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Abstract
In this paper complexes with N -nilpotent differentials are

considered. We proceed by generalizing a defining property of
injective and projective resolutions to define dg-injective and
dg-projective N -complexes, and construct dg-injective and dg-
projective resolutions for arbitrary N -complexes. As applica-
tions of these results, we prove that the category DN (R) is
compactly generated, the category KN (I ) of injectives is com-
pactly generated whenever R is left noetherian, and the cate-
gory KN (P) of projectives is compactly generated whenever R
is a right coherent ring for which every flat left R-module has
finite projective dimension. We also establish a recollement of
the category KN (R) relative to Kex

N (R) and DN (R).

1. Introduction

Homological algebra mostly studies complexes having a differential d satisfying
d2 = 0. It is natural to ask why d2 = 0 and not, say, d3 = 0. The idea to investi-
gate complexes with a differential d such that dN = 0 where N � 3 was introduced
by Kapranov, [11] and there he hinted at their possible connections to quantum
theories. Since then many papers have appeared on the subject, many of them study-
ing their interesting homology (recently called “amplitude homology”), pointing to
their relevance in theoretical physics, and indicating some possible applications of
N -complexes for certain nonassociative algebras. In 2013 Gillespie [5] made a brief
study of contractible N -complexes. In 2015 Yang and Ding [16] provided an effective
construction of left and right triangles, and proved that the homotopy category and
the derived category of N -complexes are pretriangulated categories.

In classical homological algebra the most fundamental concept is that of a reso-
lution of an object. In the theory of derived categories an analogous role is played
by resolutions of complexes. Resolutions of bounded complexes can be handled in
much the same way as resolutions of objects, but the situation for unbounded com-
plexes is different. Here, we proceed by generalizing a defining property of injective
and projective resolutions to define dg-injective and dg-projective N -complexes, and
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construct dg-injective resolution of any bounded-above N -complex and dg-projective
resolution of any bounded-below N -complex. Furthermore, we prove that dg-injective
and dg-projective resolutions for arbitrary N -complexes by these special N -complexes
exist.

There have been some beautiful results, starting in 2005 with Krause [12] and
Jøgensen [10], and continuing with Iyengar and Krause [9] and Neeman [15] that
focus on the properties of the homotopy category K(X ) in the usual sense (N = 2).
The results of Krause and Jøgensen proved that for sufficiently nice rings, K(InjR)
and K(PrjR) are compactly generated and are infinite completions of Db(R)op and
Db(R), respectively. In this paper, we show that the category DN (R) is compactly
generated, the category KN (I ) of injectives is compactly generated whenever R is left
noetherian, and the category KN (P) of projectives is compactly generated whenever
R is a right coherent ring for which every flat left R-module has finite projective
dimension. We also establish a recollement of the pretriangulated category KN (R)
relative to Kex

N (R) and DN (R).

2. Preliminaries and basic facts

Unless otherwise stated, we assume throughout this paper that A is an abelian
category.

This section is devoted to recalling some notions and basic consequences for use
throughout this paper. For terminology we shall follow [1], [2] and [3] when working
with left, right, and pretriangulated categories, and we shall follow [5] and [16] when
working with N -complexes.

Left and right triangulated categories.

Let T be an additive category and Ω : T → T an additive endofunctor. Let

LT (T ,Ω) denote the category with objects the diagrams in T of the form ΩZ
μ
→

X
ν
→ Y

ω
→ Z and with set of morphisms from ΩZ1

μ1

→ X1
ν1→ Y1

ω1→ Z1 to ΩZ2
μ2

→ X2
ν2→

Y2
ω2→ Z2 the triples (f, g, h) of morphisms in T from (X1, Y1, Z1) to (X2, Y2, Z2),

which make the following diagram commutative:

ΩZ1

Ωh
��

μ1 �� X1

f
��

ν1 �� Y1

g

��

ω1 �� Z1

h
��

ΩZ2
μ2 �� X2

ν2 �� Y2
ω2 �� Z2.

Such a morphism is said to be an isomorphism if f, g, h are isomorphisms in T .

A left triangulation of the pair (T ,Ω) is a full subcategory Δ of LT (T ,Ω) that
satisfies the following axioms.

(LT1) Δ is closed under isomorphisms. For every object X in T , the diagram

0 → X
idX→ X → 0 belongs to Δ. For any morphism ω : Y → Z, there exists a diagram

in Δ of the form ΩZ
μ
→ X

ν
→ Y

ω
→ Z.

(LT2) For any diagram ΩZ
μ
→ X

ν
→ Y

ω
→ Z in Δ, the diagram ΩY

−Ωω
→ ΩZ

μ
→ X

ν
→

Y is also in Δ.
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(LT3) Given two diagrams ΩZ
μ
→ X

ν
→ Y

ω
→ Z and ΩZ ′

μ′

→ X ′ ν′

→ Y ′
ω′

→ Z ′ in Δ,
then each commutative diagram

ΩZ

Ωh
��

μ �� X
ν �� Y

g
��

ω �� Z

h
��

ΩZ ′
μ′

�� X ′ ν′

�� Y ′
ω′

�� Z ′

can be completed to a morphism of diagrams in Δ.

(LT4) For any two diagrams ΩZ
μ
→ X

ν
→ Y

ω
→ Z and ΩX ′ α′

→ Z ′
β′

→ Z
γ′

→ X ′ in Δ,
there exists a commutative diagram

ΩZ ′

μ(Ωβ′)
��

ΩZ

Ωγ′

��

μ �� X

ν′

��

ν �� Y
ω �� Z

γ′

��
ΩX ′ α �� Y ′

β ��

ω′

��

Y

ω

��

γ′ω �� X ′

ΩX ′ α′

�� Z ′
β′

�� Z
γ′

�� X ′,

where the middle row and the second column are diagrams in Δ.
Then the triple (T ,Ω,Δ) is called a left triangulated category, the functor, Ω is

the loop functor and the diagrams in Δ are the left triangles.
Dually, let T be an additive category and Σ : T → T an additive endofunctor.

A right triangulation of the pair (T ,Σ) is a full subcategory ∇ of RT (T ,Σ) that
satisfies the right analogs of axioms (LT1)–(LT4). Then the triple (T ,Σ,∇) is called a
right triangulated category, the functor Σ is the suspension functor, and the diagrams
in ∇ are the right triangles.

A nice introduction to the basic idea of a left or right triangulated category can
be found in [1] and [2].

Pretriangulated categories.

Let T be an additive category. A pre-triangulation of T consists of the following
data:

(PT1) An adjoint pair (Σ,Ω) of additive endofunctors Σ,Ω : T → T . Let ε :
ΣΩ → IdT be the counit, and let η : IdT → ΩΣ be the unit of the adjoint pair.

(PT2) A collection of diagrams Δ in T of the form ΩZ
μ
→ X

ν
→ Y

ω
→ Z, such that

the triple (T ,Ω,Δ) is a left triangulated category.

(PT3) A collection of diagrams ∇ in T of the form X ′ μ′

→ Y ′
ν′

→ Z ′
ω′

→ ΣX ′, such
that the triple (T ,Σ,∇) is a right triangulated category.

(PT4) For any diagram in T with commutative left square:

X ′

f
��

μ′

�� Y ′

g
��

ν′

�� Z ′

∃h
��

ω′

�� ΣX ′

εZ◦Σf
��

ΩZ
μ �� X

ν �� Y
ω �� Z,
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where the upper row is in ∇ and the lower row is in Δ, there exists a morphism
h : Z ′ → Y making the diagram commutative.

(PT5) For any diagram in T with commutative right square:

X ′

Ωf◦ηX′

��

μ′

�� Y ′

∃h
��

ν′

�� Z ′

g
��

ω′

�� ΣX ′

f
��

ΩZ
μ �� X

ν �� Y
ω �� Z,

where the upper row is in ∇ and the lower row is in Δ, there exists a morphism
h : Y ′ → X making the diagram commutative.

A pretriangulated category is an additive category together with a pre-triangulation
and is denoted by T = (T ,Σ,Ω,∇,Δ, ε, η). A nice introduction to the basic idea of
a pretriangulated category can be found in [3].

Let T be a left (resp. right) triangulated category. A full additive subcategory S

in T is called a left (resp. right) triangulated subcategory if it is replete, if ΩS ⊆ S

(resp. ΣS ⊆ S ), if for any left triangle ΩZ → X → Y → Z (resp. right triangle
X ′ → Y ′ → Z ′ → ΣX ′) such that Y, Z are in S , the object X is also in S (resp. such
thatX ′, Y ′ are in S , the object Z ′ is also in S ). Let T be a pretriangulated category.
A full additive subcategory S in T is called a pretriangulated subcategory if S is a
left and right triangulated subcategory. A thick subcategory S of a pretriangulated
category T is a full pretriangulated subcategory of T such that S is closed under
isomorphism classes and taking direct summands.

N-complexes.

By an N -complex X (N � 2) we mean a sequence of objects in A

· · ·
d

−→ Xn+1
d

−→ Xn
d

−→ Xn−1
d

−→ · · ·

satisfying dN = 0. That is, composing any N -consecutive morphisms gives 0. So a 2-
complex is a chain complex in the usual sense. A chain map or simply map f : X → Y
of N -complexes is a collection of morphisms fn : Xn → Yn making all the rectangles
commute. We get a category of N -complexes, denoted by CN (A ), whose objects are
N -complexes and whose morphisms are chain maps. This is an abelian category.

For an N -complex X, there are N − 1 choices for homology. Indeed, for t =
1, · · · , N , we define Zt

n(X) = Ker(dn−(t−1) · · · dn−1dn) and Bt
n(X) = Im(dn+1dn+2 · · ·

dn+t). In particular, we have Z1
n(X) = Kerdn,Z

N
n (X) = Xn, and B1

n(X) = Imdn+1,
BN

n (X) = 0. We also set Ct
n(X) = Xn/B

t
n(X), and define Ht

n(X) = Zt
n(X)/BN−t

n (X)
the amplitude homology objects of X for all t. We say X is N -exact, or just exact, if
Ht

n(X) = 0 for all n and t. The class of exact N -complexes is denoted by EN .

Example 2.1. (1) Let R be a ring, A∞∞ ≡ · · · → v−1 → v0 → v1 → · · · the infinite
quiver, and IN the ideal of RA∞∞ generated by all paths of length at least N (N � 2).
The category of RA∞∞/IN -modules is equivalent to the category of N -complexes of
modules (see [4]).

(2) Let R be a ring and N � 2 an fixed integer. The category of graded modules
over the graded ring R[x]/(xN ) is isomorphic to the category of N -complexes (see
[6]).
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(3) Let (X, d) be an N -complex in A . Define

i∗ : H
t
n(X) → Ht+1

n (X) via x+ ImdN−t �→ x+ ImdN−t−1,

d∗ : H
t
n(X) → Ht−1

n−1(X) via x+ ImdN−t �→ d(x) + ImdN−t+1.

Moreover, define Hm(X) =
⊕

2n−t=m Ht
n(X) and define morphisms D : Hm(X) →

Hm−1(X) by D = i∗ + d∗ (with the convention that i∗ and d∗ are set to be zero
when not defined). Then (H(X), D) is an (N − 1)-complex (see [11]).

In general, the differential induces the following poset of non-trivial subobjects
where the arrows denote inclusion:

0

��

�� BN−1
n (X)

��

�� BN−2
n (X)

��

�� · · · ��

��

B2
n(X)

��

�� B1
n(X)

��

�� 0

��
0 �� Z1

n(X) �� Z2
n(X) �� · · · �� ZN−2

n (X) �� ZN−1
n (X) �� 0.

(2.1)

The differential d adds a dimension to diagram (2.1) by inducing the vertical mor-
phisms in

0 �� BN−1
n (X)

d

��

�� BN−2
n (X)

d
��

�� · · · ��

d

��

B1
n(X)

d
��

�� 0

0
��

0 �� BN−1
n−1 (X) �� · · · �� B2

n−1(X) �� B1
n−1(X) �� 0,

(2.2)

where the rows are coming from the top row of (2.1). The same thing can be done
for the bottom row of (2.1):

0 �� Z1
n(X)

d

��

�� Z2
n(X)

d
��

�� · · · ��

d

��

ZN−1
n (X)

d
��

�� 0

0
��

0 �� Z1
n−1(X) �� · · · �� ZN−2

n−1 (X) �� ZN−1
n−1 (X) �� 0.

(2.3)

Diagrams (2.2) and (2.3) both commute.
Given an object A of A , we define N -complexes Dt

n(A) for t = 1, · · · , N as fol-
lows. Dt

n(A) consists of A in degrees n, n− 1, · · · , n− (t− 1), all joined by identity
morphisms, and 0 in every other degree. We will call it the disk on A of degree
n. Let {Mn |n ∈ Z} be objects in A . Then (

∐
n∈Z D

N
n (Mn))k = (

∏
n∈Z D

N
n (Mn))k =

Mk+N−1 ⊕ · · · ⊕Mk for all k. Therefore,∐
n∈Z D

N
n (Mn) =

∏
n∈Z D

N
n (Mn).

Two chain maps f, g : X → Y are called chain homotopic, or simply homotopic, if
there exists a collection of morphisms {sn : Xn → Yn+N−1} such that

gn − fn = dN−1sn + dN−2sn−1d+ · · ·+ sn−(N−1)d
N−1 =∑N−1

i=0 d(N−1)−isn−id
i, ∀ n.

If f and g are homotopic, then we write f ∼ g. We call a chain map f null homotopic
if f ∼ 0. There exists an additive category KN (A ), called the homotopy category of
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N -complexes, whose objects are the same as those of CN (A ) and whose Hom sets
are the ∼ equivalence classes of Hom sets in CN (A ). An isomorphism in KN (A ) is
called a homotopy equivalence.

Left and right triangles in KN (A ).
LetX be anN -complex in CN (A ). Define (ΩX)n = Xn+N−1 ⊕ · · · ⊕Xn+2 ⊕Xn+1

with differential given by

d =

⎛
⎝ 0 1 0 ··· 0 0

...
...

...
...

...
...

0 0 0 ··· 0 1

−dN−1
−dN−2

−dN−3
··· −d2

−d

⎞
⎠.

Then ΩX is anN -complex that is called the loop onX. For any ω ∈ HomCN (A )(X,Y ),
define (Fω)n = (ΩY )n ⊕Xn with differential given by

d =

⎛
⎜⎝

0 1 0 ··· 0 0
...

...
...

...
...

...
0 0 0 ··· 1 0

−dN−1
−dN−2

−dN−3
··· −d ω

0 0 0 ··· 0 d

⎞
⎟⎠.

Then Fω is anN -complex. We also have the following commutative diagram in CN (A )
with degreewise split exact rows:

0 �� ΩY
μ �� Fω

ϕ
��

ν �� X

ω

��

�� 0

0 �� ΩY
i ��

∏
n∈Z D

N
n (Yn)

p �� Y �� 0,

where p = (dN−1, dN−2, · · · , d, 1), ν = (0, · · · , 0, 1), and

i =

⎛
⎝ 1 0 ··· 0

...
...

...
...

0 0 ··· 1

−dN−1
−dN−2

··· −d

⎞
⎠ , μ =

⎛
⎝ 1 ··· 0

...
...
...

0 ··· 1
0 ··· 0

⎞
⎠ , ϕ =

⎛
⎝ 1 0 ··· 0 0

...
...

...
...

...
0 0 ··· 1 0

−dN−1
−dN−2

··· −d ω

⎞
⎠ .

Define (ΣX)n = Xn−1 ⊕Xn−2 ⊕ · · · ⊕Xn−(N−1) with differential given by

d =

⎛
⎜⎝

−d 1 0 ··· 0 0
...

...
...
...
...
...

−dN−2 0 0 ··· 0 1

−dN−1 0 0 ··· 0 0

⎞
⎟⎠.

Then ΣX is an N -complex that is called the suspension on X. For any μ ∈ HomCN (A )

(X,Y ), define (Cμ)n = Yn ⊕ (ΣX)n with differential given by

d =

⎛
⎜⎜⎝

d μ 0 ··· 0 0

0 −d 1 ··· 0 0
...

...
...
...
...
...

0 −dN−2 0 ··· 0 1

0 −dN−1 0 ··· 0 0

⎞
⎟⎟⎠.

Then Cμ is anN -complex. We also have the following commutative diagram in CN (A )
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with degreewise split exact rows:

0 �� X

μ

��

i′ ��
∐

n∈Z D
N
n+N−1(Xn)

ϕ

��

p′

�� ΣX �� 0

0 �� Y
ν �� Cμ

ω �� ΣX �� 0,

where

i′ =

⎛
⎝ 1

d
...

dN−1

⎞
⎠ , p′ =

⎛
⎜⎝

−d 1 0 ··· 0 0

−d2 0 1 ··· 0 0
...

...
...
...
...
...

−dN−1 0 0 ··· 0 1

⎞
⎟⎠ ,

ν =

⎛
⎝ 1

0
...
0

⎞
⎠ , ω =

( 0 1 ··· 0
...
...
...
...

0 0 ··· 1

)
, ϕ =

⎛
⎝

μ 0 0 ··· 0

−d 1 0 ··· 0
...

...
...
...
...

−dN−1 0 0 ··· 1

⎞
⎠ .

We say a diagram in KN (A ) is a left triangle if it is isomorphic to a diagram

ΩZ
μ

−→ Fω
ν

−→ Y
ω

−→ Z

arising from a chain map ω : Y → Z, where μ and ν are the canonical chain maps.
We say a diagram in KN (A ) is a right triangle if it is isomorphic a diagram

X
μ′

−→ Y
ν′

−→ Cμ′

ω′

−→ ΣX

arising from a chain map μ′ : X → Y , where ν′ and ω′ are the canonical chain maps.
If N = 2, then ΩΣX = X and ΣΩX = X for any 2-complex X, i.e., Ω = Σ−1 and

Σ = Ω−1. Moreover, the notion of left (or right) triangles coincides with the usual
notion of distinguished triangles [13, p.11]. Murfet [13] proved that the additive cate-
gory K2(A ) together with the additive automorphism Σ and the class of distinguished
triangles defined above is a triangulated category (see [13, Theorem 12]). But for the
case of N � 3 there is no further information. However, Yang and Ding [16] proved
the following result.

Theorem 2.2. ([16, Theorem 2.20]) The category KN (A ) together with the endo-
functors Ω,Σ and the classes of left and right triangles defined above is a pretriangu-
lated category.

Proposition 2.3. Let τ ∈ HomCN (A )(X,Z) and let ν : Fτ → X, ν′ : Z → Cτ be the
canonical chain maps. Then:

(1) A chain map of N -complexes f : C → X factors through ν if and only if τf ∼ 0.
(2) A chain map of N -complexes g : Z → C factors through ν′ if and only if gτ ∼ 0.

Proof. We just prove (1) since (2) is proved dually.
Suppose τf ∼ 0. Then we have a commutative diagram of left triangles in KN (A ):

0 ��

��

C

��

C

f
��

�� 0

��
ΩZ �� Fτ

ν �� X
τ �� Z.

Therefore, (LT3) implies that f factors through ν.



298 XIAOYAN YANG and JUNPENG WANG

Suppose that f : C → X factors through ν. Then we have the following commuta-
tive diagram of left triangles in KN (A ):

ΩC

Ωf
��

�� 0

��

�� C

g

��

C

f
��

ΩX
−Ωτ �� ΩZ �� Fτ

ν �� X.

Therefore, (LT3) implies that Ω(τf) ∼ 0, and so τf ∼ 0 by [16, Corollary 2.16].

Corollary 2.4. Let f, g : X → Z be chain maps of N -complexes. Then f ∼ g if and
only if f − g factors through the canonical chain map FidZ

→ Z if and only if f −
g factors through the canonical chain map X → CidX

. In particular, we have the
following exact sequences:

HomCN (A )(X,FidZ
) → HomCN (A )(X,Z) → HomKN (A )(X,Z) → 0,

HomCN (A )(CidX
, Z) → HomCN (A )(X,Z) → HomKN (A )(X,Z) → 0.

Quasi-isomorphisms.

A chain map f : X → Y induces homomorphisms Ht
n(f) : H

t
n(X) → Ht

n(Y ) for all
n and t. We say that f is a quasi-isomorphism if each Ht

n(f) is an isomorphism.
Quasi-isomorphisms are marked by placing the sign � next to their arrow.

Lemma 2.5. ([16, Lemma 4.1]) The class EN of exact N -complexes forms a thick
subcategory of KN (A ). The corresponding class of morphisms

MorEN
= {τ : X → Z |∃ a left triangle ΩZ → E → X

τ
→ Z with E ∈ EN}

= {τ : X → Z |∃ a right triangle X
τ
→ Z → E′ → ΣX with E′ ∈ EN}

is the class of all quasi-isomorphisms in KN (A ).

The pretriangulated category DN (A ).
By [16, Lemma 4.3], S = MorEN

is a saturated multiplicative system in KN (A ).
Then one can define the quotient category S−1KN (A ) = KN (A )/EN of KN (A ) by
[7, §8]. The derived category DN (A ) of CN (A ) is the quotient category KN (A )/EN .
Then there exists a canonical functor

Q : KN (A ) −→ DN (A ).

Let γ : X → Y be a morphism in DN (A ). By [7, §8], we can write γ = Q(s)−1Q(f)
or γ = Q(g)Q(t)−1 for some chain maps fitting into the diagrams of the forms

X

f ���
��

��
Y

s

�

����
��
�

W,

X Y

W ′.
t

�
�������

g

�������

We say a diagram in DN (A ) is a left triangle if it is isomorphic to a diagram

ΩZ
Q(μ)
−→ X

Q(ν)
−→ Y

Q(ω)
−→ Z,
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where ΩZ
μ
→ X

ν
→ Y

ω
→ Z is a left triangle in KN (A ). We say a diagram in DN (A )

is a right triangle if it is isomorphic to a diagram

X ′
Q(μ′)
−→ Y ′

Q(ν′)
−→ Z ′

Q(ω′)
−→ ΣX ′,

where X ′ μ′

→ Y ′
ν′

→ Z ′
ω′

→ ΣX ′ is a right triangle in KN (A ). Then the category D2(A )
is a portly triangulated category (do not require the distinguished triangles to form
a class) by [7, Proposition 9.8], and the category DN (A ) is a portly pretriangulated
category whenever N � 3 by [16, Theorem 4.15].

3. Homotopy resolutions of N-complexes

The main aim of this section is to investigate the existence of dg-projective and
dg-injective resolutions for arbitrary N -complexes.

Definition 3.1. Assume that A has enough projectives and let P be the class of
projectives. An N -complex P is called dg-projective if Pn ∈ P for all n, and every
f : P → E is null homotopic whenever E ∈ EN . We denote the class of dg-projective

N -complexes by dgP̃N . Assume that A has enough injectives and let I be the class
of injectives. An N -complex I is called dg-injective if In ∈ I for all n, and every
f : E → I is null homotopic whenever E ∈ EN . We denote the class of dg-injective

N -complexes by dgĨN .

Lemma 3.2. ([16, Lemma 5.5]) (1) Assume A has enough projectives and let P

be the class of projectives. Then every bounded-below N -complex of projectives is dg-
projective.

(2) Assume A has enough injectives and let I be the class of injectives. Then
every bounded-above N -complex of injectives is dg-injective.

Lemma 3.3. ([16, Lemma 5.2]) Let X,Y be two N -complexes with either X a dg-
projective N -complex or Y a dg-injective N -complex. Then we have an isomorphism

HomKN (A )(X,Y ) ∼= HomDN (A )(X,Y ).

The first task is to construct dg-projective resolution of any bounded-below N -
complex and dg-injective resolution of any bounded-above N -complex.

Proposition 3.4. Suppose A has enough projectives and let P be the class of pro-
jectives.

(1) Every bounded-below N -complex X admits a quasi-isomorphism P
�
→ X with

P a bounded-below N -complex in P.

(2) If f : X → Y is a chain map of bounded-below N -complexes, u : P → X a
quasi-isomorphism with P a bounded-below N -complex in P, then there is a unique,
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up to homotopy, chain map g such that the following diagram in KN (A ) commutes:

P

u

��

g �� Q

v

��
X

f �� Y,

where v : Q → Y is a quasi-isomorphism and Q a bounded-below N -complex in P.
In particular, if f = idX , then g is a homotopy equivalence.

Proof. (1) LetX be a bounded-below N -complex—say,Xi = 0 for all i < n. For i < n
we define Pi = 0. Choose any epimorphism Pn → Xn with Pn ∈ P. Suppose that for
some k > n we have constructed an object Pk−1 ∈ P and morphisms dPk−1 : Pk−1 →
Pk−2 and Pk−1 → Xk−1. Consider the pullback diagram

Uk

��

�� ZN−1
k−1 (P )

��
Xk

dX
k �� Xk−1

(3.1)

and choose an epimorphism Pk → Uk with Pk ∈ P. Define morphisms dPk : Pk →
Pk−1 and Pk → Xk in the obvious way. Consider the pullback diagram

Uk+1

��

�� ZN−2
k−1 (P )

��
Xk+1

d2

�� Xk−1

(3.2)

and choose an epimorphism Pk+1 → Uk+1 with Pk+1 ∈ P. Define morphisms Pk+1 →
Pk−1 and Pk+1 → Xk+1 in the obvious way. Applying the property of pullback for
diagram (3.1), we get a commutative diagram:

Pk+1

��

��

��

Uk+1

��

�� ZN−2
k−1 (P )

��

Uk+1

��

Uk

��

�� ZN−1
k−1 (P )

��
Xk+1

�� Xk
�� Xk−1,

and hence there exists dPk+1 : Pk+1 → Pk. Continuing this process, consider the pull-
back diagram

Uk+N−3

��

�� Z2
k−1(P )

��
Xk+N−3

dN−2

�� Xk−1

(3.3)

and choose an epimorphism Pk+N−3 → Uk+N−3 with Pk+N−3 ∈ P. Define mor-
phisms Pk+N−3 → Pk−1 and Pk+N−3 → Xk+N−3 in the obvious way. Consider the
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pullback diagram

Uk+N−2

��

�� Z1
k−1(P )

��
Xk+N−2

dN−1

�� Xk−1

(3.4)

and choose an epimorphism Pk+N−2 → Uk+N−2 with Pk+N−2 ∈ P. Define mor-
phisms Pk+N−2 → Pk−1 and Pk+N−2 → Xk+N−2 in the obvious way. Applying the
property of pullback for diagram (3.3), we obtain a commutative diagram:

Pk+N−2

��

��

		

Uk+N−2

��

�� Z1
k−1(P )

��

Uk+N−2

��

Uk+N−3

��

�� Z2
k−1(P )

��
Xk+N−2

�� Xk+N−3
�� Xk−1,

and so there exists dPk+N−2 : Pk+N−2 → Pk+N−3. Repeating this process, we get an
N -complex P : · · · → Pn+1 → Pn → 0 → · · · together with a chain map P → X. It
remains to show that P → X is a quasi-isomorphism. For t = 1, · · · , N − 1, the above
pullback diagrams give rise to a pullback diagram:

BN−t
k−1 (P )

��

�� Zt
k−1(P )

��
BN−t

k−1 (X) �� Zt
k−1(X),

where the horizontal morphisms are monomorphisms. It follows from [13, Lemma 68]
that the vertical morphism on the right is an epimorphism. Thus, [14, Lemma 35]

implies that Ht
k−1(P ) ∼= Ht

k−1(X), and hence P
�
→ X.

(2) Let u : P
�
→ X and v : Q

�
→ Y with P,Q bounded-below N -complexes in P.

We complete v to a left triangle ΩY → Fv → Q
v
→ Y and a right triangle Q

v
→ Y →

Cv → ΣQ. Applying the functor HomKN (A )(P,−) for the above diagrams, we get
exact sequences

HomKN (A )(P, Fv) → HomKN (A )(P,Q) → HomKN (A )(P, Y ),

HomKN (A )(P,Q) → HomKN (A )(P, Y ) → HomKN (A )(P,Cv).

Note that Cv, Fv are exact and P is bounded below; it follows from Lemma 3.2 that
0 = HomKN (A )(P, Fv) = HomKN (A )(P,Cv). This implies that

HomKN (A )(P,Q) ∼= HomKN (A )(P, Y ),

and hence there is a unique, up to homotopy, chain map g : P → Q such that vg ∼ fu.
The second statement follows from Lemma 3.3.

The dual result is given by the following.
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Proposition 3.5. Suppose A has enough injectives and let I be the class of injec-
tives.

(1) Every bounded-above N -complex X admits a quasi-isomorphism X
�
→ I with I

a bounded-above N -complex in I .

(2) If f : Y → X is a chain map of bounded-above N -complexes, u : X → I a quasi-
isomorphism with I a bounded-above N -complex in I , then there is a unique, up to
homotopy, chain map g such that the following diagram in KN (A ) commutes:

Y

v
��

f �� X

u
��

J
g �� I,

where v : Y → J is a quasi-isomorphism and J a bounded-above N -complex in I . In
particular, if f = idX , then g is a homotopy equivalence.

We now investigate the existence of dg-projective resolution and dg-injective res-
olution for arbitrary N -complexes.

Let X be an N -complex and n ∈ Z. We define X⊃n to be the N -complex

X⊃n : · · · −→ Xn+2
d

−→ Xn+1
d

−→ ZN−1
n (X) −→ 0.

There exists an obvious monomorphism of N -complexes u : X⊃n � X. As subobjects
of X, it is clear that X⊃n � X⊃n−1. In fact, the inclusions {X⊃n � X}n�0 are a
direct limit in CN (A ). That is, X = lim−→n�0X⊃n. We also define X⊂n to be the N -
complex

X⊂n : 0 −→ CN−1
n (X)

d̄
−→ Xn−1

d
−→ Xn−2

d
−→ · · · ,

where the differential d̄ is the induced morphism on residue classes. There is an
obvious epimorphism of N -complexes X � X⊂n. As quotients of X, it is clear that
X⊂n � X⊂n−1. In fact, the quotients {X � X⊂n}n�0 are an inverse limit in CN (A ).
That is, X = lim←−n�0X⊂n.

Remark 3.6. The set N = {0, 1, 2, · · · } is a directed set in the canonical way (with
minimum 0). Let A be a cocomplete abelian category, and suppose we are given a
direct system {Gn, unm}n∈N over this directed set. This is just a sequence of objects
and morphisms in A (writing un for un(n+1))

G0 u0

−→ G1 u1

−→ G2 u2

−→ G3 −→ · · · .

Let v :
∐

n∈N Gn →
∐

n∈N Gn be the morphism induced out of the first coproduct by
the morphisms un : Gn → Gn+1. That is, vιn = ιn+1un where ιn is the injection of
Gn into the coproduct. Given a cokernel

∐
n∈N Gn → C of the morphism 1− v it is

clear that the composites Gn →
∐

n∈N Gn → C are a direct limit for direct system
{Gn, unm}n∈N.
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Definition 3.7. Let A be a cocomplete abelian category, and suppose we have the
following sequence of chain maps of N -complexes

G0 u0

−→ G1 u1

−→ G2 u2

−→ G3 −→ · · · .

Then CN (A ) is a cocomplete abelian category, so as in Remark 3.6 we can define a
chain map v :

∐
n∈N Gn →

∐
n∈N Gn. The homotopy direct limit of the above sequence

is the suspension C1−v on
∐

n∈N Gn, and we denote the object C1−v by holim−−−→Gn.

This means that there exists a right triangle in KN (A ):∐
n∈N Gn 1−v

−→
∐

n∈N Gn −→ holim−−−→Gn −→ Σ(
∐

n∈N Gn).

Given a morphism of direct systems of N -complexes,

G0

ϕ0

��

�� G1

ϕ1

��

�� G2

ϕ2

��

�� G3

ϕ3

��

�� · · ·

H0 �� H1 �� H2 �� H3 �� · · · ,

(RT3) gives a chain map holim−−−→ϕn making the diagram

∐
n∈N Gn

�ϕn

��

1−v ��
∐

n∈N Gn

�ϕn

��

ν �� holim−−−→Gn

holim
−−−→

ϕn

��

ω �� Σ(
∐

n∈N Gn)

Σ(�ϕn)

��∐
n∈N Hn 1−v ��

∐
n∈N Hn ν �� holim−−−→Hn ω �� Σ(

∐
n∈N Hn)

in KN (A ) commutative, where ν and ω are the canonical chain maps.

Theorem 3.8. Suppose A is a Grothendieck category with enough projectives, and let
P be the class of projectives. Then every N -complex X admits a quasi-isomorphism

P
�
→ X with P a dg-projective N -complex.

Proof. Let X be any N -complex. Since the N -complex X⊃n is bounded below for
n � 0, we can find a bounded-below N -complex Pn in P and a quasi-isomorphism

θn : Pn �
→ X⊃n by Proposition 3.4(1). Using Proposition 3.4(2) at each stage, we

can choose these resolutions in such a way that we have the following commutative
diagram of N -complexes:

P 0

θ0

��

�� P−1

θ−1

��

�� P−2

θ−2

��

�� P−3

θ−3

��

�� · · ·

X⊃0
�� X⊃−1

�� X⊃−2
�� X⊃−3

�� · · · .

Thus there is an induced morphism of right triangles in KN (A ):

∐
n�0 P

n

�θn

��

1−v ��
∐

n�0 P
n

�θn

��

�� holim−−−→n�0P
n

holim
−−−→

θn

��

�� Σ(
∐

n�0 P
n)

Σ(�ϕn)

��∐
n�0 X⊃n

1−v ��
∐

n�0 X⊃n
�� holim−−−→n�0X⊃n

�� Σ(
∐

n�0 X⊃n).
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Applying canonical functor Q to the above diagram, we can obtain a morphism of
right triangles in DN (A ). But Q(�θn) is an isomorphism; it follows that Q(holim−−−→θn)

is an isomorphism. Thus [16, Lemma 4.3] and [7, Corollary 8.9] imply that holim−−−→θn

is a quasi-isomorphism. On the other hand, 1− v is a monomorphism by assump-
tion and [13, Lemma 63]. Therefore, [16, Theorem 4.16] and (RT3) give a quasi-
isomorphism holim−−−→n�0X⊃n → lim−→n�0X⊃n = X. Composing with holim−−−→θn yields a
quasi-isomorphism holim−−−→n�0P

n = P → X. Note that

HomKN (A )(Σ(
∐

n�0 P
n), E) → HomKN (A )(holim−−−→n�0P

n, E) →

HomKN (A )(
∐

n�0 P
n, E)

is exact and
∐

n�0 P
n is dg-projective; it follows from [16, Lemma 2.17] that

HomKN (A )(Σ(
∐

n�0 P
n), E) ∼= HomKN (A )(

∐
n�0 P

n,ΩE) = 0, ∀ E ∈ EN .

This implies that P is a dg-projective N -complex.

Remark 3.9. The set Nop = {0, 1, 2, · · · } is an inverse directed set in the canonical
way (with maximum 0). Let A be a complete abelian category, and suppose we are
given an inverse system {Gn, unm}n∈N over this inverse directed set. This is just a
sequence of objects and morphisms in A (writing un for un(n−1))

· · · −→ G3 μ3

−→ G2 μ2

−→ G1 μ1

−→ G0.

Let v :
∏

n∈N Gn →
∏

n∈N Gn be the morphism induced into the second product by
the morphisms un+1 : Gn+1 → Gn. That is, πnv = un+1πn+1 where πn is the projec-
tion onto of Gn out of the product. Given a kernel K →

∏
n∈N Gn of the morphism

1− v it is clear that the composites K →
∏

n∈N Gn → Gn are an inverse limit for
inverse system {Gn, unm}n∈N.

Definition 3.10. Let A be a complete abelian category, and suppose we have the
following sequence of chain maps of N -complexes

· · · −→ G3 u3

−→ G2 u2

−→ G1 u1

−→ G0.

Then CN (A ) is a complete abelian category, so as in Remark 3.9 we can define a chain
map v :

∏
n∈N Gn →

∏
n∈N Gn. The homotopy inverse limit of the above sequence is

the loop F1−v on
∏

n∈N Gn, and we denote the object F1−v by holim←−−−Gn. This means

that there exists a left triangle in KN (A ):

Ω(
∏

n∈N Gn) −→ holim←−−−Gn −→
∏

n∈N Gn 1−ν
−→

∏
n∈N Gn.

Given a morphism of inverse systems of N -complexes:

· · · �� G3

ψ3

��

�� G2

ψ2

��

�� G1

ψ1

��

�� G0

ψ0

��
· · · �� H3 �� H2 �� H1 �� H0,
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(LT3) gives a chain map holim←−−−ψn making the diagram

Ω(
∏

n∈N Gn)

Ω(Πψn)

��

μ �� holim←−−−Gn

holim
←−−−

ψn

��

ν ��
∏

n∈N Gn

Πψn

��

1−v ��
∏

n∈N Gn

Πψn

��
Ω(

∏
n∈N Hn)

μ �� holim←−−−Hn ν ��
∏

n∈N Hn 1−v ��
∏

n∈N Hn

in KN (A ) commutative, where μ and ν are the canonical chain maps.

Theorem 3.11. Suppose A is a Grothendieck category with enough projectives, and
let I be the class of injectives. Then every N -complex X admits a quasi-isomorphism

X
�
→ I with I a dg-injective N -complex.

Proof. The proof is dual to that of Theorem 3.8.

4. The homotopy categories DN(R) and KN(I )

In this section, A is the category of left R-modules and I the class of injectives.
We denote the homotopy category of N -complexes in I by KN (I ). We show that
the category DN (R) is compactly generated, and the category KN (I ) is compactly
generated when R is left noetherian.

Definition 4.1. Let T be a pretriangulated category closed under set-indexed
coproducts. An object C ∈ T is compact if the natural map∐

λ∈Λ HomT (C,Xλ) −→ HomT (C,
∐

λ∈Λ Xλ)

is an isomorphism for any family {Xλ}λ∈Λ of objects in T . We denote by T c the
full subcategory of T that is formed by all compact objects. Clearly, T c is right
triangulated. A set of objects G ⊆ T is called a generating set if the implication

HomT (G,X) = 0 for all G ∈ G =⇒ X = 0

holds for all objects X ∈ T . If T has a generating set consisting of compact objects,
then T is called compactly generated.

Lemma 4.2. For a morphism u : X → Y in KN (R), Q(u) = 0 in DN (R) if and only
if u factors through an exact N -complex.

Proof. “Only if” part. By [7, Proposition 8.19] there is a quasi-isomorphism s : Z →
X such that us = 0. Hence (RT3) yields a morphism of right triangles:

Z

0
��

s �� X

u
��

�� Cs

��

�� ΣZ

��
0 �� Y Y �� 0.

Note that Cs is exact by [16, Corollary 3.3], so the proof is complete.
“If” part. Assume u factors through Z ∈ EN . Then Q(u) factors through Q(Z) = 0,

which implies that Q(u) = 0 in DN (R).
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Lemma 4.3. The canonical functor Q : KN (R) → DN (R) preserves direct sums. In
particular, DN (R) has arbitrary direct sums, which are direct sums of N -complexes.

Proof. Let {Xλ}λ∈Λ be a family of objects in CN (R), and let Y be an object in
CN (R). By Corollary 2.4 we have a commutative diagram with exact rows:

HomCN (R)(
∐

λ∈ΛXλ, FidY
)

∼=
��

��HomCN (R)(
∐

λ∈ΛXλ, FY )

∼=
��

��HomKN (R)(
∐

λ∈ΛXλ, Y )

��

��0

∏
λ∈ΛHomCN (R)(Xλ, FidY

) ��
∏

λ∈ΛHomCN (R)(Xλ, Y ) ��
∏

λ∈ΛHomKN (R)(Xλ, Y ) ��0.

Thus the canonical homomorphism HomKN (R)(
∐

λ∈Λ Xλ, Y ) →
∏

λ∈Λ HomKN (R)

(Xλ, Y ) is an isomorphism. This implies that arbitrary direct sums exist in KN (R).

Let {Xλ}λ∈Λ be a family of objects in KN (R). For each μ ∈ Λ, we denote by
ιμ : Xμ →

∐
λ∈Λ Xλ the injection. We claim that the canonical homomorphism

ξY : HomDN (R)(
∐

λ∈Λ Xλ, Y ) →
∏

λ∈Λ HomDN (R)(Xλ, Y ), γ �→ (γQ(ιμ))

is an isomorphism for any object Y in DN (R).

Claim 1: ξY is an epimorphism.

Proof. Let (γλ)λ∈Λ ∈
∏

λ∈Λ HomDN (R)(Xλ, Y ). For each μ ∈ Λ, let γμ =
Q(fμ)Q(sμ)

−1 with sμ : Wμ → Xμ a quasi-isomorphism and embed sμ in a right trian-

gle Wμ

sμ
→ Xμ → Cμ → ΣWμ in KN (R). We show that

∐
λ∈Λ Wλ

∐
λ∈Λ

sλ
→

∐
λ∈Λ Xλ →∐

λ∈Λ Cλ → Σ
∐

λ∈Λ Wλ is a right triangle in KN (R). Note first that there exists a

natural isomorphism Σ
∐

λ∈Λ Wλ

∼=
→

∐
λ∈Λ ΣWλ. By (RT1) we have a right triangle∐

λ∈Λ Wλ

∐
λ∈Λ

sλ
→

∐
λ∈Λ Xλ → C → Σ

∐
λ∈Λ Wλ in KN (R). Then for each μ ∈ Λ, we

have a morphism of right triangles:

Wμ

ρμ

��

sμ �� Xμ

ιμ

��

�� Cμ

hμ

��

�� ΣWμ

Σρμ

��∐
λ∈Λ Wλ

∐
λ∈Λ

sλ
��
∐

λ∈Λ Xλ
�� C ��

∐
λ∈Λ ΣWλ,

where ρμ : Wμ →
∐

λ∈Λ Wλ is the injective. Thus we get a commutative diagram:

∐
λ∈Λ Wλ

∐
λ∈Λ

sλ
��
∐

λ∈Λ Xλ
��
∐

λ∈Λ Cλ

h

��

��
∐

λ∈Λ ΣWλ

∐
λ∈Λ Wλ

∐
λ∈Λ

sλ
��
∐

λ∈Λ Xλ
�� C ��

∐
λ∈Λ ΣWλ.
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Next we show that h is an isomorphism. We have a commutative diagram of functors:

(
∐

λ∈ΛΣXλ,−) �� (
∐

λ∈ΛΣWλ,−) �� (C,−)

(h,−)

��

�� (
∐

λ∈ΛXλ,−) �� (
∐

λ∈ΛWλ,−)

(
∐

λ∈ΛΣXλ,−)

∼=
��

�� (
∐

λ∈ΛΣWλ,−)

∼=
��

�� (
∐

λ∈ΛCλ,−)

∼=
��

�� (
∐

λ∈ΛXλ,−)

∼=
��

�� (
∐

λ∈ΛWλ,−)

∼=
��∏

λ∈Λ(ΣXλ,−) ��
∏

λ∈Λ(ΣWλ,−) ��
∏

λ∈Λ(Cλ,−) ��
∏

λ∈Λ(Xλ,−) ��
∏

λ∈Λ(Wλ,−),

where (−,−) = HomKN (R)(−,−). Note that the top and the bottom rows are exact,
as is the middle one. Thus by the five lemma, (h,−) is an isomorphism, and so is
h by Yoneda lemma. Also, since Cλ is exact for all λ ∈ Λ,

∐
λ∈Λ Cλ is exact and so∐

λ∈Λ sλ is a quasi-isomorphism by [16, Corollary 3.3]. For each μ ∈ Λ, there exists
f ∈ HomKN (R)(

∐
λ∈Λ Wλ, Y ) such that fμ = fρμ. Set γ = Q(f)Q(

∐
λ∈Λ sλ)

−1. Then,
for all μ ∈ Λ, we have

γQ(ιμ) = Q(f)Q(
∐

λ∈Λ sλ)
−1Q(ιμ) = Q(f)Q(ρμ)Q(sμ)

−1 = Q(fμ)Q(sμ)
−1 = γμ.

Claim 2: ξY is a monomorphism.

Proof. Let γ ∈ HomDN (R)(
∐

λ∈Λ Xλ, Y ) with γQ(ιλ) = 0 for all λ ∈ Λ, and let
γ = Q(t)−1Q(g) with t : Y → Y ′ a quasi-isomorphism. We claim that Q(g) = 0. For
any λ ∈ Λ, since Q(t)−1Q(gιλ) = 0, Q(gιλ) = 0. Then Lemma 4.2 implies that gιλ
factors through some Eλ ∈ EN , and so g factors through

∐
λ∈Λ Eλ ∈ EN . Therefore,

again by Lemma 4.2, Q(g) = 0.

Lemma 4.4. For any R-module A and any N -complex X, we have isomorphisms

HomKN (R)(D
t
n(A), X) ∼= Ht

n(HomR(A,X)), ∀ n, t,

HomKN (R)(X,Dt
n+t−1(A))

∼= HN−t
n (HomR(X,A)), ∀ n, t.

Proof. We just prove the first isomorphism since the second follows by duality.
We may consider that

HomCN (R)(D
t
n(A), X) ∼= HomR(A,Z

t
n(X))

= {u ∈ HomR(A,Xn) |d
tu = 0}

= Zt
n(HomR(A,X)),

HomCN (R)(D
N
n+N−t(A), X) = {(v, u) ∈ HomR(A,Xn+N−t)×HomR(A,Xn) |u =

dN−tv}.

For i : Dt
n(A) → DN

n+N−t(A), we get Im(HomCN (R)(i,X)) = BN−t
n (HomR(A,X)). Let

f : Dt
n(A) → X be a chain map. If f ∈ Im(HomCN (R)(i,X)), then f ∼ 0. Conversely, if

f ∼ 0, then f factors through the N -complex
∐

n∈Z D
N
n (Xn) by the proof of [5, Corol-

lary 3.5], which induces a chain map DN
n+N−t(A) → X. So f ∈ Im(HomCN (R)(i,X))

and

HomCN (R)(D
N
n+N−t(A), X) → HomCN (R)(D

t
n(A), X) → HomKN (R)(D

t
n(A), X) → 0

is exact; it follows that HomKN (R)(D
t
n(A), X) ∼= Ht

n(HomR(A,X)).
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Theorem 4.5. The pretriangulated category DN (R) is compactly generated.

Proof. Set G = {Dt
n(R) |n ∈ Z, t = 1, · · · , N − 1}. We show that G is a generating

set of DN (R). First, for any N -complex X, assume that HomDN (R)(D
t
n(R), X) = 0

for all n and t. Then 0 = HomDN (R)(D
t
n(R), X) ∼= HomKN (R)(D

t
n(R), X) ∼= Ht

n(X) by

Lemmas 3.3 and 4.4 since Dt
n(R) is dg-projective for all n and t. This implies that

X ∼= 0 in DN (R). Now let {Xλ}λ∈Λ be family of objects in DN (R). Then the direct
sum

∐
λ∈Λ Xλ exists in DN (R) by Lemma 4.3 and we have

HomDN (R)(D
t
n(R),

∐
λ∈Λ

Xλ) ∼= HomKN (R)(D
t
n(R),

∐
λ∈Λ

Xλ)

∼= Ht
n(

∐
λ∈Λ

Xλ) ∼=
∐
λ∈Λ

Ht
n(Xλ)

∼=
∐
λ∈Λ

HomKN (R)(D
t
n(R), Xλ)

∼=
∐
λ∈Λ

HomDN (R)(D
t
n(R), Xλ).

Therefore, Dt
n(R) is a compact object in DN (R) for all n and t. This implies that the

pretriangulated category DN (R) is compactly generated.

Now we show that the category KN (I ) is compactly generated whenever R is left
noetherian. For N = 2 this was proved by Krause in [12, Proposition 2.3].

Remark 4.6. Let A be a left R-module. Then Proposition 3.5(1) gives a quasi-

isomorphism Dt
n(A)

�
→ I with I a bounded-above N -complex in I for any n and

t. We denote the N -complex I by itnA.

Let X be an N -complex and n ∈ Z. We define X�n to be the N -complex

X�n : 0 −→ Xn
d

−→ Xn−1
d

−→ Xn−2 −→ · · · .

We also define X�n to be the N -complex

X�n : · · · −→ Xn+2
d

−→ Xn+1
d

−→ Xn −→ 0.

Lemma 4.7. Let R be left noetherian and A a left R-module. Then the natural map

HomKN (R)(i
t
nA,X) −→ HomKN (R)(D

t
n(A), X)

is an isomorphism for all X ∈ KN (I ) and all n, t. Therefore, itnA is a compact object
in KN (I ) for all n and t whenever A is finitely generated.

Proof. We can complete the quasi-isomorphism Dt
n(A)

ι
→ itnA to a right triangle

Dt
n(A)

ι
→ itnA → Cι → Σ(Dt

n(A)) and a left triangle Ω(itnA) → Fι → Dt
n(A)

ι
→ itnA

in KN (R). Then

HomKN (R)(Cι, X) ∼= HomKN (R)(Cι, X�n+N−1) = 0,

HomKN (R)(Fι, X) ∼= HomKN (R)(Fι, X�n) = 0
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since Cι, Fι are exact and X�n+N−1, X�n are bounded above. Therefore,

HomKN (R)(i
t
nA,X) ∼= HomKN (R)(D

t
n(A), X).

Now assume that R is left noetherian and A is finitely generated. Then A is a compact
object of R-Mod. By [6, p.688], we have HomCN (R)(D

t
n(A), Y ) ∼= HomR(A,Z

t
n(Y )) for

any N -complex Y . It follows that Dt
n(A) is a compact object of KN (R) for all n and

t, and hence

HomKN (I )(i
t
nA,

∐
λ∈Λ

Xλ) ∼= HomKN (R)(D
t
n(A),

∐
λ∈Λ

Xλ)

∼=
∐
λ∈Λ

HomKN (R)(D
t
n(A), Xλ)

∼=
∐
λ∈Λ

HomKN (I )(i
t
nA,Xλ)

for a family {Xλ}λ∈Λ in KN (I ). Therefore, itnA is a compact object of KN (I ) for
all n and t.

Theorem 4.8. Let R be left noetherian. Then the category KN (I ) is compactly gen-
erated.

Proof. Each N -complex itnA is a compact object of KN (I ) by Lemma 4.7. It remains
to show that G = {itnA |A ∈ R-Mod is finitely generated} is a set of generators of
KN (I ). We claim that for any nonzero object X of KN (I ), HomKN (R)(G,X) �= 0
for some G ∈ G .

Suppose first that Ht
n(X) �= 0 for some n and t. Choose a finitely generated left

R-module A and a nonzero homomorphism A → Zt
n(X). We obtain a nonzero chain

map Dt
n(A) → X that induces a nonzero element in HomKN (R)(D

t
n(A), X). Suppose

next that Ht
n(X) = 0 for all n and t. We can choose n and t such that Zt

n(X) is non-
injective. Consider the exact sequence 0 → ΩX → FidX

→ X → 0. Since X is exact,
0 → Zt

n(ΩX) → Zt
n(FidX

) → Zt
n(X) → 0 is exact. Note that FidX

∼=
∏

n∈Z D
N
n (Xn)

by [16, Remark 2.15], so Zt
n(FidX

) is injective. But Zt
n(X) is non-injective, and it

follows that Zt
n(ΩX) is non-injective. Using Baer’s criterion, there is a finitely gener-

ated left R-module A such that Ext1R(A,Z
t
n(ΩX)) �= 0. By Corollary 2.4, we have a

commutative diagram:

HomCN (R)(D
t
n(A), FidX

) �� HomCN (R)(D
t
n(A), X) �� Ext1CN (R)(D

t
n(A),ΩX)

��

�� 0

HomCN (R)(D
t
n(A), FidX

) �� HomCN (R)(D
t
n(A), X) �� HomKN (R)(D

t
n(A), X) �� 0.

Also, Ext1CN (R)(D
t
n(A),ΩX) ∼= Ext1R(A,Z

t
n(ΩX)) by the proof of [6, Theorem 4.5].

Thus HomKN (R)(D
t
n(A), X) ∼= Ext1R(A,Z

t
n(ΩX)) �= 0. This shows our claim. This

implies that the category KN (I ) is compactly generated.
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5. The homotopy category KN(P)

In this section, A is the category of left R-modules and P the class of projectives.
We denote the homotopy category of N -complexes in P by KN (P). We show that
the category KN (P) is compactly generated when R is a right coherent ring for which
every flat left R-module has finite projective dimension.

Let X be an N -complex. We define X∗ to be the N -complex

· · · → HomR(Xn−1, R) → HomR(Xn, R) → HomR(Xn+1, R) → · · · .

Construction 5.1. Let R be right coherent and M a finitely presented left R-
module. By the proof of Proposition 3.4(1), we can choose a quasi-isomorphism

P
π
→ (Dt

n(M))∗ with P bounded below and each Pl finitely generated projective.

There is also a canonical homomorphism Dt
n(M)

δ
→ (Dt

n(M))∗∗. Consider

Dt
n(M)

δ
−→ (Dt

n(M))∗∗
π∗

−→ P ∗.

If we consider P ∗ and P to be objects of KN (P) and KN (Pop), then P ∗ depends
functorially on P , and P depends functorially on (Dt

n(M))∗. But (Dt
n(M))∗ depends

functorially on Dt
n(M), and so, altogether, P ∗ depends functorially on Dt

n(M).
There exists a commutative diagram

P

δP

��

π �� (Dt
n(M))∗ (Dt

n(M))∗

P ∗∗
π∗∗

�� (Dt
n(M))∗∗∗

δ∗ �� (Dt
n(M))∗,

where δP is the canonical chain map. Since P consists of finitely generated projective
modules, δP is an isomorphism. Also, π is a quasi-isomorphism, so the diagram shows
that the composition δ∗π∗∗ is a quasi-isomorphism. That is,

Ht′

k (HomR(P
∗, R)) ∼= Ht′

k (HomR(D
t
n(M), R)), ∀ k, t′.

But M and each P ∗l are finitely presented, and it follows that

Ht′

k (HomR(P
∗, Q)) ∼= Ht′

k (HomR(D
t
n(M), Q)), ∀ k, t′

for any projective left R-module Q. Consider the left and right triangles in KN (R):

ΩP ∗ → F → Dt
n(M)

π∗δ
→ P ∗, Dt

n(M)
π∗δ
→ P ∗ → C → Σ(Dt

n(M)).

By the preceding proof, HomKN (R)(F,D
1
n(Q)) = HomKN (R)(C,D

1
n(Q)) = 0 for any

projective left R-module Q and all n.

Lemma 5.2. Assume that X,Y ∈ CN (R) with either X bounded below or Y bounded
below. If HomKN (R)(D

1
k(Xk), Y ) = 0 for all k, then HomKN (R)(X,Y ) = 0.

Proof. We need to show that every chain map α : X → Y is null-homotopic. Thus
for a given α we must construct a collection of morphisms sm : Xm → Ym+N−1, such
that

αm = dN−1sm + dN−2sm−1d+ · · ·+ sm−N+1d
N−1 (∗m)

for all m. We do so by induction on m. Since X or Y is bounded below, we must have
sm = 0 for m � 0. For the inductive step, assume that sm has been constructed for
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all m < m̃. Using that α is a chain map and that (∗m̃−1) holds, we see that

dYm̃(αm̃ − (dN−2sm̃−1d+ · · ·+ dsm̃−N+2d
N−2 + sm̃−N+1d

N−1))

= (αm̃−1 − dYm̃(dN−2sm̃−1 + · · ·+ dsm̃−N+2d
N−3 + sm̃−N+1d

N−2))dXm̃

= (sm̃−NdN−1)dXm̃ = 0.

But HomKN (R)(D
1
m̃(Xm̃), Y ) = 0, and it follows that there exists sm̃ : Xm̃ → Ym̃+N−1

such that dN−1sm̃ = αm̃ − (dN−2sm̃−1d+ · · ·+ sm̃−N+1d
N−1), as claimed.

Similarly, one establishes the next lemma.

Lemma 5.3. Assume that X,Y ∈ CN (R) with either X bounded above or Y bounded
above. If HomKN (R)(X,D1

k(Yk)) = 0 for all k, then HomKN (R)(X,Y ) = 0.

Remark 5.4. Let R be right coherent and A a finitely presented left R-module. Then

Construction 5.1 provided a quasi-isomorphism Dt
n(A)

�
→ P with P a bounded-above

N -complex of finitely generated projective left R-modules for any n and t. We denote
the N -complex P by ptnA.

Lemma 5.5. Let R be right coherent and A a finitely presented left R-module. Then
for any X ∈ KN (P) we have an isomorphism

HomKN (R)(p
t
nA,X) ∼= Ht

n(HomR(A,X)), ∀ n, t.

In particular, ptnA is a compact object in KN (P).

Proof. By Lemma 5.3, HomKN (R)(F,X) = HomKN (R)(C,X) = 0, where F,C are as

in Construction 5.1. Hence HomKN (P)(p
t
nA,X) ∼= HomKN (R)(D

t
n(A), X) for any n

and t. Note that HomKN (R)(D
t
n(A), X) ∼= Ht

n(HomR(A,X)). This shows the desired

isomorphism. For the last claim, we use that Ht
n(HomR(A,−)) commutes with set-

indexed coproducts.

The following result was proved by Jøgensen when N = 2 (see [10, Theorem 2.4]).

Theorem 5.6. Let R be a right coherent ring for which every flat left R-module has
finite projective dimension. Then the category KN (P) is compactly generated.

Proof. EachN -complex ptnA is a compact object in KN (P) by Lemma 5.5. It remains
to show that G = {ptnA |A ∈ R-Mod is finitely presented} is a set of generators of
KN (P). So suppose that X in KN (P) has HomKN (P)(G,X) = 0 for every G ∈ G .
We show that X ∼= 0 in KN (P).

First 0 = HomKN (P)(p
t
nR,X) ∼= Ht

n(HomR(R,X)) ∼= Ht
n(X) for all n and t. So X

is exact. Again by Lemma 5.5, for any finitely presented left R-module A,

0 = HomKN (P)(p
t
nA,X) ∼= Ht

n(HomR(A,X)), ∀ n, t.

Hence [8, Theorem 6.4] implies that 0 → Zt
n(X) → Xn → ZN−t

n−t (X) → 0 is pure exact

and Zt
n(X) is flat for all n and t. Finally, note that pdRZ

N−1
n−s (X) � s for some s by

assumption and the sequence 0→CN−1
n (X)→Xn−1 → · · ·→Xn−s+1 → ZN−1

n−s (X)→

0 is exact; it follows that CN−1
n (X) is projective, and so Z1

n(X) is projective for each
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n. Note that 0 → ZN−t
n+N−t(X) → ZN−t+1

n+N−t(X)
dN−t

→ Z1
n(X) → 0 is exact, so Zt

n(X) is
projective for all n and t by induction. Thus X is a projective N -complex by the dual
of [4, Theorem 4.5], and hence X ∼= 0 in KN (P), as desired.

6. Recollements

Let L be a class of left R-modules. We denote the full subcategory formed by
all exact N -complexes in KN (L ) by Kex

N (L ). In this section, We establish a recolle-
ment of the pretriangulated category KN (R) relative to Kex

N (R) and DN (R) and an
equivalence Kc

N (I ) → Db
N (Rmod).

If (T1,Ω1,Δ1) and (T2,Ω2,Δ2) are left triangulated categories, then a functor

F : T1 → T2 is called left exact if there is a natural isomorphism ξ : Ω2F
∼=
→ FΩ1 such

that for any left triangle Ω1Z
μ
→ X

ν
→ Y

ω
→ Z in T1, the diagram Ω2(F (Z))

F (μ)ξZ
→

F (X)
F (ν)
→ F (Y )

F (ω)
→ F (Z) is a left triangle in T2. Similarly one defines right exact

functors between right triangulated categories. LetH : T1 → T2 be a functor between
pretriangulated categories. Then H is called exact if H is left and right exact.

Let T ′,T and T ′′ be pretriangulated categories. The diagram of exact functors

T ′
i∗ �� T

j∗ �� T ′′

is a recollement of T relative to T ′ and T ′′, if the following conditions are satisfied:
(R1) The functor i∗ is fully faithful and has a left adjoint i∗ and a right adjoint i!;
(R2) The functor j∗ has a fully faithful left adjoint j! and a fully faithful right

adjoint j∗;
(R3) Imi∗ = Kerj∗.

Theorem 6.1. Let R be a ring. We have the following recollement:

i∗

 j!



Kex
N (R) inc �� KN (R) can �� DN (R).

i!

 j∗



Moreover, the composition dgP̃N
j
→ KN (R)

Q
→ DN (R) is an equivalence of right tri-

angulated categories, the composition dgĨN
j′

→ KN (R)
Q
→ DN (R) is an equivalence of

left triangulated categories.

Proof. We first construct the functors involved. Let X be an N -complex. Then The-

orem 3.8 yields a quasi-isomorphism s : P
�
→ X with P ∈ dgP̃N , and we have a

right triangle P
s
→ X → Cs → ΣP with Cs ∈ Kex

N (R). Suppose that t : P ′
�
→ X with

P ′ ∈ dgP̃N . Then we have a commutative diagram:

P ′′

s′

��

t′ �� P

s
��

P ′
t �� X

such that P ′′ ∈ dgP̃N and s′, t′ are quasi-isomorphisms. Thus we have the following
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morphism of right triangles in KN (R):

P ′′

t′

��

st′ �� X �� Cst′

��

�� ΣP ′′

Σt′

��
P

s �� X �� Cs
�� ΣP.

Note that t′ is a homotopy equivalence; it follows that Cs
∼= Cst′ in Kex

N (R). Similarly,
we have Ct

∼= Cts′ = Cst′ in Kex
N (R). Hence Ct

∼= Cs in Kex
N (R). On the other hand,

let 0 ∼ f ∈ HomKN (R)(X,Y ). Then we have a morphism of right triangles in KN (R):

P

g

��

s �� X ��

f

��

Cs

h
��

�� ΣP

Σg

��
Q

t �� Y �� Ct
�� ΣQ,

where P,Q ∈ dgP̃N and s, t are quasi-isomorphisms. We obtain g ∼ 0, and hence
h ∼ 0. This implies that i∗ : KN (R) → Kex

N (R) given by i∗(X) = Cs is a functor. Let
E be an exact N -complex. Then we have an exact sequence

HomKN (R)(ΣP,E) → HomKN (R)(Cs, E) → HomKN (R)(X,E) → HomKN (R)(P,E) =
0.

But HomKN (R)(ΣP,E) ∼= HomKN (R)(P,ΩE) = 0; it follows that

HomKex
N

(R)(i
∗(X), E) = HomKN (R)(Cs, E) ∼= HomKN (R)(X,E).

This shows that (i∗, inc) is an adjoint pair.

Let X be an N -complex. Then Theorem 3.11 yields a quasi-isomorphism s : X
�
→ I

with I ∈ dgĨN , and we have a left triangle ΩI → Fs → X
s
→ I with Fs ∈ Kex

N (R).
By analogy with the preceding proof, we see that i! : KN (R) → Kex

N (R) given by
i!(X) = Fs is a functor. Let E ∈ EN . Then we have an exact sequence

HomKN (R)(E,ΩI) → HomKN (R)(E,Fs) → HomKN (R)(E,X) → HomKN (R)(E, I).

Therefore, HomKN (R)(E,X) ∼= HomKex
N

(R)(E, i!(X)) and (inc, i!) is an adjoint pair.

Let X be an N -complex. Then Theorem 3.8 yields a quasi-isomorphism s : P
�
→ X

with P ∈ dgP̃N . On the other hand, let 0 � f ∈ HomDN (R)(X,Y ). Then we have a
commutative diagram in KN (R):

P

g

��

s �� X

f
��

Q
t �� Y

where P,Q ∈ dgP̃N and s, t are quasi-isomorphisms. We obtain g � 0. This implies
that j! : DN (R) → KN (R) given by j!(X) = P is a functor. Let X,Y be N -complexes

and P
�
→ X,Q

�
→ Y with P,Q ∈ dgP̃N . Then Lemma 3.3 implies that

HomDN (R)(X,Y ) ∼= HomDN (R)(P,Q) ∼= HomKN (R)(j!(X), j!(Y )),
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which shows that j! is fully faithful. Also, we have the isomorphisms

HomKN (R)(j!(X), Y ) = HomKN (R)(P, Y ) ∼= HomDN (R)(P, Y ) ∼= HomDN (R)(X,Y ).

This implies that (j!, can) is an adjoint pair.

Let X be an N -complex. Then Theorem 3.11 yields a quasi-isomorphism X
�
→ I

with I ∈ dgĨN . By analogy with the preceding proof, we see that j∗ : DN (R) →
KN (R) given by j∗(X) = I is a fully faithful functor and (can, j∗) is an adjoint pair.
We have established the desired recollement.

By [3, Lemma 2.1], dgP̃N is a right triangulated subcategory of KN (R). So the

inclusion j : dgP̃N → KN (R) is a right exact functor. This yields a functor Qj :

dgP̃N → DN (R) that is distinct on objects, and this functor is fully faithful by
Lemma 3.3. Let X,Y be objects of KN (R). Note that j! sends every object of DN (R)

into an object of dgP̃N ⊆ KN (R); it follows from Lemma 3.3 that

HomDN (R)(X,Q(Y )) ∼= HomKN (R)(j!(X), Y ) ∼= HomDN (R)(Qj!(X), Q(Y )).

One checks that this map is just composition with the counit εX : Qj!(X) → X, and
by a standard argument this implies that εX is an isomorphism. Therefore, Qj is an
equivalence. The argument for the second equivalence is identical.

Proposition 6.2. Let R be a left noetherian ring, and let Db
N (mod) denote the full

subcategory of objects X in DN (R) such that Ht
n(X) is finitely generated for all n, t

and Ht
n(X) = 0 for almost all n, t. Then the canonical functor Q : KN (R) → DN (R)

induces an equivalence

Kc
N (I ) −→ Db

N (mod).

Proof. It follows from Theorem 4.8 that KN (I ) is compactly generated by the set
G = {itnA |A ∈ R-Mod is finitely generated}. Let A ∈ R-Mod be finitely generated.
Consider the split exact sequence

0 −→ DN−t
n−t (A) −→ DN

n (A) −→ Dt
n(A) −→ 0.

Then we have a left triangle ΩDt
n(A) → DN−t

n−t (A) → DN
n (A) → Dt

n(A) in KN (R) by
[16, Theorem 2.22]. Also, Proposition 3.5 yields a commutative diagram in KN (R)

ΩDt
n(A)

�

��

�� DN−t
n−t (A)

�

��

ΩitnA
s �� iN−t

n−t A.

Since DN
n (A) is exact, ΩDt

nA → DN−t
n−t A is a quasi-isomorphism, and hence s is so. Let

X be an object in KN (I ). Then HomKN (R)(Fs,D
1
k(Xk)) = 0 = HomKN (R)(Cs,D

1
k

(Xk)) for all k. But Fs and Cs are bounded above, so HomKN (R)(Fs, X) = 0 =
HomKN (R)(Cs, X) by Lemma 5.3. Thus

HomKN (I )(Ωi
t
n(A), X) ∼= HomKN (I )(i

N−t
n−t A,X).
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Now let {Xλ}λ∈Λ be a family of objects in KN (I ). Then

HomKN (I )(Ωi
t
n(A),

∐
λ∈Λ

Xλ) ∼= HomKN (I )(i
N−t
n−t A,

∐
λ∈Λ

Xλ)

∼=
∐
λ∈Λ

HomKN (I )(i
N−t
n−t A,Xλ)

∼=
∐
λ∈Λ

HomKN (I )(Ωi
t
n(A), Xλ).

This implies that Ωitn(A) ∈ Kc
N (I ) for all n and t, and Kc

N (I ) is a thick subcategory
of KN (I ) that is generated by the injective resolutions of the finitely generated left
R-modules. Also, Lemmas 3.2 and 3.3 and Proposition 3.4 imply that the canon-
ical functor K−N (I ) → D−N (R) is an equivalence, which restricts to an equivalence

K−,b
N (I ) → Db

N (R) and identifies Kc
N (I ) with Db

N (mod).
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