVARIANT

KEIICHI SAKAI

(communicated by Dev P. Sinha)

Abstract
In this paper we study the Haefliger invariant for long embed-

dings R4k−1 ↪→ R
6k in terms of the self-intersections of their projec-

tions to R
6k−1, under the condition that the projection is a generic

long immersion R
4k−1 � R

6k−1. We define the notion of “crossing
changes” of the embeddings at the self-intersections and describe
the change of the isotopy classes under crossing changes using the
linking numbers of the double point sets in R

4k−1. This formula is
a higher-dimensional analogue to that of X.-S. Lin and Z. Wang
for the order 2 invariant for classical knots. As a consequence, we
show that the Haefliger invariant is of order 2 in a similar sense to
Birman and Lin. We also give an alternative proof for the result of
M. Murai and K. Ohba concerning “unknotting numbers” of embed-
dings R

3 ↪→ R
6. Our formula enables us to define an invariant for

generic long immersions R4k−1 � R
6k−1 which are liftable to embed-

dings R4k−1 ↪→ R
6k. This invariant corresponds to V. Arnold’s plane

curve invariant in Lin–Wang theory, but in general our invariant
does not coincide with the order 1 invariant of T. Ekholm.

1. Introduction

A long j-embedding in R
n is an embedding R

j ↪→ R
n that is the standard inclusion

outside a compact set. We denote by Kn,j the space of long j-embeddings in R
n.

Similarly, we denote the space of long immersions Rj � R
n by In,j .

In [25] the author constructed, for some pairs (n, j), a cochain map I : D∗ →
Ω∗DR(Kn,j) from a complex D∗ of graphs to the de Rham complex of Kn,j via con-
figuration space integrals associated with graphs. For other interesting pairs—in par-
ticular, for (n, j) = (6k, 4k − 1)—the map I has not yet been proved to be a cochain
map, and it is not clear whether graph cocycles in D∗ yield closed forms of K6k,4k−1.
But in [25] we found a cocycle H ∈ D∗ and a differential form c ∈ Ω0

DR(K6k,4k−1)
such that H := I(H) + c ∈ Ω0

DR(K6k,4k−1) is closed and is equal (up to sign) to the
Haefliger invariant that gives a group isomorphism π0(K6k,4k−1) ∼= Z. This integral
expression H looks very similar to that for the finite type invariant v2 of order 2 (the
Casson invariant) for classical knots [4, 15].
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In this paper, based on the integral expression H, we show that the Haefliger
invariant indeed behaves similarly to v2. To do this, we study H(f) under the con-
dition that its projection p ◦ f ∈ I6k−1,4k−1 is a generic immersion, where p : R6k →
R

6k−1 denotes the projection forgetting the last 6k-th coordinate. In contrast to
the case of knots in R

3, this is not a generic condition. But it is possible to move
the generator of π0(K6k,4k−1) by an isotopy so that the above condition is satis-
fied (see §3), and hence it is possible for all the embeddings. A generic immer-
sion g ∈ I6k−1,4k−1 has only (possibly empty) transverse two-fold self-intersection
A = A1 � · · · �Am ⊂ R

6k−1, where each Ai is a connected, closed oriented (2k − 1)-
dimensional manifold. If g = p ◦ f for some f ∈ K6k,4k−1, then g : g−1(Ai)→ Ai is
a trivial double covering and we write g−1(Ai) = L0

i (f) � L1
i (f) ⊂ R

4k−1. We define
the notion of the crossing changes at the “crossings” Ai, similarly as in the clas-
sical knot theory, and denote by fS ∈ K6k,4k−1 the embedding obtained from f by
crossing changes at Ai, i ∈ S ⊂ {1, . . . ,m}. In Theorem 2.5 we show that the dif-
ference H(f)−H(fS) can be described as a signed sum of the linking numbers
lk(Lε

i(f), L
ε′
j (f)) and lk(Lε

i(fS), L
ε′
j (fS)), ε, ε

′ ∈ {0, 1}, i, j ∈ {1, . . . ,m}. This formula
is a higher-dimensional analogue to those for v2 [16, (4.3)], [19, (3.2)], [20, (2.6)], [23].

We define the notion of finite type invariants for K6k,4k−1 in a similar manner
to the Birman–Lin characterization [3], and as a corollary of Theorem 2.5 we see in
Theorem 2.9 that the Haefliger invariant is of order 2. In this sense, the Haefliger
invariant can be seen as a higher-dimensional analogue to v2. It seems that, in some
aspects, the geometric meaning of the Haefliger invariant is understood better (see,
for example, [14, 5, 17, 28, 29]) than that of finite type invariants for classical
knots. Thus more detailed studies on the Haefliger invariant (and other cohomology
classes in higher dimensions that can be described by some integrals) might shed
light on the geometric meaning of finite type invariants. It might be possible that the
notion of “finite type invariants” can also be characterized from the perspective of
manifold calculus [12] (see also [6, 7, 18, 31]). See Remark 2.10 for some discussion.
As another consequence, we reprove the result of Murai and Ohba [22] concerning
the “unknotting numbers” of long embeddings R3 ↪→ R

6.
Similarly to v2, the invariant H is essentially the sum of two integrals I(X), I(Y )

over some configuration spaces, which correspond, respectively, to the graphs X and
Y (see Figure 4.1). Our formula in Theorem 2.5 is obtained by clarifying the geometric
meaning of I(X) to some extent; we see in Proposition 5.3 that I(X) is essentially a
signed sum of the linking numbers of Lε

i ’s and can be thought of as a high-dimensional
analogue to the Gauss diagram term in the formulas in [16, 19, 20, 23]. Using our
formula, we can define an invariant E of generic immersions R4k−1 � R

6k−1 that can
be lifted to embeddings R4k−1 ↪→ R

6k (see Theorem 2.11). In fact, E is the essential
part of I(Y ) (see (6.1)). Our invariant E is a high-dimensional analogue to Lin–Wang
invariant α for generic plane curves [16, Definition 5.4]. The invariant α turns out
to be a linear combination of the Arnold invariants for generic plane curves [1]. One
might therefore expect that E would be a linear combination of Ekholm’s order 1
invariants [10, 11], which look analogous to the Arnold invariants. Contrary to the
expectation, we see in Theorem 2.11 that in general E is not of order 1. In fact, we see
that, when k = 1, the jump of E at self-tangency singularities can be computed using
the linking numbers of links that arise as the double point set of immersion R

3 � R
5,

and the linking numbers can be arbitrarily large by the result of Ogasa [21].
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This paper is organized as follows. In §2 we fix the notation and state the results.
The main results are Theorems 2.5, 2.9 (proved in §5), and 2.11 (proved in §6). In §3
we show an explicit computation using Theorem 2.5. We review the graph complex D
and our construction of H in §4.
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2. Notation and results

The self-intersection A of an immersion g : M � N is A := {q ∈ N |
∣∣g−1(q)

∣∣ � 2},
where |S| is the cardinality of a set S. If g ∈ I6k−1,4k−1 is generic, then

∣∣g−1(q)
∣∣ = 2 for

any q ∈ A. Moreover,A is a (2k − 1)-dimensional closed submanifold and g : g−1(A)→
A is a double covering. We call g−1(A) ⊂ R

4k−1 the double point set. Suppose that g
is liftable to f ∈ K6k,4k−1—namely, g = p ◦ f , where in general p : Rn → R

n−1 is given
by p(x1, . . . , xn) = (x1, . . . , xn−1)—then g : g−1(A)→ A is a trivial double covering.
Let Ai ⊂ R

6k−1 (i = 1, 2, . . . ) be path components of A, and we call each Ai a crossing
of (the “knot diagram” p ◦ f of) f . We set g−1(Ai) = L0

i � L1
i = L0

i (f) � L1
i (f). Each

Lε
i ⊂ R

4k−1 is a (2k − 1)-dimensional connected closed submanifold. By convention,
f(L1

i ) ⊂ R
6k sits “above” f(L0

i )—namely, if xε = (x1, . . . , x6k−1, x
ε
6k) ∈ f(Lε

i), ε =
0, 1 (so p(x0) = p(x1)), then x0

6k < x1
6k.

Remark 2.1. Any f ∈ K6k,4k−1 can be moved by an isotopy so that p ◦ f is a generic
immersion; indeed such an isotopy exists for the embedding S which generates
π0(K6k,4k−1) (see §3). But the condition for f that p ◦ f is a generic immersion is
not generic, and in general such an isotopy is not “small.”

Remark 2.2. Not all g ∈ I6k−1,4k−1 are regularly homotopic to any liftable immersion,
in contrast to the case of plane curves. Indeed, as shown in [30, §3], g ∈ I5,3 is regu-

larly homotopic to a liftable immersion if and only if its Smale invariant π0(I5,3)
∼=−→ Z

is even.

Lemma 2.3 ([10, Lemma 5.1.3], [11, Proposition 3.3]). For any f ∈ K6k,4k−1 as
above, the submanifolds Ai ⊂ R

6k and Lε
i ⊂ R

4k−1 admit natural orientations.

Proof. Given a basis �u = (u1, . . . ,u2k−1) of TxAi (x ∈ Ai), we can choose tangent
frames �v = (v2k, . . . ,v4k−1) and �w = (w2k, . . . ,w4k−1) of the two sheets of p ◦ f meet-
ing at x ∈ Ai so that (�u,�v) and (�u, �w) are the positive bases of these two sheets. We
say �u represents the positive orientation of Ai if (�u,�v, �w) is a positive basis of R6k−1.
Since the codimension of p ◦ f is even, this definition is independent of the order of
the two sheets. We orient Lε

i , ε = 0, 1, so that p ◦ f : Lε
i → Ai preserves the orienta-

tion.
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To simplify the computations, we often move f ∈ K6k,4k−1 to a special position.

Definition 2.4 (see Figure 2.1). We say an embedding f ∈ K6k,4k−1 is almost planar
if

(i) the composite p ◦ f : R4k−1 � R
6k−1 is a generic immersion,

(ii) f(R4k−1) ⊂ R
6k−1 × [0, δ] for a small δ > 0, and

(iii) f(R4k−1 \⋃i N(L1
i )) ⊂ R

6k−1 × {0}, where N(Lε
i) ⊂ R

4k−1 are closed tubular

neighborhoods of Lε
i in R

4k−1 such that N(Lε
i) ∩N(Lε′

j ) = ∅ if (i, ε) 
= (j, ε′).

x6k

× f(L1
i )

Ai = f(L0
i ) R

6k−1

f(R4k−1) •

Figure 2.1: An almost planar embedding

If f ∈ K6k,4k−1 is such that p ◦ f ∈ I6k−1,4k−1 is generic, then we can transform f
to be almost planar without changing p ◦ f , by an isotopy in the x6k-direction. Notice
that if f is almost planar, then the crossings Ai are equal to f(L0

i ).
Suppose that f is almost planar and that the self-intersection of p ◦ f has m

components. For S ⊂ {1, . . . ,m}, let fS ∈ K6k,4k−1 be defined by

fS(x) :=

{
ι(f(x)) x ∈ N(L1

i ), i ∈ S,

f(x) otherwise,

where ι : R6k → R
6k is given by ι(x1, . . . , x6k) = (x1, . . . , x6k−1,−x6k). We say fS is

an embedding obtained from f by crossing changes at the crossings {Ai}i∈S . Notice
that p ◦ f = p ◦ fS and

Lε
i(fS) =

{
Lε+1
i (f) i ∈ S,

Lε
i(f) i 
∈ S;

here ε is understood to be in Z/2 = {0, 1} and 1 + 1 = 0.
Let H : K6k,4k−1 → Z be the Haefliger invariant (see §4 for our construction).

Our main theorem describes the difference H(f)−H(fS) using the linking numbers
of Lε

i ’s.

Theorem 2.5. Let f ∈ K6k,4k−1 be such that p ◦ f is a generic immersion and has
the nonempty self-intersection A = A1 � · · · �Am. Then for any S ⊂ {1, . . . ,m},
H(f)−H(fS)

=
1

4

( ∑
(i,ε)<(j,ε′)

(−1)ε+ε′ lk(Lε
i(f), L

ε′
j (f))−

∑
(i,ε)<(j,ε′)

(−1)ε+ε′ lk(Lε
i(fS), L

ε′
j (fS))

)
(2.1)

=
1

2

∑
(i,ε)<(j,ε′),

(exactly one of i,j)∈S

(−1)ε+ε′ lk(Lε
i(f), L

ε′
j (f)), (2.2)
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where lk stands for the linking number, and we write (i, ε) < (j, ε′) if i < j or if i = j,
ε = 0, ε′ = 1.

(2.2) follows from (2.1); if i, j 
∈ S, then lk(Lε
i(f), L

ε′
j (f)) = lk(Lε

i(fS), L
ε′
j (fS))

is contained in both sums in (2.1) with the same sign (−1)ε+ε′ and cancels out. If

i, j ∈ S, then lk(Lε
i(f), L

ε′
j (f)) = lk(Lε+1

i (fS), L
ε′+1
j (fS)) is contained in both sums

with the same sign (−1)ε+ε′ and cancels out. If i ∈ S and j 
∈ S, then
lk(Lε

i(f), L
ε′
j (f)) is contained in the first sum with sign (−1)ε+ε′ while

lk(Lε
i(f), L

ε′
j (f)) = lk(Lε+1

i (fS), L
ε′
j (fS)) is contained in the second sum with the

opposite sign (−1)ε+1+ε′ .

Remark 2.6. The formula in Theorem 2.5 is similar to Lin and Wang’s formula for
the Casson invariant v2 [16]; given a diagram of f ∈ K3,1, let fS ∈ K3,1 be obtained
by changing the crossings ci, i ∈ S. Then a slight generalization of [16, (4.3)] can be
written as

v2(f)− v2(fS) =
1

4

〈
, G(f)

〉
− 1

4

〈
, G(fS)

〉
, (2.3)

where G(f) is the Gauss diagram of (the diagram of) f and
〈

, G(f)
〉
is the

sum of ε1ε2 for all the subdiagrams of G(f) of the shape
� � � �

�� ��

(εi = ±1
are the signs of the corresponding crossings of the diagrams). This kind of pairing
appears elsewhere, for example, in [23]. Choosing an S that yields a “descending
diagram” fS (and hence fS is trivial), and computing the right-hand side of (2.3),
we reprove the Polyak–Viro formula [23, Theorem 1.A]. Regarding the pairing as the
sum of the linking numbers of “0-dimensional Hopf links S0 � S0 ↪→ R

1” determined
by the crossings of the diagrams, we can say that Theorem 2.5 is a higher-dimensional
analogue to (2.3) and to the Polyak–Viro formula.

Theorem 2.5 together with the result of Ogasa [21] gives an alternative proof
for the following result of Murai and Ohba [22], which states that the “unknotting
number” of any nontrivial embedding f ∈ K6,3 is 1 (see §6.4 for the proof).

Corollary 2.7 ([22]). Any nontrivial f ∈ K6,3 can be unknotted by a crossing change
at a single crossing. Namely, f is isotopic to some f ′, with f ′{1} isotopic to the trivial
inclusion.

The proof is outlined as follows: Given any two-component link L ⊂ R
3, by a result

of Ogasa [21] we can find f0 : R
3 ↪→ R

6 such that it is isotopic to the trivial inclusion
and its projection p ◦ f : R3 � R

5 has L as its double point set. By Theorem 2.5 the
embedding f1 obtained by the crossing change along L satisfies H(f1) = −lk(L). This
means that any f ∈ K6,3 with arbitrary H(f) can be obtained by a single crossing
change from f0. See §6.4 for details. In [22] an explicit way to unknot the generator
of π0(K6,3) (and its connected sums) by a single crossing change is given.

Below we introduce the notion of finite type invariants for K6k,4k−1. As a conse-
quence of Theorem 2.5, we prove in §5 that H is an invariant of order 2.
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Definition 2.8. Let u : K6k,4k−1 → R be a function, and let A = {Ai}1�i�s+1 be a
(sub)set of crossings of p ◦ f , where f ∈ K6k,4k−1 is almost planar. Define

Vs+1(u)(f) :=
∑

S⊂{1,...,s+1}
(−1)|S|u(fS).

An isotopy invariant u is said to be of order s if Vs+1(u) = 0.

Theorem 2.9. The Haefliger invariant is of order 2.

Remark 2.10. Our Definition 2.8 of “finite type invariants” is modeled after [3] and
is similar to those in [13, 33]. Finite type invariants can also in some cases be char-
acterized as the functions that factor through stages of the Taylor tower [12]. Volić
uses Bott–Taubes integrals to prove in [32, Theorem 4.5] that R-valued invariants of
order k factor through the 2k-th stage of the homology Taylor tower for K3,1. In [6] it
is proved that v2 : K3,1 → Z factors through the third stage of the homotopy Taylor
tower for K3,1. Budney, Conant, Koytcheff, and Sinha [7] show that the (k + 1)-st
stage of the homotopy tower defines order k invariants, and based on spectral sequence
calculations conjecture any additive invariant of order k factors through this tower.

In general, the equivalence between these two characterizations of finiteness,
Birman–Lin and Goodwillie–Weiss, is not known. Theorem 2.9 together with a result
of Munson [18] proves the equivalence for K6k,4k−1.

In §6 we define an invariant for generic liftable immersion R
4k−1 � R

6k−1 and
discuss some of its properties.

Theorem 2.11. Let g ∈ I6k−1,4k−1 be a liftable generic immersion—namely, g =
p ◦ f for some f ∈ K6k,4k−1. Choose a lift f ∈ K6k,4k−1 and define

E(g) := H(f)− 1

4

∑
(i,ε)<(j,ε′)

(−1)ε+ε′ lk(Lε
i , L

ε′
j ). (2.4)

Then E is independent of the choice of f and is invariant of generic immersions.
E varies at the strata of non-generic immersions as described in Lemmas 6.4, 6.5,
and 6.7. In the case k = 1, the invariant E is not of order 1 in the sense of Ekholm
[10, 11].

E is an invariant of generic immersions because the linking numbers are constant
unless the isotopy class of the self-intersection of p ◦ f changes. That E is well defined
follows from our formula in Theorem 2.5. See §6.1.
Remark 2.12. The invariant E is a high-dimensional analogue to the Lin–Wang invari-
ant α [16, Definition 5.4] for generic plane curves; let g ∈ I2,1 be a generic plane curve,
and let f ∈ K3,1 be its lift—namely, g = p ◦ f . Then (2.3) implies that

α(g) := v2(f)−
1

4

〈
, G(f)

〉
is independent of the choice f . The invariant α is in fact equal to a linear combination
of the Arnold invariants J± and St of a plane curve [1]. On the other hand, Ekholm
[10, §6.1], [11, §4] defined invariants for generic immersions Mnm−1 � Nn(m+1)−1

that behave similarly to the Arnold invariants (for us, m = 2, n = 2k). One may thus
expect that E might be a linear combination of Ekholm invariants, but Theorem 2.11
says that in general it is not the case.
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3. Example

Using Theorem 2.5, we show H(S) = ±1 for Haefliger’s generator S of
π0(K6k,4k−1) ∼= Z [14]. Fix α, β > 0 so that 2β < α. Consider the Borromean ring
X � Y � Z ⊂ R

6k, where

X := ∂{(0,y, z) ∈ (R2k)×3 | |y| � α, |z| � β} ≈ S4k−1,

Y := ∂{(x,0, z) ∈ (R2k)×3 | |z| � α, |x| � β} ≈ S4k−1,

Z := ∂{(x,y,0) ∈ (R2k)×3 | |x| � α, |y| � β} ≈ S4k−1

(see Figure 3.1), and smooth their corners to get smooth (4k − 1)-spheres (denoted by
X,Y, Z again). S is defined as the connected-sum S := X�Y �Z�f0, where f0 : R

4k−1 ⊂
R

6k is (isotopic to) the standard inclusion.

Z

X

Y

A1

A2

p(X)

p(Y )

XL1
1

L0
2

L1
6

L0
5

x

y

z

the standard inclusion of R
4k−1

sum

connected

p(Z)

A6

A5

y

z

Figure 3.1: Haefliger’s generator S and the self-intersection of p ◦ S

Let n := (1, . . . , 1) ∈ R
6k, and consider the projection p : R6k → (Rn)⊥, instead of

R
6k → R

6k−1 × {0}. Then p ◦ S is generic, as seen in Figure 3.1. To detect
p(X) ∩ p(Y ), find (0,y, z) ∈ X and t ∈ R satisfying (0,y, z) + tn ∈ Y . In fact,
p(X) ∩ p(Y ) = A1 �A2 has two components, and the double point set Lε

i ⊂ R
4k−1

satisfying Ai = p(S(L0
i )) = p(S(L1

i )) (i = 1, 2) is given as follows: put n′ :=
(1, . . . , 1) ∈ R

2k and β′ := β/
√
2k; then

L0
1 = {(−β′n′,0, z) ∈ Y | |z + β′n′| = β}, L1

1 = {(0, β′n′, z) ∈ X | |z| = β},
L0
2 = {(0,−β′n′, z) ∈ X | |z| = β}, L1

2 = {(β′n′,0, z) ∈ Y | |z − β′n′| = β}
(in the computation we use 2β < α). By symmetry we see that p(Y ) ∩ p(Z) = A3 �A4

has two components, and the double point sets satisfying Ai = p(S(L0
i )) = p(S(L1

i ))
(i = 3, 4) are given as

L0
3 = {(x,−β′n′,0) ∈ Z | |x+ β′n′| = β}, L1

3 = {(x,0, β′n′) ∈ Y | |x| = β},
L0
4 = {(x,0,−β′n′) ∈ Y | |x| = β}, L1

4 = {(x, β′n′,0) ∈ Z | |x− β′n′| = β}.
Similarly, p(Z) ∩ p(X) = A5 �A6 satisfies Ai = p(S(L0

i )) = p(S(L1
i )) (i = 5, 6), where

L0
5 = {(0,y,−β′n′) ∈ X | |y + β′n′| = β}, L1

5 = {(β′n′,y,0) ∈ Z | |y| = β},
L0
6 = {(−β′n′,y,0) ∈ Z | |y| = β}, L1

6 = {(0,y, β′n′) ∈ X | |y − β′n′| = β}.
If we take the connected-sum in the construction of S suitably, then there are no
self-intersections of p ◦ S other than A1 � · · · �A6. The corner smoothing does not
cause any trouble; for example, any (0,y,−β′n′) ∈ L0

5 satisfies |y| � 2β < α and L0
5
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does not touch the corner. All Lε
i are S2k−1 and they form six disjoint Hopf links

L1
1 � L1

6, L0
2 � L0

5 ⊂ X, L0
1 � L0

4, L1
2 � L1

3 ⊂ Y, L0
3 � L0

6, L1
4 � L1

5 ⊂ Z,

all of whose linking numbers are by symmetry equal to each other. Since we can
unknot S by the crossing change at A1, by (2.2)

H(S) = 1

2
((−1)1+1lk(L1

1, L
1
6) + (−1)0+0lk(L0

1, L
0
4)) = ±

1

2
(1 + 1) = ±1.

4. A review of an integral expression of the Haefliger invariant

4.1. Graph complex and configuration space integral

Here we briefly recall the cochain complex D∗ = D∗n,j of oriented graphs and the
linear map I : D∗ → Ω∗DR(Kn,j) that the author defined in [25] generalizing those in
[8, 9, 33]. The map I is a cochain map under some conditions on n, j and graphs.
See [25, 26] for details.

By a graph we mean a graph with two types of vertices (called i- and e-vertices)
and two types of edges (called η- and θ-edges). The sets of i- and e-vertices, η- and
θ-edges of a graph Γ are denoted by, respectively, Vi(Γ), Ve(Γ), Eη(Γ), and Eθ(Γ).
We give the weights j, n, j − 1, and n− 1 to the elements of Vi(Γ), Ve(Γ), Eη(Γ),
and Eθ(Γ). An orientation of a graph is a choice of ordering of the weighted set
Vi(Γ) � Ve(Γ) � Eη(Γ) � Eθ(Γ) together with the orientations of edges, modulo even
permutations. Reversing η- and θ-edges changes the sign of orientation of graphs by
(−1)j and (−1)n, respectively. Figure 4.1 shows examples of graphs; i- and e-vertices
are depicted by • and ◦, respectively, and η- and θ-edges are depicted by solid and
dotted arrows, respectively (Figure 4.1 shows graphs for even n and the orientation
of the θ-edges are omitted). The numbers assigned to vertices and edges indicate the
ordering. Denote by Dp,q the vector space spanned by oriented graphs of order p and

1 2
1 2

3

(1)

(2) (3)

(4) (1) (2)

(3)

Figure 4.1: Graphs X and Y

of degree q, where

ord(Γ) := |Eθ(Γ)| − |Ee(Γ)| , deg(Γ) := 2 |Eθ(Γ)| − 3 |Ee(Γ)| − |Ei(Γ)| .

For an oriented graph Γ consider the configuration space

C◦Γ := {(f ;x;y) ∈ Kn,j × Conf◦|Vi(Γ)|(R
j)× Conf◦|Ve(Γ)|(R

n) | f(xi) 
= yj (∀i, j)},

where Conf◦m(M) := M×m \⋃i<j{xi 
= xj} stands for the usual configuration space.
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To each η-edge
−→
ij and θ-edge

−→
st , we assign the generalized Gauss maps

ϕη
ij : C

◦
Γ → Sj−1, (f ;x;y) �→ xj − xi

|xj − xi|
,

ϕθ
st : C

◦
Γ → Sn−1, (f ;x;y) �→ zt − zs

|zt − zs|
,

where

zs :=

{
f(xs) if s is an i-vertex,

ys if s is an e-vertex.

Choose a representative of the orientation of Γ so that θ-edges follow after η-edges.
Let ϕΓ : C

◦
Γ → (Sj−1)×|Eη(Γ)| × (Sn−1)×|Eθ(Γ)| be the product of all these Gauss maps

assigned to the edges of Γ. The product is taken in the order of the orientation of
Γ. Let volSN−1 ∈ ΩN−1

DR (SN−1) (N = n, j) be a unit volume form of SN−1 that is
(anti-)invariant under the action of O(N) fixing the poles {±eN} ⊂ SN−1, where
eN := (0, . . . , 0, 1) ∈ R

N . Define ωΓ ∈ Ω∗DR(C
◦
Γ) by

ωΓ := ϕ∗Γ(vol
×|Eη(Γ)|
Sj−1 × vol

×|Eθ(Γ)|
Sj−1 ),

where volSa−1 × volSb−1 is the product of volume forms pulled back on Sa−1 × Sb−1

by the projections. Integrating ωΓ along the fibers of the natural projections

πΓ : C
◦
Γ → Kn,j

(whose fibers are subspaces of usual configuration spaces), we obtain

I(Γ) := πΓ∗ωΓ ∈ Ω∗DR(Kn,j).

I(Γ) is independent of the representative of the orientation of Γ. The degree of I(Γ)
can be given using ord(Γ), deg(Γ), and the first betti number of Γ (thought of as a
1-dimensional cell complex); see [25, §3].

Remark 4.1. The above integrals converge since we may replace C◦Γ with its (fiber-
wise) Fulton–MacPherson compactification (see [27]) denoted by CΓ, over which
the generalized Gauss maps are smoothly extended. Thus we obtain a linear map
I : D∗ → Ω∗DR(Kn,j).

By the generalized Stokes’ theorem, dI(Γ) is a linear combination of integrals along
the codimension 1 boundary faces of the fibers of πΓ, which are subspaces of compact-
ified configuration spaces (Remark 4.1). The boundary faces of the compactifications
are stratified according to the “complexity of collisions of points.” The strata in
which exactly two points collide are called principal. The author proved in [25] that,
if the volume forms are (anti-)invariant, many such integrals along the non-principal
boundary faces cancel out or vanish; the large part of the proof follows the arguments
in [8, 9, 33]. Thus if we define the coboundary maps δ : Dp,q → Dp,q+1 as the signed
sum of graphs obtained by collapsing two vertices together with the edges between
them (see [25, §2.3] for signs), the map I becomes a cochain map. More precisely, the
following holds.

Theorem 4.2 ([25, Theorem 1.2]). The map I is a cochain map if

• restricted to the subcomplex of tree graphs and n, j are of same parity, or
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• restricted to the subcomplex of graphs of betti number not greater than 1 and
both n, j are odd.

Conjecturally, the map I would always be a cochain map and a quasi-isomorphism.
In fact, D∗ looks very similar to the graph complexes given in [2] that compute
the rational homology and homotopy of Kn,j in the stable dimensions. The map I
yields many non-zero cohomology classes even in the non-stable dimensions and in
some dimensions not necessarily satisfying the condition in Theorem 4.2; for example,
H3

DR(K5,2) 
= 0. See [26, 33].

4.2. The Haefliger invariant

Let X,Y ∈ D2,0 be graphs in Figure 4.1, and denote C4,0 := CX and C3,1 := CY .
We note that C4,0 = K6k,4k−1 × Conf◦4(R

4k−1) and C3,1 ⊂ K6k,4k−1 × Conf◦3(R
4k−1)×

R
6k. In fact, H := X/2 + Y/6 ∈ D2,0 is a cocycle and I(H) is a 0-form of K6k,4k−1.

Unfortunately, Theorem 4.2 might fail for (n, j) = (6k, 4k − 1); at present, it is not
known whether the integral along the “anomalous boundary face” Σ3,1 ⊂ ∂C3,1 (where
all the four points f(x1), f(x2), f(x3), and x4 collapse to a single point) vanishes or
not. In [25] we add a correction term c (defined below) to I(H) to kill the anomalous
contribution and get a closed-form H := I(H) + c.

The correction term c is defined as follows. The interior IntΣ3,1 of Σ3,1 can be
described by the following pullback square:

IntΣ3,1
��

��

B

ρ

��
R

4k−1 ×K6k,4k−1
D �� Inj6k,4k−1

Let us explain the spaces and maps in the above diagram. Inj6k,4k−1 is the space of

linear, injective maps R4k−1 ↪→ R
6k. The space B is defined as

B := {(λ; (x1,x2,x3);x4) ∈ Inj6k,4k−1 × Conf◦3(R
4k−1)× R

6k |
λ(xi) 
= x4, 1 � i � 3}/R1

+ �R
4k−1,

where R
1
+ �R

4k−1 acts diagonally on Conf◦3(R
4k−1)× R

6k as the positive scalings
and translations along λ(R4k−1). The map ρ is the natural projection, and D is the
differential

D(x; f) := (df x : TxR
4k−1 = R

4k−1 ↪→ R
6k = Tf(x)R

6k).

For i = 1, 2, 3, the map

ψi : B → S6k−1, [ι; (x1,x2,x3);x4] �→
x4 − ι(xi)

|x4 − ι(xi)|
is well defined. Put ψ := ψ1 × ψ2 × ψ3 : B → (S6k−1)×3 and consider

ω := ψ∗vol×3
S6k−1 ∈ Ω18k−3

DR (B).

We can see that ρ∗ω ∈ Ω4k
DR(Inj6k,4k−1) is closed [25, Lemma 5.22]. Inj6k,4k−1 is

homeomorphic to the Stiefel manifold V6k,4k−1 of (4k − 1)-frames in R
6k, and hence
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H4k
DR(Inj6k,4k−1) = 0. Therefore, we can find μ ∈ Ω4k−1

DR (Inj6k,4k−1) such that

ρ∗ω = dμ.

The correction term c : K6k,4k−1 → R is defined by

c(f) :=
1

6

∫
R4k−1

(df )∗μ ∈ R,

where df : R4k−1 → Inj6k,4k−1 is defined by the differential x �→ df x.

Let C4,0(f) and C3,1(f) be the fibers of πX : C4,0 → K6k,4k−1 and πY : C3,1 →
K6k,4k−1 over f . These fibers are finite-dimensional configuration spaces with
dimC4,0(f) = degωX and dimC3,1(f) = degωY . H(f) is calculated as

H(f) =
1

2

∫
C4,0(f)

ωX +
1

6

∫
C3,1(f)

ωY + c(f).

Theorem 4.3 ([25]). If volSN−1 (N = 6k, 4k − 1) are (anti-)invariant, then the 0-
form H := I(H) + c : K6k,4k−1 → R is closed and induces a group isomorphism
π0(K6k,4k−1) ∼= Z. In particular, H is a Z-valued invariant.

In [25] Theorem 4.3 is proved by evaluating H over a generator of π0(K6k,4k−1)
given by the spinning construction [5, 24]. The computation in §3 gives an alternative
proof.

To simplify the computations below, we will take the (anti-)invariant volume forms
volSN−1 (N = 6k, 4k − 1) so that their supports are contained in small neighborhoods
of the poles ±eN := (0, . . . , 0,±1) ∈ R

N . We call such a volume form a Dirac-type
volume form. The following allows us to use such volume forms.

Proposition 4.4 ([25, Propositions 3.5, 3.6]). The invariant H is independent of the
choice of the (anti-)invariant volume forms volSN−1 , N = 6k, 4k − 1.

5. Proofs of Theorems 2.5 and 2.9

It is well known that the linking number of closed oriented submanifolds M2k−1 �
N2k−1 ⊂ R

4k−1 is an isotopy invariant and can be defined as

lk(M,N) :=

∫
M×N

ϕ∗volS4k−2 ,

where ϕ : M ×N → S4k−2 is the generalized Gauss map given by

ϕ(x, y) :=
y − x

|y − x| .

If M,N are in generic positions, then p(M �N) is generically immersed in R
4k−2

and the pairs (x, y) ∈M ×N such that p(ϕ(x, y)) = 0 ∈ R
4k−2 form a 0-dimensional

submanifold of M ×N . If, moreover, volS4k−2 is Dirac-type (see the paragraph before
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Proposition 4.4), then

lk(M,N) =
∑

(x,y)∈(p◦ϕ)−1(0)

∫
a neighborhood

of (x,y)

ϕ∗volS4k−2

=
1

2

∑
(x,y)∈(p◦ϕ)−1(0)

degϕ| a neighborhood
of (x,y)

(5.1)

and each degϕ = ±1. This is because the integrand ϕ∗volS4k−2 is zero outside neigh-
borhoods of such pairs, and the integral of volS4k−2 over one component of
supp(volS4k−2) is 1/2. This interpretation gives us the following, which we use in §6.
Lemma 5.1. Let M1,M2 and N1, N2 be (2k − 1)-dimensional disjoint oriented sub-
manifolds of R4k−1. If the connected-sums M1�M2 and N1�N2 are taken in R

4k−1 so
that |p(Mi) ∩ p(Nj)| (i, j = 1, 2) do not increase, then∑

i,j=1,2

lk(Mi, Nj) = lk(M1�M2, N1�N2).

For a single oriented submanifold L2k−1 ⊂ R
4k−1, a similar formula to (5.1) does

not give rise to an isotopy invariant, but if L is almost planar, then such a function
can be computed by counting (x, y) ∈ Conf◦2(L) with p(ϕ(x, y)) = 0.

Definition 5.2. Let L2k−1 ⊂ R
4k−1 be a generic closed oriented submanifold such

that p(L) ⊂ R
4k−2 is a generically immersed manifold. Define the writhe w(L) of L

by

w(L) =
∑

(x,y)∈(p◦ϕ)−1(0)

∫
a neighborhood

of (x,y)

ϕ∗volS4k−2

=
1

2

∑
(x,y)∈(p◦ϕ)−1(0)

degϕ| a neighborhood
of (x,y)

.

(5.2)

For an almost planar f ∈ K6k,4k−1, denote by fδ the embedding obtained by a
scaling in the x6k-direction so that fδ(R4k−1) ⊂ R

6k−1 × [0, δ] (we often abbreviate
fδ as f). Lε

i ’s remain unchanged for any δ. We compute I(X)(fδ), I(Y )(fδ), and
c(fδ) in the limit δ → 0.

Proposition 5.3 (cf. [16, Proposition 4.3]). Suppose volSN−1 (N = 6k, 4k − 1) are
Dirac-type. If f ∈ K6k,4k−1 is almost planar and generic so that lk(Lε

i , L
ε′
j ) and w(Lε

i)
can be calculated by (5.1) and (5.2), then

lim
δ→0

I(X)(fδ) =
1

2

∑
(i,ε)<(j,ε′)

(−1)ε+ε′ lk(Lε
i , L

ε′
j ) +

1

4

∑
i,ε

w(Lε
i).

Proof. A configuration �ξ = (ξ1, . . . , ξ4) ∈ C4,0(f) can non-trivially contribute to I(X)

only if �ξ ∈ ϕ−1
X (supp(vol×2

S6k−1 × volS4k−2)). Since volSN−1 are Dirac-type, such a �ξ

must be in a neighborhood of ϕ−1
X (±e6k,±e6k,±e4k−1), where eN := (0, . . . , 0, 1) ∈

SN−1.
If δ is sufficiently close to 0, then no vectors tangent to f(R4k−1) point

supp(volS6k−1). Thus �ξ can be in ϕ−1
X (supp(vol×2

S6k−1 × volS4k−2)) in the limit δ → 0
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only if (ξ1, ξ2) ∈ N(Lε
i)×N(Lε+1

i ) and (ξ3, ξ4) ∈ N(Lε′
j )×N(Lε′+1

j ) for some i, j,

possibly i = j (recall that N(Lε
i) ⊂ R

4k−1 are closed disjoint tubular neighborhoods
of Lε

i). For (s, t) = (1, 2), (4, 3), and any ξt ∈ N(Lε
i), we always find ξs ∈ N(Lε+1

i )

such that p(f(ξs)− f(ξt)) is close to 0. Therefore, finding such a �ξ = (ξ1, . . . , ξ4) ∈
ϕ−1
X (±e6k,±e6k,±e4k−1) is equivalent to finding (ξ2, ξ3) satisfying p(ϕ

η
23(ξ2, ξ3)) = 0.

By our assumption on f , the set of such �ξ ’s is a 0-dimensional submanifold of C4,0(f),
each component of whose neighborhood is mapped homeomorphically into a compo-
nent of supp(vol×2

S6k−1 × volS4k−2) via ϕX . The integral of ωX over such a component

is ±(1/2)3, where the sign is the local degree of ϕX at �ξ—that is, the determinant
of the Jacobian J(ϕX)�ξ. The sum of these degrees would amount to linking numbers

by (5.1).

To compute degϕX at each �ξ ∈ ϕ−1
X (±e6k,±e6k,±e4k−1), we recall from [10, 11]

the local model for two-fold self-intersection. Let g ∈ I6k−1,4k−1 be a generic immer-
sion, and let q = g(p1) = g(p2) be a transverse two-fold self-intersection point. In
some local coordinates centered at p1, p2, and q, g is given by

g(x1, . . . , x4k−1) = (x1, . . . , x2k−1, x2k, . . . , x4k−1, 0, . . . , 0) near p1,

g(y1, . . . , y4k−1) = (y1, . . . , y2k−1, 0, . . . , 0, y2k, . . . , y4k−1) near p2.

Now consider a configuration �ξ ∈ C4,0(f) such that{
ξ1 ∈ L1

i , ξ2 ∈ L0
i , ξ3 ∈ L0

j and ξ4 ∈ L1
j ,

ϕX(�ξ) = (−e6k,−e6k, e4k−1)
(5.3)

(Figure 5.1, left). Suppose that (ξ2, ξ3) is a positive crossing—that is, degϕη
23|(ξ2,ξ3) =

+1. Then we can choose some local coordinates x,y, and z centered at ξ1, ξ2, and ξ4
such that ξ3 = (0, . . . , 0, 1) in the y-coordinate (the same coordinate as for ξ2), and
we can also choose local coordinates in R

6k in which f is given by

f(x) = (x1, . . . , x2k−1, x2k, . . . , x4k−1, 0, . . . , 0, 1) near ξ1,

f(y) = (y1, . . . , y2k−1, 0, . . . , 0, y2k, . . . , y4k−1, 0) near ξ2,

and

f(y) = (0, . . . , 0, y1,. . . , y2k−1, y2k, . . . , y4k−2, y4k−1, 0, 1) near ξ3,

f(z) = (z1, . . . , z2k−1, 0, . . . , 0, z2k, . . . , z4k−2, 1, z4k−1, 0) near ξ4.

Then by Lemma 2.3, as oriented manifolds, Lε
∗’s are given by

• L1
i ∩ (x-coordinate) = +R

2k−1 × {0}2k,
• L0

i ∩ (y-coordinate) = +R
2k−1 × {0}2k,

• L1
j ∩ (y-coordinate) = {0}2k−1 × (−R2k−1)× {1}, and

• L0
j ∩ (z-coordinate) = {0}2k−1 × (−R2k−1)× {0}

(see Figure 5.2). Using this local model, we can compute the Jacobian J(ϕX)�ξ of

ϕX : N(L1
i )×N(L0

i )×N(L1
j )×N(L0

j )→ S6k−1 × S6k−1 × S4k−2

at �ξ explicitly. Let ei := (0, . . . , 0, 1, 0, . . . , 0) be the ith unit vector. With respect
to the natural positive basis e1, . . . , e16k−4 of T�ξConf4(R

4k−1) ∼= T�ξR
16k−4 and the
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Figure 5.1: Two configurations with the same contributions to lk(L0
i , L

1
j ); the left

shows a neighborhood of �ξ satisfying (5.3), and the right shows a neighborhood of �ξ′
satisfying (5.4).
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Figure 5.2: Local picture of L0
i ∪ L1

i ∪ L0
j ∪ L1

j

natural positive bases of the tangent spaces of spheres

e1, . . . , e6k−1 ∈ T−e6kS
6k−1 and e1, . . . , e4k−2 ∈ Te4k−1

S4k−2,

following the “outward normal first” convention, J(ϕX)�ξ is given as in Appendix A
and its determinant is −1.

A local model for a negative crossing (ξ2, ξ3) (namely, degϕη
23|(ξ2,ξ3) = −1) is

obtained from the above model by reversing the orientation of the z-sheet, and, in this
case, J(ϕX)�ξ = +1. Thus the integral of ωX over a neighborhood of �ξ satisfying (5.3)

with degϕη
23|(ξ2,ξ3) = ±1 is ∓(1/2)3, and by (5.1) their sum is equal to −lk(L0

i , L
1
j )/4.

By symmetry of X, the configurations near �ξ′ satisfying{
ξ′1 ∈ L0

j , ξ′2 ∈ L1
j , ξ′3 ∈ L1

i and ξ′4 ∈ L0
i ,

ϕX(�ξ) = (e6k, e6k,−e4k−1)
(5.4)

(see Figure 5.1, right) also contribute to I(X)(f) by −lk(L0
i , L

1
j )/4. Thus a link

L0
i � L1

j contributes to I(X)(f) by −lk(L0
i , L

1
j )/2.

A similar computation shows that L0
i and L0

j contribute to I(X)(f) by

+lk(L0
i , L

0
j )/2; we have the same Jacobian matrix as above, but in this case ϕθ

34(
�ξ) =

e6k and (e1, . . . , e6k−1) represent the negative orientation of Te6kS
6k−1 and the sign

of the degree changes. This observation shows that, in general, the link Lε
i � Lε′

j ,

(i, ε) 
= (j, ε′), contributes to I(X)(f) by (−1)ε+ε′ lk(Lε
i , L

ε′
j )/2.

In the case (i, ε) = (j, ε′), if f is generic so that w(Lε
i) can be calculated by (5.2),

then the same computation as above shows that the configurations in N(Lε+1
i )×

N(Lε
i)×N(Lε

i)×N(Lε+1
i ) contributes to I(X)(f) by +w(Lε

i)/4 (no sign appears in
this case since ε = ε′).
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Lemma 5.4. Let f ∈ K6k,4k−1 be almost planar, and suppose that volS6k−1 is Dirac-
type. Then

lim
δ→0

I(Y )(fδ) = lim
δ→0

I(Y )(fδ
S) and lim

δ→0
c(fδ) = lim

δ→0
c(fδ

S).

Proof. The function c : K6k,4k−1 → R is defined and continuous on the space of
immersions, because c(f) is determined by the differential of f (see §4.2). Thus
c(fδ) continuously depends on δ including δ = 0 (then f and fS collapse down to
an immersion f0 = f0

S = p ◦ f), and hence limδ→0 c(f) = c(p ◦ f) = limδ→0 c(fS).
The above observation also implies that limδ→0 I(Y )(fδ) exists, because

I(Y )(fδ) = 6H(fδ)− 3I(X)(fδ)− 6c(fδ) and the limit of the right-hand side exists
by Proposition 5.3, the existence of lim c(fδ), and the fact that H is an isotopy invari-
ant. To compute limδ→0 I(Y )(fδ), we may assume that δ < 1. Choose open neigh-
borhoods f(N(L0

i )) ⊂ U ′i ⊂ V ′i in R
6k−1 (we are assuming f is almost planar) so

that U ′i ⊂ V ′i , V
′
i ∩ V ′j = ∅ (i 
= j), and f(N(L1

i )) ⊂ Ui := U ′i × [−1, 1] (Figure 5.3).

Let C
(1)
3,1(f) be the subspace of C3,1(f) consisting of �x ∈ C3,1(f) with x4 ∈ Vi :=

V ′i × [−1, 1] for some i ∈ S. Now we compare the integrals of ωY over C
(1)
3,1(f) and

Ui

Vi

f(N(L1
i ))

f(N(L0
i ))

C
(1)
3,1

C
(2)
3,1

C
(3)
3,1

Figure 5.3: The places in which x4 is (�x ∈ C
(l)
3,1, l = 1, 2, 3)

C
(1)
3,1(fS). Since volS6k−1 is Dirac-type, we only need to consider the set of �x ’s with

x1,x2,x3 ∈ f−1(Vi) for the same i as for x4, since ωY vanishes on other �x ’s. The

local diffeomorphism Φ: C
(1)
3,1(f)→ C

(1)
3,1(fS),

Φ((x1,x2,x3);x4) := ((x1,x2,x3); ι(x4)),

reverses the orientation, while Φ∗ωY = −ωY since ψθ
j ◦ Φ = ι ◦ ψθ

j and fS = ι ◦ f on

f−1(Vi) (i ∈ S) and ι∗volS6k−1 = −volS6k−1 (because volS6k−1 is anti-invariant). Thus

the integrations of ωY over C
(1)
3,1(f) and C

(1)
3,1(fS) are equal to each other.

Next, consider the subspace C
(2)
3,1(f) of C3,1(f) consisting of �x with x4 ∈ R

6k−1 ×
[−1, 1] but x4 
∈ Vi for any i ∈ S. Since volS6k−1 is Dirac-type and since x4 
∈ Vi for any

i ∈ S, �x ∈ C
(2)
3,1(f) can non-trivially contribute to I(Y ) only if xj (j = 1, 2, 3) is not

contained in any L1
i (i ∈ S). Since f = fS outside L1

i (i ∈ S), there is no difference

between ωY ’s on C
(2)
3,1(f) and C

(2)
3,1(fS), and the integrals of ωY over C

(2)
3,1(f) and

C
(2)
3,1(fS) are also the same.

Finally consider the subspace C
(3)
3,1(f) of C3,1(f) consisting of �x with x4 
∈ R

6k−1 ×
[−1, 1]. If δ > 0 is small enough, then under the diffeomorphism C

(3)
3,1(f)→ C

(3)
3,1(fS)
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given by �x �→ �x, the differences between the vectors ψθ
i (�x) (i = 1, 2, 3) are small. This

is because f differs from fS only near N(L1
i ) and the difference is small relative

to |x4|. Thus the difference between the integrals of ωY over C
(3)
3,1(f) and C

(3)
3,1(fS)

converges to 0 in the limit δ → 0.

Proof of Theorem 2.5. Any f with p ◦ f generic can be transformed by an ambient
isotopy of R4k−1 so that f satisfies the condition in Proposition 5.3 without changing
the isotopy class of

⋃
Lε
i . Thus we may assume that f satisfies the condition in

Proposition 5.3. Notice

H(f)−H(fS) =
I(X)(f)− I(X)(fS)

2
+

I(Y )(f)− I(Y )(fS)

6
+ (c(f)− c(fS)).

The left-hand side does not depend on δ. In the limit δ → 0 (p ◦ f remains unchanged),
the first term of the right-hand side is computed in Proposition 5.3 and gives the right-
hand side of (2.1). The second and the third terms converge to zero by Lemma 5.4.

Proof of Theorem 2.9. Choose three components A1, A2, A3 out of A = A1 � · · · �
Am, m � 3. Let WT (H)(f) := H(fT )−H(fT∪{1}) for any T ⊂ {2, 3}. Then by (2.2),

2WT (H)(f) =
∑

j �=1; ε,ε′=0,1

(−1)ε+ε′ lk(Lε
1(fT ), L

ε′
j (fT )).

Because Lε
j(fT ) = Lε+1

i (f) if j ∈ T and Lε
j(fT ) = Lε

j(f) otherwise,

2W∅(H)(f) =
∑
ε,ε′

(−1)ε+ε′(lk(Lε
1, L

ε′
2 ) + lk(Lε

1, L
ε′
3 )) +

∑
j�4; ε,ε′

(−1)ε+ε′ lk(Lε
1, L

ε′
j ),

2W{2}(H)(f) =
∑
ε,ε′

(−1)ε+ε′(−lk(Lε
1, L

ε′
2 ) + lk(Lε

1, L
ε′
3 )) +

∑
j�4; ε,ε′

(−1)ε+ε′ lk(Lε
1, L

ε′
j ),

2W{3}(H)(f) =
∑
ε,ε′

(−1)ε+ε′(lk(Lε
1, L

ε′
2 )− lk(Lε

1, L
ε′
3 )) +

∑
j�4; ε,ε′

(−1)ε+ε′ lk(Lε
1, L

ε′
j ),

2W{2,3}(H)(f) =
∑
ε,ε′

(−1)ε+ε′(−lk(Lε
1, L

ε′
2 )− lk(Lε

1, L
ε′
3 )) +

∑
j�4; ε,ε′

(−1)ε+ε′ lk(Lε
1, L

ε′
j ).

Substituting into V3(H)(f) =
∑

T⊂{2,3}(−1)|T |WT (H)(f), we obtain V3(H)(f) = 0.

6. Proof of Theorem 2.11

6.1. Well-definedness and invariance of E

Suppose g ∈ I6k−1,4k−1 is generic and liftable, and let f, f ′ ∈ K6k,4k−1 be lifts of
g. We can transform f ′ by an isotopy in the x6k-direction (without changing p ◦ f ′)
so that f ′ = fS for some index set S of the self-intersection of g. Then (2.1) implies
that E(g) does not depend on the choice of f .

Let gt ∈ I6k−1,4k−1 (t ∈ [0, 1]) be a generic regular homotopy with each gt liftable.
We show that, for any t0 ∈ [0, 1], gt can be lifted to an isotopy ft ∈ K6k,4k−1—namely,
gt = p ◦ ft—in an open neighborhood of t0. Let ft0 be a lift of gt0 . Then ft0 can be
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written as ft0 = (gt0 , h) by using some h : R4k−1 → R. Define Gt : Conf
◦
2(R

4k−1)→
R

6k−1 by

Gt(x,y) := gt(x)− gt(y).

The first projection Conf◦2(R
4k−1)→ R

4k−1 restricts to a diffeomorphism G−1
t (0) ∼=

g−1
t (At), where At is the self-intersection of gt. Since gt is a generic regular homotopy,
G−1

t (0) gives an isotopy of a closed submanifold of Conf◦2(R
4k−1). Because ft0 ∈

K6k,4k−1, there exists an open neighborhood W of G−1
t0 (0) such that h(x) 
= h(y)

for any (x,y) ∈W . The compactness of G−1
t (0) (for any t) implies that there exists

ε > 0 such that G−1
t (0) ⊂W for |t− t0| < ε. Then ft := (gt, h) : R

4k−1 → R
6k is in

K6k,4k−1 for |t− t0| < ε and is a lift of gt.

Because H(ft) is constant and the linking part of (2.4) is invariant unless the
double point set varies, E(gt) is also constant. Thus for any t0 there exists ε > 0 such
that E(gt) is constant on (t0 − ε, t0 + ε), and hence E(gt) is constant on [0, 1].

Remark 6.1. By Proposition 5.3 and (2.4), for a generic liftable g ∈ I6k−1,4k−1,

E(g) = lim
δ→0

(1
6
I(Y )(fδ) + c(fδ) +

1

8

∑
i,ε

w(Lε
i)
)
. (6.1)

This gives a geometric interpretation of I(Y ) (added by c and the writhes), and is a
higher-dimensional analogue to [16, Definition 5.4].

6.2. Local models of non-generic self-intersections

As explained in [10, 11], the set of generic immersions g : R4k−1 � R
6k−1 is an

open dense subspace of I6k−1,4k−1 and the complement is a stratified hypersurface.
To characterize an invariant of generic immersions, we must study its jumps at non-
generic strata. The codimension 1 strata (in I6k−1,4k−1) consist of immersions with
a single generic self-tangency point or a single generic triple point [11, Lemma 3.4].
The local picture of the versal deformation [10, §5.3], [11, §3.2] of an immersion with
a self-tangency or a triple point is given in [10, 11].

Proposition 6.2 ([11, Lemma 3.5]). Let g0 ∈ I6k−1,4k−1 be an immersion with a
single generic self-tangency point. Then the versal deformation gt of g0 is constant
far from the self-tangency point, and in some local coordinates near the self-tangency
point, gt is given by

gt(x) = (x1, . . . , x2k, x2k+1, . . . , x4k−1, 0, 0, . . . , 0),

gt(y) = (y1, . . . , y2k, 0, . . . , 0, Q(y1, . . . , y2k) + t, y2k+1, . . . , y4k−1),

where Q is a non-degenerate quadratic form on 2k variables.

We say a self-tangency point definite (resp. indefinite) if the quadratic form Q is
definite (resp. indefinite).

Proposition 6.3 ([11, Lemma 3.6]). Let g0 ∈ I6k−1,4k−1 be an immersion with a
single generic triple point. Then the versal deformation gt of g0 is constant far from
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the triple point, and in some local coordinates near the triple point, gt is given by

gt(x) = (x1, . . . , x2k−1, x2k, x2k+1, . . . , x4k−1, 0, 0, . . . , 0),

gt(y) = (y1, . . . , y2k−1, 0, 0, . . . , 0, y2k, y2k+1, . . . , y4k−1),

gt(z) = (0, . . . , 0, z2k, z1, . . . , z2k−1, z2k − t, z2k+1, . . . , z4k−1).

6.3. The jump of E at a non-generic liftable immersion

Suppose that g0 ∈ I6k−1,4k−1 is liftable and has a single generic self-tangency point
or a single generic triple point, and let gt be its versal deformation.

We show that gt is liftable for |t| small. Let f0 = (g0, h) be a lift of g0 and ft :=
(gt, h) ∈ I6k−1,4k−1. Similarly to the argument in §6.1, choose an open neighborhood
W of G−1

0 (0) such that h(x) 
= h(y) for any (x,y) ∈W . Then there exists ε > 0 such
that G−1

t (0) ⊂W for |t| < ε; this follows from the explicit description of the change
of the multiple point set of gt (see below). Thus ft ∈ K6k,4k−1 for |t| < ε and is a lift
of gt.

By the definition (2.4) of the invariant E, its jump E(gt)− E(g−t) (t 
= 0) is
described by the change of linking numbers of Lε

i ’s because H(ft) remains unchanged.

6.3.1. Definite self-tangencies

First, we study the jump of E at a positive definite self-tangency point (the argument
needs no change for the negative definite case). It is clear from Proposition 6.2 that
in some local coordinate near the tangency point, the double point set is given by

K0 = {(x1, . . . , x2k,0
2k−1) ∈ R

4k−1 | x2
1 + · · ·+ x2

2k = −t} in the x-sheet,

K1 = {(y1, . . . , y2k,02k−1) ∈ R
4k−1 | y21 + · · ·+ y22k = −t} in the y-sheet,

which is empty when t > 0 and the trivial link when t < 0. This link K0 �K1 is
separated from the other links since each Kε is contained in a small open set that
intersects no other components of the double point set. Thus we have the following.

Lemma 6.4. If g0 has a definite self-tangency point, then E(gt) = E(g−t).

6.3.2. Indefinite self-tangencies

Next, suppose that g0 is liftable and has an indefinite self-tangency point. Let 0 <
λ < 2k be the index of Q. By Proposition 6.2, in some local coordinates the double
point set of gt near the self-tangency point is given as follows:

{(x1, . . . , x2k,0
2k−1) ∈ R

4k−1 | x2
1 + · · ·+ x2

λ − x2
λ+1 − · · · − x2

2k = t} in the x-sheet,

{(y1, . . . , y2k,02k−1) ∈ R
4k−1 | y21 + · · ·+ y2λ − y2λ+1 − · · · − y22k = t} in the y-sheet.

The versal deformation transforms the double point set by a surgery that replaces
Sλ−1 ×D2k−λ with Dλ × S2k−(λ+1) (see Figure 6.1). If 1 < λ < 2k − 1, then this
surgery transforms a single component in a small neighborhood of the self-tangency
point and changes no linking numbers with other components. Thus E(gt) = E(g−t).

If λ = 1, then in each sheet the double point set has two components when t > 0:
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x1

x2, . . . , x2k

t > 0

x1

x2, . . . , x2k

t < 0

T 0S0
iS0

j

Figure 6.1: The double point set near a self-tangency point of index 1

in the x-sheet

S0
i :=

{
x1 = (x2

2 + · · ·+ x2
2k + t)1/2

}
and S0

j :=
{
x1 = −(x2

2 + · · ·+ x2
2k + t)1/2

}
,

and in the y-sheet

S1
i :=

{
y1 = (y22 + · · ·+ y22k + t)1/2

}
and S1

j :=
{
y1 = −(y22 + · · ·+ y22k + t)1/2

}
(Figure 6.1, left). Here we choose ft so that it maps the x-sheet to “below” the
y-sheet. In the x-sheet, when t < 0, S0

i � S0
j is joined into a single component

T 0 := {x2
1 − t = x2

2 + · · ·+ x2
2k}

(Figure 6.1, right). Similarly, in the y-sheet S1
i � S1

j is joined into a single component

T 1 := {y21 − t = y22 + · · ·+ y22k} when t < 0.

Let Lε
∗ (∗ = i, j; ε = 0, 1) be the components of the double point set that contains

Sε
∗ when t > 0, and let Kε be the component of the double point set containing T ε

when t < 0.

Case 1. Consider the case Ai 
= Aj . Here the number of the components of the
self-intersection decreases by 1 when t changes from t > 0 to −t.

In this case, two components Lε
i � Lε

j of the double point set of gt, t > 0, are joined
into a connected double point set Kε = Lε

i�L
ε
j of g−t (ε = 0, 1). Other components

Lε
m (m 
= i, j; ε = 0, 1) are unchanged. The jump of the sum of linking numbers is

thus ∑
(p,ε)<(q,ε′)

(−1)ε+ε′ lk(Lε
p(gt), L

ε′
q (gt))−

∑
(p,ε)<(q,ε′)

(−1)ε+ε′ lk(Lε
p(g−t), L

ε′
q (g−t))

=
(
lk(L0

i , L
0
j ) + lk(L1

i , L
1
j )−

∑
p,q=i,j

lk(L0
p, L

1
q) +

∑
p=i,j;m �=i,j,

ε,ε′=0,1

(−1)ε+ε′ lk(Lε
p, L

ε′
m)

)

−
(
−lk(K0,K1) +

∑
m �=i,j; ε,ε′=0,1

(−1)ε+ε′ lk(Kε, Lε′
m)

)
.

The connected-sums Kε = Lε
i�L

ε
j are taken near the tangency point and by a small

isotopy we may assume that Lε
∗ (∗ = i, j; ε = 0, 1) satisfy the condition in Lemma 5.1.

Thus by Lemma 5.1∑
p,q=i,j

lk(L0
p, L

1
q) = lk(K0,K1), lk(Lε

i , L
ε′
m) + lk(Lε

j , L
ε′
m) = lk(Kε, Lε′

m).
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By the above three equations, we have

E(gt)− E(g−t) = ±
lk(L0

i , L
0
j ) + lk(L1

i , L
1
j )

4
.

Case 2. Consider the case when the versal deformation does not change the number
of the components of the self-intersection—namely, k > 1 and Ai = Aj . Since L

ε
i = Lε

j

turns into Kε and other components Lε
m (m 
= i; ε = 0, 1) are unchanged, E(gt) =

E(g−t) follows from the same argument as in the case 1 < λ < 2k − 1.
Case 3. When k = 1 and a negative self-tangency occurs at t = 0 in Ai = Aj

(namely, two arcs get tangent to each other with opposite velocity vectors; by
Lemma 2.3 no positive self-tangency occurs), the number of the components of the
self-intersection increases by 1 when t changes from t > 0 to −t. This case is similar
to Case 1.

The case λ = 2k − 1 is similar, and we have the following.

Lemma 6.5. Suppose that g0 has an indefinite self-tangency point. If the index of Q
is 1 or 2k − 1, and if the versal deformation changes the number of the components
of self-intersection, then

E(gt)− E(g−t) = ±
lk(L0

i , L
0
j ) + lk(L1

i , L
1
j )

4
,

where L0
i � L1

i = g−1
t (Ai) and L0

j � L1
j = g−1

t (Aj) are the double point set correspond-
ing to Ai and Aj, the distinct components of the self-intersection of gt that are joined
into a single component after the versal deformation. Otherwise, E(gt) = E(g−t).

6.3.3. Triple points
Suppose g0 is liftable and has a triple point. By Proposition 6.3, in some local coor-
dinates, the double point set near the triple point in the x-sheet is given by

S1
i := {(x1, . . . , x2k−1, 0, 0, . . . , 0)} = +R

2k−1 × {0}2k,
S1
j := {(0, . . . , 0, t, x2k+1, . . . , x4k−1)} = {0}2k−1 × {t} × (+R

2k−1)

as oriented manifolds (see Figure 6.2). The orientations are direct consequences of

S1
j

S1
i

S0
i

S1
p

t −t
t

S0
jS0

p

x1,...,x2k−1

x2k+1,...,x4k−1

x2k

highest

y1,··· ,y2k−1 z1,··· ,z2k−1

y2k

y2k+1,...,y4k−1 z2k+1,...,z4k−1

z2k

middle lowest

Figure 6.2: Double point sets near the triple point

Lemma 2.3. Similarly, the double point set in the y-sheet is given by

S1
p := {(0, . . . , 0, − t, y2k+1, . . . , y4k−1)} = {0}2k−1 × {−t} × (−R2k−1),

S0
i := {(y1, . . . , y2k−1, 0, 0, . . . , 0)} = +R

2k−1 × {0}2k,
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and in the z-sheet by

S0
j := {(z1, . . . , z2k−1, t, 0, . . . , 0)} = +R

2k−1 × {t} × {0}2k−1,

S0
p := {(0, . . . , 0, 0, z2k+1, . . . , x4k−1)} = {0}2k × (−R2k−1).

Here, without loss of generality, we assume that the lift ft of gt maps the x-sheet
(in Proposition 6.3) to the “highest position,” the y-sheet to the “middle,” and the
z-sheet to the “lowest.” The following holds by the above descriptions.

Lemma 6.6 (see [10, Remark 6.2.3]). The versal deformation changes three crossing
S1
i � S1

j , S0
i � S1

p , and S0
j � S0

p , changing their linking numbers or writhes by the
common value ±1 (the signs are same for all the three crossings).

Let Lε
∗ (∗ ∈ {i, j, p}, ε ∈ {0, 1}) be the component of the double point set contain-

ing Sε
∗.

Case 1. If all the six components Lε
∗ are different, then by Lemma 6.6 the versal

deformation changes (−1)1+1lk(L1
i , L

1
j ) + (−1)0+1lk(L0

i , L
1
p) + (−1)0+0lk(L0

j , L
0
p) by

±(1− 1 + 1) = ±1. Other linking numbers do not change. Thus E(gt)− E(g−t) =
±1/4.

Case 2. If Lε
i = Lε

j 
= Lε
p (ε = 0, 1), then the crossing change at S0

i � S1
p and

S0
j � S0

p changes (−1)0+1lk(L0
i , L

1
p) + (−1)0+0lk(L0

i , L
0
p) by ±1∓ 1 = 0. Other linking

numbers do not change, and the change of w(L1
i ) (by ±1) arising from the crossing

change at S1
i � S1

j does not change E. Thus E(gt) = E(g−t).

Case 3. If Lε
p =Lε

i 
=Lε
j (ε= 0, 1), then the versal deformation changes lk(L1

i , L
1
j )−

lk(L1
i , L

0
i ) + lk(L0

i , L
0
j ) by ±(1− 1 + 1) = ±1, and E(gt)− E(g−t) = ±1/4.

Case 4. The case Lε
j = Lε

p 
= Lε
i is similar to the Case 2 by symmetry, and E(gt) =

E(g−t).
Case 5. If Lε

i = Lε
j = Lε

p, then the versal deformation changes −lk(L0
i , L

1
p) by ±1,

and the changes of w(L1
i ), w(L

0
j ) do not affect E. Thus in this case E(gt)− E(g−t) =

±1/4.
Putting them all together, we obtain the following.

Lemma 6.7. Suppose that g0 has a triple point. Then E(gt) = E(g−t) if Lε
i = Lε

j 
=
Lε
p or Lε

j = Lε
p 
= Lε

i , ε = 0, 1 (in Figure 6.2). Otherwise, E(gt)− E(g−t) = ±1/4.

6.4. The case k = 1
For g ∈ K5,3 the invariant E is essentially the Smale invariant;

Proposition 6.8 ([10, 30]). If g ∈ K5,3 (also regarded as g ∈ K6,3 by composing

R
5 ↪→ R

6), then H(g) = E(g) = −Ω(g)/12, where Ω: π0(I5,3)
∼=−→ Z is the Smale

invariant.

Proof. H = E follows from (2.4), since g has no self-intersection. As explained in
[10], there exists a “Seifert surface” for g—that is, an embedding V 4 ↪→ R

5 that
restricts to g : ∂V = R

3 ↪→ R
5—and Ω(g) = 3σ(V )/2, where σ denotes the signature.

[30, Corollary 2.4] states that H(g) = −σ(V )/8 (eF = 0 for g ∈ K5,3).

Remark 6.9. If g ∈ K5,3, then E(g) = I(Y )(g)/6 + c(g) by (6.1). Thus Ω(g) =
−2I(Y )(g)− 12c(g).
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The double point set of generic g ∈ I5,3 is a classical link. A result of Ogasa [21]
characterizes which link can be realized as a double point set of an immersion R

3 �R
5.

Theorem 6.10 (A special case of [21, Theorem 1.1]). For any link L ⊂ S3, there
exist embeddings gε : S3 ↪→ R

5 (ε = 0, 1) such that (gε)−1(g0(S3) ∩ g1(S3)) (ε = 0, 1)
are isotopic to the given L. Moreover, we can choose gε to be isotopic to the natural
inclusion.

Using this, we show the second half of Theorem 2.11 and Corollary 2.7.

Proof of Theorem 2.11, the second half. We show that an arbitrarily large jump of
E at a single indefinite self-tangency can occur. Any linear combination of Ekholm
invariants J and St cannot satisfy this property, because their jumps are bounded [10].

For any two-component link L = K1 ∪K2 in S3, choose gε : S3 ↪→ R
5, ε = 0, 1

as in Theorem 6.10. Taking a suitable connected-sum of the standard inclusion
f0 : R

3 ↪→ R
5 with g0 and g1, we obtain g := f0�g

0�g1 ∈ I5,3, which satisfies the fol-
lowing conditions:

(i) The self-intersection A = A1 �A2 of g satisfies g−1(Ai) = K0
i ∪K1

i with each
Kε

1 ∪Kε
2 included in the gε-part (gε)−1(A) and isotopic to the given link L.

(ii) A lift of g exists and can be obtained by lifting g1-part into R
5 × R+ and letting

g0-part remain inside R
5 × {0}.

K0
1 ∪K0

2 is separated from K1
1 ∪K1

2 by (i), above. Take qi ∈ Ai and pεi ∈ Kε
i so that

gε(pεi) = qi. Choose paths γε : [0, 1]→ R
3 \ (gε)−1(A) from pε1 to pε2 in the gε-part.

Then C := g(γ0([0, 1]) ∪ γ1([0, 1])) is a circle in R
5, which can be seen as the image of

a trivial knot. Thus C bounds an embedded 2-diskD in R
5 whose interior transversely

intersects g at finitely many points outside Kε
i (Figure 6.3). There is a homotopy that

transforms g only near γ0([0, 1]) so that g(γ0([0, 1])) gets close to g(γ1([0, 1])) along D
and eventually D does not intersect g in its interior. During this homotopy a number
of non-generic self-intersections may appear, but A1 �A2 remains unchanged. Thus
we get g′ ∈ I5,3, g′ � g, for which IntD ∩ g′ = ∅ and we can choose a local coordinate
of R5 around the tubular neighborhood of D so that

A1

A2

g1(S3)g0(S3)

γ0 γ1

D

q1

q2

Figure 6.3: The self-intersection of g in the proof of Theorem 2.11

(1) a tubular neighborhood of g′(γ0([0, 1])) in R
3 corresponds to {(x1, x2, x3, 0, 0) |

x2
1 + x2

3 < r, |x2| � 1} (r > 0 small),

(2) a tubular neighborhood of g′(γ1([0, 1])) in R
3 corresponds to {(x1, x2, 0, x

2
1 −

x2
2 + 1, x5) | x2

1 + x2
5 < r, |x2| � 1}, and
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(3) D corresponds to {(0, x2, 0, x4, 0) | 0 � x4 � 1− x2
2}

g(γ0([0, 1]))

D

g(γ1([0, 1]))

x2

x1

x4

g0(R3)

g1(R3)

A1

A2

Figure 6.4: A neighborhood of D in x1x2x4-plane

(see Figure 6.4). This coordinate coincides with that in Proposition 6.2, and there
exists a regular homotopy of g′ inside this coordinate in which an indefinite self-
tangency between A1 and A2 occurs. By Lemma 6.5, E jumps by ±(lk(K0

1 ,K
0
2 ) +

lk(K1
1 ,K

1
2 ))/4 = ±lk(K1,K2)/2 at this self-tangency. This jump can be arbitrarily

large, since L = K1 �K2 is arbitrary.

Proof of Corollary 2.7. The immersion g constructed in the proof of Theorem 2.11
can be lifted to f ∈ K6,3 by lifting the g1-part into R

5 × R+. Since gε’s are isotopic
to the standard embedding, we see that H(f) = 0. Changing the crossing at A1, by
(2.2) we have

0−H(f{1}) =
1

2
(lk(K0

1 ,K
0
2 )− lk(K0

1 ,K
1
2 )− lk(K1

1 ,K
0
2 ) + lk(K1

1 ,K
1
2 ))

= lk(K1,K2).

Here we use the fact that K0
i and K1

j are separated and that Kε
1 �Kε

2 is isotopic

to the given link L = K1 �K2. This means that an embedding R
3 ↪→ R

6 with arbi-
trary Haefliger invariant can be obtained by a single crossing change from the trivial
embedding.

Appendix A. The Jacobian in the proof of Proposition 5.3

The Jacobian matrix J(ϕX) at �ξ in the proof of Proposition 5.3 is given by

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I2k−1 −I2k−1

I2k
−I2k

−I2k−1

I2k−1

I2k−1 0
t0 1
t0 0

−I2k−1 0
t0 0
t0 −1

I2k−1 −I2k−1

I2k−1|0 −I2k−1|0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where IN is the (N ×N)-identity matrix and 0 ∈ R
2k−1 is the zero vector. The

rows correspond to the bases of T(e6k−1,e6k−1,e4k−1)(S
6k−1 × S6k−1 × S4k−2) and the

columns correspond to the natural basis of T�ξConf4(R
4k−1) ∼= T�ξR

16k−4. Its determi-
nant is −1.
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