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THE HAMMOCK LOCALIZATION PRESERVES HOMOTOPIES

ORIOL RAVENTÓS

(communicated by Brooke Shipley)

Abstract
The hammock localization provides a model for a homotopy

function complex in any Quillen model category. We prove that
a homotopy between a pair of morphisms induces a homotopy
between the maps induced by taking the hammock localization.
We also show that, under Vopěnka’s principle, every homotopy
idempotent functor in a cofibrantly generated model category
is determined by simplicial orthogonality with respect to a set
of morphisms. Finally, we give a new proof of the fact that
left Bousfield localizations with respect to a class of morphisms
always exist in any left proper combinatorial model category
under Vopěnka’s principle.

1. Introduction

The hammock localization was introduced by Dwyer and Kan in a series of arti-
cles [DK80a, DK80c, DK80b]. Given a category C with a fixed class of morphisms
W, the hammock localization LHC is a simplicial category such that π0(LHC(X,Y ))
is the set of morphisms from X to Y in the category obtained by inverting the mor-
phisms in W for every pair of objects X and Y in C. In the case that C is a model
category and W is its class of weak equivalences, then π0(LHC(X,Y )) is in natural
bijection with the set of homotopy classes of morphisms [X,Y ] and, as a bifunc-
tor, LHC(−,−) sends weak equivalences to weak homotopy equivalences. Hence,
LHC(−,−) defines a homotopy function complex on C. Moreover, if C is a simpli-
cial model category, with simplicial mapping space Map(−,−), then LHC(X,Y ) �
Map(Xc, Y f ), where Xc is a cofibrant replacement of X and Y f is a fibrant replace-
ment of Y .

In Theorem 3.1 we prove that LHC(−,−) sends left or right homotopies to simpli-
cial homotopies. This is applied in Section 4 to study homotopy idempotent functors.
We recall that a (coaugmented) homotopy idempotent functor on a model category C
is a functor L : C → C together with a natural transformation � : 1→ L that induces
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a localization, i.e., a left adjoint of the inclusion of a reflective subcategory, in the
homotopy category. An object X is L-local if it is weakly equivalent to an object of
the form LY for some Y , and a morphism f is an L-equivalence if Lf is a weak equiv-
alence. We prove in Proposition 4.3 that, in any model category, L-local objects and
L-equivalences are simplicially orthogonal with respect to LHC(−,−). The first result
of this kind was obtained by Dror Fajoun in [Far96b] in the category of spaces, and
later it was extended to other contexts (cf. [CSS05, CC06]). If we assume a certain
large cardinal axiom, called Vopěnka’s principle, we prove in Corollary 4.10 that for
each homotopy idempotent functor (L, �) in any cofibrantly generated model cate-
gory, the class of L-local objects correspond to the class of objects that are simplicially
orthogonal to just a set of morphisms. This result extends a previous result in [CC06,
Theorem 2.3] for simplicial combinatorial model categories to all cofibrantly gener-
ated model categories. In the same spirit, we extend in Theorem 4.12 the analogous
result for augmented homotopy idempotent functors [Cho07, Theorem 2.1].

It was proved in [RT03, Theorem 2.3] that, under Vopěnka’s principle, left Bous-
field localizations with respect to a class of morphisms exist in any left proper combi-
natorial model category. We give a new proof of this fact in Corollary 4.6. The proof
can be easily modified to give the analogous result for right Bousfield localizations,
as we state in Corollary 4.11. This last result extends a previous result in [Cho07,
Theorem 1.4] for simplicial combinatorial model categories to all combinatorial model
categories.

The hammock localization LH can be extended to a functor from the category of
small categories with weak equivalences to the category of small simplicial categories

LH : wCat −→ sCat,

as we make precise in Section 3. We prove that LH can be extended so as to send
natural transformations to simplicial natural transformations up to homotopy in The-
orem 3.2. This result is used in a joint paper of the author with Casacuberta and
Tonks [CRT] to study homotopy algebra structures preserved by localizations.
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2. The hammock localization

The hammock localization defines one model for the homotopy function complex of
a model category. It was introduced by Dwyer and Kan in a series of articles [DK80a,
DK80c, DK80b]. We will summarize some of their results following the more recent
exposition contained in [DHKS04, Chapters 34 and 35].

A category with weak equivalences is a pair (C,W) with C a category and W a
fixed class of morphisms in C that contains all identities. The morphisms in W are
called weak equivalences. Assume (just for the moment) that C is small. For every
pair of objects X and Y in C, and every odd natural number n, we define a category
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LH
n C(X,Y ) with objects being strings of n morphisms on C in alternating directions

C0 C1
d0�� d1 �� . . .

dn−2 �� Cn−1 Cn,
dn−1�� (1)

with X = C0, Y = Cn and the arrows pointing to the left being weak equivalences.
A morphism is a commutative diagram of the form

C0 C1
�� ��

��

. . . �� Cn−1

��

Cn
��

C ′0 C ′1�� �� . . . �� C ′n−1 C ′n.��

The hammock localization of (C,W) is a simplicial category (meaning simplicially
enriched) LHC with the same objects as C and, for every pair of objects X and Y , a
simplicial set

LHC(X,Y ) = colim
k

NLH
2k+1C(X,Y ),

where the sequential colimit (that is also a homotopy colimit) is taken over the nerve
of the embedding functors that send an object like (1) in LH

n C(X,Y ) to

X = C0 C1
�� id �� C1 C1

id�� �� . . . �� Cn−1 Cn = Y�� (2)

in LH
n+2C(X,Y ). The composition in LHC is given by concatenation. More precisely,

given an object

X C1
�� �� . . . �� Cn−1 Y

dn−1��

in LH
n C(X,Y ) and an object

Y C ′1
d′0�� �� . . . �� C ′n−1 Z��

in LH
n C(Y, Z), their composition is the object

X C1
�� �� . . . �� Cn−1 C ′1

dn−1◦d′0�� �� . . . �� C ′n−1 Z��

in LH
2n−1C(X,Z). Hence, for every triple of objects X, Y , and Z in C, we define a

simplicial composition LHC(X,Y )× LHC(Y, Z)→ LHC(X,Z) as

colim
k

N
(LH

2k+1C(X,Y )× LH
2k+1C(Y, Z)→ LH

4k+1C(X,Z)
)
.

Here we use the well-known facts that filtered colimits commute with finite limits,
that nerves commute with products, and that the category of simplicial sets is a
cartesian closed model category. The identity of X is determined by fixing, for each
n, the object in LH

n (X,X) with only identity arrows. The associativity and identity
properties can be checked levelwise.

Remark 2.1. The hammock localization was originally defined using a colimit over
all natural numbers (cf. [DK80b]). We restrict to odd natural numbers because in
this case the morphisms in the extremes are always going backwards and then we do
not need to distinguish two cases in every proof. It can be seen that both definitions
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coincide using a cofinality argument, as proved in [DHKS04, Chapter 34]. It is also
worth mentioning that if C is a model category andW is its class of weak equivalences,
then LHC(X,Y ) � LH

3 C(X,Y ) for every pair of objects X and Y (cf. [DK80b]).
Although working with LH

3 has certain advantages, for the purposes of this article it
is more convenient to work with LH even in the case of model categories.

Remark 2.2. We recall that the nerve of a category D is the simplicial set with
n-simplices (ND)n = Cat([n],D) and that this defines a fully faithful functor from
Cat to the category of simplicial sets. We will often use the fact that natural trans-
formations induce homotopies after taking nerves [Qui73, Section 1, Proposition 2].
In particular, adjunctions induce homotopy equivalences. It is also useful to know
that, for any pair of objects X and Y , LHC(X,Y ) is weakly equivalent to the nerve
of the Grothendieck construction on the diagram defining the sequential colimit, as
observed in [DHKS04, Proposition 35.7].

Definition 2.3. Let wCat denote the category of small categories with weak equiva-
lences and morphisms being the functors that preserve weak equivalences. Then there
is a functor

LH : wCat −→ sCat,

where sCat is the category of small simplicial categories. The image of a morphism
F : C → C′ in wCat is defined levelwise, i.e., each object X in LHC is sent to FX
in LHC′ and, for each pair of objects X and Y in C, we define a simplicial map
LHC(X,Y )→ LHC′(FX,FY ) determined by sending an object like (1) in LH

n C(X,Y )
to

FX FC1
Fd0�� Fd1 �� . . .

Fdn−2 �� FCn−1 FY
Fdn−1��

in LH
n C′(FX,FY ).

Notice that for every morphism f : A→ B in a category C there are induced maps
of simplicial sets

f∗ : LHC(B, Y ) −→ LHC(A, Y ) and f∗ : LHC(X,A) −→ LHC(X,B)

for all X and Y in C. They are defined just using the composition in LHC and fixing
one of the variables as the diagram

A A
id�� f �� B B

id��

in LH
3 C(A,B). To be more precise, f∗ is induced by the functors f∗n that send an

object like (1) in LH
n C(B, Y ) to

A A
id�� f �� B C1

�� �� . . . �� Cn−1 Y��

in LH
n+2C(A, Y ) for every odd natural number n. If f is a weak equivalence, then f∗

is a weak homotopy equivalence and a homotopy inverse is given by the functors that
send an object like (1) in LH

n C(A, Y ) to

B A
f�� id �� A C1

�� �� . . . �� Cn−1 Y��

in LH
n+2C(B, Y ) for every odd natural number n. Indeed, if f is a weak equivalence,
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then f∗n is an equivalence of categories for each n. The map f∗ is defined similarly.

If C is a model category, we will let W be exactly the class of weak equivalences
in C. In this case, π0(LHC(X,Y )) ∼= Ho(C)(X,Y ) and LHC(X,Y ) defines a homotopy
function complex (or homotopy mapping space) for C (cf. [Hir03, Chapter 17]).

We would like to apply the hammock localization not only to small categories.
This has some technical set theoretical issues that can be nicely handled using the
axiomatization of universes. We refer to [DHKS04, Section 32] for a detailed expla-
nation.

3. A property of the hammock localization

The following result asserts that the hammock localization respects homotopies.
For the basic properties of homotopies in model categories, we refer to [Hir03, Chap-
ter 7]. As usual, by simplicial homotopy in a simplicial model category we mean the
equivalence relation generated by the strict homotopies.

Theorem 3.1. Let C be a model category, and let f, g : A→ B be a pair of left or right
homotopic morphisms in C. Then the induced maps f∗, g∗ : LHC(X,A)→ LHC(X,B)
are simplicially homotopic for all X in C and f∗, g∗ : LHC(B, Y )→ LHC(A, Y ) are
simplicially homotopic maps for all Y in C.

Proof. Assume that f and g are left homotopic. Fix a cylinder object

A
∐

A
i0

∐
i1 �� Cyl(A)

p �� A ,

where p ◦ i0 = p ◦ i1 = id and i0, i1, and p are weak equivalences. Let H : Cyl(A)→ B
be a left homotopy between f and g. Thus, H ◦ i0 = f and H ◦ i1 = g.

Let H̃ : LHC(X,A)→ LHC(X,B) be the map induced by the functors H̃n that
send an object like (1) in LHCn(X,A) to

X C1
�� �� . . . �� Cn−1 Cyl(A)

dn−1◦p�� H �� B B
id��

in LHCn+2(X,B). Hence, the commutative diagram

X C1
�� �� . . . �� Cn−1 A

dn−1��

i0

��

f �� B B
id��

X C1
�� �� . . . �� Cn−1 Cyl(A)

dn−1◦p�� H �� B B
id��

X C1
�� �� . . . �� Cn−1 A

dn−1��

i1

��

g �� B B
id��

determines a zig-zag of natural transformations

fn
∗

φn

�� H̃n gn∗
ψn

��

between functors from LHCn(X,A) to LHCn+2(X,B) for each odd natural number n,
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which are compatible with the inclusions

LHCn(X,A)→ LHCn+2(X,A).

Because H̃ = colimk NH̃2k+1, the nerve functor sends natural transformations to
simplicial homotopies, and φn and ψn are compatible with the colimit, we have an
induced zig-zag of homotopies of simplicial sets f∗ � H̃ � g∗.

It f and g are right homotopic, then the statement can be proved similarly using
path objects.

The following result describes the image of a natural transformation under the
hammock localization functor.

Theorem 3.2. Let F,G : C → D be a pair of functors in wCat together with a natural
transformation η : F → G. There is a homotopy LHη(X,Y ) from ηY ∗ ◦ LHF (X,Y )
to η∗X ◦ LHG(X,Y ) for each pair of objects X and Y in C:

LHC(X,Y )
LHF (X,Y ) ��

LHG(X,Y )

��

LHD(FX,FY )

ηY ∗

��

����
������
��

LHη(X,Y )

�� ����
�����
�

LHD(GX,GY )
η∗X �� LHD(FX,GY ).

Notice that LH fails to be a strict 2-functor in general. To be so, LHη would
have to define a simplicially enriched natural transformation, which exactly means
that LHη(X,Y ) would have to be the identity for each pair of objects X and Y
(cf. [Kel82, Section 1.2]). Nevertheless, Theorem 3.2 has already some applications.
For instance, it is used in [CRT] to study homotopy algebras over monads in the
homotopy category. Examples of such algebras include homotopy associativeH-spaces
or homotopy module spectra.

In the proof of Theorem 3.2, we will need the following observation that we state
without a proof.

Lemma 3.3. Let C be a category in wCat. For any pair of objects X and Y in
C, the inclusion LH

n C(X,Y ) ↪→ LH
n+2C(X,Y ) in (2) that consists in inserting two

consecutive identity morphisms in C1 is related by a zig-zag of natural transformations
to the inclusion defined by inserting two consecutive identity morphisms in Ci for any
0 � i � n.

Proof of Theorem 3.2. Fix an object like (1) in LH
n C(X,Y ). Then we can describe

the homotopy LHη(X,Y ) by the natural transformation defined by the morphisms

FX FX
id�� id �� FX

ηX

��

FC1
Fd0��

ηC1

��

�� . . . �� FCn−1

ηCn−1

��

FY
Fdn−1��

ηY

��

ηY �� GY GY
id��

FX FX
id�� ηX �� GX GC1

Gd0�� �� . . . �� GCn−1 GY
Gdn−1�� id �� GY GY

id��

in LH
n+4D(FX,GY ) for each odd number n. It is a consequence of Lemma 3.3 that

the two identities we artificially introduced at the beginning of the first row will have



THE HAMMOCK LOCALIZATION PRESERVES HOMOTOPIES 197

no effect after we take the colimit over n to produce ηY ∗ ◦ LHF (X,Y ). The same
applies to the two identities at the end of the second row.

4. Homotopy idempotent functors

We next define an analogue of the notion of idempotent functor (cf. [Bor94, Sec-
tion 4.2]), in the context of model categories following [CSS05].

Definition 4.1. Let M be a model category. A functor L : M→M together with
a natural transformation � : 1→ L is called (coaugmented) homotopy idempotent if L
sends weak equivalences to weak equivalences and the natural morphisms �LX and
L�X : LX → LLX are equal in the homotopy category Ho(M) and both are weak
equivalences for every object X in M.

There is a notion of augmented homotopy idempotent functor, also called cellu-
larization. All results in this section have analogues for the augmented case, and the
proofs can be easily transferred. At the end of the section, we will state the analogues
of the two main results.

Given a homotopy idempotent functor (L, �), a morphism f in M is called an
L-equivalence if Lf is a weak equivalence, and a fibrant object X in M is called
L-local if X � LY for some Y inM. The class of L-equivalences and L-local objects
determine each other by orthogonality in the homotopy category Ho(M). This means
that a morphism g : X → Y is an L-equivalence if and only if the morphism

g∗ : [Y, Z]
∼= �� [X,Z]

is an isomorphism for every L-local object Z, and a fibrant object Z is L-local if and
only if g∗ is an isomorphism for all L-equivalences g (cf. [Ada75, Proposition 2.10]).

We will prove in Proposition 4.3 that L-equivalences and L-local objects are also
simplicially orthogonal in the model category. Let us explain what this means. Fix
a homotopy function complex map(−,−) in a model category M, and let S be any
class of morphisms in M. A fibrant object X in M is called S-local if, for every
morphism f : A→ B in S, the induced map of homotopy function complexes

f∗ : map(B,X) −→ map(A,X)

is a weak homotopy equivalence. We denote by Sh⊥ the class of S-local objects and
we call it the simplicial orthogonal complement of S. Similarly, for any class of objects
D in M, a morphism f : A→ B is called a D-equivalence if, for every X ∈ D, f∗ is
a weak homotopy equivalence. By an abuse of notation, we also denote by Dh⊥ the
class of D-equivalences and we call it the simplicial orthogonal complement of D.

It is important to notice that these definitions do not depend on the choice of
homotopy function complex [Hir03, Proposition 17.8.2]. We fix map(−,−) to be
LHC(−,−).

Recall from [Hir03, Definition 3.3.1] that the left Bousfield localization with
respect to a class of morphisms S on a model category M (if it exists) is a new
model category structure LSM on the same underlying category M with the same
cofibrations and the weak equivalences being the Sh⊥-equivalences. In particular, if
we consider the fibrant replacement functor in LSM, then it defines a homotopy
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idempotent functor on M. We will show that, if we assume that Vopěnka’s princi-
ple holds, then in any cofibrantly generated model category a homotopy idempotent
functor has the same local objects as a left Bousfield localization with respect to a
set of morphisms.

Lemma 4.2. Let M be a model category, and let (L, �) be a homotopy idempotent
functor on M. For every pair of objects X and Y ,

1. the map LHL(X,LY ) : map(X,LY )→ map(LX,LLY ) is a simplicial homotopy
equivalence, and

2. the map �∗X : map(LX,LY )→ map(X,LY ) is also a simplicial homotopy equiv-
alence.

Proof. For the first part, we let h : map(LX,LLY )→ map(X,LY ) be the map in-
duced by the functors hn that send an object like (1) in LH

n C(LX,LLY ) to

X X
id�� �X �� LX C1

�� �� . . . �� Cn−1 LY
dn−1◦�LY��

in LH
n+2C(X,LY ) for every odd natural number n. The homotopy from the identity

(see Lemma 3.3) to h ◦ LHL(X,LY ) is determined by the commutative diagram

X X
id�� id �� X

�X
��

C1
�� ��

�C1

��

. . . �� Cn−1

�Cn−1

��

LY
dn−1��

X X
id�� �X �� LX LC1

�� �� . . . �� LCn−1 LY
Ldn−1◦�LY��

in LH
n+2C(X,LY ) for every odd natural number n. We will now define a zig-zag of

homotopies between the identity and LHL(X,LY ) ◦ h induced by a zig-zag of natural
transformations

idn −→ H̃n ←− LH
n L ◦ hn (3)

that are compatible with the inclusions

LH
n C(LX,LLY ) −→ LH

n+2C(LX,LLY ).

Since map(−,−) is homotopy invariant, we can assume that LX, LLX, LLY, and
LLLY are fibrant and cofibrant. Hence, there are two cylinder objects

LX
∐

LX
i0

∐
i1 �� Cyl(LX)

p �� LX and

LLY
∐

LLY
i′0

∐
i′1 �� Cyl(LLY )

p′ �� LLY,

a left homotopyH : Cyl(LX)→ LLX betweenH ◦ i0 = L�X andH ◦ i1 = �LX , and a
left homotopy H ′ : Cyl(LLY )→ LLLY between H ′ ◦ i′0 = L�LY and H ′ ◦ i′1 = �LLY

(notice that H ′ is forced to be a weak equivalence by the two-out-of-three property).
Let H̃n be the functor that sends an object like (1) in LH

n C(LX,LLY ) to

LX Cyl(LX)
p�� H �� LLX LC1 . . . LCn−1

Ld0�� Cyl(LLY )
Ldn−1◦H′�� p′ �� LLY LLY

id��
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in LH
n+4C(LX,LLX). The diagram

LX LX
id�� id ��

i1

��

LX

�LX

��

C1 . . . Cn−1
d0��

�C1

��
�Cn−1

��

LLY
dn−1��

i′1
��

id �� LLY LLY
id��

LX Cyl(LX)
p�� H �� LLX LC1 . . . LCn−1

Ld0�� Cyl(LLY )
Ldn−1◦H′�� p′ �� LLY LLY

id��

LX LX
id�� L�X ��

i0

��

LLX LC1 . . . LCn−1
Ld0�� LLY

Ldn−1◦L�LY��

i′0

��

id �� LLY LLY
id��

in LH
n+4C(LX,LLY ) defines the zig-zag of natural transformations (3) inducing the

homotopy equivalence between id and LHL ◦ h.
The second part of the statement follows from Theorem 3.2, because � induces a

homotopy �LY ∗ � �∗X ◦ LHL(X,LY ), and �LY ∗ and LHL(X,LY ) are weak homotopy
equivalences.

Proposition 4.3. Let M be a model category, and let (L, �) be a homotopy idem-
potent functor on M. Then the class of L-equivalences coincides with the simplicial
orthogonal complement of the class of L-local objects.

Proof. We first prove that L-local objects are simplicially orthogonal to L-equi-
valences: Fix an object LY and a morphism f : A→ B such that Lf is a weak
equivalence. We want to prove that map(f, LY ) is a weak homotopy equivalence.
In the commutative diagram

map(LB,LY )
Lf∗ ��

�∗B
��

map(LA,LY )

�∗A
��

map(B,LY )
f∗ �� map(A,LY ),

the vertical arrows are weak homotopy equivalences by Lemma 4.2 and the top arrow
is also a weak homotopy equivalence because Lf is a weak equivalence. Hence, the
bottom map has to be a weak homotopy equivalence.

If f : A→ B is such that map(f,X) is a weak homotopy equivalence for each
L-local object X, then, using Lemma 4.2, we deduce that map(Lf, LA) and
map(Lf , LB) are weak homotopy equivalences. Hence, Lf must be a weak equiva-
lence by [Hir03, Proposition 17.7.6].

Finally, let X be fibrant and such that map(f,X) is a weak homotopy equivalence
for each L-equivalence f . In particular, map(�X , X) is a weak homotopy equivalence.
On the other hand, map(�X , LX) is a weak homotopy equivalence by Lemma 4.2.
Hence, �X : X → LX must be a weak equivalence by [Hir03, Proposition 17.7.6].

In what follows, we specialize to combinatorial model categories, i.e., cofibrantly
generated model categories whose underlying category is locally presentable. We refer
to [Dug01] or [Bar10] for the definition and properties. In a left proper combina-
torial model category left Bousfield localizations with respect to a set always exist
(cf. [Bar10, Theorem 4.7]). The analogue for cellular model categories is proved
in [Hir03, Theorem 4.1.1].
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The next two results correspond to [CC06, Lemma 1.2] and [CC06, Lemma 1.3],
but we drop the hypothesis that the model category be simplicial.

Lemma 4.4. LetM be a combinatorial model category. Then there is regular cardinal
μ such that, for every class of objects D in M, the class of D-equivalences Dh⊥ is
closed under μ-filtered colimits.

Proof. Since map(−,−) is homotopy invariant, we can assume that each object
in D is fibrant. Since we are assuming that M is combinatorial, there is a regu-
lar cardinal μ such that weak equivalences are preserved by μ-filtered colimits and
there are cofibrant and fibrant replacement functors that preserve μ-filtered colimits
(cf. [Dug01, Proposition 2.3]). Let fi : Xi → Yi be D-equivalences for all i ∈ I, where
I is a μ-filtered category. Since we are assuming that cofibrant replacement preserves
μ-filtered colimits, we can assume that Xi and Yi are cofibrant for all i ∈ I.

We have a commutative diagram

colimI Xi
colimI fi �� colimI Yi

hocolimI Xi
hocolimI fi ��

��

hocolimI Yi,

��

where the vertical arrows are weak equivalences since μ-filtered colimits are homo-
topy colimits, due to the fact that μ-filtered colimits of weak equivalences are weak
equivalences. To finish the proof it is enough to prove that the bottom arrow is a
D-equivalence. But now, for every object Z ∈ D, we have a commutative square

map(hocolimI Xi, Z) ��

��

map(hocolimI Yi, Z)

��
holimI map(Xi, Z) �� holimI map(Yi, Z),

where the vertical arrows are weak homotopy equivalences by [Hir03, Theorem
19.4.4], and the bottom arrow is a weak homotopy equivalence since every fi is a
D-equivalence. This proves that hocolimI fi is a D-equivalence.

In the following statement we will need to assume Vopěnka’s principle. This is a
set-theoretical axiom equivalent to the fact that every full subcategory of a locally
presentable category that is closed under colimits is a locally presentable coreflective
subcategory, i.e., the inclusion has a right adjoint (cf. [AR94, Theorem 6.28 and
Theorem 6.29]).

Lemma 4.5. Assume that Vopěnka’s principle holds. LetM be a combinatorial mod-
el category and let D be any class of objects in M. Then there is a set of mor-
phisms S such that the class of Sh⊥-equivalences, (Sh⊥)h⊥, is equal to the class of
D-equivalences, Dh⊥. Hence, (Dh⊥)h⊥ equals the class of S-locals.

Proof. By Lemma 4.4, there is a regular cardinal μ′ such that, for every class of
objects E in M the class of E-equivalences Eh⊥ is closed under μ′-filtered colimits.
On the other hand, M is λ-presentable for some regular cardinal λ and so is the
category of arrows ofM [AR94, Corollary 1.54]. Since we are under Vopěnka’s prin-
ciple, by [AR94, Theorem 6.24 and Theorem 6.29] there exists a regular cardinal
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λ′ and a set of λ′-presentable D-equivalences S′ such that every morphism in Dh⊥

is a λ′-filtered colimit of morphisms in S′. It then follows that there exists a car-
dinal μ � max{λ′, μ′} and a set of D-equivalences S such that every morphism in
Dh⊥ is a μ-filtered colimit of morphisms in S and Dh⊥ is closed under μ-filtered
colimits [AR94, Corollary 2.14].

Since every object in D is S-local, every S-equivalence is in Dh⊥. Conversely, every
g in Dh⊥ is a μ-filtered colimit of morphisms in S. But now S ⊂ (Sh⊥)h⊥ and (Sh⊥)h⊥

is closed under μ′-filtered colimits by the first comment in the proof. In particular,
(Sh⊥)h⊥ is also closed under μ-filtered colimits. This implies that g is in (Sh⊥)h⊥.

As a direct consequence of Lemma 4.5, we obtain an alternative proof of [CC06,
Theorem 2.1] that avoids the assumption of the model category being simplicial. A
different proof was given in [RT03, Theorem 2.3].

Corollary 4.6. Assume that Vopěnka’s principle holds. Let M be a left proper com-
binatorial model category. Then the left Bousfield localization with respect to any class
of morphisms S in M exists.

Proof. By Lemma 4.5, the class Sh⊥ coincides with the class Dh⊥ with respect to a
set of morphisms D. By [Bar10, Theorem 4.7], the Bousfield localization LDM with
respect to D exists in M. Since the Dh⊥-equivalences coincide with the Sh⊥-equiva-
lences, LDM is also the left Bousfield localization with respect to S.

As noticed in [CC06], in general we cannot take S in the conclusion of Lemma 4.5
to consist of a single morphism. However, it is possible to reduce S to a single mor-
phism if we assume, for instance, that we work in a pointed category. In particular,
the next result applies to stable combinatorial model categories.

Corollary 4.7. Assume that Vopěnka’s principle holds. Let M be a pointed combi-
natorial model category, and let D be any class of objects inM. Then there is a mor-
phism f such that the class of f -equivalences is equal to the class of D-equivalences.
Proof. Let S be the set of morphisms and μ the regular cardinal as in the proof
of Lemma 4.5, and let f =

∐
s for all s : A→ B in S. It is enough to prove that

Sh⊥ = fh⊥. If X is an S-local object, then every component in the product∏
map(s,X) � map

(∐
s,X

)
= map(f,X)

is a weak homotopy equivalence. Hence, X is f -local.
Conversely, if X is f -local, then

∏
map(s,X) is a weak homotopy equivalence.

SinceM is pointed, for each s in S there is a retraction map r such that the compo-
sition

map(s,X)
r �� map(

∐
s,X) �∏

map(s,X) �� map(s,X)

is the identity. Hence, map(s,X) is a weak homotopy equivalence for each s in S.
Thus, X is S-local.

The following result is a direct consequence of Proposition 4.3 and Lemma 4.5.

Theorem 4.8. Assume that Vopěnka’s principle holds. Let M be a combinatorial
model category. If (L, �) is any homotopy idempotent functor on M, then there is
a set of morphisms S such that the class of S-local objects coincides with the class
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of L-local objects. Furthermore, if M is pointed, then we can take S to consist of a
single morphism.

Proof. Let D be the class of L-local objects. It follows from Proposition 4.3 that the
class of D-equivalences coincides with the class of L-equivalences. Then Lemma 4.5
and Corollary 4.7 finish the proof.

We next extend Theorem 4.8 to any cofibrantly generated model category, in par-
ticular, to any cellular model category [Hir03, Definition 12.1.1].

We remind the reader that a Quillen pair F : N �M : G is homotopically surjec-
tive if, for every fibrant objectX inM and every cofibrant replacement (GX)c of GX,
the induced morphism F (GX)c → X is a weak equivalence [Dug01, Definition 3.1].

Proposition 4.9. Assume that Vopěnka’s principle holds. Let F : N �M : G be
a homotopically surjective Quillen pair, and let N be combinatorial. If (L, �) is a
homotopy idempotent functor on M, then there is a set of morphisms S in M such
that the class of S-local objects coincides with the class of L-local objects. Furthermore,
if M is pointed, then we can take S to consist of a single morphism.

Proof. Let D be the class of objects of the form GX with X L-local. Notice that
they are fibrant because G preserves fibrant objects. By Lemma 4.5, there is a set
of morphisms S′ in N such that the class of S′-locals coincide with (Dh⊥)h⊥. Let
S = {Ff c | f ∈ S′}. We claim that the L-locals coincide with the S-locals.

Let X be L-local (thus fibrant). By hypothesis, the morphism F (GX)c → X is a
weak equivalence. By definition, GX is S′-local. Hence,

map(f,GX) � map(f,G(F (GX)c)f ) � map(F (f c), F (GX)c)

are weak homotopy equivalences for any f in S′. In particular,X � F (GX)c is S-local.
Now let X be S-local. By definition, map(Ff c, X) � map(f,GX) are weak homo-

topy equivalences for every f in S′. Hence, GX is S′-local; i.e., GX is in (Dh⊥)h⊥.
By Proposition 4.3, to prove that GX is L-local it is enough to prove that, for

every L-equivalence g, map(g,GX) � map(Fgc, X) is a weak equivalence. Since we
have already proved that GX is Dh⊥-local, the proof will be finished if we can show
that g is aD-equivalence if and only if Fgc is an L-equivalence. But, by Proposition 4.3
again, both conditions are equivalent to the fact that map(g,GY ) � map(Fgc, Y ) is
a weak equivalence for all L-local objects Y .

The following result generalizes [CC06, Theorem 2.3] to cofibrantly generated
model categories that are not necessarily locally presentable nor simplicial. It also
gives a positive answer to a question by Farjoun in [Far96] for a broad family of
model categories.

Corollary 4.10. Assume that Vopěnka’s principle holds. LetM be a cofibrantly gen-
erated model category. If (L, �) is a homotopy idempotent functor on M, then there
is a set of morphisms S such that the class of S-local objects coincides with the class
of L-local objects. Furthermore, if M is pointed, then we can take S to consist of a
single morphism.

Proof. Since we are assuming Vopěnka’s principle, [Rap09, Theorem 1.1] implies
that there is a Quillen equivalence (in particular, homotopically surjective) N �M
where N is combinatorial. Hence, the result follows from Proposition 4.9.
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The cofibrantly generated condition in Corollary 4.10 is necessary. In [Cho05] an
example is given of a left Bousfield localization with respect to a class of morphisms
in a (non cofibrantly generated) model category that cannot be a left Bousfield local-
ization with respect to any set.

We next state the analogues of the main results in this section but for augmented
homotopy idempotent functors. We omit the proofs since they are easily reproduced
following the proofs for the coaugmented case. An augmented homotopy idempotent
functor in a model categoryM is a functor C : M→M together with a natural trans-
formation ε : C → 1 such that C sends weak equivalences to weak equivalences and
the natural morphisms εCX , CεX : CCX → CX are equal in the homotopy category
Ho(M) and both are weak equivalences for every object X inM. The following result
generalizes [Cho07, Theorem 1.4] to combinatorial model categories not necessarily
simplicial.

Corollary 4.11. Assume that Vopěnka’s principle holds. Let M be a right proper
combinatorial model category. Then the right Bousfield localization with respect to
any class of objects in M exists.

The following result generalizes [Cho07, Theorem 2.1] to cofibrantly generated
model categories not necessarily locally presentable nor simplicial.

Theorem 4.12. Assume that Vopěnka’s principle holds. Let M be a cofibrantly gen-
erated model category. If (C, ε) is a homotopy augmented idempotent functor on M,
then there is a set of objects D such that the class of D-cellular equivalences coincides
with the class of C-cellular equivalences. Furthermore, if M is pointed, then we can
take D to consist of a single object.
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