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Abstract
In a recent paper, we introduced a much weaker and easy to verify

structure than a model category, which we called a “weak fibration
category.” We further showed that an essentially small weak fibra-
tion category can be “completed” into a full model category struc-
ture on its pro-category, provided the pro-category satisfies a certain
two-out-of-three property. In the present paper, we give sufficient
intrinsic conditions on a weak fibration category for this two-out-
of-three property to hold. We apply these results to prove theorems
giving sufficient conditions for the finite accessibility of the category
of weak equivalences in combinatorial model categories. We apply
these theorems to the standard model structure on the category
of simplicial sets and deduce that its class of weak equivalences is
finitely accessible. The same result on simplicial sets was recently
proved also by Raptis and Rosický [RaRo], using different methods.

1. Introduction

In certain respects, in the algebraic approach to homotopy theory, the basic object
of study is a category C endowed with a class of morphisms W, called weak-equiv-
alences, that should be considered as “isomorphisms honoris causa.” If the class of
weak-equivalences is well behaved, we say that (C,W) is a relative category:

Definition 1.1. A relative category is a pair (C,W), consisting of a category C and
a subcategory W ⊆ C that contains all the isomorphisms and satisfies the two-out-of-
three property; W is called the subcategory of weak-equivalences.

The data of a relative category is enough to define most of the constructions
needed in homotopy theory such as mapping spaces, homotopy limits, derived func-
tors, etc. In fact, a relative category is one of the models for the abstract notion of an
(∞, 1)-category, which enables one to define these concepts via universal properties
(see [BaKa, Lur]).
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Alas, in a relative category, it is in practice very hard to ensure the existence
of wanted objects or to carry out any computations. Thus, working effectively in
a relative category (C,W) is usually achieved by adding some extra structure. The
most prevalent example is the structure of a model category defined by Quillen in
[Qui]. Model categories, albeit very useful, admit quite a “heavy” axiomatization. A
model category consists of relative category (C,W) together with two subcategories
F , Cof of C called fibrations and cofibrations. The quadruple (C,W,F , Cof) should
satisfy many axioms. (We refer the reader to [Hov] for the modern definition of
a model category.) The axioms for a model category are often very hard to verify,
and furthermore, there are situations in which there is a natural definition of weak
equivalences and fibrations; however, the resulting structure is not a model category.
(Note that the structure of a model category is determined by the classes of weak
equivalences and fibrations, since the class of cofibrations is then determined by a left
lifting property.)

In [BaSc2], we introduced a structure that is easier to verify and much weaker than
a model category; we called it a “weak fibration category.” A weak fibration category
consists of a relative category (C,W) together with one subcategory F of C called
fibrations, satisfying certain axioms (see Definition 2.12). In [BaSc2], we show that
a weak fibration category can be “completed” into a full model category structure
on its pro-category, provided it satisfies conditions that we call “pro-admissible” and
“homotopically small.” The property of being homotopically small is a bit technical
and we will not need it here. What is important for us here is that any essentially
small weak fibration category is homotopically small.

The property of pro-admissibility is easier to define, and we now bring a definition.
Let (C,W,F) be a weak fibration category. We say that a morphism in Pro(C) is in
Lw

∼=(W) if it is isomorphic, as a morphism in Pro(C), to a natural transformation
that is level-wise in W.

Remark 1.2. It is not hard to see that Lw
∼=(W) is the essential image of Pro(W)

under the natural equivalence Pro(C→) → Pro(C)→ (where W is considered as a full
subcategory of C→).

We say that the weak fibration category (C,F ,W) is pro-admissible if

(Pro(C), Lw∼=(W))

is a relative category (or, in other words, if Lw
∼=(W) satisfies the two-out-of-three

property). From [BaSc2, Theorem 4.18] it easily follows (for more details see Theo-
rem 2.18):

Theorem 1.3. Let (C,W,F) be an essentially small pro-admissible weak fibration
category. Then there exists a model category structure on Pro(C) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The cofibrations are C := ⊥(F ∩W).

3. The fibrations are maps satisfying the right lifting property with respect to all
acyclic fibrations.

Moreover, this model category is ω-cocombinatorial, with F as the set of generating
fibrations and F ∩W as the set of generating acyclic fibrations.
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Remark 1.4. 1. Note that by abuse of notation we consider morphisms of C as
morphisms of Pro(C) indexed by the trivial diagram.

2. A more explicit description of the fibrations in this model structure can be given,
but this requires some more definitions. We give the more detailed theorem in
the appendix (see Theorem A.7).

3. A model category is said to be cocombinatorial if its opposite category is com-
binatorial. Combinatorial model categories were introduced by J. H. Smith as
model categories that are locally presentable and cofibrantly generated (see, for
instance, the appendix of [Lur]). If γ is a regular cardinal, we also follow J. H.
Smith and call a model category γ-combinatorial if it is combinatorial and both
cofibrations and trivial cofibrations are generated by sets of morphisms having
γ-presentable domains and codomains.

The pro-admissibility condition on a weak cofibration category C, appearing in
Theorem 1.3, is not intrinsic to C. It is useful to be able to deduce the pro-admissibility
of C only from conditions on C itself. One purpose of this paper is to give one possible
solution to this problem. This is done in Section 3.

Everything we have discussed so far is completely dualizable. Thus we can define
the notion of an ind-admissible weak cofibration category, and show the following:

Theorem 1.5. Let (M,W, C) be an essentially small ind-admissible weak cofibration
category. Then there exists a model category structure on Ind(M) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The fibrations are F = (C ∩W)⊥.
3. The cofibrations are maps satisfying the left lifting property with respect to all

acyclic fibrations.

Moreover, this model category is ω-combinatorial, with C as the set of generating
cofibrations and C ∩W as the set of generating acyclic cofibrations.

Model categories constructed using Theorem 1.5 have some further convenient
property, namely, their class of weak equivalences is finitely accessible, when viewed
as a full subcategory of the morphism category (we follow the terminology of [AdRo]
throughout this paper). This means that it is of the form Ind(D) for some essentially
small category D. This assertion follows from the observation that Lw

∼=(W) is the
essential image of Ind(W) under the natural equivalence Ind(C→) → Ind(C)→, where
W is considered as a full subcategory of C→. It then follows that Ind(W) is a full
subcategory of Ind(C→), and thus Ind(W) � Lw

∼=(W).
In [BaSc2] we have applied (a generalization of) Theorem 1.3 to a specific weak

fibration category (namely, the category of simplicial sheaves over a Grothendieck
site, where the weak equivalences and the fibrations are local in the sense of Jardine)
to obtain a novel model structure in its pro-category. In this paper we also consider
an application of Theorem 1.3 (or rather of its dual version, Theorem 1.5), but in a
reverse direction. Namely, we begin with an ω-combinatorial model category M and
ask whether the model structure on M is induced, via Theorem 1.5, from a weak
cofibration structure on its full subcategory of finitely presentable objects. The main
conclusion we wish to deduce from this is the finite accessibility of the class of weak
equivalences in M, as explained above.
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While we were writing the first draft of this paper, Raptis and Rosický published a
paper with some related results [RaRo]. In their paper, Raptis and Rosický mention
that while the class of weak equivalences in any combinatorial model category is
known to be accessible, the known estimates for the accessibility rank are generally
not the best possible. In their paper, they prove theorems giving estimates for the
accessibility rank of weak equivalences in various cases. Their main application is to
the standard model structure on simplicial sets. They show that the class of weak
equivalences in this model structure is finitely accessible.

The purpose of this paper is the same, as well as the main example. Namely,
we prove theorems giving estimates for the accessibility rank of weak equivalences
in various cases, and our main example is the category of simplicial sets on which
we achieve a similar estimate as [RaRo]. However, our theorems, as well as the
methods of proof, are completely different. Since our basic tool is based on applying
Theorem 1.5 as explained above, our estimates only concern finite accessibility. We do
believe, however, that Theorem 1.5, and thus also our results here, can be generalized
to an arbitrary cardinal instead of ω. On the other hand, our theorems apply also in
cases where the theorems in [RaRo] do not.

We will now state our main results. For this, we first need a definition:

Definition 1.6. Let (C,W) be a relative category. A map f : A → B in C will be
called right proper, if for every pull-back square of the form

C

j

��

�� D

i

��
A

f �� B

such that i is a weak equivalence, the map j is also a weak equivalence.

We can now state our first criterion for the finite accessibility of the category of
weak equivalences (see Theorem 4.4):

Theorem 1.7. Let (M,W,F , C) be an ω-combinatorial left proper model category.
Let M denote the full subcategory of M spanned by the finitely presentable objects.

Suppose we are given a cylinder object in M, that is, for every object B of M we
are given a factorization in M of the fold map B �B → B into a cofibration followed
by a weak equivalence:

B �B
(i0,i1)−−−−→ I ⊗B

p−→ B.

(Note that we are not assuming any simplicial structure; I ⊗B is just a suggestive
notation.)

We make the following further assumptions:

1. The category M has finite limits.

2. Every object in M is cofibrant.
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3. For every morphism f : A → B in M the map B
∐

A(I ⊗A) → B, induced by
the commutative square

A

f

��

i0 �� I ⊗A

f◦p
��

B
= �� B,

is a right proper map in (M,W).

Then the full subcategory of the morphism category of M, spanned by the class of
weak equivalences, is finitely accessible.

Our second criterion can be shown using the first one (see Theorem 4.5):

Theorem 1.8. Let (M,W,F , C) be an ω-combinatorial left proper model category.
Let M denote the full subcategory of M spanned by the finitely presentable objects.
Assume that the category M has finite limits, and let ∗ denote the terminal object
in M.

Suppose we are given a factorization in M of the fold map ∗ � ∗ → ∗ into a cofi-
bration followed by a weak equivalence:

∗ � ∗ −→ I −→ ∗.
We make the following further assumptions:

1. For every morphism Y → B in M, the functor

Y ×B (−) : M/B → M
commutes with finite colimits.

2. Every object in M is cofibrant.

3. For every object B in M, the functor

B × (−) : M → M
preserves cofibrations and weak equivalences.

Then the full subcategory of the morphism category of M, spanned by the class of
weak equivalences, is finitely accessible.

It is not hard to verify that the standard model structure on the category of
simplicial sets satisfies the hypothesis of the previous theorem (see Theorem 4.6).
Thus, we obtain the following:

Theorem 1.9. The full subcategory of the morphism category of S, spanned by the
class of weak equivalences, is finitely accessible.

As mentioned above, Theorem 1.9 was also proved in [RaRo], using different
methods. In the appendix, we prove some results that might shed some light as to
possible connections between the approach taken in this paper, and that of Raptis
and Rosický. To prove these results, we will need to present the more detailed version
of Theorem 1.5 (see Theorem A.7).
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1.1. Organization of the paper
In Section 2, we give a short review of the necessary background on pro-categories

and model structures on them. Everything in this section dualizes easily to ind-
categories. In Section 3, we prove a theorem giving sufficient intrinsic conditions for
the pro-admissibility of a weak fibration category. We also define an auxiliary notion
that generalizes the notion of a model category. The results and definitions of Section 3
will be used in Section 4, where we prove the main results of this paper, namely, a
series of criteria for the finite accessibility of the category of weak equivalences.
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2. Preliminaries: model structures on pro-categories

In this section, we review the necessary background of model structures on pro-
categories. We state the results without proof, for later reference. For proofs and
more information, the reader is referred to [ArMa, Isa1, BaSc1, BaSc2]. All these
results are easily dualized to the case of ind-categories.

2.1. Pro-categories
Definition 2.1. A category I is called cofiltered if the following conditions are sat-
isfied:

1. The category I is non-empty.

2. For every pair of objects s, t ∈ I, there exists an object u ∈ I, together with
morphisms u → s and u → t.

3. For every pair of morphisms f, g : s → t in I, there exists a morphism h : u → s
in I such that f ◦ h = g ◦ h.

A category is called small if it has only a set of objects and a set of morphisms.

Definition 2.2. Let C be a category. The category Pro(C) has as objects all diagrams
in C of the form I → C such that I is small and cofiltered (see Definition 2.1). The
morphisms are defined by the formula

HomPro(C)(X,Y ) := lim
s

colim
t

HomC(Xt, Ys).

Composition of morphisms is defined in the obvious way.

Thus, if X : I → C and Y : J → C are objects in Pro(C), providing a morphism
X → Y means specifying for every s in J an object t in I and a morphism Xt → Ys

in C. These morphisms should of course satisfy some compatibility condition. In
particular, if the indexing categories are equal, I = J , any natural transformation
X → Y gives rise to a morphism X → Y in Pro(C). More generally, if p : J → I
is a functor, and φ : p∗X := X ◦ p → Y is a natural transformation, then the pair
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(p, φ) determines a morphism νp,φ : X → Y in Pro(C) (for every s in J , we take the
morphism φs : Xp(s) → Ys). In particular, taking Y = p∗X and φ to be the identity
natural transformation, we see that p determines a morphism νp,X : X → p∗X in
Pro(C).

The word pro-object refers to objects of pro-categories. A simple pro-object is one
indexed by the category with one object and one (identity) map. Note that for any
category C, Pro(C) contains C as the full subcategory spanned by the simple objects.

Definition 2.3. Let p : J → I be a functor between small categories. The functor p
is said to be (left) cofinal if for every i in I the over category p/i is non-empty and
connected.

Cofinal functors play an important role in the theory of pro-categories mainly
because of the following well-known lemma (see, for example, [ArMa]):

Lemma 2.4. Let p : J → I be a cofinal functor between small cofiltered categories,
and let X : I → C be an object in Pro(C). Then the morphism in Pro(C) that p induces,
νp,X : X → p∗X, is an isomorphism.

The following lemma can be found in [ArMa, Appendix 3.2]. See also [BaSc1,
Corollary 3.26] for a stronger result.

Lemma 2.5. Every morphism in Pro(C) is isomorphic, in the category of morphisms
in Pro(C), to a morphism that comes from a natural transformation (that is, to a
morphism of the form νid,φ, where φ is a natural transformation).

Definition 2.6. Let C be a category, M ⊆ Mor(C) a class of morphisms in C, I a
small category, and F : X → Y a morphism in CI . Then F will be called a level-wise
M -map if for every i ∈ I the morphism Xi → Yi is in M . We will denote this by
F ∈ Lw(M).

Definition 2.7. Let C be a category, and let M ⊆ Mor(C) be a class of morphisms
in C. Denote by

1. ⊥M the class of morphisms in C having the left lifting property w.r.t. any
morphism in M ;

2. M⊥ the class of morphisms in C having the right lifting property w.r.t. any
morphism in M ;

3. Lw
∼=(M) the class of morphisms in Pro(C) that are isomorphic to a morphism

that comes from a natural transformation which is a level-wise M -map.

Everything we have done so far (and throughout this paper) is completely dualiz-
able. Thus, we can define the following:

Definition 2.8. A category I is called filtered if the following conditions are satisfied:

1. The category I is non-empty.

2. For every pair of objects s, t ∈ I, there exists an object u ∈ I, together with
morphisms s → u and t → u.

3. For every pair of morphisms f, g : s → t in I, there exists a morphism h : t → u
in I such that h ◦ f = h ◦ g.
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The dual to the notion of a pro-category is the notion of an ind-category:

Definition 2.9. Let C be a category. The category Ind(C) has as objects all diagrams
in C of the form I → C such that I is small and filtered (see Definition 2.8). The
morphisms are defined by the formula

HomPro(C)(X,Y ) := lim
s

colim
t

HomC(Xs, Yt).

Composition of morphisms is defined in the obvious way.

Clearly for every category C we have a natural isomorphism of categories: Ind(C)op ∼=
Pro(Cop).

We are not going to write the dual to every definition or theorem explicitly, only
in certain cases.

2.2. From a weak fibration category to a model category
We now present the definition of a weak fibration category, after two preliminary

definitions:

Definition 2.10. Let C be a category, and let M,N be classes of morphisms in C.
We will denote by Mor(C) = M ◦N the assertion that every map A → B in C can be

factored as A
f−→ C

g−→ B, where f is in N and g is in M .

Definition 2.11. Let C be a category with finite limits, and let M ⊆ C be a subcat-
egory. We say that M is closed under base change if whenever we have a pull-back
square

A

g

��

�� B

f

��
C �� D

such that f is in M, then g is in M.

Definition 2.12. A weak fibration category is a category C with an additional struc-
ture of two subcategories

F ,W ⊆ C
that contain all the isomorphisms, such that the following conditions are satisfied:

1. C has all finite limits.

2. W has the two-out-of-three property.

3. The subcategories F and F ∩W are closed under base change.

4. Mor(C) = F ◦W.

The maps in F are called fibrations, and the maps in W are called weak equivalences.

Remark 2.13. The notion of a weak fibration category is closely related other notions
considered previously in the literature such as a “category of fibrant objects” [Bro], a
“fibration category” [Bau], an “Anderson–Brown–Cisinski fibration category” [Rad],
and more. These notions were introduced as a more flexible structure than a model
category in which to do abstract homotopy theory.
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Definition 2.14. A relative category is a pair (C,W), consisting of a category C and
a subcategory W ⊆ C that contains all the isomorphisms and satisfies the two-out-of-
three property; W is called the subcategory of weak equivalences.

Remark 2.15. Any weak fibration category is naturally a relative category when ignor-
ing the fibrations.

Definition 2.16. We will denote by → the category consisting of two objects and
one non-identity morphism between them. Thus, if C is any category, the functor
category C→ is just the category of morphisms in C.
Definition 2.17. A relative category (C,W) will be called

1. pro-admissible, if Lw
∼=(W) ⊆ Pro(C)→ satisfies the two-out-of-three property;

2. ind-admissible, if Lw
∼=(W) ⊆ Ind(C)→ satisfies the two-out-of-three property;

3. admissible, if it both pro- and ind-admissible.

The following theorem is almost a special case of [BaSc2, Theorem 4.18]:

Theorem 2.18. Let (C,W,F) be an essentially small pro-admissible weak fibration
category. Then there exists a model category structure on Pro(C) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The cofibrations are C := ⊥(F ∩W).

3. The fibrations are maps satisfying the right lifting property with respect to all
acyclic cofibrations.

Moreover, this model category is ω-cocombinatorial, with F as the set of generating
fibrations and F ∩W as the set of generating acyclic fibrations.

Remark 2.19. The definition of a model category that we refer to in Theorem 2.18 is
the one used in [Hov]. In particular, we require functorial factorizations. This is a
stronger conclusion then that of [BaSc2, Theorem 4.18] and is achieved because we
assume that C is essentially small. Notice that we did not require functorial factoriza-
tions in the definition of a weak fibration category. Note also that we only required
the existence of finite limits in the definition of a weak fibration category, while in
Pro(C) we do get the existence of arbitrary limits and colimits.

Proof. Most of the proof goes exactly like the proof of [BaSc2, Theorem 4.18]—
the only difference is that we can use [BaSc2, Proposition 3.18] instead of [BaSc2,
Proposition 3.17], and thus obtain functorial factorizations.

It only remains to show that Pro(C) is ω-cocombinatorial, with set of generating
fibrations F and set of generating acyclic fibrations F ∩W. The category C has finite
limits, so Cop has finite colimits. By the results of [AdRo], the category Ind(Cop) ∼=
Pro(C)op is locally presentable and every object of Cop is ω-presentable in Ind(Cop).
It thus remains to show that

C = ⊥(F ∩W), (C ∩W) = ⊥F ,

but this was shown in [BaSc2, Theorem 4.18].
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The dual to the notion of a weak fibration category is a weak cofibration category.
Namely, a weak cofibration category is a category M together with two subcategories,
C and W, such that (Mop, Cop,Wop) is a weak fibration category. The following is a
dual formulation of Theorem 2.18:

Theorem 2.20. Let (M,W, C) be an essentially small ind-admissible weak cofibra-
tion category. Then there exists a model category structure on Ind(M) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The fibrations are F = (C ∩W)⊥.
3. The cofibrations are maps satisfying the left lifting property with respect to all

acyclic fibrations.

Moreover, this model category is ω-combinatorial, with C as the set of generating
cofibrations and C ∩W as the set of generating acyclic cofibrations.

3. Proper morphisms

3.1. A criterion for the two-out-of-three property
The pro-admissibility condition on a relative category C, appearing in Theorem 2.18,

is not intrinsic to C (see Definition 2.17). It is useful to be able to deduce the pro-
admissibility of C only from conditions on C itself. In this subsection, we give one
possible solution to this problem. The idea is a very straightforward generalization of
an idea of Isaksen [Isa1, Section 3].

Definition 3.1. Let (C,W) be a relative category. A map f : A → B in C will be
called

1. left proper, if for every push-out square of the form

A

i

��

f �� B

j

��
C �� D

such that i is a weak equivalence, the map j is also a weak equivalence; and

2. right proper, if for every pull back square of the form

C

j

��

�� D

i

��
A

f �� B

such that i is a weak equivalence, the map j is also a weak equivalence.

We denote by LP the class of left proper maps in C and by RP the class of right
proper maps in C.
Remark 3.2. The notion of a right proper map is related to the notion of a sharp
map defined by Rezk in [Rez]. A sharp map is a map such that all its base changes
are right proper. In other words, the class of sharp maps is the largest class of maps
that is contained in the right proper maps and is closed under base change (see



MODEL STRUCTURES ON IND-CATEGORIES 245

Definition 2.11). A sharp map is called a weak fibration by Cisinski and a fibrillation
by Barwick and Kan.

Example 3.3. Let M be a model category. Then:

1. Every acyclic cofibration in M is a left proper map in (M,W).

2. Every acyclic fibration in M is a right proper map in (M,W).

3. The model category M is left proper iff every cofibration in M is a left proper
map in (M,W).

4. The model category M is right proper iff every fibration in M is a right proper
map in (M,W).

Definition 3.4. Let (C,W) be a relative category. Then (C,W) will be said to have
proper factorizations, if the following hold:

1. Mor(C) = RP ◦ LP .

2. Mor(C) = RP ◦W .

3. Mor(C) = W ◦ LP .

Lemma 3.5. Let M be a proper model category. Then the relative category (M,W)
has proper factorizations.

Proof. 1. Mor(M) = RP ◦ LP is shown by factoring every map into a cofibration
followed by an acyclic fibration (see Example 3.3).

2. Mor(C) = RP ◦W is shown by factoring every map into an acyclic cofibration
followed by a fibration (see Example 3.3).

3. Mor(C) = W ◦ LP is shown by factoring every map into a cofibration followed
by an acyclic fibration (see Example 3.3).

The following is shown in [Isa1, Lemma 3.2] (see also [Isa1, Remark 3.3]):

Lemma 3.6. Let C be a category, and let N and M be classes of morphisms in C, such
that Mor(C) = M ◦N . Let T be a cofiltered category, and let f : {Xt}t∈T → {Yt}t∈T

be a natural transformation, that is, a map in the functor category CT . Suppose that
f is an isomorphism as a map in Pro(C) (or Ind(C)).

Then there exist a cofiltered category J , a cofinal functor p : J → T , and a factor-

ization p∗X
g−→ Hf

h−→ p∗Y of p∗f : p∗X → p∗Y in the category CJ such that h is a
level-wise M map, g is a level-wise N map, and g, h are isomorphisms as maps in
Pro(C) (or Ind(C)).

The following proposition is our main motivation for introducing the concepts of
left and right proper morphisms:

Proposition 3.7. Let (C,W) be a relative category, and let X
f−→ Y

g−→ Z be a pair
of composable morphisms in Pro(C) (or Ind(C)). Then:
1. If C has finite limits and colimits, and Mor(C) = RP ◦ LP , then f, g ∈ Lw

∼=(W)
implies that g ◦ f ∈ Lw

∼=(W).
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2. If C has finite limits, and Mor(C) = RP ◦W, then g, g ◦ f ∈ Lw
∼=(W) implies

that f ∈ Lw
∼=(W).

3. If C has finite colimits, and Mor(C) = W ◦ LP , then f, g ◦ f ∈ Lw
∼=(W) implies

that g ∈ Lw
∼=(W).

Proof. For simplicity of writing, we only examine the Pro(C) case.
We show 1. The proof is a straightforward generalization of the proof of [Isa1,

Lemma 3.5].

Since f, g ∈ Lw
∼=(W), there exists a diagram in Pro(C),

X ′′ �� Y ′′

X

∼=

��

f �� Y

∼=

��

g �� Z

Y ′

∼=

��

�� Z ′,

∼=

��

such that the vertical maps are isomorphisms in Pro(C) and such that Y ′ → Z ′ is
a natural transformation indexed by I that is level-wise in W and X ′′ → Y ′′ is a
natural transformation indexed by J that is level-wise in W.

Let Y ′ ∼=−→Y ′′ denote the composition Y ′ ∼=−→Y
∼=−→Y ′′. It is an isomorphism in Pro(C)

(but not necessarily a level-wise isomorphism). It follows from [ArMa, Appendix 3.2]
that there exists a cofiltered category K, cofinal functors p : K → I and q : K → J ,
and a map in CK ,

q∗Y ′ −→ p∗Y ′′,

such that there is a commutative diagram in Pro(C),

q∗Y ′ ∼= ��

∼=
��

p∗Y ′′

∼=
��

Y ′ ∼= �� Y ′′,

with all maps isomorphisms. Thus, we have a diagram in CK ,

p∗X ′′ −→ p∗Y ′′ ∼=←− q∗Y ′ −→ q∗Z ′,

such that the first and last maps are level-wise in W and the middle map is an
isomorphism as a map in Pro(C) (but not necessarily a level-wise isomorphism).

Since Mor(C) = RP ◦ LP , we get by Lemma 3.6, applied for M = RP and N =
LP , that after pulling back by a cofinal functor T → K we obtain a diagram in CT ,

A −→ B
∼=←− E

∼=←− C −→ D,

such that the first and last maps are level-wise in W, the second map is level-wise
right proper and an isomorphism in Pro(C), and the third map is level-wise left proper
and an isomorphism in Pro(C).
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By Corollary 3.19 of [BaSc1], since C has finite limits and colimits, the pull-back
and push-out in Pro(C) of a diagram in CT can be computed level-wise. We thus get
the following diagram in CT :

A
Lw(W) �� B

A×B E
Lw(W) ��

∼=

��

E

Lw(RP )∼=

��

Lw(W)�� E
∐

C D

C

Lw(LP )∼=

��

Lw(W)
�� D

∼=
��

where ∼= indicates an isomorphism in Pro(C).
It follows that the composition

A×B E
Lw(W)−−−−−→ E

Lw(W)−−−−−→ E
∐

C

D

is a level-wise W map that is isomorphic, as a map in Pro(C), to the composition
g ◦ f . Thus, we obtain that g ◦ f ∈ Lw

∼=(W).
It is not hard to show 2 and 3 using the same type of generalization to the proof

of [Isa1, Lemma 3.6].

Corollary 3.8. Let (C,W) be a relative category that has finite limits and colimits
and proper factorizations. Then (C,W) is admissible (see Definition 2.17). In partic-
ular, if C is a proper model category, then (C,W) is admissible.

3.2. Almost model categories
Corollary 3.8 gives sufficient conditions for the admissibility of a relative category

and, in particular, of a weak (co)fibration category. However, in some interesting
examples these conditions are too restrictive. Namely, in some situations there is
a natural mapping cylinder factorization (see the proof of Theorem 4.4) that can
be shown to give factorizations of the forms Mor(M) = RP ◦ LP and Mor(M) =
W ◦ LP but not Mor(M) = RP ◦W . We will therefore need to use an auxiliary
notion that is more general than a model category, which we call an almost model
category.

Definition 3.9. An almost model category is a quadruple (M,W,F , C) satisfying all
the axioms of a model category, except (maybe) the two-out-of-three property for W.
More precisely, an almost model category satisfies the following:

1. M is complete and cocomplete.

2. W is a class of morphisms in M that is closed under retracts.

3. F , C are subcategories of M that are closed under retracts.

4. C ∩W ⊆ ⊥F and C ⊆ ⊥(F ∩W).

5. There exist functorial factorizations in M into a map in C ∩W followed by a
map in F , and into a map in C followed by a map in F ∩W.
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The following lemma can be proven just as in the case of model categories (see,
for example, [Hov, Lemma 1.1.10]):

Lemma 3.10. In an almost model category (M,W,F , C) we have:

1. C ∩W = ⊥F .

2. C = ⊥(F ∩W).

3. F ∩W = C⊥.
4. F = (C ∩W)⊥.

Definition 3.11. A relative category (C,W) will be called almost pro-admissible, if
Lw

∼=(W) ⊆ Pro(C)→ satisfies the following portion of the two-out-of-three property:

For every pair of composable morphisms in Pro(C): X f−→ Z
g−→ Y we have:

1. If f, g belong to Lw
∼=(W), then g ◦ f ∈ Lw

∼=(W).

2. If g, g ◦ f belong to Lw
∼=(W), then f ∈ Lw

∼=(W).

We now prove the following generalization of Theorem 2.18:

Theorem 3.12. Let (C,W,F) be an essentially small almost pro-admissible weak
fibration category. Then there exists an almost model category structure on Pro(C)
such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The cofibrations are C := ⊥(F ∩W).

3. The fibrations are maps satisfying the right lifting property with respect to all
acyclic cofibrations.

Furthermore, we have C ∩W = ⊥F .

Proof. This is very much like the proof of Theorem 2.18, which is based on [BaSc2,
Theorem 4.18]. Going over the proof of [BaSc2, Theorem 4.18] we find that we
can show all the axioms of a model category for Pro(C), except the two-out-of-three
property for Lw

∼=(W), using only the fact that C is almost pro-admissible. (In fact, the
only place where we use the fact that Lw

∼=(W) satisfies the two-out-of-three property
is in the last part of the proof, where we only use the portion of the two-out-of-three
property given in Definition 3.11.)

We can dualize the above:

Definition 3.13. A relative category (C,W) will be called almost ind-admissible, if
Lw

∼=(W) ⊆ Ind(C)→ satisfies the following portion of the two-out-of-three property:

For every pair of composable morphisms in Ind(C): X f−→ Z
g−→ Y , we have:

1. If f, g belong to Lw
∼=(W), then g ◦ f ∈ Lw

∼=(W).

2. If f, g ◦ f belong to Lw
∼=(W), then g ∈ Lw

∼=(W).

Theorem 3.14. Let (M,W, C) be an essentially small almost ind-admissible weak
cofibration category. Then there exists an almost model category structure on Ind(M)
such that:

1. The weak equivalences are W := Lw
∼=(W).



MODEL STRUCTURES ON IND-CATEGORIES 249

2. The fibrations are F := (C ∩W)⊥.

3. The cofibrations are maps satisfying the left lifting property with respect to all
acyclic fibrations.

Furthermore, we have F ∩W = C⊥.

4. Criteria for finite accessibility

In this last section, we will state our main results of this paper—namely, a series
of criteria for the finite accessibility of the category of weak equivalences. The criteria
are stated in a decreasing level of generality (each criterion being an application or a
special case of the previous one) but in an increasing level of convenience of verification
and applicability. Our only example in this paper is the category of simplicial sets,
which is an example of applying the third and last criterion. However, the authors
are aware of an example where the second criterion applies but not the third. This is
a non-standard model structure on the category of chain complexes of modules over
a ring and will be treated in a future paper.

Definition 4.1. A category is called finitely accessible if it has filtered colimits and
there is a small set of finitely presentable objects that generates it under filtered
colimits.

The following lemma explains the relevance of Theorem 2.20 to the finite accessi-
bility of the category of weak equivalences:

Lemma 4.2. Let (M,W, C) be an essentially small ind-admissible weak cofibration
category. Consider the model structure induced on Ind(M) by Theorem 2.20. Then
the full subcategory of Ind(M)→, spanned by the class of weak equivalences, is finitely
accessible (see Definition 4.1).

Proof. We need to show that Lw
∼=(W) is of the form Ind(D) for some essentially small

category D. This follows from the observation that Lw
∼=(W) is the essential image of

Ind(W) under the natural equivalence Ind(C→) → Ind(C)→, where W is considered
as a full subcategory of C→. It then follows that Ind(W) is a full subcategory of
Ind(C→), and thus Ind(W) � Lw

∼=(W).

We now come to our first criterion:

Proposition 4.3. Let (M,W,F , C) be an ω-combinatorial model category. Let M
denote the full subcategory of M spanned by the finitely presentable objects. Let W, C
denote the classes of weak equivalences and cofibrations between objects in M, respec-
tively. We denote by LP the class of left proper maps in (M,W), and by RP the
class of right proper maps in (M,W).

We make the following further assumptions:

1. The category M has finite limits.

2. Mor(M) = W ◦ C.
3. Mor(M) = W ◦ LP .

4. Mor(M) = RP ◦ LP .
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Then (M,W, C) is an ind-admissible weak cofibration category and the induced
model structure on Ind(M), given by Theorem 2.20, coincides with (M,W,F , C),
under the natural equivalence M � Ind(M).

In particular, it follows from Lemma 4.2 that the full subcategory of M→, spanned
by the class of weak equivalences, is finitely accessible.

Proof. Since M is locally finitely presentable (being ω-combinatorial), it follows that
its full subcategory M is essentially small, and closed under finite colimits, and that
we have a natural equivalence of categories Ind(M) � M given by taking colimits
(see [AdRo]).

It is now trivial to verify, using assumption 2 above, that (M,W, C) is a weak
cofibration category. Using assumptions 1, 3, and 4, we get, by Proposition 3.7, that
(M,W, C) is almost ind-admissible (see Definition 3.13). Thus, by Theorem 3.14,
there exists an almost model category structure on M � Ind(M) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The fibrations are F := (C ∩W)⊥.
Furthermore, we have F ∩W = C⊥.

Since the model category (M,W,F , C) is ω-combinatorial, we have that

F ∩W = C⊥ = F ∩W ,

F := (C ∩W)⊥ = F .

Thus, using Lemma 3.10, we also obtain

C ∩W =⊥ F =⊥ F = C ∩W ,

C :=⊥ (F ∩W) =⊥ (F ∩W) = C.
It is now easy to show that W = W: we will show that W ⊆ W , and the other

direction can be shown similarly.
Let f : X → Y be an element inW. We decompose f , in the almost model category

(M,W,F , C), into an acyclic cofibration followed by a fibration:

X
h∈C∩W−−−−−→ Z

g∈F−−−→ Y.

Since the weak cofibration category (M,W, C) is almost ind-admissible, we have that
g also belongs to W. Thus, we have

h ∈ C ∩W = C ∩W ,

g ∈ F ∩W = F ∩W .

It follows that f ∈ W , because W is closed under composition.

We now come to our second criterion for the finite accessibility of the category of
weak equivalences.

Theorem 4.4. Let (M,W,F , C) be an ω-combinatorial left proper model category.
Let M denote the full subcategory of M spanned by the finitely presentable objects.
Let W , C denote the classes of weak equivalences and cofibrations between objects in
M, respectively.
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Suppose we are given a cylinder object in M; that is, for every object B of M we
are given a factorization in M of the fold map B �B → B into a cofibration followed
by a weak equivalence:

B �B
(i0,i1)−−−−→ I ⊗B

p−→ B.

(Note that we are not assuming any simplicial structure; I ⊗B is just a suggestive
notation.)

We make the following further assumptions:

1. The category M has finite limits.

2. Every object in M is cofibrant.

3. For every morphism f : A → B in M, the map B
∐

A(I ⊗A) → B, induced by
the commutative square

A

f

��

i0 �� I ⊗A

f◦p
��

B
= �� B,

is a right proper map in (M,W).

Then (M,W, C) is an ind-admissible weak cofibration category and the induced
model structure on Ind(M), given by Theorem 2.20, coincides with (M,W,F , C),
under the natural equivalence M � Ind(M).

In particular, it follows from Lemma 4.2 that the full subcategory of M→, spanned
by the class of weak equivalences, is finitely accessible.

Proof. We will verify that all the conditions of Proposition 4.3 are satisfied. We only
need to check the existence of factorizations of the form

1. Mor(M) = W ◦ C,
2. Mor(M) = W ◦ LP ,

3. Mor(M) = RP ◦ LP .

All the factorizations above will be given by the same factorization, which we now
describe. This is just the mapping cylinder factorization relative to our given cylinder
object for M.

It is not hard to show that for any B ∈ M the maps i0, i1 : B → I ⊗B are acyclic
cofibrations.

Let f : A → B be a morphism in M. We define the mapping cylinder of f to be
the push-out

A
i0 ��

f

��

I ⊗A

��
B �� C(f).

We define a morphism q : C(f) = B
∐

A(I ⊗A) → B to be the one induced by the
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commutative square

A

f

��

i0 �� I ⊗A

f◦p
��

B
= �� B.

We define a morphism i : A → C(f) = B
∐

A(I ⊗A) to be the composition

A
i1−→ I ⊗A −→ C(f).

Clearly f = qi, and we call this the mapping cylinder factorization.

The map q is a left inverse to j, defined by the mapping cylinder push-out square

A
i0 ��

f

��

I ⊗A

��
B

j �� C(f).

Since i0 is an acyclic cofibration, we get that j is also an acyclic cofibration and, in
particular, q is a weak equivalence.

The map i is a cofibration, being a composite of two cofibrations

A �� B
∐

A
(j,i)�� B

∐
A(I ⊗A) .

These maps are cofibrations because of the following push-out squares:

φ ��

��

B

��

A
∐

A
(i0,i1) ��

f
∐

id

��

I ⊗A

��
A �� B

∐
A, B

∐
A �� B

∐
A(I ⊗A).

Since the map i is a cofibration and M is left proper, we get that the map i is also
left proper. By assumption 3, q is right proper.

We now come to our third and last criterion.

Theorem 4.5. Let (M,W,F , C) be an ω-combinatorial left proper model category.
Let M denote the full subcategory of M spanned by the finitely presentable objects.
Assume that the category M has finite limits, and let ∗ denote the terminal object in
M. Let W, C denote the classes of weak equivalences and cofibrations between objects
in M, respectively.

Suppose we are given a factorization in M of the fold map ∗ � ∗ → ∗ into a cofi-
bration followed by a weak equivalence:

∗ � ∗ −→ I −→ ∗.
We make the following further assumptions:



MODEL STRUCTURES ON IND-CATEGORIES 253

1. For every morphism Y → B in M, the functor

Y ×B (−) : M/B → M
commutes with finite colimits.

2. Every object in M is cofibrant.

3. For every object B in M, the functor

B × (−) : M → M
preserves cofibrations and weak equivalences.

Then (M,W, C) is an ind-admissible weak cofibration category and the induced
model structure on Ind(M), given by Theorem 2.20, coincides with (M,W,F , C),
under the natural equivalence M � Ind(M).

In particular, it follows from Lemma 4.2 that the full subcategory of M→, spanned
by the class of weak equivalences, is finitely accessible.

Proof. We will verify that all the conditions of Theorem 4.4 are satisfied. For every
object B of M, we have that the induced diagram

B �B ∼= (∗ ×B) � (∗ ×B) ∼= (∗ � ∗)×B −→ I ×B −→ ∗ ×B ∼= B

is a factorization in M of the fold map B �B → B into a cofibration followed by a
weak equivalence. (Note that here × denotes the actual categorical product and is
not just a suggestive notation.)

Thus, we only need to check that for every morphism f : A → B in M the map
q : B

∐
A(I ×A) → B, induced by the commutative square

A

f

��

i0 �� I ×A

f◦p
��

B
= �� B,

is a right proper map in (M,W).
We will use the same notation as in the proof of Theorem 4.4, regarding the

mapping cylinder factorization.
Let

C(f)×B X

j

��

�� X

i

��
C(f)

q �� B

be a pull-back square in M such that i is a weak equivalence. We need to show that
j is a weak equivalence. Using condition 1, we get natural isomorphisms

C(f)×B X = (B
∐

A

(I ×A))×B X ∼= (B ×B X)
∐

A×BX

((I ×A)×B X) ∼=

∼= (X
∐

A×BX

(I × (A×B X)) = C(k),
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where k : A×B X → X is the natural map. By condition 3 and the proof of Theo-
rem 4.4, we get that the natural map C(k) ∼= C(f)×B X → X is a weak equivalence.
By the two-out-of-three property, we get that j is also a weak equivalence.

We now turn to our main example:

Theorem 4.6. Let S denote the category of simplicial sets with its standard model
structure. Let Sf denote the full subcategory of S spanned by the finitely presentable
objects. Let W, C denote the classes of weak equivalences and cofibrations between
objects in Sf , respectively.

Then (Sf ,W, C) is an ind-admissible weak cofibration category and the induced
model structure on Ind(Sf ), given by Theorem 2.20, coincides with the standard model
structure on S, under the natural equivalence S � Ind(Sf ).

In particular, it follows from Lemma 4.2 that the full subcategory of S→, spanned
by the class of weak equivalences, is finitely accessible.

Proof. We will verify that all the conditions of Theorem 4.5 are satisfied. The model
category S is ω-combinatorial and left proper.

We first sketch a proof showing that the subcategory Sf of S is closed under finite
limits.

Let X be a finite simplicial set. It is not hard to verify that there exists a finite
diagram F : D → {Δ0,Δ1,Δ2, . . .} such that

X ∼= colimDF.

We now note the following facts:

1. In the category S, pull-backs commute with colimits.

2. For all n,m � 0, Δn ×Δm belongs to Sf (by direct computation).

3. A sub-simplicial set of a finite simplicial set is also finite.

4. The colimit in S, of a finite diagram in Sf , belongs to Sf .

Using these facts, it is not hard to check that the pull-back (in S) of objects in Sf

belongs to Sf . Since the terminal object in S also belongs to Sf , it follows that the
subcategory Sf of S is closed under finite limits.

In particular, this shows that Sf admits finite limits and that they can be calculated
in S. This also gives condition 1 of Theorem 4.5 (as this condition is known to hold
in S).

Clearly every object in Sf is cofibrant, so condition 2 is satisfied.

Let B be an object in Sf . Since B is cofibrant and S is a simplicial model category,
we get that the functor

B × (−) : S → S
is a left Quillen functor and thus preserves cofibrations and weak equivalences between
cofibrant objects. Since every object in Sf is cofibrant, we get that

B × (−) : Sf → Sf

preserves cofibrations and weak equivalences. This gives condition 3.
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Finally, we may take the factorization of the fold map,

∗ � ∗ −→ I −→ ∗,
to be Δ{0} �Δ{1} −→ Δ1 −→ Δ0.

Remark 4.7. Let f : X → Y be a morphism in Sf . In the proof of Theorem 4.4,

we considered the mapping cylinder factorization of f : X
h−→ C(f)

g−→ Y . We showed
that g is right proper. Note that g is not, in general, a fibration in S. Consider
the map f : Δn → Δ0 (n � 0). Then the mapping cylinder factorization of f is just
Δ{1,...,n+1} → Δn+1 → Δ0. But Δn+1 → Δ0 is not a Kan fibration, since Δn+1 is not
a Kan complex. Thus, we see that we are using the extra generalization provided by
Proposition 3.7 over Isaksen’s results [Isa1, Lemmas 3.5 and 3.6].

Appendix A. Relation to the work of Raptis and Rosický

In this paper, we proved theorems giving sufficient conditions for the finite acces-
sibility of the category of weak equivalences in combinatorial model categories. Our
main application was to the standard model structure on the category of simplicial
sets, deducing the finite accessibility of its class of weak equivalences. As mentioned
in the introduction, the same result on simplicial sets was also proved in [RaRo],
using different methods. In this appendix, we explain a possible connection between
the two approaches.

An important ingredient in the proof of [RaRo] is a generalization of Quillen’s
small-object argument (called the fat small-object argument). Our proof is based
mainly on Theorem 2.20, describing a construction of a model structure on the ind-
category of an essentially small weak cofibration category. Theorem 2.20 was not
proved directly, but was deduced, by duality, from Theorem 2.18. The main techni-
cal tool in the proof of Theorem 2.18 is a certain factorization proposition, namely,
[BaSc2, Proposition 3.18]. The main purpose of this appendix is to prove Proposi-
tion A.11, which connects the notion of a relative cell complex, appearing in Quillen’s
small-object argument, and the notion of an essentially cospecial map, appearing in
Proposition A.6 (which is the dual version of [BaSc2, Proposition 3.18], and which
is used in proving Theorem 2.20). This will hopefully shed some light as to possible
connections between the approach taken in this paper and that of Raptis and Rosický.

As we explain below, Proposition A.11 solves a conjecture of Isaksen. We end the
appendix with an application of Proposition A.11 to finite simplicial sets.

Definition A.1. Let T be a poset. Then we view T as a category that has a single
morphism u → v iff u � v. Note that this convention is the opposite of that used in
[BaSc2].

Thus, a poset T is filtered (see Definition 2.8) iff T is non-empty and for every a, b
in T there exists an element c in T such that c � a, b. A filtered poeset will also be
called directed.

Definition A.2. A cofinite poset is a poset T such that for every element x in T the
set Tx := {z ∈ T |z � x} is finite.
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Definition A.3. Let C be a category with finite colimits, N a class of morphisms in
C, I a cofinite poset (see Definition A.2), and F : X → Y a morphism in CI . Then
the map F will be called a cospecial N -map if the natural map

Xt

∐

colims<t Xs

colim
s<t

Ys → Yt

is in N , for every t in I. We will denote this by F ∈ coSp(N).

Definition A.4. Let C be a category, and let N be a class of morphisms in C.
1. We denote by R(N) the class of morphisms in C that are retracts of morphisms

in N . Note that R(R(N)) = R(N).

2. If C has finite colimits, we denote by coSp
∼=(N) the class of morphisms in Ind(C)

that are isomorphic to a morphism that comes from a natural transformation
which is a cospecial N -map (see Definition A.3). Maps in coSp

∼=(N) are called
essentially cospecial N -maps.

In the following, we bring a few results from several papers. These results were
originally stated in the language of pro-categories. For the convenience of the reader,
we bring them in their dual formulation, which we need here.

Proposition A.5 ([BaSc2, Proposition 2.19]). Let C be a category with finite colim-
its, and let N ⊆ C be a subcategory that is closed under cobase change and contains
all the isomorphisms. Let F : X → Y be a natural transformation between diagrams
in C, which is a cospecial N -map. Then F is a levelwise N -map.

We now state our factorization proposition, which is the main technical tool in the
proof of Theorem 2.20.

Proposition A.6 ([BaSc2, Proposition 3.18]). Let C be an essentially small category
that has finite colimits, N ⊆ C a subcategory that is closed under cobase change, and
M ⊆ Mor(C) an arbitrary class of morphisms such that M ◦ N = Mor(C).

Then every morphism f : X → Y in Ind(C) can be functorially factored as X
g−→

Hf
h−→ Y , where g is in coSp

∼=(N ) and h is in Lw
∼=(M) ∩N⊥.

We can now also state the more elaborate version of Theorem 2.20, and the proof
is exactly the same.

Theorem A.7. Let (C,W, Cof) be an essentially small ind-admissible weak cofibra-
tion category. Then there exists a model category structure on Ind(C) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The cofibrations are C := R(coSp
∼=(Cof)).

3. The fibrations are F := (Cof ∩W)⊥.
Moreover, this model category is ω-combinatorial, with set of generating cofibrations
Cof and set of generating acyclic cofibrations Cof ∩W. Furtheremore, the acyclic
cofibrations in this model structure are given by

C ∩W = R(coSp
∼=(Cof ∩W)).

The following two definitions are based on [Hov, Section 2.1].
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Definition A.8. Let D be a category with all small colimits, N ⊆ Mor(D) a class of
morphisms in D, and λ an ordinal. A λ-sequence in D, relative to N , is a diagram
X : λ → D, such that for all limit ordinals t < λ the natural map colims<t Xs → Xt

is an isomorphism, and for all non-limit ordinals t < λ, the map Xt−1 → Xt is in N .
The (transfinite) composition of the λ-sequence X is defined to be the natural map
X(0) → colimλ X.

Definition A.9. Let D be a category with all small colimits, and let N ⊆ Mor(D)
be a class of morphisms in D. A relative N -cell complex, is a transfinite composition
of push-outs of elements of N . That is, f : A → B is a relative N -cell complex if there
exists an ordinal λ, and a λ-sequence in D, relative to push-outs of maps in N , such
that f is isomorphic to the composition of X. We denote the collection of all relative
N -cell complexes by cell(N).

From now until the end of this section, we let C be an essentially small category with
finite colimits. By the results of [AdRo], the category Ind(C) is locally presentable
and every object of C is ω-presentable in Ind(C). In particular, the category Ind(C)
has all small colimits.

Proposition A.10 ([Isa1, Proposition 5.2]). For any class of morphismsN ⊆Mor(C),
we have coSp

∼=(N) ⊆ cell(N), in Ind(C).
In [Isa1], Isaksen conjectures a partial converse to Proposition A.10. Namely, that

for any class of morphisms N ⊆ Mor(C), we have R(cell(N)) ⊆ R(coSp
∼=(N)), in

Ind(C). This conjecture fails as stated, as the following counterexample demonstrates.
Take C to be the category

a ��

N

��

b

��
c �� d,

where the square is commutative, and take N to consist only of the unique map
a → c. It is easy to verify that there is a natural equivalence of categories Ind(C) � C,
and that under this equivalence R(coSp

∼=(N)) is just N . Thus, the unique map b → d
belongs to R(cell(N)) but not to R(coSp

∼=(N)).
However, using Theorem 2.20, we can prove Isaksen’s conjecture in the case where

N is a subcategory that is closed under cobase change.

Proposition A.11. Let N ⊆ C be a subcategory that is closed under cobase change
and contains all the isomorphisms. Then R(cell(N )) = R(coSp

∼=(N )).

Proof. By Proposition A.10, we know that R(coSp
∼=(N )) ⊆ R(cell(N )). It thus

remains to show that R(cell(N )) ⊆ R(coSp
∼=(N )).

Since N ⊆ R(coSp
∼=(N )), it is enough to show that the class R(coSp

∼=(N )) ⊆
Mor(Ind(C)) is closed under cobase change and transfinite compositions.

It is easy to see that (C, C,N ) is an essentially small weak cofibration category.
Moreover, Lw

∼=(C) = Mor(Ind(C)) by (the dual version of) Lemma 2.5, so (C, C,N ) is
clearly ind-admissible. Thus, it follows from Theorem A.7 that there exists a model
category structure on Ind(C) such that:
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1. The weak equivalences are W := Lw
∼=(C) = Mor(Ind(C)).

2. The cofibrations are C := R(coSp
∼=(N )).

3. The fibrations are F := N⊥.
In particular, it follows that

R(coSp
∼=(N )) = ⊥(F ∩W) = ⊥(N⊥),

and thus R(coSp
∼=(N )) is closed under cobase change and transfinite compositions

by well-known arguments (see, for example, [Lur, Section A.1.1]).

Proposition A.11 can be used to compare Quillen’s small-object argument with our
factorization proposition (Proposition A.6). As an example, we show how a special
case of the small-object argument follows easily from our factorization proposition.

Corollary A.12. Let N ⊆ Mor(C) be any class of morphisms. Then every map f :

X → Y in Ind(C) can be functorially factored as X
h−→ H

g−→ Y , where g is in cell(N)
and h is in N⊥.

Proof. LetN denote the smallest subcategory of C that is closed under cobase change,
contains all the isomorphisms, and also contains N . Since the classes cell(N) and
⊥(N⊥) are closed under cobase change and transfinite composition, we have:

1. cell(N) = cell(N ).

2. N⊥ = (⊥(N⊥))⊥ = N⊥.
Thus, the corollary follows by combining Propositions A.6 and A.11.

We now present a nice application of Proposition A.11. Let Sf denote the cate-
gory of simplicial sets with finitely many non-degenerate simplices. Let A denote the
smallest subcategory of Sf that contains all the isomorphisms, is closed under push-
outs, and also contains all the horn inclusions Λn

i → Δn. In other words, if H denotes
the set of horn inclusions, then maps in A are just finite relative H-cell complexes
in Sf . That is, maps that can be obtained as a finite composition of push outs of
horn inclusions, starting from an arbitrary object in Sf . Clearly, every map in A is a
trivial cofibration in Sf .

Proposition A.13. Every trivial cofibration in Sf is a retract of a map in A.

Proof. Let f : A → B be a trivial cofibration in Sf . By the results of [Hov, Sec-
tion 2.1], f belongs to R(cell(H)) = R(cell(A)) as a map in Ind(Sf ) � S. By Propo-
sition A.11, f also belongs to R(coSp

∼=(A)). Thus, there exists h ∈ coSp
∼=(A) such

that f is a retract of h. Without loss of generality, we may assume that h : {Xt}t∈T →
{Yt}t∈T is a natural transformation, which is a cospecial A-map. We have the follow-
ing retract diagram:

A

f

��

�� {Xt}
h

��

�� A

f

��
B �� {Yt} �� B.

It follows from the definition of morphisms in Ind(Sf ) that there exists t0 ∈ T such
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that the above diagram can be factored as

A

f

��

�� Xt0

ht0

��

�� {Xt}t∈T

h

��

�� A

f

��
B �� Yt0

�� {Yt}t∈T
�� B.

It follows that f is a retract of ht0 , in Sf . But by Proposition A.5, h is a levelwise
A-map. In particular, ht0 belongs to A, and we get the desired result.
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[RaRo] G. Raptis and J. Rosický, The accessibility rank of weak equivalences,
preprint, available at http://arxiv.org/abs/1403.3042.



260 ILAN BARNEA and TOMER M. SCHLANK

[Rez] C. Rezk, Fibrations and homotopy colimits of simplicial sheaves, preprint,
available at http://www.math.uiuc.edu/ rezk/rezk-sharp-maps.pdf.

Ilan Barnea ilanbarnea770@gmail.com

Department of Mathematics, University of Münster, Einsteinstrasse 62, Münster,
Nordrhein-Westfalen, 48149, Germany

Tomer M. Schlank schlank@math.mit.edu

Department of Mathematics, Massachusetts Institute of Technology, 50 Ames Street,
Cambridge, MA 02142, USA


