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HOMOLOGY OF NON-k-OVERLAPPING DISCS

NATALYA DOBRINSKAYA and VICTOR TURCHIN

(communicated by Dev P. Sinha)

Abstract
In this paper we describe the homology and cohomology of

some natural bimodules over the little discs operad, whose com-
ponents are configurations of non-k-overlapping discs. At the
end we briefly explain how this algebraic structure intervenes
in the study of spaces of non-k-equal immersions.

1. Introduction

Let Bd denote the operad of little d-discs. We will consider the bimodules B
(k)
d ,

k � 2, over it, with the nth component B
(k)
d (n) being the configuration space of n open

discs (labeled by 1, . . . , n) in a unit d-disc satisfying the non-k-overlapping condition:

the intersection of any k of them is empty. It is straightforward that B
(k)
d is a bimodule

over Bd. The left action is given by the maps

Bd(n)× B
(k)
d (m1)× B

(k)
d (m2)× · · · × B

(k)
d (mn) → B

(k)
d (m1 + · · ·+mn)

that consist in replacing the ith disc in Bd(n) by a configuration of discs from B
(k)
d (mi).

The right action is given by similar maps

B
(k)
d (n)× Bd(m1)× Bd(m2)× · · · × Bd(mn) → B

(k)
d (m1 + · · ·+mn).

Obviously, in both cases the resulting configuration always satisfies the non-k-
overlapping condition; thus both composition maps are well defined. One of our main

results, Theorem 3.6, describes the homology of the spaces B
(k)
d (n) in terms of this

structure.

The space B
(k)
d (n) is homotopy equivalent to the complement in (Rd)×n to the

union of subspaces

AI =
{
(x1, . . . , xn) ∈ (Rd)×n |xi1 = · · · = xik

}
,

where I = {i1, . . . , ik} runs through all cardinality k subsets of n = {1, . . . , n}. We

denote this complement by M
(k)
d (n). By taking the centers of the balls, one gets a

map B
(k)
d (n) → M

(k)
d (n) which is a homotopy equivalence.
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The homology groups of M
(k)
d (n) were first computed by Björner and Welker [6]

(see also [4, 5]). The cohomology algebra H∗M
(k)
2 (n) was determined by Yuzvin-

sky [48]. The latter reference also produces a rational model for M
(k)
2 (n). Based on

this model, it was shown in [27] that the spaces M
(3)
2 (n), n � 7, have non-trivial

Massey products and thus are not formal. The cohomology algebra H∗M
(k)
1 (n) was

computed by Baryshnikov [3]. The symmetric group action on H∗M
(k)
d (n) was com-

puted by Sundaram and Wachs [38]. Even though the (co)homology of M
(k)
d (n)

is now well understood, few of the references give a geometric description of this
(co)homology. In fact, only in the case d = 1 does one have a geometric description
of this homology, given by the first author in [12], and a geometric description of
cohomology, given by Baryshnikov in [3]. More precisely, in [6, 4, 5] the authors use
the Goresky–MacPherson formula that describes the homology of the complement to
a subspace arrangement in terms of the cohomology of certain posets (of strata in

the arrangement). In the case of M
(k)
d (n) one has to study the poset Πn,k of subsets

of {1, . . . , n} whose cardinality is either 1 or � k. Yuzvinsky’s method is also purely

combinatorial—it produces a rational model for M
(k)
2 (n) and more generally for any

complement to a complex arrangement based on the combinatorics of the Goresky–
MacPherson complex. Another approach for the case d = 1 appears in [28], which
describes the homology over a field of more general diagonal arrangements in terms
of the homology of monomial rings. Applied to the case of non-k-equal arrangements,

this approach produces the Betti numbers of M
(k)
1 . Following this idea improved to

integral coefficients and using homological algebra methods, an algebraic structure
similar to the one studied in this paper for d = 1 appeared in [12].

In our paper we make use of an operad structure that naturally also brings in

geometry. As a left module over H∗Bd, the sequence H∗B
(k)
d for k � 3 is generated by

two elements x1 ∈ H0B
(k)
d (1) and {x1, . . . , xk} ∈ H(k−1)d−1B

(k)
d (k); see Theorem 3.4.

Notice that B
(k)
d (1) � ∗ and B

(k)
d (k) � S(k−1)d−1. The elements x1 and {x1 . . . xk} are

the generators of the corresponding homology groups. Explicitly, this result means

that the homology groups H∗B
(k)
d (n) are spanned by certain products of iterated

brackets. Such classes can be geometrically realized as products of spheres in B
(k)
d (n).

One should mention that such a description of the homology in terms of iterated
brackets is implicitly given in [16], where the author shows that the poset Πn,k

is quasi-isomorphic to a poset of certain trees. Here one can see a connection to
work of Gaiffi [18] that produces a general construction of a compactification of the

complement to a subspace arrangement. In the case of M
(k)
d (n) the strata of the

compactification are encoded exactly by the trees from [16]. In fact, Gaiffi’s work
can be used to produce geometric cycles in the homology of the complement to any
arrangement.

We also give a more geometric description of the cohomology algebra H∗B
(k)
d (n).

In particular, we show that for k � 3 and d � 2 this algebra is quadratic. This was
shown for k � 2 in [1, 9] and for d = 1 in [3]. In Sections 2 and 4, respectively,
we recall these quadratic algebras for the two cases considered earlier. In the other
cases that we study in our paper, k � 3 and d � 2, a substantial difference is that
the generators lie in different degrees, but as we said, all relations still follow from
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quadratic ones; see Theorem 7.2. Since our description is geometric we hope it will

help to better understand the rational homotopy type of M
(k)
d (n), and in particular

to compute the Massey products for these spaces.

The structure of a bimodule over H∗Bd that H∗B
(k)
d has gives a very explicit geo-

metric description of cycles, which is also important for applications. One application
is in the study of spaces of non-k-self-intersecting immersions. We describe briefly
this connection in Section 11.

Another important application is in the study of the homology of iterated loop
spaces of fat wedges. First examples of such computations go back to Lemaire’s
work [23] for single-loop spaces on fat wedges of spheres, where he computed its
homology over a field. In [10, 11, 12, 13] a more general problem for loops on fat
wedges of arbitrary spaces is considered, and the homology is computed via homology

of diagonal arrangements with algebraic structure similar to a bimodule on B
(k)
1 . The

long brackets {x1 . . . xk} discussed above correspond to higher commutator products
on loop homology induced by Samelson products. A similar description of the homol-
ogy of iterated d-loops on fat wedges must exist, and we expect our results will be
useful in their further study.

1.1. Notation

By a symmetric sequence we will understand a sequence of objects M(n), n � 0,
where each M(n) is endowed with an action of the symmetric group Σn. Alterna-
tively, and this will be useful sometimes for our arguments, we will understand a
symmetric sequence as a functor from the category of finite sets whose morphisms
are bijections. For example, for a finite set I the corresponding configuration space
(or its homology) whose points/discs are labeled by elements from I will be denoted

by M
(k)
d (I), B

(k)
d (I), H∗B

(k)
d (I). The permutation group of I will be denoted by ΣI .

The cardinality of I will be denoted by |I|. The set {1, . . . , n} will be denoted by n.

All the homology and cohomology groups that we consider are taken with integral
coefficients.

1.2. Main results

Our main result is Theorem 3.6, where we describe the H∗Bd-bimodule structure

of H∗B
(k)
d = H∗M

(k)
d . Another important result is in Sections 6 and 7, where we give

a more natural description of the cohomology algebras H∗B
(k)
d (n), k � 3 and d � 2,

as spaces spanned by certain forests. Theorem 7.2 shows that each such algebra is
quadratic, which was not obvious from the previous description due to Yuzvinsky [48].
Our description is also nicely compatible with the structure of a cobimodule that

H∗B
(k)
d has, which is given in Section 9. As we have mentioned, the spaces M

(k)
d (n)

were extensively studied. In particular, to prepare this paper we found [3, 38, 48] very
useful. However, the presentation of our paper is self contained—all the arguments
and proofs are not formally relying on other results or computations. For this reason
we hope it will also be of educational value.
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2. Homology and cohomology of Bd

The homology of the little discs operad is well known [9]:

Theorem 2.1 (F. Cohen [9]). The homology operad H∗Bd is the operad of associative
unital algebras in case d = 1 and the operad of graded unital Poisson algebras with
bracket of degree (d− 1) in the case d � 2.

Below, we briefly describe the geometric meaning of this result. We would also
like to suggest the expository paper [35], where Cohen’s theorem is explained in full
detail.

In the case d = 1, the space B1(n), n � 0, has n! contractible components. Thus
its homology is concentrated in degree 0 and has rank n!. We get

H∗B1(n) = H0B1(n) = Assoc(n).

It is also obvious that the compositions agree.
In the case d � 2, one has Bd(0) = ∗, and Bd(2) � Sd−1. The generators ofH0Bd(0),

H0Bd(2), and of Hd−1Bd(2) are, respectively, the elements 1, x1 · x2, and [x1, x2]
of the Poisson operad. Notice that the theorem above describes H∗Bd(n) as a free
Z-module spanned by products of iterated brackets. Operad composition is given
by substitution. The corresponding cycles are realized as products of spheres. For

example, [[x1, x2], x3] ∈ H∗Bd(3) can be realized as Sd−1 × Sd−1 → M
(2)
d (3), where

the point 2 rotates around 1, and 3 rotates around 1 and 2. As another example

[x1, x2] · [x3, x4] can be realized as Sd−1 × Sd−1 → M
(2)
d (4), where 2 rotates around

1, and 4 does so around 3, and, moreover, 1 and 2 do not interact with 3 and 4.

In Section 3 we give a similar description of H∗B
(k)
d (n) as a space spanned by

products of iterated brackets with each such cycle realized by products of spheres.

Theorem 2.2 ([1, 9]). The cohomology algebra H∗Bd(n), d � 2, is generated by
αij ∈ Hd−1Bd(n), 1 � i �= j � n; the relations are αij = (−1)dαji, α

2
ij = 0, αijαjk +

αjkαki + αkiαij = 0.

To any monomial of this algebra one can assign a graph on vertices 1, . . . , n by
putting an edge between i and j for every factor αij . It follows from the relations
that a monomial is non-zero if and only if the corresponding graph is a forest.

In Section 6 we will give a similar description of H∗B
(k)
d (n) as a free Z-module

spanned by certain forests and quotiented out by relations arising naturally from the
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geometry of configuration spaces. The product of such forests will essentially be their
superposition similarly to the case of H∗Bd(n).

3. H∗B
(k)
d

as a left module and as a bimodule

One has a natural inclusion

Bd(n) ⊂ B
(k)
d (n), n � 0, (3.1)

which is null homotopic for k � 3 (in the case k = 2 it is an identity map). To show
this, we choose a basepoint in Bd(n). Then we homotope the inclusion (3.1) to the
constant map to this basepoint. Our homotopy consists of n pieces, where at its ith
step we pull the ith disc to its position in the basepoint configuration. Such a path
goes through disc configurations with at most double overlaps. More generally, any

inclusion B
(k)
d (n) ⊂ B

(k+1)
d (n) is null by a similar argument.

Definition 3.1. We say that M is a left module (respectively, bimodule) under an
operad O if it is a left module (respectively, bimodule) over O and is endowed with
a map of left modules (respectively, bimodules) O → M .

A relevant example to us is B
(k)
d which is a bimodule under Bd because of the

inclusion (3.1). In fact, in one of the applications in Section 11 it will be important

that B
(k)
d is not only a bimodule but also a bimodule under Bd.

Com will denote the operad of commutative unital algebras over Z.

Definition 3.2. An operadO in gradedZ-modules is called augmented if it is endowed
with a surjective map of operads O → Com.

Notice that all the operads H∗Bd, d � 1, are naturally augmented since they arise
as the homology of topological operads. This in particular implies that Com is a
bimodule under H∗Bd.

Definition 3.3. We say that M is a pointed left module (respectively, bimodule)
under an augmented operad O if M is a left module (respectively, bimodule) under O,
the structure map O → M factors through Com, and, moreover, the map Com → M
is an inclusion.

Since all the maps (3.1) are null for any k � 3, the bimodules H∗B
(k)
d , k � 3, are

pointed under H∗Bd.

One has a natural forgetful functor from the category of pointed left modules
(respectively, pointed bimodules) to the category of symmetric sequences, which has
a left adjoint. For a given symmetric sequence this left adjoint functor produces a
free pointed left module (respectively, bimodule) generated by this sequence. Notice
that the obtained left module (respectively, bimodule) is not free in the usual sense
since it contains Com, on which the Lie part of H∗Bd acts trivially.
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Theorem 3.4. For k � 3, the pointed left module H∗B
(k)
d under H∗Bd is generated by

a single element {x1, . . . , xk} ∈ H(k−1)d−1B
(k)
d (k), which is symmetric or skew sym-

metric depending on the parity of d:

{xσ1
· · ·xσk

} = (−1)|σ|d{x1 · · ·xk}, σ ∈ Σk. (3.2)

The only relation that the left action has is the generalized Jacobi:

k+1∑
i=1

(−1)(i−1)d [xi, {x1, . . . , x̂i, . . . , xk+1}] = 0. (3.3)

The element {x1, . . . , xk} ∈ H(k−1)d−1B
(k)
d (k) � Z can be realized by a sphere in

M
(k)
d (k) � B

(k)
d (k):

k∑
i=1

|xi|
2 = ε2;

k∑
i=1

xi = 0, (3.4)

where xi is the ith point in the configuration (equivalently the center of the ith

disc). Notice that M
(k)
d (k) is the complement in (Rd)k of the diagonal space Rd and

therefore is homotopy equivalent to the sphere (3.4). For the theorem above one can
choose any orientation of this sphere. The orientation will matter only when we will
be speaking about the duality between the homology and cohomology; see Section 8.

Theorem 3.4 tells us that the left action of H∗Bd suffices to completely describe

the homology groups H∗B
(k)
d (n) as spaces spanned by products of iterated brackets.

Dually, the cohomology groups H∗B
(k)
d (n) are described in Theorem 6.1 as spaces

spanned by certain forests.

Proof of equation (3.3). Our proof is inspired by Sinha’s proof of the usual Jacobi

relation in H2(d−1)M
(2)
d (3); see [35, Proposition 2.7]. Consider the intersection of

M
(k)
d (k + 1) with the (kd− 1)-sphere

∑k+1
i=1 xi = 0,

∑k+1
i=1 x2

i = 1. The resulting space

is homotopy equivalent toM
(k)
d (k + 1). This space is the sphere Skd−1 from which one

removed (k + 1) disjoint (d− 1)-spheres. Now consider the (kd− 1)-chain C that is
this sphere Skd−1 minus small tubular neighborhoods of the aforementioned (d− 1)-
spheres. The boundary of C produces exactly relation (3.3).

Remark 3.5. As a pointed left module under H∗Bd, the sequence H∗B
(k)
d , k � 3, is

generated by a single element, but as a left module it is generated by two elements

x1 ∈ H0B
(k)
d (1) and {x1 · · ·xk} ∈ H(k−1)d−1B

(k)
d (k). The left submodule generated by

x1 is exactly Com = H0B
(k)
d . The Lie part of H∗Bd acts trivially on this submodule,

which is equivalent to the relation

[x1, x2] = 0. (3.5)

Geometrically, this relation says that rotating one disc around the other produces a

trivial homology class in B
(k)
d (2) � ∗, k � 3.

The right action of H∗Bd on H∗B
(k)
d tells us what happens with the homology when

the points in configurations get multiplied—this will be important for applications;
see Section 11.
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Theorem 3.6. For k � 3, the pointed bimodule H∗B
(k)
d under H∗Bd is generated by

a single element {x1, . . . , xk} ∈ H(k−1)d−1B
(k)
d (k) satisfying the symmetry (3.2), gen-

eralized Jacobi (3.3), and Leibniz relations with respect to the right action:

{x1, . . . , xk−1, xk · xk+1} = xk · {x1, . . . , xk−1, xk+1}+ {x1, . . . , xk} · xk+1; (3.6)

{x1, . . . , xk−1, [xk, xk+1]} = (−1)d [{x1, . . . , xk−1, xk+1}, xk] + [{x1, . . . , xk}, xk+1] .
(3.7)

The cycle on the left-hand side of (3.6) is obtained by applying the right action of
x1 · x2 ∈ H0Bd(2) on the last input of {x1 · · ·xk}:

{x1, . . . , xk−1, xk · xk+1} = {x1 · · ·xk} ◦k (x1 · x2).

Explicitly, this cycle in M
(k)
d (k + 1) can be described by the equations

k−1∑
i=1

xi +
xk + xk+1

2
= 0,

k−1∑
i=1

|xi|
2 +

|xk + xk+1|
2

4
= ε2, (3.8)

and xk+1 − xk = (δ, 0, 0, . . . , 0), where δ 	 ε. Similarly for the left-hand side of (3.7)
one has

{x1, . . . , xk−1, [xk, xk+1]} = {x1 · · ·xk} ◦k [x1, x2].

This cycle in M
(k)
d (k + 1) is described by the equations (3.8) and |xk+1 − xk| = δ.

One can show that (3.6) implies

{x1, . . . , xk−1, 1} = 0,

where 1 is the generator of H0Bd(0). Geometrically, composition with this element
forgets the corresponding disc in the configurations.

Notice also that in the case d = 1, the second relation (3.7) follows from the first
one (3.6).

Proof of Theorem 3.6. In order to prove this theorem it suffices to prove Theorem 3.4
and also relations (3.6) and (3.7). The latter relations are proved in Examples 4.1,
5.2, and 5.3.

The following proposition is the first major step in the proof of Theorem 3.4.

Proposition 3.7. The cycles obtained by the left action of H∗Bd on H0B
(k)
d (1) and

on H(k−1)d−1B
(k)
d (k) span the homology of each component H∗B

(k)
d (n), n � 0.

The cases d = 1 and d � 2 of this proposition are proved in Sections 4 and 5,
respectively. The case d = 1 was essentially done by Baryshnikov [3]. For d > 1 the
argument is an easy generalization of the case d = 1.

In order to complete the proof of Theorem 3.4, one needs to show that between
the cycles produced by this left action there are no other relations besides those
that follow from (3.2), (3.3), and (3.5). This is done by providing an explicit basis of

H∗B
(k)
d (n).

Proposition 3.8. The homology H∗B
(k)
1 (n), k � 3, is torsion-free. For a basis, one

can take the set whose elements are encoded by partitions I0, J1, I1, J2, . . . , J�, I�
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of n, such that � � 0, |Js| = k, s = 1, . . . , �, and max(Is 
 Js+1) ∈ Js+1 for all s =
0, . . . , �− 1. The homology class corresponding to such partition has the form

AI0 ·BJ1
·AI1 ·BJ2

· · ·AI�−1
·BJ�

·AI� , (3.9)

where AIs = xi1,s · xi2,s · · · ·xi|Is|,s
for Is = {i1,s < i2,s < · · · < i|Is|,s} (if Is = ∅, then

AIs = 1 or is simply omitted), and BJs
= {xj1,s , xj2,s , . . . , xjk,s

} for Js = {j1,s < j2,s <
· · · < jk,s}.

It follows from Proposition 3.7 and relations (3.2), (3.3), and (3.5) that any homol-

ogy class in H∗B
(k)
1 (n) is a linear combination of the elements (3.9). In Section 4 we

will produce an explicit set of cohomology classes described by essentially the same
combinatorial data such that the pairing matrix with (3.9) is upper triangular. This
proves the linear independence of the elements (3.9).

Proposition 3.9. The homology H∗B
(k)
d (n), d � 2, k � 3, is torsion-free. For a basis,

one can take the products of iterated brackets satisfying the following conditions: each
factor is either xi, i ∈ n, or an iterated bracket of the form

[· · · [[B1, B2], B3] · · ·B�], � � 1, (3.10)

where each Bs is of the form

Bs = [· · · [[{xj1,s , xj2,s , . . . , xjk,s
}, xi1,s ], xi2,s ] · · ·xi�s,s

],

where j1,s < j2,s < · · · < jk,s; �s � 0; i1,s < i2,s < · · · < i�s,s < jk,s. Also we require
that the variable xi with the smallest index i in (3.10) must appear in B1.

Example 3.10. A basis element in H10d−7B
(3)
d (14):

x3 · {x1, x8, x9} ·
[
[{x10, x11, x12}, x2], [[[{x6, x7, x14}, x4], x5], x13]

]
.

Again it follows from Proposition 3.7 that the elements above span H∗B
(k)
d (n).

To prove that they are linearly independent, we produce an explicit dual basis in
cohomology; see Section 5.

Corollary 3.11. For any d � 1, k � 2, n � 0, the suspension ΣM
(k)
d (n) is homotopy

equivalent to a wedge of spheres.

Proof. This is always true if a space has torsion-free homology admitting a basis
realized by products of spheres.

Remark 3.12. In the case k = 2, the homology H∗B
(2)
d (•) = H∗Bd(•) admits a nat-

ural decreasing filtration that respects the structure of a bimodule over H∗Bd. The
statements of Theorems 3.4, 3.6, and Propositions 3.7, 3.8, 3.9 hold if one replaces

H∗B
(2)
d by the associated graded quotient. This filtration was considered in [38]. As

Sundaram and Wachs point out, it is induced by Reutenauer’s derived series filtration
in the free Lie algebra [30].

4. Case d = 1

First, we prove Proposition 3.7 in the case d = 1. This was implicitly done by
Baryshnikov in [3]. We repeat his argument for completeness of exposition. The space
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B
(k)
1 (0) is a point, so H∗B

(k)
1 (0) � Z which is obtained by the left action of the arity

zero component H∗B1(0) = H0B1(0) � Z. The generator of H0B
(k)
1 (0) � H0B1(0) is

denoted by 1. We then proceed by induction over n. We use the configuration (rather

than little balls) model. Consider a cycle [α] ∈ H∗M
(k)
1 (n) and a chain α repre-

senting [α]. Consider the projection p : M
(k)
1 (n) → M

(k)
1 (n− 1) that forgets the last

point in a configuration. By a little perturbation, one can assume that each sim-
plex of α is smooth and transversal to every fiber of p. Define a homotopy αt,

0 � t � c, of α in M
(k)
1 (n− 1)× R by adding t to the last coordinate xn. (In other

words, we pull the last point xn to the right for every point in the cycle α.) This

homotopy viewed as a chain in M
(k)
1 (n− 1)× R intersects transversely the “forbid-

den fibers”—it happens when xn + t collides with xi1 = · · · = xik−1
, 1 � i1 < i2 <

· · · < ik−1 � n− 1. To turn αt into a chain in M
(k)
1 (n), we remove from it inter-

sections with small tubular neighborhoods of the planes xi1 = · · · = xik−1
= xn. One

gets that the boundary of such a chain is the sum of α (when t = 0), a cycle of

the form A · xn, where A ∈ H∗M
(k)
1 (n− 1) (when t = c), and cycles of the form

AI · {xi1 , xi2 , . . . , xik−1
, xn} ·BJ , where AI ∈ H∗M

(k)
1 (I), BJ ∈ H∗M

(k)
1 (J), I 
 J =

n− 1 \ {i1, i2, . . . , ik−1} (such cycles correspond to the part of the boundary appear-
ing from the intersection of αt with the plane xi1 = · · · = xik−1

= xn). The set I
(respectively, J) contains the indices i such that xi < xn (respectively, xi > xn). Now,
using induction, we get the result.1 Q.E.D.

Example 4.1. Consider a natural chain representing the cycle {x1, x2, . . . , xk−1, xk ·

xk+1} ∈ Hk−2M
(k)
1 (k + 1). When xk+1 is pulled to the right, it can only meet the

plane x1 = x2 = · · ·= xk−1 = xk+1, which produces the cycle xk · {x1, . . . , xk−1, xk+1}.
At the other end of the homotopy, we get the cycle {x1, . . . , xk} · xk+1. As a result,
we get exactly relation (3.6).

Now we prove Proposition 3.8. We will exhibit an explicit dual basis in cohomology.
We reiterate that it was done in [3] and we give it for completeness of exposition.

For a partition of n into a collection of subsets I0, J1, I1, J2, . . . , I�−1, J�, I�, define
a subset of points in Rn satisfying the following (in)equalities:

xi � xj , i ∈ Is, j ∈ Js+1; (4.1)

xj � xi, j ∈ Js, i ∈ Is; (4.2)

xj1 = xj2 , j1, j2 ∈ Js. (4.3)

This set, or rather its intersection with M
(k)
1 (n), will be denoted by

(I0)[J1](I1)[J2] · · · (I�−1)[J�](I�). (4.4)

Now let us assume that |Js| = k − 1 for all s = 1, . . . , �. We get that the boundary of

this set (viewed as a locally compact chain) lies in the complement of M
(k)
1 (n). Thus

via intersection number it defines a cocycle in H∗M
(k)
1 (n). In addition, assuming the

1Notice that this recursive procedure shows that any cycle of M
(k)
1 (n) is homologous to a linear

combination of the basis elements from Proposition 3.8.
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restriction

max(Is 
 Js+1) ∈ Is, (4.5)

we get a collection of cocycles that is exactly a basis dual to (3.9). To be precise,
for an appropriate order of elements the pairing is given by an upper triangular
matrix with ±1 on the diagonal. Details can be found in [3], or make for a pleas-
ant exercise for a motivated reader. Without the second restriction (4.5) (but still
assuming |Js| = k − 1 for all s = 1, . . . , �), the cocycles (4.4) are linearly dependent

in H∗M
(k)
1 (n). Baryshnikov shows that all relations are spanned by the boundaries

of the chains (4.4) with all Js of cardinality k − 1 except one of cardinality k − 2.

Moreover, Baryshnikov describes the cohomology algebra H∗M
(k)
1 (n) as being gen-

erated by the elements (I0)[J1](I1), |J1| = k − 1. The relations are linear, appearing
as the boundary of the elements (I ′0)[J

′
1](I

′
1), |J

′
1| = k − 2, and quadratic: the square

of any element (I0)[J1](I1) is zero and the product of two generators is zero if the

intersection of the corresponding locally finite chains in M
(k)
1 (n) is empty.

5. Proof of Proposition 3.7 for d � 2

The proof of Proposition 3.7 for d � 2 is similar to the case d = 1. Given a cycle

in M
(k)
d (n), we will homotope it by pulling the last point xn in the configuration

away from the other points. This will lead to a similar recursive construction, but the
recursion will be using the homology of slightly more general arrangements. Denote by

M
(k)
d (n,m) the complement in Rd(n+m) =

{
(x1, . . . , xn; y1, . . . , ym)|xi ∈ Rd, yj ∈ Rd

}
to the union of subspaces

xi1 = · · · = xik ,

for any cardinality k subset {i1, . . . , ik} ⊂ n,

xi = yj , 1 � i � n, 1 � j � m;

yj1 = yj2 , 1 � j1 < j2 � m.

The space M
(k)
d (n,m) is homotopy equivalent to the space B

(k)
d (n,m) of configu-

rations of n discs labeled by 1, 2, . . . , n, and colored by x, and of m discs labeled by
1, 2, . . . ,m, and colored by y, in a unit disc. The non-overlapping condition is that no
k x-colored discs have a non-trivial intersection, and all y-colored discs are disjoint
one from another and from the x-discs.

We say that a family of spaces (or vector spaces) M(n,m), n � 0, m � 0, is a
bi-colored left module over an operad O if each M(n,m) is acted on by Σn × Σm and
one is given structure composition maps:

O(�)×M(n1,m1)×M(n2,m2)×· · ·×M(n�,m�)→M(n1 + · · ·+ n�,m1 + · · ·+m�).
(5.1)

One assumes the easily guessed symmetric group equivariance, associativity, and unity

conditions. For example, B
(k)
d (•, •) is a bi-colored left module over Bd(•). A similar

structure is induced in homology.
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Theorem 5.1. For d � 2, k � 3, the bi-colored left module H∗B
(k)
d (•, •) is generated

by x1 ∈ H0B
(k)
d (1, 0), {x1 . . . xk} ∈ H(k−1)d−1B

(k)
d (k, 0), and y1 ∈ H0B

(k)
d (0, 1). The

only relations are (3.2), (3.3), and (3.5).

The theorem above describes the homology of each component B
(k)
d (n,m) as a

space spanned by products of iterated brackets on x1, . . . , xn, y1, . . . , ym. The proof
of this theorem is very similar to that of Theorem 3.4. We will only show that the
elements obtained by the left action of H∗Bd on x1, y1, and {x1 · · ·xk} do span the

homology of each componentH∗B
(k)
d (n,m). This will obviously imply Proposition 3.7.

For n = 0 the statement is obvious. Indeed, H∗B
(k)
d (0, •) is isomorphic to H∗Bd(•)

as a left H∗Bd-module: it is freely generated by the single element y1 ∈ H0B
(k)
d (0, 1).

Now let α be a smooth generic s-dimensional chain (by this we mean each simplex

is smooth and in generic position) in M
(k)
d (n,m). We consider the homotopy αt,

0 � t � c, of α in M
(k)
d (n− 1,m)× Rd that only affects the last coordinate xn(t) =

xn + t · v, where the vector v ∈ Rd \ {0} is fixed. When c is big enough, xn(c) will
be far away from all the other points x1, . . . , xn−1, y1, . . . , ym appearing in α. The
fact that α is generic and smooth guarantees that αt viewed as an (s+ 1)-chain in

M
(k)
d (n− 1,m)× Rd is transversal to the forbidden subspaces

xn = yj , 1 � j � m; (5.2)

xn = xi1 = xi2 = · · · = xik−1
, 1 � i1 < i2 < · · · < ik−1 � n− 1. (5.3)

We remove from αt intersections with small tubular neighborhoods of the above
subspaces. The part of the boundary that appears from intersection with (5.2) looks

like a cycle in M
(k)
d (n− 1,m) in which we replace each point yj by a (d− 1)-sphere

obtained by making xn orbit around yj . The part of the boundary that appears from

intersection with (5.3) looks like a cycle in M
(k)
d (n− 1 \ I,m+ 1), I = {i1, . . . , ik−1},

in which we replace each point ym+1 by a [(k − 1)d− 1]-sphere obtained by making
xi1 , xi2 , . . . , xik−1

, and xn orbit around each other according to the equations

xi1 + xi2 + · · ·+ xik−1
+ xn

k
= ym+1;

|xi1 − ym+1|
2 + |xi2 − ym+1|

2 + · · ·+ |xik−1
− ym+1|

2 + |xn − ym+1|
2 = ε2.

The boundary of the resulting chain is the initial cycle α (when t = 0), a cycle of

the form A · xn, where A ∈ H∗M
(k)
d (n− 1,m) (this cycle appears at the other end of

the homotopy t = c), the cycles of the form A|yj=[yj ,xn], where A ∈ H∗M
(k)
d (n−

1,m) (such cycles appear from intersection of αt with (5.2)), and the cycles of

the form A|ym+1={xi1
,...,xik−2

,xik−1
,xn}, where A ∈ H∗M

(k)
d (n− 1 \ I,m+ 1) and I =

{i1, . . . , ik−1} (such cycles appear from intersection of αt with (5.3)). Using induc-
tion hypothesis we express α as a linear combination of products of iterated brackets.
Q.E.D.

Example 5.2. Consider the cycle {x1, . . . , xk−1, xk · xk+1} ∈H(k−1)d−1M
(k)
d (n+ 1, 0).
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While pulling away xk+1 one can only meet the plane

xk+1 = x1 = x2 = · · · = xk−1,

which produces the cycle xk · {x1, . . . , xk−1, xk+1}. At the second end we get the cycle
{x1, x2, . . . , xk} · xk+1. This proves relation (3.6).

Example 5.3. Now let us apply the above procedure to the cycle {x1, . . . , xk−1,

[xk, xk+1]} ∈ Hkd−2M
(k)
d (n+ 1, 0). While pulling xk+1 away, one meets the planes

xk+1 = x1 = · · · = x̂i = · · · = xk,

i = 1, . . . , k − 1, which produces the cycles

[{x1 · · · x̂i · · ·xk+1}, xi] ,

and the plane

xk+1 = x1 = · · · = xk−1,

which produces the cycle

[xk, 1] · {x1, . . . , xk−1, xk+1} = 0.

Also, at the other end of the homotopy, we get the cycle

{x1, . . . , xk−1, [xk, 1]} · xk+1 = 0.

As a result we get

{x1, . . . , xk−1, [xk, xk+1]} = −
k−1∑
i=1

(−1)(k+1−i)d [{x1 · · · x̂i · · ·xk+1}, xi] .

Applying the generalized Jacobi identity (3.3), we get (3.7).

Remark 5.4. In the initial work [6] the (co)homology of the poset Πn,k was computed
recursively by introducing auxiliary lattices Πn,k(�). The argument of this section
gives a geometric explanation for this combinatorial recursion.

6. Cohomology H
∗B

(k)
d

(n) as a space of forests

Recall that the cohomology of Bd(n) � M
(2)
d (n) is described as a certain space

of forests modulo 3-term relations; see Section 2. In this section we will give a sim-

ilar description of H∗B
(k)
d (n) = H∗M

(k)
d (n), k � 3, as spaces of certain admissible

k-forests modulo narural relations. The k-forests that span H∗M
(k)
d (n) have two

types of vertices: square ones that contain cardinality (k − 1) subsets of n, and round
ones that contain only one element from n. Every round vertex must be either discon-
nected from all the other vertices or connected to a single one that must be square.
Every square vertex must be connected to at least one round one. Every element
from n must appear in exactly one vertex of such a k-forest. By an orientation of a
k-forest, we mean

(a) orientation of each edge;

(b) ordering elements inside each square vertex;
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(c) ordering orientation set consisting of all the edges (considered as elements of
degree d− 1) and all the square vertices (considered as elements of degree k(d−
2)) in the k-forest.

83,4,5 7,9,10

61

2

Figure 1: Example of an admissible 4-forest. This forest represents an element in

H∗M
(4)
d (10).

For every such oriented forest T , we will assign a locally compact cooriented chain

in M
(k)
d (n), whose boundary lies in the complement of M

(k)
d (n). Thus by Poincaré

duality every such chain defines a cocycle in H∗B
(k)
d (n) (abusing notation, it will be

also denoted by T ), whose degree |T | is the sum of degrees of the elements in the
orientation set and is the codimension of the corresponding chain.

By p1 : R
d → Rd−1 we will denote the projection (x1, . . . , xd) �→ (x2, . . . , xd). The

chain corresponding to a k-forest T is defined as a set determined by the following
(in)equalities:

• If i and j from n lie in the same square vertex, then xi = xj .

• If two vertices A and B of T are connected by an edge oriented from A to B,
then for all i ∈ A, j ∈ B, one has x1

i � x1
j and p1(xi) = p1(xj).

Notice that, in particular, if i and j from n lie in the same connected component
of T , then p1(xi) = p1(xj). The data (b), (c) of the orientation of T determine the
coorientation of this chain. Notice that each chain is a convex domain of a vector
subspace of codimension |T | in Rnd. The coorientation will be given by an explicit
map Rnd → R|T |, where R|T | is the product of Rd−1’s (one copy for each edge) and
of R(k−2)d’s (one copy for each square vertex) appearing in the same order as the
corresponding elements appear in the orientation set of T . Given an edge from a
vertex A to B, we take the first elements i ∈ A and j ∈ B (recall that each such set is
ordered either because it is a singleton or by the orientation data (b)). The projection
pAB : Rnd → Rd−1 corresponding to this edge sends

(x1, . . . , xn) �→ p1(xj − xi).

Given a square vertex A, whose ordered set of elements is (i1, i2, . . . , ik−1), the cor-
responding projection pA : Rnd → R(k−2)d sends

(x1, . . . , xn) �→ (xi2 − xi1 , xi3 − xi1 , . . . , xik − xi1).

Theorem 6.1. The cohomology H∗B
(k)
d (n) = H∗M

(k)
d (n), d � 2, k � 3, n � 0, has

no torsion and can be described as a space spanned by oriented k-forests on the index
set n and quotiented out by the following relations.
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1. Orientation relations:

1.1 Changing the order of the orientation set produces the Koszul sign of per-
mutation.

1.2 A permutation σ ∈ Σk−1 of elements inside a square vertex produces the
sign (−1)|σ|d.

1.3 Changing orientation of an edge produces the sign (−1)d.

2. 3-term relations:

0

A

B

C A A

B B

C C

1 2 1

2 1

2+ + =

(This picture is local—we assume that the three forests are identical except for
the edges going between the square vertices A, B, C. The numbers on the edges
tell in which order the edges appear in the orientation set.)

3. Relations dual to the generalized Jacobi:

m∑
�=1

(−1)�(d−1) ...1 2 m−1...

i1i2 · · · ik−2j�

j1 j2 j�−1 j�+1 jm

= 0 (6.1)

(Again this picture is local. The square vertex above may be connected to other
square vertices, but not to round ones.)

Proof. First, let us check that the cocycles corresponding to k-forests satisfy all the
relations above. Relations 1.1 and 1.2 appear as a change of coorientation. To see 1.3
one notices that changing orientation of an edge produces a different chain: instead
of inequality x1

i � x1
j one would have x1

i � x1
j . Up to a sign (−1) these two chains are

homologous—that’s where we need d � 2. Also, their coorientation differs by (−1)d−1.
Thus the total sign contribution is (−1) · (−1)d−1 = (−1)d.

Relation 2 is equivalent to

+

A

B

C A A

B B

C C

1 2

1

1

2

2=

But the chain representing the left-hand side is exactly the union of the chains
from the right-hand side.

Relation 3 appears as the boundary of a similar chain that can be described by a
similar forest one of whose square vertices has k − 2 elements:
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...

i1i2 · · · ik−2

j1 jm

Remark 6.2. Relation 3 makes sense for m = 1. In other words if we allow k-forests
with square vertices not attached to any round vertex, then the corresponding cocycles
are zero in cohomology. This will be important in the next section, where we will be

studying the multiplicative structure of H∗M
(k)
d (n).

To finish the proof of Theorem 6.1, we have to show that our k-forests cocycles
span the entire cohomology and that there are no other relations. We will prove this
by providing an explicit basis (in the space of such forests) that will be dual to the
basis in homology described by Proposition 3.9. The fact that the intersection pairing
is given by an identity matrix will finish the proof of Proposition 3.9 as well. Our
basis elements will be forests whose components are all either singletons or linear
k-trees:

...A1 A2 A3 As

For a component T0 as above, we will require the following: The elements inside
each square vertex appear in their natural linear order. The round vertices attached to
every square vertex also appear in their linear order. The last round vertex attached
to Ai is greater than the last element inside Ai. The minimal element in T0 appears
either inside A1 or as a round vertex attached to A1.

We leave it as an exercise to the reader that the intersection matrix between the
locally finite cycles corresponding to the aforementioned collection of k-forests and
the cycles from Proposition 3.9 is identity. Otherwise, the reader might wait until
Section 8, where the duality between the homology and cohomology is described
more explicitly.

7. Multiplicative structure in cohomology

In the previous section we described H∗B
(k)
d (n) = H∗M

(k)
d (n) as a space spanned

by certain k-forests. We will now describe the product that is essentially given by a
superposition of such forests. The theorem below makes this statement more precise.

Theorem 7.1. The product of two k-forest cocycles T1, T2 ∈ H∗M
(k)
d (n) is zero in

cases (1)–(3) below. Otherwise, it is a sum of k-forests as defined by (4) and (5).

(1) If there exists at least one square vertex A in T1 and one square vertex B in T2

such that A ∩B �= ∅, then T1 · T2 = 0.
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(In (2)–(5) below, we are assuming that all square vertices of T1 are disjoint from
those of T2. In such a situation one can define a superposition of two forests
denoted by T1 ∪ T2.)

(2) In the case T1 ∪ T2 has cycles then T1 · T2 = 0.

(3) In the case T1 ∪ T2 has a square vertex without any round vertex attached, then
T1 · T2 = 0.

(4) If T1 ∪ T2 is an admissible k-forest, then T1 · T2 = T1 ∪ T2, whose orientation set
is obtained by concatenation of two orientation sets.

(5) It might happen that T1 ∪ T2 has one or several round vertices of valence 2. In
such a case one has to use the 3-term relations as follows in order to write T1 · T2

as a sum of admissible k-forests:

BA A A

1 2

1

1

2

2= +

B B

Proof. (1) In the case A �= B, the intersection of the chains corresponding to T1 and

T2 is empty in M
(k)
d (n). In the case A = B, one can move one of the chains slightly

to get an empty intersection.
(2) One can choose an orientation of edges in T1 and T2 so that the intersection of

the corresponding chains is empty.
(3) See Remark 6.2.
(4) The chains corresponding to T1 and T2 are transversal to one another and their

intersection is exactly the chain corresponding to T1 ∪ T2.
(5) Same as proof of relation 2 in Theorem 6.1.

The theorem below describes H∗B
(k)
d (n) as a quadratic algebra. For a pair of

vertices A and B of a k-forest joined by an edge, we will agree to denote this edge
either by (A,B) or by (i, j), where i is any element in A and j any element in B.

Theorem 7.2. The algebra H∗M
(k)
d (n) is generated by the forests that have only

one square vertex. (Therefore, only one of their components is not a singleton.) The
relations are as follows:

(1) Linear relations in the space of generators are as described by (1) and (3) from
Theorem 6.1.

(2) T1 · T2 = 0 if the square vertex of T1 is not disjoint from that of T2 (in particular,
(T1)

2 = 0).

(3) T1 · T2 = 0 if T1 ∪ T2 has cycles.

(4) T1 · T2 = 0 if T1 ∪ T2 has a square vertex without any round vertex attached.
(This can happen if the square vertex of one of the forests has only one round
vertex attached and that belongs to the square vertex of the second forest.)

(5) Let i belong to a square vertex of T1, and let j belong to a square vertex of
T2; also assume that the edge a = (i, j) belongs to T1. Then one has a relation
T1 · T2 = (T1 \ a) · (T2 ∪ a), where T1 \ a is a forest obtained from T1 by removing
a, and T2 ∪ a is obtained from T2 by adding a:
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=

i

j

i

j

The sign is positive assuming that the edge a is the last element in the orientation
set of T1 and the first element in the orientation set of T2 ∪ a.

(6) If T1 ∪ T2 happens to have a bivalent round vertex, one gets a quadratic relation
that one can draw as follows:

2

1 2 1 2= +

1

Proof. It is clear that any admissible k-forest can be obtained as a product of gener-
ators as above. It is also straightforward that relations from Theorem 6.1 follow from
relations above, and vice versa.

Remark 7.3. For the case k = 2, Theorems 6.1, 7.1, and 7.2, and also the duality
between the homology and cohomology described in the next section, still hold if one

replaces H∗M
(2)
d (n) with a natural associated graded quotient; see Remark 3.12.

8. Duality between homology and cohomology

So far, we described the homology H∗M
(k)
d (n), d � 2, k � 3, as a certain space

spanned by products of iterated brackets, where each such product of brackets is a

cycle realized by products of spheres in M
(k)
d (n). We also described the cohomology

H∗M
(k)
d (n), d � 2, k � 3, as a space spanned by admissible k-forests, where each

forest is a cocycle realized via intersection number with a certain locally finite chain.
In this section we will describe how the aforementioned cycles pair with the cocycles,
or, in other words, how the cycles (realized by products of spheres) intersect with

the locally finite chains described in Section 6. A similar duality for M
(2)
d (n) is well

known [41, 32, 35]. Notice that in top degree H∗Bd(•) is the operad of graded
Lie algebras with bracket of degree (d− 1). Thus H∗Bd(•) in top degree is the Lie
cooperad whose components are explicitly described as spaces of trees quotiented out
by 3-term relations; see Section 2. Such a description of the Lie cooperad is important
in its application to rational homotopy theory [36, 37]. Also, it was used to prove
the formality of the operad of little discs [21, 22].

Let F
(k)
d (n) denote the space of admissible k-forests from Theorem 6.1 modulo only

orientation relations (1). Then H∗M
(k)
d (n) is F

(k)
d (n) quotiented out by the subspace

R
(k)
d (n) ⊂ F

(k)
d (n) spanned by relations (2) and (3):

H∗M
(k)
d (n) = F

(k)
d (n)

/
R

(k)
d (n).

The space F
(k)
d (n) is naturally self-dual by defining its basis set (of admissible k-

forests) to be orthonormal. The homology H∗M
(k)
d (n) is dual to H∗M

(k)
d (n) and can
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be described as the subspace
(
R

(k)
d (n)

)⊥

⊂ F
(k)
d (n). We will describe explicitly this

isomorphism

Ψn : H∗M
(k)
d (n) →

(
R

(k)
d (n)

)⊥

,

which in fact encodes the pairing as

Ψn(B) =
∑
T

〈T,B〉 · T.

Here, the sum is taken over the basis set of F
(k)
d (n).

For simplicity of notation we will be omitting the subscript n. This map Ψ can be
described recursively. First, we define Ψ(1) as the empty graph and

Ψ(xi) = i ,

where the right-hand side is the forest with only one vertex. We also define

Ψ({xi1 · · ·xik}) =
k∑

�=1

(−1)(�−1)d

1

2

i1 · · · î� · · · ik

i�

The numbers 1 and 2 above describe the order in which the corresponding ele-
ments appear in the orientation set. This identity means that the spherical cycle

{xi1 · · ·xik} ∈ M
(k)
d ({i1 · · · ik}) intersects each chain

i1 · · · î� · · · ik

i�

exactly once,

and (−1)(�−1)d is the sign of intersection.2 Then if B happens to be a product
B = B1 ·B2, we get

Ψ(B1 ·B2) := Ψ(B1) 
Ψ(B2).

If B = [B1, B2] and neither B1 nor B2 is a singleton, we get

Ψ([B1, B2]) =
∑

A1∈B�
1

A2∈B�
2

Ψ(B1) ∪ (A1, A2) ∪Ψ(B2), (8.1)

where B�
1 (respectively, B�

2 ) is the set of square vertices of each summand of Ψ(B1)
(respectively, of Ψ(B2))

3; (A1, A2) is the edge going from A1 to A2. The orientation

2At this point we need to fix orientation of the sphere {x1 · · ·xk} ∈ H(k−1)d−1M
(k)
d

(n) in order
to make this pairing work.
3Notice that the set of square vertices for each summand of Ψ(B1) (respectively, Ψ(B2)) is in
one-to-one correspondence with the long brackets in B1 (respectively, B2).
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set for each summand is obtained by writing first the orientation set of a summand
of Ψ(B1), then (A1, A2), then the orientation set for a summand of Ψ(B2).

One similarly has

Ψ([B, xi]) =
∑

A∈B�

Ψ(B) ∪ (A, i) ∪Ψ(xi). (8.2)

Example 8.1. (a) Ψ ([{x1 · · ·xk}, xk+1]) =
∑k

�=1(−1)(�−1)d

1

32

1 · · · �̂ · · · k

� k+1

.

(b) ψ ([{x1 · · ·xk}, {xk+1 · · ·x2k}]) =

k∑
i,j=1

(−1)(i+j)d

3

2 5

1 41 · · · î · · · k k+1 · · · k̂+j · · · 2k

i k+j

.

Remark 8.2. One can consider a slightly larger class of admissible k-forests by allow-
ing round vertices to be connected to any number of square vertices. The advantage
of such a definition is that the multiplicative structure will be given simply by the
superposition of forests. The downside is that the space of cohomology would be less
clearly described. In any case, if one decides to do so, one will also need to take into
account in the formula for pairing the intersections with the new locally finite chains.
In the latter case the formula for (8.1) and (8.2) will be the same—the sum will run
over all vertices A1 in Ψ(B1) and A2 in Ψ(B2), with the only restriction that at least
one of the two is square.

9. Coproduct and cobimodule structures

9.1. Coproduct

Since Bd is a topological operad, its homology is an operad in coalgebras. This
structure is sometimes called a Hopf operad. Let B ∈ H∗Bd(n), d � 2, be any product
of iterated brackets. This cycle is realized by a product of spheres

(Sd−1)k → Bd(n).

Thus ΔB ∈ H∗Bd(n)⊗H∗Bd(n) can be computed from the coproduct of the funda-
mental class of (Sd−1)k. For example:

Δ ([x1, x3] · [x2, x4]) = [x1, x3] · [x2, x4]⊗ x1 · x2 · x3 · x4+

[x1, x3] · x2 · x4 ⊗ x1 · x3 · [x2, x4] + (−1)d−1x1 · x3 · [x2, x4]⊗ [x1, x3] · x2 · x4+

x1 · x2 · x3 · x4 ⊗ [x1, x3] · [x2, x4],
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Δ([[x1, x3], x2]) = [[x1, x3], x2]⊗ x1 · x2 · x3 + [x1, x3] · x2 ⊗ [x1 · x3, x2]+

(−1)d−1[x1 · x3, x2]⊗ [x1, x3] · x2 + x1 · x2 · x3 ⊗ [[x1, x3], x2].

Similarly, H∗B
(k)
d is a Hopf bimodule. The coproduct of any product of iterated brack-

ets (which is also realized as a map from products of spheres) is computed in the same
manner. For example,

Δ [{x1 · · ·xk}, {xk+1 · · ·x2k}] = [{x1 · · ·xk}, {xk+1 · · ·x2k}]⊗ x1 · · ·x2k+

[{x1 · · ·xk}, xk+1 · · ·x2k]⊗ x1 · · ·xk · {xk+1 · · ·x2k}+

(−1)kd [x1 · · ·xk, {xk+1 · · ·x2k}]⊗ {x1 · · ·xk} · xk+1 · · ·x2k+

{x1 · · ·xk} · xk+1 · · ·x2k ⊗ [x1 · · ·xk, {xk+1 · · ·x2k}] +

(−1)kdx1 · · ·xk · {xk+1 · · ·x2k} ⊗ [{x1 · · ·xk}, xk+1 · · ·x2k] +

x1 · · ·x2k ⊗ [{x1 · · ·xk}, {xk+1 · · ·x2k}] .

(The two summands producing zero were omitted.)
Notice that the space of primitives is spanned by the elements that have exactly

one long bracket. This space is dual to the space of generators; see Theorem 7.2.

9.2. Cobimodule structure
The cooperad structure of H∗Bd is given by the maps

H∗Bd(m1 + · · ·+mn) → H∗Bd(n)⊗H∗Bd(m1)⊗ · · · ⊗H∗Bd(mn) (9.1)

induced by the composition maps in Bd. Explicitly, given a forest T ∈ H∗Bd(m1 +
· · ·+mn), d � 2, the map (9.1) sends it to

T �→ ±(T/∼)⊗ T1 ⊗ · · · ⊗ Tn, (9.2)

where Ts is the restriction of T on the set

Ms =

{
s−1∑
i=1

mi + 1,

s−1∑
i=1

mi + 2, . . . ,

s−1∑
i=1

mi +ms

}
and T/∼ is the quotient of T by the subgraphs Ts, s = 1, . . . , �. In particular if T/∼
has cycles, the result is zero. The sign in (9.2) is the Koszul sign due to reordering of
the edges of T . This cooperad structure was used for example in [22, 36, 37].

The coaction maps

H∗B
(k)
d (m1 + · · ·+mn) → H∗Bd(n)⊗H∗B

(k)
d (m1)⊗ · · · ⊗H∗B

(k)
d (mn), (9.3)

H∗B
(k)
d (m1 + · · ·+mn) → H∗B

(k)
d (n)⊗H∗Bd(m1)⊗ · · · ⊗H∗Bd(mn) (9.4)

are described by the same formula, (9.2). In the case of left coaction (9.3), to get
non-zero each square vertex of T must be entirely inside one of the Ms’s. For the
right coaction (9.4), one obtains non-zero only if at most one element of each square
vertex A of T is contained in each of the Ms:

|A ∩Ms| � 1, s = 1, . . . , n.

Remark 9.1. In the case d = 1 the coaction has a different description. In fact, Barysh-

nikov’s description of H∗B
(k)
1 (•)—see Section 4—is also nicely compatible with the

cobimodule structure over the associative cooperad H∗B1.
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10. Symmetric group action and generating function

of dimensions

The symmetric group action on the (co)homology of the poset Πn,k and on

H∗M
(k)
2 (n) was computed in [38]. The results can be generalized without any diffi-

culty to any ambient dimension d; see Theorem 10.3, below. Our operadic approach
of studying this homology makes the results of [38] more transparent. Also, the sym-
metric group action helps to produce an explicit generating function of the Betti
numbers (see Corollary 10.5), which seems to be overlooked in the literature and is
given here for completeness of exposition.

The symmetric sequences of graded vector spaces form a monoidal category with
respect to the composition operation ◦ and unit 1 [24]. If we are working over a field
any symmetric sequence M(n), n � 0, defines a functor M : V ect → V ect that sends
a vector space V �→ ⊕∞

n=0M(n)⊗Σn
V ⊗n. The composition is defined in such a way

that (M ◦N)(V ) = M(N(V )). In fact, one does not need the base ring to be a field
in order to define this composition. The unit 1 for this operation is the sequence
that is zero in all arities except one, and is the base ring in arity one. Notice that
1 : V ect → V ect is the identity functor. The construction works nicely over integers:
in the case where M and N are torsion-free and N(0) = 0, the composition M ◦N
is also torsion-free. For a graded vector space V = ⊕n∈ZVn, we will define its graded
dimension as a formal power series in q:

dimV =
∑
n

dimVn · qn.

For a symmetric sequence M of graded vector spaces, we define the exponential gen-
erating function of its components

FM (x) =
+∞∑
j=0

dimM(j)
xj

j!
.

One has

FM◦N (x) = FM (FN (x)). (10.1)

For a symmetric sequence M , denote by M{d} its operadic d-suspension. As a vector
space M{d}(n) is d(n− 1)-times suspended space M(n). As a Σn-module M{d}(n) �
M(n)⊗ (signn)

⊗d, where signn is the sign representation of Σn. It is straightforward
that

FM{d}(x) =
1

qd
FM (qdx). (10.2)

Notice also that

(M ◦N){d} = (M{d}) ◦ (N{d}) . (10.3)

Recall that Com denotes the operad of commutative unital algebras and that Lie
denotes the operad of Lie algebras—both viewed as symmetric sequences over Z. One
has

FCom(x) = ex, (10.4)

FLie(x) = − ln(1− x). (10.5)
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Let H
(k)
d (n) ⊂ H∗B

(k)
d (n) be the subspace spanned by elements of the form

[· · · [{xσ1
· · ·xσk

}, xσk+1
] · · ·xσn

] (in other words, spanned by the iterated brackets

that have only one long bracket). The operadic (d− 1)-desuspension H
(k)
d {1− d} of

this symmetric sequence does not depend on d and will be denoted by H
(k)
1 . It fol-

lows from Proposition 3.9 that H
(k)
1 (n) is concentrated in grading (k − 2) and has

dimension
(
n−1
k−1

)
. One has

F
H

(k)
1

(x) =
qk−2xk

(k − 1)!

+∞∑
j=0

xj

(j + k) · j!
= (−q)k−2 − (−q)k−2

⎛⎝k−1∑
j=0

(−x)j

j!

⎞⎠ ex. (10.6)

The last equality was obtained by noticing that

F ′

H
(k)
1

(x) =
qk−2

(k − 1)!
xk−1ex (10.7)

and then integrating.

Lemma 10.1. For any n � k � 2, one has an isomorphism of Z[Σn]-modules

H
(k)
1 (n) � Z[Σn] · a · b,

where a =
∑

σ∈Σk
(−1)|σ|σ and b =

∑
σ∈Σ{1,k+1,k+2,...,n}

σ.

In particular this lemma says that H
(k)
1 (n)⊗Q is the irreducible representation of

hook type (n− k + 1, k); see [17].

Proof. We define a map H
(k)
1 (n) → Z[Σn] · a · b by sending [· · · [{x1 · · ·xk}, xk+1],

· · ·xn] �→ e · a · b, where e ∈ Σn is the unit element. One has to check that this
map is correctly defined. First, we notice that any element σ ∈ Σk acts both on
[· · · [{x1 · · ·xk}, xk+1] · · ·xn] and on e · a · b as multiplication by (−1)σ. Also, any
σ ∈ Σ{k+1,k+1,...,n} acts as the identity on both of them. And finally, an easy ver-
ification shows that relation (3.3) is also satisfied. On the other hand, the map is
obviously surjective. The fact that the target has the same dimension

(
n−1
k−1

)
as the

source ensures that the map is an isomorphism.

Remark 10.2. Let H
(k)
1 (n)∨ denote the dual Σn-module that we described as a space

of k-trees with a single square vertex and quotiented out by relations (6.1). Looking
at the generalized Jacobi (3.3) and the relations (6.1), it is easy to see that one has an

obvious isomorphism of Σn-modules H
(k)
1 (n)∨ � H

(n−k+1)
1 (n)⊗ signn. This implies

that one has a Z[Σn]-module isomorphism (H
(k)
1 (n))∨ � Z[Σn] · b · a, where a and b

are from Lemma 10.1.4

Theorem 10.3 ([38]). For d � 2, k � 3, one has a natural isomorphism of symmet-
ric sequences

H∗B
(k)
d � Com ◦

(
1⊕ (Lie ◦ H

(k)
1 ){d− 1}

)
. (10.8)

For d = 1 and/or k = 2, this isomorphism holds over Q.

4Of course, rationally, a Σn-module is always isomorphic to its dual: Q[Σn] · a · b � Q[Σn] · b · a.
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Proof. In the case d � 2, k � 3, one has that H∗B
(k)
d is a left module over H∗Bd =

Com ◦ (Lie{d− 1}) and H
(k)
d (•) � H

(k)
1 {d− 1}(•) is a sequence of subobjects in

H∗B
(k)
d (•). This left action defines a map

Com ◦
(
1⊕ (Lie{d− 1}) ◦ H

(k)
d

)
→ H∗B

(k)
d ,

where 1 corresponds to H0B
(k)
d (1) � Z. Proposition 3.9 ensures that this map is an

isomorphism.
In the case k = 2, the right-hand side of (10.8) is isomorphic to the associated

graded quotient of H∗B
(2)
d by a similar argument and by Remark 3.12; see also

Remark 7.3. Since over Q any filtration of Σn-modules splits, we get the result.
Similarly, for d = 1, the operad H∗B1 = Assoc admits a natural increasing

(Poincaré–Birkhoff–Witt) filtration, whose associated graded quotient is the Pois-
son operad. The aforementioned filtration is compatible with a filtration in the left

module H∗B
(k)
1 . The associated graded quotient of the latter symmetric sequence is

the right-hand side of (10.8).
In the case k = 2 and d = 1 one has to take the associated graded quotient twice.

Remark 10.4. In particular, we get an isomorphism of symmetric sequences

1⊕ Lie ◦ H
(2)
1 �Q Lie, (10.9)

which at first might appear surprising, but it simply means that for any (graded) vec-
tor space V the Lie subalgebra Lie�2(V ) (spanned by Lie monomials of degree � 2)
of the free Lie algebra Lie(V ) (generated by V ) is isomorphic to the free Lie alge-

bra generated by H
(2)
1 (V ) = ⊕n�2H

(2)
1 (n)⊗Σn

V ⊗n. This is a particular occurence
of a general fact that a Lie subalgebra of a free Lie algebra is always free [29]. The
isomorphism (10.9) is actually also due to Reutenauer [30].

Corollary 10.5. The exponential generating function of graded dimensions for the

symmetric sequence H∗B
(k)
d (•) is as follows:

F
H∗B

(k)
d

(x) = ex

⎛⎝1− (−q)k−2 + (−q)k−2

⎛⎝k−1∑
j=0

(−qd−1x)j

j!

⎞⎠ eq
d−1x

⎞⎠− 1

qd−1

.

(10.10)

Remark 10.6. For explicit computations of the Betti numbers, it is more convenient
to use the formula

F
H∗B

(k)
d

(x) = ex

⎛⎝1−
qkd−2xk

(k − 1)!

+∞∑
j=0

(qd−1x)j

(j + k) · j!

⎞⎠− 1

qd−1

. (10.11)

Proof of Corollary 10.5. It is a consequence of Theorem 10.3 together with (10.1),
(10.2), (10.4), (10.5), and (10.6).

Remark 10.7. The Betti numbers for M
(k)
d (n) were computed in [6]; see also [28].

The formulae (10.10), (10.11) provide a more compact way to keep track of these
data.
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11. Application to spaces of non-k-equal immersions

This section is quite separate from the rest of the paper. Its goal is to show that the
considered bimodules appear very naturally in topology, and what we explain here
is just one of its applications. We use our calculations to study the structure—but
not the convergence properties—of the Goodwillie–Weiss and Vassiliev approaches.
Indeed, these spaces of k-equal immersions are conjectured to play a role in connecting
these two different successful approaches to embedding spaces. Theorems 11.1, and
11.2–11.3, below, were proved for embedding spaces in [33, 39] and [2], respectively.
We just want to point out that the proofs are completely analogous for spaces of
non-k-equal immersions.

Let M be an open subset of Rm, and let n > m. Consider the space Imm(k)(M,Rn)
of smooth immersions f : M � Rn such that for any cardinality k subset K ⊂ M , one
has that f |K is non-constant. We call such maps non-k-equal immersions. For example

the space Imm(2)(M,Rn) is the space of embeddings Emb(M,Rn).

Let Imm(M,Rn) denote the space of smooth immersions, and let Imm
(k)

(M,Rn)

be the homotopy fiber of the natural inclusion Imm(k)(M,Rn) ↪→ Imm(M,Rn) over
the composition M ⊂ Rm ⊂ Rn.

We will also consider spaces Imm(k)
c (Rm,Rn) of long non-k-equal smooth immer-

sions, where the subscript c stays for compact support. Points of this space are non-
k-equal immersions Rm � Rn coinciding with the fixed linear inclusion Rm ⊂ Rn

outside a compact subset of Rm. One gets a similar fiber sequence

Imm
(k)

c (Rm,Rn) → Imm(k)
c (Rm,Rn) → Immc(R

m,Rn). (11.1)

The Smale–Hirsch principle [20] provides us with natural equivalences

Immc(R
m,Rn) � ΩmVm,n, (11.2)

Imm(M,Rn) � Maps(M,Vm,n), (11.3)

where Vm,n is the Stiefel manifold of isometric linear maps Rm ↪→ Rn.

The reason we study Imm
(k)

(M,Rn) and Imm
(k)

c (Rm,Rn) is that their homotopy
type and homology have nice properties in comparison with the initial spaces of
non-k-equal immersions. But, at the same time, they differ from Imm(k)(M,Rn) and

Imm(k)
c (Rm,Rn) by an easily controllable term (11.2), (11.3).

There are two main approaches to study such functional spaces. The first approach,
due to Vassiliev and usually called the theory of discriminants [45], considers the
space of all smooth maps from our manifold to Rn. This space is an affine space
of infinite dimension and thus contractible. The cohomology classes of the space of
maps that avoid any given types of singularities are described via linking number
with cycles (of finite codimension) in the complement space called discriminant that
consists of singular maps. The discriminant is a semi-algebraic set whose stratifi-
cation provides the necessary combinatorial information to compute the homology
of the complement. The second approach, called manifold calculus, was developed
by Goodwillie and Weiss [19, 47]. This second approach was mostly used to study
spaces of embeddings, but it can also be used to study more general functional spaces.
For this approach instead of looking on maps from M to N (avoiding given multi-
singularities), one varies the source to be any open subset U ⊂ M . This produces a
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presheaf on M in topological spaces. In some cases, the obtained presheaf is a homo-
topy sheaf (for example, it is the case for spaces of immersions), but in general it is
not true. Homotopy sheaves are linear functors from the point of view of manifold
calculus. But there are also quadratic, cubical, and, more generally, polynomial of
any degree k presheaves, which also means that they have some nice “from local to
global” properties. The manifold calculus assigns to any topological presheaf on M
a Taylor tower of its polynomial approximations: T0F ← T1F ← T2F ← T3F ← · · · .
In good cases the limit of the tower T∞F is equivalent to F .

We believe that Vassiliev’s theory of discriminants can also be expressed in terms
of the manifold calculus by describing the discriminant set as a spectrum Spanier–
Whitehead dual to the given space of non-singular maps. (Here, one has to con-
sider the copresheaf that assigns to U the corresponding spectrum. Notice that one
will need to use the covariant version of the calculus instead of the contravariant
one usually used.) This construction would prove an equivalence of two approaches.
There is work in this direction [31] that establishes the equivalence between the two

approaches in many cases—in particular, it covers the case of spaces Imm(k)(M,Rn),
where M is any compact smooth m-manifold (in particular, it can be closed) k � 3,

n � 2m+ 1, implying T∞C∗ Imm(k)(M,Rn) � C∗ Imm(k)(M,Rn). Unfortunately, the
results of [31] cannot be applied to the spaces we consider. Some technicalities appear,
but we believe it is feasible that they can be resolved.

Both methods produce spectral sequences computing the homology, and the first
term of the Vassiliev spectral sequence is isomorphic to the second term of the mani-
fold calculus homology spectral sequence. Manifold calculus also produces the homo-
topy spectral sequence that in the case of embeddings converges to the homotopy of
the underlying space in the case of codimension n−m � 3, while the homology spec-

tral sequence has this property only in the range n � 2m+ 2. For Imm
(k)

(M,Rn) and

Imm
(k)

c (Rm,Rn), Vassiliev’s spectral sequence can be easily shown, by the techniques
developed in [45], to converge to the homology of those spaces for n � 2m+ 2, and

for Imm(k)(M,Rn) and Imm(k)
c (Rm,Rn), k � 3, for n � 2m+ 1. The convergence of

the homotopy spectral sequences for those spaces arising from the Goodwillie–Weiss
calculus approach has not been studied yet in the case k � 3 and seems to be a diffi-
cult question. The results of [31] prove the convergence of the homology Goodwillie–

Weiss spectral sequence for Imm(k)(M,Rn), k � 3, n � 2m+ 1 (which is equivalent

to saying T∞C∗ Imm(k)(M,Rn) � C∗ Imm(k)(M,Rn)), but not for Imm
(k)

(M,Rn),

Imm(k)
c (Rm,Rn), Imm

(k)

c (Rm,Rn).
On the other hand, the manifold calculus can be translated into operadic lan-

guage [2, 7, 43]. We explain below how this interpretation is applied to the spaces

Imm
(k)

c (Rm,Rn), Imm
(k)

(M,Rn).

As we have seen in Section 3, H∗B
(k)
n is a bimodule under H∗Bn. Inclusion R1 ⊂ Rn

induces inclusion of operads B1 ↪→ Bn, which produces a map of operads in homology:

Assoc → H∗Bn. Due to this morphism, H∗B
(k)
n is also a bimodule under Assoc, which

endows H∗B
(k)
n with a cosimplicial structure.5

5One uses compositions with the product x1x2 ∈ Assoc(2) to get coface maps, and compositions
with the unit 1 ∈ Assoc(0) to get codegeneracies.
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Theorem 11.1. For n � 3, the first term of the Vassiliev spectral sequence and the
second term of the manifold calculus homology spectral sequence computing

H∗Imm
(k)

c (R1,Rn) is isomorphic to the homology of the total cosimplicial complex

TotH∗B
(k)
n (•). In the case n � 4, the Vassiliev spectral sequence converges to the

homology of this space.

For the Vassiliev method, one has to consider the space Imm
(k)

c (R1,Rn) as an
open subset in the space of all smooth maps [0, 1]× R → Rn with the restriction
f(t, x) = (x, 0, 0, . . . , 0) outside a compact subset of [0, 1)× R, as in [40]. We reiterate
that the convergence of the manifold calculus spectral sequence to the homology of the
underlying space still needs to be studied. One way to produce the manifold calculus
spectral sequence is to use the idea and techniques described by D. Sinha [33, 34] and

construct a cosimplicial space whose totalization is T∞Imm
(k)

c (R1,Rn) (D. Sinha does
it for the space of long embeddings). Thus the spectral sequence in question appears
as the Bousfield–Kan spectral sequence associated to the corresponding cosimplicial
space. The only difference is that one does not have a natural compactifiation of

configuration spaces M
(k)
n (•) that would turn them into a cosimplicial object. So

instead one can first notice that B
(k)
n is a bimodule under B1 by restriction and due to

the inclusion B1 ↪→ Bn. Therefore, B
(k)
n is an infinitesimal bimodule over B1; see below.

Using an obvious projection B1 → Assoc (which is an equivalence of operads) we get a
restriction functor from infinitesimal bimodules over Assoc to infinitesimal bimodules
over B1. Its left adjoint induction functor applied to a cofibrant replacement of B

(k)
n (as

B1 infinitesimal bimodule) produces an infinitesimal Assoc bimodule. That’s exactly
what we need, as the structure of an infinitesimal bimodule over Assoc is essentially
the same thing as the structure of a cosimplicial object [42, Lemma 4.2].

For the manifold calculus approach, Theorem 11.1 is a particular instance of The-
orem 11.2, below. In order to formulate a higher-dimensional analogue, we need to
recall some terminology from the theory of operads.

An infinitesimal bimodule over an operad O is a sequence of objects M = {M(n),
n � 0} (symmetric sequence in case O is a Σ-operad, or just a seqence in case O is
non-Σ), endowed with composition maps:

◦i : O(n)⊗M(k) → M(n+ k − 1) (infinitesimal left action),

◦i : M(n)⊗O(k) → M(n+ k − 1) (infinitesimal right action).

These composition maps have to satisfy natural unity, associativity, and Σ-
compatibility conditions [24, 26, 42]. For example, an infinitesimal bimodule over
the non-Σ associative operad is exactly the same thing as a cosimplicial object.

Notice that infinitesimal right action is equivalent to the usual right action since one
can use the identity element id ∈ O(1) to mimic empty insertions. But infinitesimal
left action is essentially different from the usual left action. Moreover, neither of them
can be obtained one from another. However, in the case where M is a bimodule under
O, i.e., M is a bimodule over O endowed with a map of O-bimodules ρ : O → M , then

M inherits the structure of an infinitesimal bimodule.6 Thus B
(k)
n is an infinitesimal

bimodule over Bn and also over Bm, m < n, by restriction.

6One uses ρ(id) to mimic empty insertions.
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Theorem 11.2 appeared in [2] for spaces of embeddings. The proof works also in
our situation.

Theorem 11.2 ([2]). The limit of the Goodwillie–Weiss tower for the space

Imm
(k)

c (Rm,Rn), n > m, is weakly equivalent to the space of derived maps of infinites-
imal bimodules over Bm:

T∞Imm
(k)

c (Rm,Rn) � hIBimBm
(Bm,B(k)

n ). (11.4)

The same is true for singular chains:

T∞C∗Imm
(k)

c (Rm,Rn) � hIBimC∗Bm
(C∗Bm, C∗B

(k)
n ). (11.5)

For a codimesnion zero submanifold M ⊂ Rm, denote by sEmb(•,M) the symmet-
ric sequence sEmb(
nD

m,M), n � 0, where sEmb stands for the space of standard
embeddings which on each connected component are compositions of translations and
rescalings. Notice that sEmb(•,M) is naturally a right module over Bm. The theorem
below is a particular case of the enriched version of the manifold calculus.

Theorem 11.3 ([2, 7, 43]). For any open M ⊂ Rm the limit for the Goodwillie–

Weiss tower for the space Imm
(k)

(M,Rn), n > m, is weakly equivalent to the space
of derived maps of right modules over Bm:

T∞Imm
(k)

(M,Rn) � hRmodBm
(sEmb(•,M),B(k)

n ). (11.6)

The same is true for singular chains:

T∞C∗Imm
(k)

(M,Rn) � hRmodC∗Bm
(C∗ sEmb(•,M), C∗B

(k)
n ). (11.7)

The second parts of Theorems 11.2 and 11.3 imply that there are natural spec-

tral sequences computing H∗Imm
(k)

c (Rm,Rn), H∗Imm
(k)

(M,Rn) (manifold calculus
homology spectral sequences) whose first terms together with their differentials are

described using the infinitesimal H∗Bm-bimodule structure of H∗B
(k)
n .

Theorem 11.3 has a version where M is any manifold and not necessarily an open
subset of Rm. In the latter case, one has to use the framed discs operad instead, as

well as the framed version of B
(k)
n ; see [7, 43].

We finish this paper by mentioning that the fact that B
(k)
n is a bimodule under

Bm (and not only an infinitesimal bimodule) governs the Bm-algebra structure on

T∞Imm
(k)

c (Rm,Rn). The following result was announced by Dwyer and Hess [15]:

Theorem 11.4 (Dwyer and Hess [15]). Let M be a bimodule under Bm satisfying
M(0) � M(1) � ∗; then

hIBimBm
(Bm,M) � Ωm hBimBm

(Bm,M).

The right-hand side hBim(−,−) above denotes the space of derived maps of bimod-
ules, and Ωm denotes as usual the m-iterated loop space, where for a base point
one takes the structure map Bm → M . In the case m = 1 this theorem was proved
in [14, 44]. In the case where M is an operad and the map Bm → M is a morphism
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of operads (which still enables M with a structure of a bimodule under Bm), one can
get an extra delooping

hIBimBm
(Bm,M) � Ωm+1 hOperad(Bm,M).

This equivalence for M = Bn corresponds to the fact that the space Embc(R
m,Rn)

has a structure of a Bm+1-algebra thanks to the fact that one can pull one knot
through the other [8, Corollary 7]; [42, Proposition 1.1]. But the space

Imm
(k)

c (Rm,Rn), k � 3, is only a Bm-algebra—given two long non-k-equal immer-
sions, pulling one such map through the other is impossible in general since it might
produce forbidden singularities.
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