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Abstract

In this paper complexes with N-nilpotent differentials are
considered. We proceed by generalizing a defining property of
injective and projective resolutions to define dg-injective and
dg-projective N-complexes, and construct dg-injective and dg-
projective resolutions for arbitrary IN-complexes. As applica-
tions of these results, we prove that the category Dy (R) is
compactly generated, the category Ky (.#) of injectives is com-
pactly generated whenever R is left noetherian, and the cate-
gory Ky (Z) of projectives is compactly generated whenever R
is a right coherent ring for which every flat left R-module has
finite projective dimension. We also establish a recollement of
the category Ky (R) relative to K57 (R) and Dy (R).

1. Introduction

Homological algebra mostly studies complexes having a differential d satisfying
d?> = 0. It is natural to ask why d? =0 and not, say, d®> = 0. The idea to investi-
gate complexes with a differential d such that dN =0 where N > 3 was introduced
by Kapranov, [11] and there he hinted at their possible connections to quantum
theories. Since then many papers have appeared on the subject, many of them study-
ing their interesting homology (recently called “amplitude homology”), pointing to
their relevance in theoretical physics, and indicating some possible applications of
N-complexes for certain nonassociative algebras. In 2013 Gillespie [5] made a brief
study of contractible N-complexes. In 2015 Yang and Ding [16] provided an effective
construction of left and right triangles, and proved that the homotopy category and
the derived category of N-complexes are pretriangulated categories.

In classical homological algebra the most fundamental concept is that of a reso-
lution of an object. In the theory of derived categories an analogous role is played
by resolutions of complexes. Resolutions of bounded complexes can be handled in
much the same way as resolutions of objects, but the situation for unbounded com-
plexes is different. Here, we proceed by generalizing a defining property of injective
and projective resolutions to define dg-injective and dg-projective N-complexes, and
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construct dg-injective resolution of any bounded-above N-complex and dg-projective
resolution of any bounded-below N-complex. Furthermore, we prove that dg-injective
and dg-projective resolutions for arbitrary N-complexes by these special N-complexes
exist.

There have been some beautiful results, starting in 2005 with Krause [12] and
Jogensen [10], and continuing with Iyengar and Krause [9] and Neeman [15] that
focus on the properties of the homotopy category K(2Z") in the usual sense (N = 2).
The results of Krause and Jogensen proved that for sufficiently nice rings, C(InjR)
and K(PrjR) are compactly generated and are infinite completions of D°(R)°P and
D*(R), respectively. In this paper, we show that the category Dy (R) is compactly
generated, the category K (.#) of injectives is compactly generated whenever R is left
noetherian, and the category Ky (&) of projectives is compactly generated whenever
R is a right coherent ring for which every flat left R-module has finite projective
dimension. We also establish a recollement of the pretriangulated category KCn(R)
relative to KSF(R) and Dy (R).

2. Preliminaries and basic facts

Unless otherwise stated, we assume throughout this paper that </ is an abelian
category.

This section is devoted to recalling some notions and basic consequences for use
throughout this paper. For terminology we shall follow [1], [2] and [3] when working
with left, right, and pretriangulated categories, and we shall follow [5] and [16] when
working with N-complexes.

Left and right triangulated categories.

Let 7 be an additive category and 2 :.7 — 7 an additive endofunctor. Let
LT(7,9Q) denote the category with objects the diagrams in .7 of the form QZ %
X 4Y 2 Zand with set of morphisms from Q7 LAY X, 372 7 to Q7 a4 X, A
Yy B Z, the triples (f,g,h) of morphisms in 7 from (X1,Y1,7Z1) to (Xo,Ys, Zs),
which make the following diagram commutative:

M1

Vi w1

0z, X, Y, 7
im \Lf i“’ lh
0NZ, o x, 2oy, 2 7,

Such a morphism is said to be an isomorphism if f, g, h are isomorphisms in 7.

A left triangulation of the pair (.7, ) is a full subcategory A of LT (7,Q2) that
satisfies the following axioms.

(LT1) A is closed under isomorphisms. For every object X in 7, the diagram

0 XX 50 belongs to A. For any morphism w : Y — Z| there exists a diagram
in A of the form QZ % X 5y 4 Z.

(LT2) For any diagram Q2 B XBY S ZinA, the diagram QY oz b x4
Y is also in A.
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(LT3) Given two diagrams QZ 5 X 5 Y 2 Z and Q2" & X’ oy 7 in A,
then each commutative diagram

m

0z X2ty *-7

Jon IR

Oz tox voy Yo g

can be completed to a morphism of diagrams in A.

(LT4) For any two diagrams QZ % X %Y % Z and QX' S78 7% X in A,
there exists a commutative diagram
0z’

n(Q8")
nw

0z X Vey_ Y.y
LIk
Ox' - sy Py Ty
[ A SR SN ¢

where the middle row and the second column are diagrams in A.

Then the triple (7,8, A) is called a left triangulated category, the functor, €2 is
the loop functor and the diagrams in A are the left triangles.

Dually, let .7 be an additive category and ¥ : .7 — 7 an additive endofunctor.
A right triangulation of the pair (.7,%) is a full subcategory V of RT(7,%) that
satisfies the right analogs of axioms (LT1)—(LT4). Then the triple (.7, %, V) is called a
right triangulated category, the functor X is the suspension functor, and the diagrams
in V are the right triangles.

A nice introduction to the basic idea of a left or right triangulated category can
be found in [1] and [2].

Pretriangulated categories.

Let 7 be an additive category. A pre-triangulation of .7 consists of the following
data:

(PT1) An adjoint pair (X,9) of additive endofunctors ¥,Q:.7 — 7. Let ¢:
32 — Id s be the counit, and let 1 : Id» — QX be the unit of the adjoint pair.

(PT2) A collection of diagrams A in .7 of the form QZ % X % Y 2 Z, such that
the triple (7,9, A) is a left triangulated category.

(PT3) A collection of diagrams V in .7 of the form X’ % v’ LIy YX’, such
that the triple (7,3, V) is a right triangulated category.
(PT4) For any diagram in .7 with commutative left square:

!
© v’ w’

X’ z' ¢

lf \Lg 3h \Lézozf
Y

XYy Yo7
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where the upper row is in V and the lower row is in A, there exists a morphism
h:Z' — 'Y making the diagram commutative.
(PT5) For any diagram in .7 with commutative right square:

XMy Mg sy
| o |
wooYy w
0z X Y Z

)

where the upper row is in V and the lower row is in A, there exists a morphism
h:Y’ — X making the diagram commutative.

A pretriangulated category is an additive category together with a pre-triangulation
and is denoted by .7 = (7,%,Q,V,A,e,n). A nice introduction to the basic idea of
a pretriangulated category can be found in [3].

Let J be a left (resp. right) triangulated category. A full additive subcategory .
in 7 is called a left (resp. right) triangulated subcategory if it is replete, if Q.7 C .77
(resp. £ C ., if for any left triangle QZ — X — Y — Z (resp. right triangle
X' =Y — 7' — XX')such that Y, Z are in .#, the object X is also in . (resp. such
that X', Y are in .7, the object Z’ is also in .¥). Let .7 be a pretriangulated category.
A full additive subcategory . in .7 is called a pretriangulated subcategory if .7 is a
left and right triangulated subcategory. A thick subcategory . of a pretriangulated
category 7 is a full pretriangulated subcategory of .7 such that .7 is closed under
isomorphism classes and taking direct summands.

N-complexes.

By an N-complex X (N > 2) we mean a sequence of objects in &7

e X < X Xy

satisfying d = 0. That is, composing any N-consecutive morphisms gives 0. So a 2-
complex is a chain complex in the usual sense. A chain map or simply map f: X =Y
of N-complexes is a collection of morphisms f, : X,, — Y, making all the rectangles
commute. We get a category of N-complexes, denoted by Cn(47), whose objects are
N-complexes and whose morphisms are chain maps. This is an abelian category.

For an N-complex X, there are N — 1 choices for homology. Indeed, for ¢t =
1,-+-, N, wedefine Z! (X) = Ker(d,,_ ;1) - - dpn—1dy) and B, (X) = Im(dy,11dp42 - -
dp+t). In particular, we have Zi(X) = Kerd,, Zflv(X) =X, and B:L(X) = Imd, 1,
BY(X) = 0. We also set C! (X) = X,,/BL(X), and define H (X) = Z! (X)/BY ~!(X)
the amplitude homology objects of X for all t. We say X is N-exact, or just exact, if
H! (X) = 0 for all n and ¢. The class of exact N-complexes is denoted by &y .

Example 2.1. (1) Let R be a ring, A =--- — v_1 = v9 — v; — --- the infinite
quiver, and Iy the ideal of RAZ generated by all paths of length at least N (N > 2).
The category of RAS /In-modules is equivalent to the category of N-complexes of
modules (see [4]).

(2) Let R be a ring and N > 2 an fixed integer. The category of graded modules
over the graded ring R[z]/(z") is isomorphic to the category of N-complexes (see

[6]).
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(3) Let (X,d) be an N-complex in &. Define
i HY(X) = HEP(X) via 2 4 ImdV—t s 2+ Imd™N —t-1,
do s HE(X) = HLZ(X) via @+ TmdV s d(x) + ImdV =+,
Moreover, define H,,,(X) = @,, ,_,, H4(X) and define morphisms D : H,,(X) —

H,,_1(X) by D =14, +d,. (with the convention that i, and d. are set to be zero
when not defined). Then (H(X), D) is an (N — 1)-complex (see [11]).

In general, the differential induces the following poset of non-trivial subobjects
where the arrows denote inclusion:

0 — B (X) — B *(X) — - —=B(X) ——= B, (X) —=0

| Lo, L] e

0—= 2 (X)) ——=722(X) — - —ZV (X)) —ZV " }(X) —0.

n

The differential d adds a dimension to diagram (2.1) by inducing the vertical mor-
phisms in

0 — B (X) — By *(X) — - —= B, (X)

e e

0—BY (X)) — .- —B? [(X)—B! (X)—0,

n—1 n—1

where the rows are coming from the top row of (2.1). The same thing can be done
for the bottom row of (2.1):

(X) —=Zp(X) —> - — 2 1 (X) —0

Pk ek e

LX) e 2T - 2N (X) 0,
Diagrams (2.2) and (2.3) both commute.

Given an object A of o7, we define N-complexes D! (A) for t =1,--- N as fol-
lows. D! (A) consists of A in degrees n,n —1,--- ,n — (t — 1), all joined by identity
morphisms, and 0 in every other degree. We will call it the disk on A of degree
n. Let {M,|n € Z} be objects in .o/. Then ([],,, DN(M) = (IToez DY (M) =
Miyn—1@ - D My for all k. Therefore,

HneZ Dr]y(Mn) = HneZ DnN(Mn)

Two chain maps f,g: X — Y are called chain homotopic, or simply homotopic, if
there exists a collection of morphisms {s,, : X;, = Y,y n_1} such that
gn = fo=d" sy +dVN s, qd+ -+ sy (vopyd" T =
SN AN-Dis, di Y n,

If f and g are homotopic, then we write f ~ g. We call a chain map f null homotopic
if f ~ 0. There exists an additive category Ky (), called the homotopy category of
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N-complexes, whose objects are the same as those of Cy () and whose Hom sets
are the ~ equivalence classes of Hom sets in Cn (7). An isomorphism in Ky (<) is
called a homotopy equivalence.

Left and right triangles in (/).
Let X be an N-complex in Cn (). Define (2X),, = Xpin—1P D Xpi2 ® Xyt
with differential given by

0 1 0 = 0 0

d—= : : oo
0 0 0o - 0 1

_gN-1 _gN=2 _gN-3 g2 g

Then QX is an N-complex that is called the loop on X . For any w € Home, () (X, Y),
define (Fy,), = (2Y), ® X,, with differential given by

0 1 0 -+ 0 0

d= 0 0 0 1.0
_gN-1 _gN=2 _gN=3 _ _g.

0 0 0 - 0 d

Then F,, is an N-complex. We also have the following commutative diagram in Cy (<)
with degreewise split exact rows:

0 QY " F, v X 0
H I+ I
0 QY — >, D¥ (V) ——>Y 0,
where p = (dN=1,dVN=2,... [d,1), v=(0,---,0,1), and
1 0 - 0 1..0 1 0 - 00
Ctl L T A A IS U IRt I S S
—dN-t N2 ... g 00 —dNl N2 L _dw

Define (XX), = X, 1 ® X,y 2@ --- ® X,,_(y_1) with differential given by
—d 10--00

= iron i

—dV"t00-- 00

Then ¥X is an N-complex that is called the suspension on X. For any y € Home, ()
(X,Y), define (Cy), =Y, ® (XX),, with differential given by

d p 000
0 —-d 100
0—-d¥"20--01
0—-d¥to-00

Then C, is an N-complex. We also have the following commutative diagram in Cx (/)
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with degreewise split exact rows:

i N p
0 X ]_[neZDnJrN,l(Xn) »X 0
I I H
0 Y - Cy = X 0,
where
1 —d 1000
, d , —d?> 0100
v = : D= N
av -t —d¥"100--01
1 w000
0 o0 ~d 100
v={.],w=|::::],¥= A
: oo Dot
0 —dV"1t 001

We say a diagram in Ky () is a left triangle if it is isomorphic to a diagram
0wz S rF, 5Ly -z

arising from a chain map w:Y — Z, where p and v are the canonical chain maps.
We say a diagram in Ky () is a right triangle if it is isomorphic a diagram
XSy 2o, 2 nx
arising from a chain map p/ : X — Y, where v/ and w’ are the canonical chain maps.
If N =2, then QXX = X and ¥QX = X for any 2-complex X, i.e., @ = X! and
¥ = Q=1 Moreover, the notion of left (or right) triangles coincides with the usual
notion of distinguished triangles [13, p.11]. Murfet [13] proved that the additive cate-
gory Ko(7) together with the additive automorphism ¥ and the class of distinguished
triangles defined above is a triangulated category (see [13, Theorem 12]). But for the

case of N > 3 there is no further information. However, Yang and Ding [16] proved
the following result.

Theorem 2.2. ([16, Theorem 2.20]) The category Kn(/) together with the endo-
functors Q,% and the classes of left and right triangles defined above is a pretriangu-
lated category.

Proposition 2.3. Let 7 € Home, (o)(X, Z) and let v: F, — X, V' : Z — C; be the
canonical chain maps. Then:
(1) A chain map of N-complezes f : C — X factors through v if and only if Tf ~ 0.
(2) A chain map of N-complexes g : Z — C factors through v' if and only if gT ~ 0.

Proof. We just prove (1) since (2) is proved dually.
Suppose 7f ~ 0. Then we have a commutative diagram of left triangles in ICn (&7):

Voo
\
0z F,YsX_-Ts7

Therefore, (LT3) implies that f factors through v.
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Suppose that f: C' — X factors through v. Then we have the following commuta-
tive diagram of left triangles in Ky (&7):

o b
—Qr V v
0Ox 0z F, X.

Therefore, (LT3) implies that Q(7f) ~ 0, and so 7f ~ 0 by [16, Corollary 2.16]. O

Corollary 2.4. Let f,g: X — Z be chain maps of N-complexes. Then f ~ g if and
only if f — g factors through the canonical chain map Fiq, — Z if and only if f —
g factors through the canonical chain map X — Ciq, . In particular, we have the
following exact sequences:

Home () (X, Fia,) — Home (o) (X, Z) — Homy () (X, Z) — 0,

Hoch(g{)(CidX7Z) — HOIIICN(W)(X, Z) — HOm;CN(d)(X, Z) — 0.

Quasi-isomorphisms.

A chain map f: X — Y induces homomorphisms H (f) : H., (X) — H! (V) for all
n and t. We say that f is a quasi-isomorphism if each H!(f) is an isomorphism.
Quasi-isomorphisms are marked by placing the sign ~ next to their arrow.

Lemma 2.5. ([16, Lemma 4.1]) The class &n of exact N-complexes forms a thick
subcategory of Kn (7). The corresponding class of morphisms
Morg, = {7: X — Z|3 a left triangle 07 — E — X = Z with E € éx}
={7:X — Z|3 a right triangle X > Z — E' — YX with E' € &y}

is the class of all quasi-isomorphisms in Ky (7).

The pretriangulated category Dy ().

By [16, Lemma 4.3], S = Morg, is a saturated multiplicative system in K ().
Then one can define the quotient category ST Kn () = Kn (&) /En of Ky (/) by
[7, §8]. The derived category Dy (<) of Cy (/) is the quotient category Ky (%7)/En.
Then there exists a canonical functor

Let v : X — Y be a morphism in Dy (/). By [7, §8], we can write v = Q(s) 1 Q(f)
or v = Q(g9)Q(t)~! for some chain maps fitting into the diagrams of the forms

X Y X_ Y
f\WZ ‘XW,/;

We say a diagram in Dy () is a left triangle if it is isomorphic to a diagram

Q(w)

—Y —Z

)
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where QZ % X %Y 2 Z is a left triangle in Ky («7). We say a diagram in Dy (<)
is a right triangle if it is isomorphic to a diagram

x7 U yr Q) 7 Q) g xer.

where X' 5 V' % 7' % X" is a right triangle in K (7). Then the category Dy (<)
is a portly triangulated category (do not require the distinguished triangles to form

a class) by [7, Proposition 9.8], and the category Dy («7) is a portly pretriangulated
category whenever N > 3 by [16, Theorem 4.15].

3. Homotopy resolutions of N-complexes

The main aim of this section is to investigate the existence of dg-projective and
dg-injective resolutions for arbitrary N-complexes.

Definition 3.1. Assume that &/ has enough projectives and let &2 be the class of
projectives. An N-complex P is called dg-projective if P, € & for all n, and every
[+ P — Eis null homotopic whenever E € &y. We denote the class of dg-projective
N-complexes by dg . Assume that o/ has enough injectives and let .# be the class
of injectives. An N-complex [ is called dg-injective if I,, € . for all n, and every
J+ E — I is null homotopic whenever I € &y. We denote the class of dg-injective
N-complexes by dg.¥y.

Lemma 3.2. ([16, Lemma 5.5]) (1) Assume </ has enough projectives and let &
be the class of projectives. Then every bounded-below N -complex of projectives is dg-
projective.

(2) Assume o/ has enough injectives and let & be the class of injectives. Then
every bounded-above N -complex of injectives is dg-injective.

Lemma 3.3. ([16, Lemma 5.2]) Let X,Y be two N-complezes with either X a dg-
projective N-complex or'Y a dg-injective N-complex. Then we have an isomorphism

HOHI;CN(M)(X, Y) = HOIHDN(%) (X,Y)

The first task is to construct dg-projective resolution of any bounded-below N-
complex and dg-injective resolution of any bounded-above N-complex.

Proposition 3.4. Suppose </ has enough projectives and let & be the class of pro-
jectives.

(1) Every bounded-below N-complex X admits a quasi-isomorphism P = X with
P a bounded-below N -complex in 2.

(2) If f: X =Y is a chain map of bounded-below N-complexes, u: P — X a
quasi-isomorphism with P a bounded-below N -complex in &2, then there is a unique,
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up to homotopy, chain map g such that the following diagram in Ky (&) commutes:

P—g>Q

x oy

where v : QQ =Y is a quasi-isomorphism and @ a bounded-below N -complex in ZP.
In particular, if f =idx, then g is a homotopy equivalence.

Proof. (1) Let X be a bounded-below N-complex—say, X; = 0 for all i < n. Fori < n
we define P; = 0. Choose any epimorphism P,, — X,, with P, € &. Suppose that for
some k > n we have constructed an object Py_1 € & and morphisms dkP_1 P —
Py_5 and Py_1 — Xj_1. Consider the pullback diagram

U —= 2, (P)

l . l (3.1)

Xk " Xp

and choose an epimorphism Py — U, with P, € &2. Define morphisms dkp P —
Pr_1 and Py — X} in the obvious way. Consider the pullback diagram

Upsr —= 75 1 (P)

l ) i (3.2)

Xk+1 Xk-1

and choose an epimorphism Py, 1 — Ugyq with Ppy1 € &2, Define morphisms Py,1 —
P71 and P41 — Xpy1 in the obvious way. Applying the property of pullback for
diagram (3.1), we get a commutative diagram:

Pyt Uk+1 Zp 2 (P)
Lol

Ukt Uy —=7;, 1 (P)

X1 Xk Xp—1,

and hence there exists dkP 41 ° Pry1 — Pg. Continuing this process, consider the pull-
back diagram

Uksn—s —=Zj_(P)
l l (3.3)
dN72
XpgN—z — Xj1

and choose an epimorphism Pyyn_3 — Upyin_3 with Pyiny_3 € &. Define mor-
phisms Pyin_3 — Pr—1 and Pyin_3 — Xprn—3 in the obvious way. Consider the
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pullback diagram

UkiN—2 —Z}_1(P)

l . | (3.4)

XptN—2 — X1
and choose an epimorphism Pyyn_o — Upin_o with Pyiny_o € &. Define mor-

phisms Prin_2 — Pr—1 and Pyyn—2 = Xipn—2 in the obvious way. Applying the
property of pullback for diagram (3.3), we obtain a commutative diagram:

Poyin_o——>Upyn_o—> lec—l(P)

UktN—2 Urpn—s —>=Zj_1(P)

| l |

XpgN—2 —> Xpgn_z — Xj_1,

and so there exists ko‘D_s_J\,_2 : Pryn—2 — Prin—3. Repeating this process, we get an
N-complex P:---—= P,+1 = P, = 0— --- together with a chain map P — X. It
remains to show that P — X is a quasi-isomorphism. Fort =1,--- , N — 1, the above
pullback diagrams give rise to a pullback diagram:

B (P) ——=Zj,_1(P)

| |

BY (X) —= 7}, (X),

where the horizontal morphisms are monomorphisms. It follows from [13, Lemma 68§]
that the vertical morphism on the right is an epimorphism. Thus, [14, Lemma 35]

implies that Hi ,(P) = Hi ,(X), and hence P 5 X.

(2) Let u: P S X and v: Q S Y with P,Q bounded-below N-complexes in 2.
We complete v to a left triangle QY — F, — @ — Y and a right triangle Q =Y —
Cy — XQ. Applying the functor Homy () (P, —) for the above diagrams, we get
exact sequences

Homy (o) (P, Fy) — Homy (o) (P, Q) — Homye (o) (P,Y),
HOHl;CN(pQ{)(P7 Q) — HOIH]CN(LQ{)(P, Y) — HOHI;CN(M)(P, CU)

Note that C,, F,, are exact and P is bounded below; it follows from Lemma 3.2 that
0 = Homg (o) (P, Fyy) = Homye (o) (P, Cy). This implies that

Homyg (o) (P, Q) = Homye (o) (P, Y),

and hence there is a unique, up to homotopy, chain map g : P — @ such that vg ~ fu.
The second statement follows from Lemma 3.3. O

The dual result is given by the following.
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Proposition 3.5. Suppose </ has enough injectives and let & be the class of injec-
tives.

(1) Every bounded-above N -complex X admits a quasi-isomorphism X ST with I
a bounded-above N -complex in 7.

(2) If f : Y — X is a chain map of bounded-above N -complexes, v : X — I a quasi-
isomorphism with I a bounded-above N -complex in &, then there is a unique, up to
homotopy, chain map g such that the following diagram in Ky (<) commutes:

f

— = X

Y
J—2o7

where v : Y — J is a quasi-isomorphism and J a bounded-above N -complex in . In
particular, if f =idx, then g is a homotopy equivalence.

We now investigate the existence of dg-projective resolution and dg-injective res-
olution for arbitrary N-complexes.
Let X be an N-complex and n € Z. We define X-,, to be the N-complex

Xop i oor— Xngo -5 Xpi1 5 ZV1(X) — 0.

There exists an obvious monomorphism of N-complexes u : X, — X. As subobjects
of X, it is clear that X, — X5,_1. In fact, the inclusions {X-, — X}, <o are a
direct limit in Cy (7). That is, X = hglngoXjn- We also define X~,, to be the N-
complex

Xen: 0—CN ) L Xy -5 X S,

where the differential d is the induced morphism on residue classes. There is an
obvious epimorphism of N-complexes X — X~,. As quotients of X, it is clear that
Xcn = Xcn—1. In fact, the quotients {X — X, }n>0 are an inverse limit in C (7).
That is, X = @nngoch.

Remark 3.6. The set N={0,1,2,---} is a directed set in the canonical way (with
minimum 0). Let &/ be a cocomplete abelian category, and suppose we are given a
direct system {G",u"™}, ey over this directed set. This is just a sequence of objects
and morphisms in &7 (writing u” for u™("*1)

1

0w 1wl o W? o3
G —G —G—G — -

Let v : [[,en G™ — I,,cny G™ be the morphism induced out of the first coproduct by
the morphisms u™ : G® — G™*!. That is, v.” = (™4™ where " is the injection of
G"™ into the coproduct. Given a cokernel [], .y G™ — C of the morphism 1 — v it is
clear that the composites G™ — [] G" — C are a direct limit for direct system
{Gna unm}nEN-

neN
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Definition 3.7. Let & be a cocomplete abelian category, and suppose we have the
following sequence of chain maps of N-complexes
0 1 2
[eCNNye) I ENYal I ENya RN

Then Cy (/) is a cocomplete abelian category, so as in Remark 3.6 we can define a
chainmap v : [],,.y G™ — [1,,ey G™- The homotopy direct limit of the above sequence
is the suspension Cy_, on HneN G", and we denote the object Cy_, by holimG™.
This means that there exists a right triangle in Ky (%7):

[en G =3 L, en G™ — holimG™ — S(I],en G™)-

Given a morphism of direct systems of N-complexes,

GO G G? G*
S
H° H' H? H? .

(RT3) gives a chain map holime™ making the diagram

1—v v . w
HnEN Gn - HnEN Gn - MLG’” - E(HnEN Gn)
\LHV;" \LH(/J" holime™ \LE(HW”)
Y

n 17v n . . n w. n
[nen H > [nen H > MH > S([Lpen H")

in Ky (&) commutative, where v and w are the canonical chain maps.

Theorem 3.8. Suppose <7 is a Grothendieck category with enough projectives, and let
P be the class of projectives. Then every N-complex X admits a quasi-isomorphism
PS X withP a dg-projective N -complez.

Proof. Let X be any N-complex. Since the N-complex X-,, is bounded below for
n < 0, we can find a bounded-below N-complex P™ in & and a quasi-isomorphism
0" : P 5 X, by Proposition 3.4(1). Using Proposition 3.4(2) at each stage, we
can choose these resolutions in such a way that we have the following commutative
diagram of N-complexes:

PO p! P2 pP3
O N I
Xog—= X5 1 —> X5 Xo-3

Thus there is an induced morphism of right triangles in K (2):

Hn<0 P "> n<0 P —— Mn@Pn Z(Hngo pPm)
lmn luan lholim&" iz(uw)

1—v .
Hngo X5, — Hn§0 X5n — holimy,<o X, — Z(Hngo Xon)-
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Applying canonical functor @ to the above diagram, we can obtain a morphism of
right triangles in Dy (). But Q(110™) is an isomorphism; it follows that Q(holim8™)
is an isomorphism. Thus [16, Lemma 4.3] and [7, Corollary 8.9] imply that holim6™
is a quasi-isomorphism. On the other hand, 1 — v is a monomorphism by assump-
tion and [13, Lemma 63]. Therefore, [16, Theorem 4.16] and (RT3) give a quasi-
isomorphism holim,<oX~n — liglngngn = X. Composing with holim8™ yields a
quasi-isomorphism holim,<oP™ = P — X. Note that

Homy (o) (E(I,1<0 "), £) — Homyey (o) (holimn<o P, E) —
Hom’CN(d)(Hngo Pn,E)

is exact and [[, o P" is dg-projective; it follows from [16, Lemma 2.17] that
HomKN(ﬂ)(E(HngO Pn),E) = HomlCN(szf)(Hngo Pn, QE) = O7 VFE¢€ gN.
This implies that P is a dg-projective N-complex. O

Remark 3.9. The set N°P = {0,1,2,---} is an inverse directed set in the canonical
way (with maximum 0). Let <7 be a complete abelian category, and suppose we are
given an inverse system {G™,u""},cn over this inverse directed set. This is just a
sequence of objects and morphisms in &7 (writing u” for u™("~1)

3 12 o 1 1 1
e — G — G — G — G".

Let v:]],en G™ = Il,en G™ be the morphism induced into the second product by
the morphisms »"*! : G"*! — G”. That is, 7"v = u" 17"+ where 7" is the projec-
tion onto of G™ out of the product. Given a kernel K — ], G™ of the morphism
1 —w it is clear that the composites K — [],.yG"™ — G™ are an inverse limit for
inverse system {G", 4"}, en.

Definition 3.10. Let &7 be a complete abelian category, and suppose we have the
following sequence of chain maps of N-complexes

3 2 1
A N e L e

Then Cy (/) is a complete abelian category, so as in Remark 3.9 we can define a chain
map v : [[,,cy G" = [],,eny G™ The homotopy inverse limit of the above sequence is
the loop F1_, on [], .y G", and we denote the object Fy_,, by holimG™. This means

that there exists a left triangle in Iy (&7):
UMLpen 6") — holimG™ — [Ten G" =5 Ten G-
Given a morphism of inverse systems of N-complexes:

G3 G? G! G°

bl

H3 H? H! H°
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(LT3) gives a chain map holimy™ making the diagram

<—
U[Ten G) —— polimG™ — > [T, G" ——= []en G
lﬂ(m") lmw lnw" lnw"

n H . n v n 1_1); n
Q(HnEN H ) MH HneN H HnEN H

in Ky (&) commutative, where p and v are the canonical chain maps.

Theorem 3.11. Suppose 7 is a Grothendieck category with enough projectives, and
let 7 be the class of injectives. Then every N-complex X admits a quasi-isomorphism

X 5 T with I a dg-injective N -complez.
Proof. The proof is dual to that of Theorem 3.8. O

4. The homotopy categories Dy(R) and Ky ()

In this section, 7 is the category of left R-modules and .# the class of injectives.
We denote the homotopy category of N-complexes in .# by Ky (.#). We show that
the category Dy (R) is compactly generated, and the category Ky (.#) is compactly
generated when R is left noetherian.

Definition 4.1. Let 7 be a pretriangulated category closed under set-indexed
coproducts. An object C € .7 is compact if the natural map

[Iyca Homz (C, Xy) — Hom 7 (C, [T,cp X»)

is an isomorphism for any family {X,}xca of objects in .7. We denote by .7¢ the
full subcategory of .7 that is formed by all compact objects. Clearly, .7¢ is right
triangulated. A set of objects ¥ C .7 is called a generating set if the implication

Homgs (G, X)=0foral Ge¥Y — X =0

holds for all objects X € 7. If 7 has a generating set consisting of compact objects,
then .7 is called compactly generated.

Lemma 4.2. For a morphismu: X =Y in Ky(R), Q(u) = 0 in Dy (R) if and only
if u factors through an exact N-complex.

Proof. “Only if” part. By [7, Proposition 8.19] there is a quasi-isomorphism s : Z —
X such that us = 0. Hence (RT3) yields a morphism of right triangles:

7. X C, WA

el
\

O%Y:Y 0.

Note that Cy is exact by [16, Corollary 3.3], so the proof is complete.
“If” part. Assume u factors through Z € &y. Then Q(u) factors through Q(Z) = 0,
which implies that Q(u) = 0 in Dy (R). O
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Lemma 4.3. The canonical functor Q : Kn(R) — Dy (R) preserves direct sums. In
particular, Dy (R) has arbitrary direct sums, which are direct sums of N-complezes.

Proof. Let {Xx}xea be a family of objects in Cy(R), and let Y be an object in
Cn(R). By Corollary 2.4 we have a commutative diagram with exact rows:

Home  (ry ([1xea X, Fiay )=Home g (r) (I TyeaXn; Fy')=Homy g (r) ([ [1cp X2, Y) =0

: ; |

[IxeaHomey () (Xx, Fiay )—=>]TreaHomey (ry (Xa, Y) =] epHomg  (r) (Xa, Y) 0.

Thus the canonical homomorphism Homy gy ([Txepx X Y) = [[hepn Homge (r)
(X»,Y) is an isomorphism. This implies that arbitrary direct sums exist in Ky (R).

Let {Xx}aea be a family of objects in Kyx(R). For each p € A, we denote by
tu s Xy = 1 en X the injection. We claim that the canonical homomorphism

&y Hompy(r) (LTxea X00Y) = [hea Homp (r) (X, Y), v = (vQ(e4))

is an isomorphism for any object Y in Dy (R).

Claim 1: &y is an epimorphism.

Proof. Let (va)aea € [[nep Hompy (r)(Xa,Y). For each peA, let v, =
Q(f.)Q(s,) ™! with s, : W, — X, a quasi-isomorphism and embed s,, in a right trian-
gle W, % X, = C, — SW,, in Ky (R). We show that [[yc, Wy 15 ™ [T, Xa —
HAeA Cy — E]_[)\eA Wy is a right triangle in Ky (R). Note first that there exists a

natural isomorphism X T, W 5 [Tca ZW. By (RT1) we have a right triangle

[Txea Wa HAE—Q > [lxca Xx = C = X]] cn Wi in Ky (R). Then for each p € A, we
have a morphism of right triangles:

Wy = X C Wy

lpu lbu ;h“ lgpu
I—I)\EA SX v
H/\GA W = HAEA X ~C = H/\EA LWy,

where p,, : W, — [[ cp Wa is the injective. Thus we get a commutative diagram:

Iaca sa

HAEA Wy —— HAeA Xy —— HAe_A O —— H/\eA LW

| | |
Llxea sa v
HAeA Wi == HAeA X ¢ H/\EA XWy.
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Next we show that A is an isomorphism. We have a commutative diagram of functors:

(HAGAEX/\7 -) e(HAeAZWA» -) (C,—) (HAeAXM —)—>(H>\€AW>\7 -)

| | o |

(H)\EAEX,\, _) - (HAGAZWM _) - (H,\eAcz\v _) - (H/\eAXz\v _) - (HAEAW/\7 _)

N

HAeA(ZXAa -) 91_[>\6A(EVV>W -) ‘>H)\6A(O>\a -) 91_[)\61\()()\, -) 9I_L\EA(VVA, -),

where (—, —) = Homg (r)(—, —). Note that the top and the bottom rows are exact,
as is the middle one. Thus by the five lemma, (h,—) is an isomorphism, and so is
h by Yoneda lemma. Also, since Cy is exact for all A € A, [[,, Ch is exact and so
[I,ca 82 is a quasi-isomorphism by [16, Corollary 3.3]. For each p € A, there exists

f € Homg , (ry(I1,en Wi, Y) such that f, = fp,. Set v = Q(f)Q(ITca 1)~ " Then,
for all € A, we have

VQ(L/L) = Q(f)Q(erA S)\)ilQ(l’M) = Q(f)Q(pM)Q(Su) Q(fu)Q(Su) = Y-
Claim 2: &y is a monomorphism.
Proof. Let v € Homp, (r)(J1yep Xa,Y) with ¥Q(ex) =0 for all X € A, and let
v =Q(t)'Q(g) with t : Y — Y’ a quasi-isomorphism. We claim that Q(g) = 0. For
any A € A, since Q(t)7'Q(gtx) =0, Q(gtx) = 0. Then Lemma 4.2 implies that giy

factors through some Ey € &y, and so g factors through [[,., Ex € &n. Therefore,
again by Lemma 4.2, Q(g) = 0. O

Lemma 4.4. For any R-module A and any N-complex X, we have isomorphisms
Hom,CN(R)(DfL(A),X) ~ H! (Homp(A, X)), V n,t,
Homy, (r) (X, DLy, _1(A)) 2 HY 7 (Homp(X, A)), V n,t.
Proof. We just prove the first isomorphism since the second follows by duality.
We may consider that
Home, (r) (D7, (A), X) = Homp(4, Z;, (X))
= {u € Hompg(4, X,,)|d"u = 0}
= 7! (Homp(4, X)),
Home  (r)(Dfy v—i(4), X) = {(U7U)d§5(;r}flR(A7Xn+N7t) x Homp(A, Xy)|u =

For i : D (A) — DY, v _,(A), we get Im(Home () (i, X)) = BY~!(Homg(A, X)). Let
f:DL(A) = X be achain map. If f € Im(Hoch(R (i, X)), then f ~ 0. Conversely, if

J ~ 0, then f factors through the N-complex [], ., D (X,,) by the proof of [5, Corol-
lary 3.5], which induces a chain map DY, \_,(A) — X. So f € Im(Homc , (g) (i, X))
and

Homg , () (DY, y_,(A), X) = Home,, (g)(D},(A), X) — Homyc , (gy(D},(A), X) — 0
is exact; it follows that Homy (g (D} (A4), X) = HY, (Hompg(4, X)). O
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Theorem 4.5. The pretriangulated category Dy (R) is compactly generated.

Proof. Set 4 = {DL(R)|n€Z, t=1,--- N —1}. We show that & is a generating
set of Dy (R). First, for any N-complex X, assume that Homp  (g)(D5(R),X) =0
for all n and ¢. Then 0 = Homp,, (g (D5 (R), X) = Homy () (D (R), X) = H, (X) by
Lemmas 3.3 and 4.4 since Dfl (R) is dg-projective for all n and ¢. This implies that
X 20 in Dy(R). Now let {X)}rea be family of objects in Dy (R). Then the direct
sum [], ., X exists in Dy (R) by Lemma 4.3 and we have

Homp,, 5y (D (R), [ [ X») = Homye, () (D (R), [ X»)
AEA AEA

=1 (][] X = [ HL(X0)

AEA AEA

= [ Homy,, (r) (DL (R), X)
AEA

= H HomDN(R)(DZ(R),XA).
AEA

Therefore, D!, (R) is a compact object in Dy (R) for all n and ¢. This implies that the
pretriangulated category Dy (R) is compactly generated. U

Now we show that the category Ky (.#) is compactly generated whenever R is left
noetherian. For N = 2 this was proved by Krause in [12, Proposition 2.3].

Remark 4.6. Let A be a left R-module. Then Proposition 3.5(1) gives a quasi-

isomorphism D (A) 5 I with I a bounded-above N-complex in .# for any n and
t. We denote the N-complex I by it A.

Let X be an N-complex and n € Z. We define X¢,, to be the N-complex

Xen: 0— X, 5 X -5 Xpg—s-on .

We also define X3, to be the N-complex

Xopt oo — Xngo -5 Xy =5 X, — 0.
Lemma 4.7. Let R be left noetherian and A a left R-module. Then the natural map
Hom/CN(R) (Z;Av X) — Hom/CN(R) (D; (A)v X)

is an isomorphism for all X € Kn(#) and all n,t. Therefore, it A is a compact object
in Kn(F) for all n and t whenever A is finitely generated.

Proof. We can complete the quasi-isomorphism D (A) % ¢ A to a right triangle
D! (A) B it A — C, — %(D!(A)) and a left triangle Q(if, A) — F, — D! (A) 5 it A
in n(R). Then

HOHl;CN(R)(CL,X) = HomKN(R)(CL,X<n+N_1) =0,
HOIH;CN(R)(FL,X) = HOI’II;CN(R)(FL,Xgn) =0
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since C,, F, are exact and X¢,4+n-1, X<y, are bounded above. Therefore,
Homy () (i%, A, X) = Homg , (r) (DL (A), X).
Now assume that R is left noetherian and A is finitely generated. Then A is a compact
object of R-Mod. By [6, p.688], we have Home  (r) (D}, (4),Y) = Hompg(4, Z,(Y)) for

any N-complex Y. It follows that D (A) is a compact object of Ky (R) for all n and
t, and hence

om;CN(] A HXA om,CN(R) HX,\
AEA AEA
= [ Homy, (r) (DL (A), X,)
AEA
= [ Homy, (s (i A, X)
AEA

for a family {X)}xea in Kn (). Therefore, if, A is a compact object of Ky (.#) for
all n and ¢. g

Theorem 4.8. Let R be left noetherian. Then the category IKCn(.F) is compactly gen-
erated.

Proof. Each N-complex if, A is a compact object of K (.#) by Lemma 4.7. It remains
to show that & = {if A|A € R-Mod is finitely generated} is a set of generators of
Kn (). We claim that for any nonzero object X of Ky (%), Homg  (r)(G,X) # 0
for some G € 9.

Suppose first that H’, (X) # 0 for some n and ¢. Choose a finitely generated left
R-module A and a nonzero homomorphism A — Z! (X). We obtain a nonzero chain
map D! (A) — X that induces a nonzero element in Homy  (g) (D% (A4), X). Suppose
next that H! (X) = 0 for all n and t. We can choose n and ¢ such that Z¢, (X) is non-
injective. Consider the exact sequence 0 — QX — F;;, — X — 0. Since X is exact,
0 — Z5(QX) — Z (Fiay) — Z4(X) — 0 is exact. Note that Fiq, 2 [],c;Dn (X5)
by [16, Remark 2.15], so Z! (Fia,) is injective. But Z (X) is non-injective, and it
follows that Z! (©2X) is non-injective. Using Baer’s criterion, there is a finitely gener-
ated left R-module A such that Extk(A, Z! (QX)) # 0. By Corollary 2.4, we have a

commutative diagram:

Home,, (r) (D% (A), Figy ) = Home gy (D} (A), X) — Ext} (r)(

| | I
y(D

Home,, (r) (D}, (A), Fig, ) = Home , (g (D}, (A), X) = Homy (g

n(4),QX) —

L(A),X)—=0.

Also, ExtéN(R) (D! (A),QX) = Exth(A,Z! (QX)) by the proof of [6, Theorem 4.5].
Thus Homy (g (DL (A), X) = Exty (A, Z,, (X)) # 0. This shows our claim. This
implies that the category Ky (%) is compactly generated. O
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5. The homotopy category Ky (<)

In this section, & is the category of left R-modules and & the class of projectives.
We denote the homotopy category of N-complexes in & by K (). We show that
the category Ky (&) is compactly generated when R is a right coherent ring for which
every flat left R-module has finite projective dimension.

Let X be an N-complex. We define X™* to be the N-complex

-+ — Homp(X,,—1, R) - Homp(X,, R) —» Hompr(X,+1,R) — .
Construction 5.1. Let R be right coherent and M a finitely presented left R-

module. By the proof of Proposition 3.4(1), we can choose a quasi-isomorphism
P 5 (DY (M))* with P bounded below and each P, finitely generated projective.

There is also a canonical homomorphism D! (M) 2 (D! (M))**. Consider

*
™

D! (M) -2 (D (M) = P*

If we consider P* and P to be objects of Ky (2?) and Kn(£°P), then P* depends

functorially on P, and P depends functorially on (D (M))*. But (D% (M))* depends

functorially on D! (M), and so, altogether, P* depends functorially on D (M).
There exists a commutative diagram

P —— (D;,(M))*

(D7,(M))
- |
(D7,(M))

Pt T (D) (M)

)

where dp is the canonical chain map. Since P consists of finitely generated projective
modules, ¢ p is an isomorphism. Also, 7 is a quasi-isomorphism, so the diagram shows
that the composition §*7** is a quasi-isomorphism. That is,

HY (Homp(P*, R)) = HY (Hompg (D', (M), R)), ¥ k,t'.
But M and each P are finitely presented, and it follows that
HY (Homp(P*, Q) = HE (Homp(D (M), Q)), ¥ k,t/
for any projective left R-module Q). Consider the left and right triangles in ICn(R):
QP* = F — DL(M) ™ P+, D!L(M) ™ P* - C — S(DL(M)).

By the preceding proof, Homy , () (F), DL(Q)) = Homyg (g (C, DL(Q)) =0 for any
projective left R-module @ and all n.

Lemma 5.2. Assume that X,Y € Cn(R) with either X bounded below orY bounded
below. If Homy gy (D}(Xk),Y) = 0 for all k, then Homy () (X,Y) = 0.

Proof. We need to show that every chain map a : X — Y is null-homotopic. Thus
for a given o we must construct a collection of morphisms s,, : X,,, = Y+ n—1, such
that

A =dN s +dV s 1d+ -+ sp_np1dY 1 (*m)

for all m. We do so by induction on m. Since X or Y is bounded below, we must have
S$m = 0 for m < 0. For the inductive step, assume that s,, has been constructed for
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all m < m. Using that « is a chain map and that (%,7;—1) holds, we see that
d};/L(OLm — (dNiQSm_ld + -4 dS77L_N+2dN72 + Sm_N+1dN71))
= (am_1 —do (AN 251 + -+ dsm_np2dV T + sp_ N1 dVTH)dX
= (sm-nd" ) =

But Homy R)(Di;L(X,;L), Y) =0, and it follows that there exists sz : X5 — Yian—1
such that d¥ sz = a — (d¥ 285 1d + - + s;_n1dV 1), as claimed. O

Similarly, one establishes the next lemma.

Lemma 5.3. Assume that X,Y € Cy(R) with either X bounded above or'Y bounded
above. If Homy  (gy(X,D}(Y%)) = 0 for all k, then Homy (g (X,Y) = 0.

Remark 5.4. Let R be right coherent and A a finitely presented left R-module. Then
Construction 5.1 provided a quasi-isomorphism D (4) = P with P a bounded-above
N-complex of finitely generated projective left R-modules for any n and ¢. We denote
the N-complex P by pl A.

Lemma 5.5. Let R be right coherent and A a finitely presented left R-module. Then
for any X € Kn(Z?) we have an isomorphism

HomICN(R) (pfmAv X) = H;(HOI’HR(A, X))v v n, t.
In particular, pt A is a compact object in K ().

Proof. By Lemma 5.3, Homy  (g)(F, X) = Homg , (g)(C, X) = 0, where F,C' are as
in Construction 5.1. Hence Homy () (ph A, X) = HomKN(R)(Dfl(A),X) for any n
and t. Note that Homy gy (DL (A), X) = H},(Homp(A, X)). This shows the desired
isomorphism. For the last claim, we use that H,(Homp(A, —)) commutes with set-
indexed coproducts. 1

The following result was proved by Jogensen when N = 2 (see [10, Theorem 2.4]).

Theorem 5.6. Let R be a right coherent ring for which every flat left R-module has
finite projective dimension. Then the category Kn () is compactly generated.

Proof. Each N-complex pf, A is a compact object in K () by Lemma 5.5. It remains
to show that ¢ = {p!, A|A € R-Mod is finitely presented} is a set of generators of
Kn(2). So suppose that X in Ky (Z) has Homy, (5)(G, X) = 0 for every G € 9.
We show that X 0 in Ky (2).

First 0 = Homy () (p%, R, X) = Hf, (Homp(R, X)) = H! (X) for all n and ¢. So X
is exact. Again by Lemma 5.5, for any finitely presented left R-module A,

0= HomKN(y)(szA7X) = HzL(HomR(AaX))a v n,t.

Hence [8, Theorem 6.4] implies that 0 — Z% (X) — X,, — Z) 7 /(X) — 0 is pure exact
and Z! (X) is flat for all n and t. Finally, note that pdzZ" " }(X) < s for some s by
assumption and the sequence 0 — CYN 1 X) = X, = = X, = ZV X)) =
0 is exact; it follows that CY~1(X) is projective, and so Z} (X) is projective for each
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N—t
n. Note that 0 — ZY % (X) = ZN4HL (X) ‘<, ZL(X) — 0 is exact, so Zt (X) is
projective for all n and ¢ by induction. Thus X is a projective N-complex by the dual

of [4, Theorem 4.5], and hence X =0 in Ky (2?), as desired. O

6. Recollements

Let £ be a class of left R-modules. We denote the full subcategory formed by
all exact N-complexes in Cn (Z) by K57 (.Z). In this section, We establish a recolle-
ment of the pretriangulated category Ky (R) relative to KLSF(R) and Dy (R) and an
equivalence K% () — D% (Rmod).

If (Z1,Q1,4A1) and (o, s, Ag) are left triangulated categories, then a functor
F: 9 — 9 is called left exact if there is a natural isomorphism £ : Qo F = FQq such

that for any left triangle 0,7 % X %Y % Z in .71, the diagram Qy(F(Z)) Flujtz

F(X) ) g (Y) ) g (Z) is a left triangle in 5. Similarly one defines right exact

functors between right triangulated categories. Let H : .77 — 7 be a functor between
pretriangulated categories. Then H is called exact if H is left and right exact.
Let 77,7 and 7" be pretriangulated categories. The diagram of exact functors

U y ‘7* y//

y/

is a recollement of .7 relative to .7’ and .7, if the following conditions are satisfied:
(R1) The functor i, is fully faithful and has a left adjoint i* and a right adjoint 4';
(R2) The functor j* has a fully faithful left adjoint j, and a fully faithful right
adjoint j,;
(R3) Imi, = Kerj*.

Theorem 6.1. Let R be a ring. We have the following recollement:

Sk

7 j!
/C?\?"(R) —inc—=> /CN(R) —can-> DN (R)
5 Jx

Moreover, the composition dg Py EN Kn(R) < DN (R) is an equivalence of right tri-
angulated categories, the composition dg%v L KN (R) < DN (R) is an equivalence of
left triangulated categories.

Proof. We first construct the functors involved. Let X be an N-complex. Then The-
orem 3.8 yields a quasi-isomorphism s: P = X with P ¢ dg@/N, and we have a
right triangle P 5 X — C, — P with C, € K$*(R). Suppose that ¢ : P’ 5 X with
P e dgﬁN. Then we have a commutative diagram:

PII$P

)

pt.x

such that P € dgﬁN and s’,t’ are quasi-isomorphisms. Thus we have the following
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morphism of right triangles in Ky (R):

P s X — > Cy —> TP
R
P—sX C, P.

Note that ¢’ is a homotopy equivalence; it follows that Cy & Cgp in K5F (R). Similarly,
we have C; = Cyy = Cyp in K§F(R). Hence C;, = Cy in KSF(R). On the other hand,
let 0 ~ f € Homg , (r)(X,Y). Then we have a morphism of right triangles in Cn (R):

P—SsX C, P
lg lf lh lzg
Q=Y Cy 2Q,

where P,Q € dgﬁN and s,t are quasi-isomorphisms. We obtain g ~ 0, and hence
h ~ 0. This implies that i* : Ly (R) — K57 (R) given by i*(X) = C is a functor. Let
E be an exact N-complex. Then we have an exact sequence

HOInK;N(R)(EP, E) — HOIH;CN(R)(CS,E) — HOHI;CN(R)(X, E) — HOIII;CN(R)(P,E) =
0.

But Homg () (3P, E) = Homg  (g) (P, QE) = 0; it follows that
HOHI}C?Vz(R)(’L'*(X), E) = HOHI;CN(R)(CS, E) = HOI’Il)CN(R) (X, E)

This shows that (i*,inc) is an adjoint pair.

Let X be an N-complex. Then Theorem 3.11 yields a quasi-isomorphism s : X = I
with I € dg.%y, and we have a left triangle QI — Fy, — X > I with F, € KSF(R).
By analogy with the preceding proof, we see that i' : Ky (R) — K¥(R) given by
i'(X) = Fy is a functor. Let E € &y. Then we have an exact sequence

HOHl;CN(R)<E,QI) — HOIH;CN(R)(E7FS) — HOHI)CN(R)(E,X) — HOIn;CN(R)(E,I).

Therefore, Homy , (r) (£, X) = Homyer (r) (£, (X)) and (inc,i') is an adjoint pair.
Let X be an N-complex. Then Theorem 3.8 yields a quasi-isomorphism s : P 5 X

with P € dg#. On the other hand, let 0 ~ f € Homp, (g)(X,Y’). Then we have a
commutative diagram in Ky (R):

5. X

Ll

Q '~

where P,(Q € dg@/N and s,t are quasi-isomorphisms. We obtain g ~ 0. This implies
that ji : Dn(R) — Kn(R) given by j1(X) = P is a functor. Let X, Y be N-complexes

and P = X,Q =Y with P,Q € dg#x. Then Lemma 3.3 implies that

Homyp () (X,Y) = Homp, (r)(P, Q) = Homy  (g)(1(X), n(Y)),
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which shows that j is fully faithful. Also, we have the isomorphisms
Homy  (r)(j1(X),Y) = Homy () (P,Y) = Homp  (r)(P,Y) = Homp , (r)(X,Y).

This implies that (4, can) is an adjoint pair.

Let X be an N-complex. Then Theorem 3.11 yields a quasi-isomorphism X = T
with I € ngv- By analogy with the preceding proof, we see that j.:Dy(R) —
Kn(R) given by j.(X) = I is a fully faithful functor and (can, j.) is an adjoint pair.
We have established the desired recollement.

By [3, Lemma 2.1, dgZy is a right triangulated subcategory of Ky (R). So the
inclusion j : dg@/N — Kn(R) is a right exact functor. This yields a functor Qj :

dgZ?Nn — Dn(R) that is distinct on objects, and this functor is fully faithful by
Lemma 3.3. Let X,Y be objects of Ky (R). Note that j; sends every object of Dy (R)

into an object of dg#n C Ky (R); it follows from Lemma 3.3 that

Homp gy (X, Q(Y)) = Homg  (r)(71(X),Y) = Homp  (r) (Qii(X), Q(Y)).

One checks that this map is just composition with the counit ex : @(X) — X, and
by a standard argument this implies that €x is an isomorphism. Therefore, Jj is an
equivalence. The argument for the second equivalence is identical. ]

Proposition 6.2. Let R be a left noetherian ring, and let Dﬂ’v(mod) denote the full
subcategory of objects X in Dy (R) such that H'(X) is finitely generated for all n,t
and H'(X) =0 for almost all n,t. Then the canonical functor Q : Kn(R) — Dy (R)
induces an equivalence

K$ (%) — D5 (mod).

Proof. Tt follows from Theorem 4.8 that Ky () is compactly generated by the set
4 = {i', A| A € R-Mod is finitely generated}. Let A € R-Mod be finitely generated.
Consider the split exact sequence

0 — DY }(4) — DY(A) — D! (A) — 0.

Then we have a left triangle QD! (A) — DY 7f(A) — DY (A) — DE(A) in Ky (R) by
[16, Theorem 2.22]. Also, Proposition 3.5 yields a commutative diagram in Ky (R)

OD;, (A) —= D5/ (4)

Qit A —= =iVl A
Since DY (A) is exact, QD! A — DY~} A is a quasi-isomorphism, and hence s is so. Let
X be an object in Ky(#). Then Homy () (Fs, Dj(Xy)) = 0 = Homy,, (g (Cs, Dy,

(Xy)) for all k. But F, and C, are bounded above, so Homg  (r)(Fs, X)=0=
Homy  (r)(Cs, X) by Lemma 5.3. Thus

HOHl;CN(]) (QZ;(A), X) = HOIH;CN(])(’L'QT:;A, X)
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Now let {Xx}aea be a family of objects in Ky (.#). Then

Homye () (Qif, (A), [] X») = Homp (o) (i3 A, [ X2)
AEA AEA

= H HOHI;CN(]) (ery:ttA, X,\)
AEA

= [ Homy, (o) (9L, (A), X»).
AEA

This implies that Qif,(A4) € K (#) for all n and ¢, and K4 (%) is a thick subcategory
of Ky () that is generated by the injective resolutions of the finitely generated left
R-modules. Also, Lemmas 3.2 and 3.3 and Proposition 3.4 imply that the canon-
ical functor Ky (.#) — Dy (R) is an equivalence, which restricts to an equivalence

Ky'(#) = DY (R) and identifies K (.#) with Db (mod). O
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