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EQUIVARIANT FIXED-POINT THEORY

KATE PONTO

(communicated by Daniel Dugger)

Abstract
We reexamine equivariant generalizations of the Lefschetz

number and Reidemeister trace using categorical traces. This
gives simple, conceptual descriptions of the invariants as well as
direct comparisons to previously defined generalizations. These
comparisons are illuminating applications of the additivity and
multiplicativity of the categorical trace.

1. Introduction

There are two natural ways to approach generalizations of the Lefschetz fixed-point
theorem and its converse. One follows the classical description of the Nielsen number
[7, 31, 32]. The alternative approach [9] starts from the more homotopical descrip-
tion of [6, 10, 12]. In this paper we will compare the equivariant invariants arising
from these different starting points using formal tools that makes their connections
transparent.

The homotopical starting point for equivariant fixed-point theory is a pair of equiv-
ariant stable homotopy classes. If G is a finite group, X is a compact G-ENR or closed
smooth G-manifold, and { , }G denotes equivariant stable homotopy classes of maps,
we associate an equivariant Lefschetz number LG(f) ∈ {S

0, S0}G to every equiv-
ariant map f : X → X. The equivariant Lefschetz number of the identity map is the
equivariant Euler characteristic χG(X).

If

ΛfX := {γ ∈ XI |f(γ(0)) = γ(1)}

is the f -twisted loops in X, we have an equivariant Reidemeister trace RG(f) ∈
{S0, (ΛfX)+}G. For all of these invariants the same notation without a subscript
indicates the corresponding nonequivariant object.

Theorem ([6, 9]). If f has no fixed points, LG(f) and RG(f) are trivial.

Additionally suppose X is a closed smooth G-manifold and for all isotropy sub-
groups K ⊂ H of X dim(XH) � 3 and dim(XH) � dim(XK)− 2. Then f is equiv-
ariantly homotopic to a map with no fixed points if and only if RG(f) is trivial.
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Starting with the Nielsen number, the more natural approach is to look at classical
invariants on isotropy subspaces XH := {x ∈ X | xh = x for all h ∈ H}. An equivari-
ant map induces a map fH : XH → XH that is equivariant with respect to the action
of the Weyl group WH := NH/H. After forgetting the WH action (and ignoring
the parts of XH where WH does not act freely), we have a nonequivariant Lef-
schetz number L(fH). Alternatively, if the WH action is cellular, we can consider
the Hattori–Stallings trace tr/WH (Definition 3.9, [24]) of the map induced on the
rational cellular chain complex as a map of modules over WH. We have analogous
options for the Reidemeister trace. In this paper we compare the resulting invariants.
In the following two results G is a finite group, X is a closed smooth G-manifold, and
f : X → X is an equivariant endomorphism.

Preliminary Version of Theorem A. If Conj(G) is a set of representatives for
the conjugacy classes of subgroups of G,

LG(f) =
∑

H∈Conj(G)

χG(G/H)
L(fH)

χ(WH)
.

Preliminary Version of Theorem B. There are maps μ and ξ so that

LG(f) =
∑

H∈Conj(G)

χG(G/H)
∑
i

(−1)iμ(tr/WH(Ci(fH ;Q)))

and RG(f) can be determined from{∑
i

(−1)iξ(tr/(π1(XH)�WH)Ci(f̃H ;Q))

}
H∈Conj(G)

.

Later in the paper (at the beginning of Parts 1 and 2) we will be more precise
about the maps and give more explicit descriptions of the traces. We will also give
more symmetric formulations of the theorems.

Various parts of this theorem can be found in the literature [7, 11, 13, 26, 27,
28, 31, 32], but we provide a very different proof where much of the hard work is
outsourced to formal results for monoidal categories and bicategories [6, 17, 16, 23,
21]. This gives an especially transparent approach that applies to both the Lefschetz
number and Reidemeister trace. It is a good example of the advantages of the formal
approach.

After briefly recalling the categorical preliminaries, we give proofs of these results
in the case that the action in free. Here we make significant use of ideas from the
proof of the multiplicativity of traces [23]. In the last three sections we extend to the
general case and build on the linearity of traces [21]. The underlying ideas are the
same in the second case, but the bookkeeping is more complicated.

Remark 1.1. The different invariants considered here have different natural generali-
ties. Some make sense for compact Lie groups, others infinite discrete groups. In the
interest of consistent hypotheses, we will always assume that G is a finite group, but
it is useful to remember that this is more restrictive than necessary in some cases.



EQUIVARIANT FIXED-POINT THEORY 163

Acknowledgments

I would like to thank Mohammed Abouzaid, Frank Connolly, Peter May, Gun
Sunyeekhan, and Bruce Williams for many helpful conversations. I also thank the
referee for helpful feedback.

2. Duality and trace in symmetric monoidal categories

The trace in symmetric monoidal categories is a generalization of the trace in
linear algebra that retains many of the important properties. In particular, it satisfies
a generalization of invariance of basis and is functorial. The generalized trace is a
trace for endomorphisms of modules over a commutative ring, endomorphisms of
chain complexes of modules over a commutative ring, and endomorphisms of closed
smooth manifolds or compact ENRs. This section is a summary of [6, 12, 20].

Let V be a symmetric monoidal category with monoidal product ⊗, unit S, and
symmetry isomorphism γ.

Definition 2.1. An object A in V is dualizable with dual B if there are morphisms

η : S �� A⊗B ε : B ⊗A �� S

such that the composites

A ∼= S ⊗A
η⊗id

�� A⊗B ⊗A
id⊗ε

�� A⊗ S ∼= A

B ∼= B ⊗ S
id⊗η

�� B ⊗A⊗B
ε⊗id

�� S ⊗B ∼= B

are identity maps.

We say a space is dualizable if its suspension spectrum is dualizable in the stable
homotopy category. A space with a G action is dualizable if its equivariant suspension
spectrum is dualizable in the equivariant stable homotopy category.

Proposition 2.2 ([12, III.4.1, III.5.1]). If X is a compact G-ENR or closed smooth
G-manifold, then X+ := X � ∗ is dualizable.

Surprisingly, an explicit description of the dual will not be important in this paper.

Definition 2.3. If A is dualizable with dual B and f : A→ A is an endomorphism
in V , then the trace of f , tr(f), is the composite

S
η

�� A⊗B
f⊗id

�� A⊗B
γ

�� B ⊗A
ε �� S.

The trace of a chain map is the alternating sum of the levelwise traces. If f is an
endomorphism of a topological space and H∗(− : Q) is the rational homology functor,
the trace of H∗(f : Q) is the Lefschetz number of f . The trace of an endomorphism
of a G-space in the equivariant stable homotopy category is the equivariant fixed-
point index [6].

Remark 2.4. In this paper we will generally not distinguish between Lefschetz num-
bers (computed on the chain complex) and fixed-point indices (computed on the level
of spaces) since there are classical identification theorems that show they agree in the
cases of interest [2, 6]. These identifications can be made in a way that is compatible
with the approach here [17], further reducing the need to make these distinctions.
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In the stable homotopy category and the equivariant stable homotopy category, as
well as many other categories, the trace is additive on cofiber sequences.

Theorem 2.5 ([8, 14]). In a diagram of cofiber sequences

A
i ��

fA

��

X ��

f

��

C

fC

��
A �� X �� C,

where A and X are dualizable and the left square commutes, C is also dualizable and
there is a map fC so that the remaining square commutes and tr(fA) + tr(fC) = tr(f).

Spaces with a group action have natural decompositions of this form. If we let (H)
denote the conjugacy class of the subgroup H in G and, for a G-space X and x ∈ X,
Gx := {g ∈ G | xg = x}, then we use the notation

X(H) := {x ∈ X | (Gx) = (H)} X(H) := {x ∈ X | ∃g ∈ G where gHg−1 ⊂ Gx}

X>(H) := X(H) \X(H).

Each of the inclusion maps X>(H) → X(H) is a cofibration [26, II.1.9, II.6.7].

Theorem 2.6 ([26, III.5.4]). If X is a closed smooth G-manifold or compact G-ENR,
then

LG(f) =
∑

H∈Conj(G)

LG(f(H)),

where f(H) is the induced endomorphism of X(H)/X>(H).

Proof. Containment defines a partial order on the set of conjugacy classes of sub-
groups of G. Extend this to a total order

(e) = (H1) < (H2) < (H3) < · · · < (Hn) = G.

By [26, II.6.7], X(Hi) and X>(Hi) are compact G-ENRs and so they are dualizable.
Then the map of cofiber sequences

X>(Hi) ��

f>(Hi)

��

X(Hi) ��

f(Hi)

��

Ci

fi

��
X>(Hi) �� X(Hi) �� Ci

and Theorem 2.5 imply LG(f
(Hi)) = LG(f

>(Hi)) + LG(fi). In this case we can take
Ci = X(Hi)/X(Hi) and fi = f(Hi).

Then LG(f
>(Hk)) can be written as a sum of LG(f(Hi)), where i � k.

In papers such as [30], these types of decompositions play an essential role, but
they are expressed in terms of taut maps. A map f : X → Y is taut if for all isotropy
subgroups H of X there is a neighborhood V of X>H := {x ∈ X | H � Gx} in XH :=
{x ∈ X | H = Gx} and an equivariant retraction rH : V → X>H such that fH |V =
fH ◦ rH . The assumption that X is a compact G-ENR or a closed smooth G-manifold
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implies that any equivariant endomorphism of X is equivariantly homotopic to a taut
map. Since the invariants here are all defined up to homotopy, taut maps will not
play an explicit role in this paper.

3. Duality and trace in bicategories with shadows

To define the Reidemeister trace from this perspective and to capture the com-
parison results in Theorems A and B, we need to extend the trace in a symmetric
monoidal category to a bicategory. This section is a brief summary of the relevant
parts of [15, 17, 19].

Definition 3.1. A bicategory B consists of

• a collection obB,

• categories B(A,B) for each A,B ∈ obB, and

• functors

� : B(A,B)×B(B,C)→ B(A,C)

UA : ∗ → B(A,A)

for A, B, and C in obB.

Here ∗ denotes the category with one object and one morphism. The functors �
are required to satisfy unit and associativity axioms up to natural isomorphisms in
B(A,B).

The elements of obB are called 0-cells. The objects of B(A,B) are called 1-cells.
The morphisms of B(A,B) are called 2-cells.

Example 3.2. • The 0-cells in the bicategory Mod are rings, and the category
Mod(R,S) for rings R and S is the category of R-S-bimodules and their homo-
morphisms. The composition is given by the tensor product, and a ring regarded
as a module over itself is the unit.

• The 0-cells in the bicategory Ch are rings and the category Ch(R,S) for rings
R and S is the category of chain complexes of R-S-bimodules and their chain
homotopy classes of maps. The composition is given by the tensor product, and
a ring regarded as a module over itself is the unit.

• The 0-cells in the bicategory GpTop are finite groups. A 1-cell X : G→ H is
a based space with an action of G×H where the actions of G and H are
separately free away from the base point. The morphisms from X : G→ H to
Y : G→ H are stable homotopy classes of equivariant maps from X to Y . The
bicategorical composition is given by the smash product followed by the quotient
by the diagonal action. The unit object associated to a finite group G is G+

regarded as a G-G set with a trivial action on the base point.

• The 0-cells in the bicategory Ex of parametrized spectra defined in [15] are topo-
logical spaces. The 1-cells are parametrized spectra and the 2-cells are fiberwise
stable homotopy classes of maps. The bicategory composition is given by a
fiberwise smash product. For this bicategory we will follow the notation and
conventions of [23, §3].
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There is also a bicategory of parametrized spectra with an action by a finite
group G.

The first two of these bicategories primarily serve as motivation. Our interest is in
bicategories arising in topological settings.

Definition 3.3 ([15, 16.4.1]). A 1-cell X ∈ B(A,B) is right dualizable with dual
Y ∈ B(B,A) if there are 2-cells

η : UA
�� X � Y ε : Y �X �� UB

such that the composites

Y ∼= Y � UA
id�η

�� Y �X � Y
ε�id

�� UB � Y ∼= Y

X ∼= UA �X
η�id

�� X � Y �X
id�ε

�� X � UB
∼= X

are identity maps.

The map η is the coevaluation and ε is the evaluation. We say (X,Y ) is a dual
pair.

In this paper we will use a range of topological dual pairs. Most are closely related
to the classical dual pair in Proposition 2.2.

Theorem 3.4 ([1, 8.6]). If X is a compact ENR or closed smooth manifold with a
free right action of a finite group G, the space X+ is dualizable as a ∗ ×G space in
the bicategory GpTop.

The evaluation and coevaluation can be interpreted as maps of spaces

Sn → X+ ∧G DX and DX ∧X+ → G+ ∧ Sn (1)

for a G space DX and an integer n [1]. The first map is a map of spaces, and the
second map is G-G-equivariant. To give a better idea of the objects involved, we use
the notation ∧G and ∧ rather than the standard � notation. In this case ∧G is the
smash product followed by the quotient by the diagonal G action.

Theorem 3.5 ([17, 3.2.3]). For a closed smooth manifold or compact ENR X, the
universal cover X̃ is dualizable as a ∗ × π1(X) space in the bicategory GpTop.

We say a parametrized space E over Y ×X is dualizable if the fiberwise suspen-
sion spectrum ΣY×XE is dualizable.

Theorem 3.6 ([15, 18.5.1, 18.6.1]). If X is a compact G-ENR or closed smooth G-
manifold, S0

X := X �X, regarded as a parametrized space over ∗ ×X, is right dual-
izable.

From a map of topological spaces f : X → Y , we define spaces P (id, f) := {(γ, x) ∈
Y I ×X|γ(0) = f(x)} and P (f, id) := {(x, γ) ∈ X × Y I |γ(1) = f(x)}. The first has a
map to Y ×X by (γ, x) 
→ (γ(1), x), and the second has a similar map to X × Y .
These become parametrized spaces with the addition of a disjoint section. We let
Yf := P (id, f)� (Y ×X) and fY := P (f, id)� (X × Y ).
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Theorem 3.7 ([15, 17.3.1]). For any map of spaces f : X → Y (fY, Yf ) is a dual
pair.

Composition of paths and applying the map f to a path define evaluation and
coevaluation maps for this dual pair. This type of dual pair will be referred to as a
base change dual pair [15, 17.3].

Like the symmetric monoidal trace, the trace of a 2-cell is defined using a composite
of the coevaluation and evaluation for a dual pair. Unlike that case, the source of the
evaluation and target of the coevaluation are not isomorphic. To accommodate this,
we need more structure on a bicategory before we can define the trace.

Definition 3.8 ([17, 4.4.1]). A shadow for a bicategory B is a functor

〈〈−〉〉:
∐

B(A,A)→ T

to a category T and unital and associative natural isomorphisms 〈〈X � Y 〉〉∼= 〈〈Y �X〉〉
for every pair of 1-cells X ∈ B(A,B) and Y ∈ B(B,A).

All of the bicategories in Example 3.2 have shadows [19]. The shadow in GpTop

is the quotient by the diagonal action of the group. In the bicategory Ex the shadow
is given by pulling back along the diagonal map (up to homotopy) and then quo-
tienting by the resulting section. In particular, for an endomorphism f : X → X,
〈〈Xf〉〉∼= (ΛfX)+.

Definition 3.9 ([17, 4.5]). Let X be a dualizable 1-cell in B with dual Y , and let
f : Q�X → X � P be a 2-cell in B. The trace of f is the composite

〈〈Q〉〉∼= 〈〈Q� UA〉〉
id�η

�� 〈〈Q�X � Y 〉〉

f�id

��
〈〈X � P � Y 〉〉

∼ �� 〈〈P � Y �X〉〉
id�ε

�� 〈〈P � UB〉〉∼= 〈〈P〉〉.

If M is a finitely generated projective right R-module, M is right dualizable and
the trace of an endomorphism of M is the Hattori–Stallings trace.

If G acts freely on a closed smooth manifold or compact ENR X, the trace of an
equivariant map f : X → X with respect to the dual pair in Theorem 3.4 is a map

tr/G(f) : S
n → Sn ∧ 〈〈G+〉〉.

This is another equivariant generalization of the classical fixed-point index. We will
see in Theorem B that it is closely related to the equivariant generalization of the
index defined in the previous section.

Remark 3.10. If we apply the rational cellular chain complex functor Ci(−;Q) to the
maps (1), we obtain a dual pair in the bicategory of rings, chain complexes, and
homomorphisms. An equivariant map f : X → X defines a map of chain complexes,
and the trace of this map is ∑

i

(−1)itr/G(Ci(f ;Q)),

where tr/G is the levelwise Hattori–Stallings trace. This is the universal Lefschetz
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class from [11, 1.7]. By functoriality of the trace [19] this agrees with tr/G(f) : S
n →

Sn ∧ 〈〈G+〉〉under the isomorphism πs
0(〈〈G〉〉+)

∼= Hom(Q,Q〈〈G〉〉).

If a space X has a universal cover X̃, an endomorphism f : X → X defines an
endomorphism f̃ of X̃ that is π1(X)-equivariant in the sense that for α ∈ π1(X) and
x̃ ∈ X̃,

f̃(xα) = f̃(x)f∗(α)

(with some care with base points). Consistent with notation earlier, we let (π1X)f∗+
be the set (π1X)+ with a standard left action of π1(X) and a right action of π1(X)
that is first twisted by f∗. We can then interpret f̃ as an equivariant map X̃+ →
X̃+ ∧π1(X) (π1X)f∗+. The Reidemeister trace of f , R(f), is the bicategorical trace

of f̃ [17]. It is an element of the zeroth stable homotopy group of the set 〈〈π1Xf∗〉〉 :=
π1X/(γf∗(δ) ∼ δγ).

The map f : X → X also defines a fiberwise map

S0
X → S0

X � (Xf ).

See [16, 2.3] and [3]. If X is a closed smooth manifold or compact ENR, the trace of
this map is an element of the zeroth stable homotopy group of 〈〈Xf〉〉∼= (ΛfX)+.

Theorem 3.11 ([16, 4.1]). There is a natural map 〈〈Xf〉〉→ 〈〈π1(X)f∗〉〉 and the image

of the trace of the fiberwise map S0
X

f
−→ S0

X �Xf under this map is the Reidemeister
trace of f .

As the natural map 〈〈Xf〉〉→ 〈〈π1(X)f∗〉〉 is an isomorphism on components we will
follow Remark 2.4 and refer to the trace of S0

X → S0
X �Xf as the Reidemeister trace

of f .
If f : X → X is an equivariant endomorphism of a closed smooth G-manifold or

compact G-ENR, the equivariant Reidemeister trace of f is defined to be trace
of S0

X → S0
X �Xf in the equivariant parametrized stable homotopy category. This

class is denoted RG(f).
Like the symmetric monoidal trace, the bicategorical trace is additive.

Theorem 3.12 ([22, 21]). Let A→ X → C be a cofiber sequence in the parametrized
stable homotopy category or its equivariant generalization, and suppose A and X are
dualizable. Then C is also dualizable and, given a commutative diagram

A
i ��

fA

��

X ��

f

��

C

fC

��
A� P �� X � P �� C � P,

there is a map fC so that the right square commutes and tr(fA) + tr(fC) = tr(f).

The approach used in Theorem 2.6 then extends to the Reidemeister trace.

Theorem 3.13 ([21, 6.3]). If X is a closed smooth G-manifold or compact G-ENR
and f : X → X is an equivariant endomorphism, then

RG(f) =
∑

H∈Conj(G)

i(H)RG(f(H)).



EQUIVARIANT FIXED-POINT THEORY 169

Here RG(f(H)) is the equivariant relative Reidemeister trace of X(H) rela-

tive to the subspace X>(H). See [18] and §7. It is a refinement of the equivariant

Reidemeister trace of X(H)/X>(H) and takes values in {S0,Λf(H)

X(H)}G. The map

i(H) is the inclusion Λf(H)

X(H) → ΛfX.
We will also use the compatibility of the trace with composites of dual pairs. This

was an essential piece of the proofs of multiplicativity [23] and additivity [21].

Theorem 3.14 ([15, 16.5.1] [23, 5.4]). If M ∈ B(A,B) and N ∈ B(B,C) are right
dualizable, then so is M �N ∈ B(A,C).

Let Q ∈ B(A,A), P ∈ B(B,B), and R ∈ B(C,C) be 1-cells, and let f : Q�M →
M � P and g : P �N → N �R be 2-cells. Then the following triangle commutes:

〈〈Q〉〉
tr((idM�g)◦(f�idN ))

��

tr(f)
���

��
��

��
��

〈〈R〉〉

〈〈P〉〉.

tr(g)

�����������

Part 1. Free actions

An equivariant map f : X → X induces a map f̄ : X/G→ X/G so the diagram below
commutes:

X
f

��

��

X

��
X/G

f̄
�� X/G.

If the action of G on X is free, each f̄ -twisted loop γ in X/G and lift γ̃ of γ to X
define a group element g ∈ G by f(γ̃(0)) = γ̃(1)g. Up to conjugacy, this group element
depends only on γ. If 〈〈G〉〉 is the set of conjugacy classes of elements of G, we define
a map

Θ: Λf̄ (X/G)→ 〈〈G〉〉

by Θ(γ) = g if there is a lift γ̃ of γ such that f(γ̃(0)) = γ̃(1)g. Let Fix(f)(e) := Θ−1(e).
We will also let Θ denote the corresponding map 〈〈π1(X/G)f̄∗〉〉→ 〈〈G〉〉.

Theorem A (Free case). If action of G on X is free, then χ(G)LG(f) = χG(G)L(f)
and there are integers aγ so that

RG(f) =
∑

γ∈Fix(f̄)(e)

aγ(iγ ◦ tr
�
G (Fγ)) and R(f) =

∑
γ∈Fix(f̄)(e)

aγ(iγ ◦ tr
�(Fγ)).

In this statement tr� is the transfer [12, 3.7]. If X is a dualizable object in
a symmetric monoidal category, the transfer of X with respect to a map � : X →
X ∧X is the composite

S
η
−→ X ∧DX

�∧1
−−−→ X ∧X ∧DX

1∧γ
−−→ X ∧DX ∧X

1∧ε
−−→ X ∧ S ∼= X.

For topological spaces with a disjoint base point we will use the map induced by the
diagonal. The transfer leads to some unavoidable asymmetry in this statement since
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we cannot multiply by transfers as easily as Euler characteristics. Here Fγ is the fiber
over γ(1) and the map iγ : Fγ → ΛfX is the inclusion of the fiber as constant paths.

For Theorem B we first need to give a more precise description of the trace we will
compare to the Reidemeister trace. Let X̃ be the universal cover of X. Then X̃ is a
cover of X/G and the action of π1(X/G) on X̃ encodes both the G action and the
action of π1(X). As in the classical case, X̃+ is dualizable as a π1(X/G) space. An
equivariant map f : X → X induces a map f̃ : X̃+ → X̃+ ∧ (π1(X/G)f̄∗)+ and the

trace of f̃ is a map

tr/π1(X/G)(f̃) : S
n → Sn ∧ 〈〈π1(X/G)f̄∗〉〉+.

Both tr/G(f) and tr/π1(X/G)(f̃) are carrying more information than the corre-
sponding classical invariants. To compare invariants we need to be able to separate
out this extra information. For each g ∈ G, there is a map μg : 〈〈G〉〉+ → S0 that takes
all conjugacy classes of G except the class that contains g to the basepoint. There
is also a map ξg : 〈〈π1(X/G)f̄∗〉〉+ → Θ−1(g)+ that is the identity on Θ−1(g) and takes

all other elements to the basepoint. Let ζg : 〈〈π1(X)fg∗〉〉+ → Θ−1(g)+ be the compos-

ite 〈〈π1(X)fg∗〉〉+ → 〈〈π1(X/G)f̄∗〉〉+
ξg
−→ Θ−1(g)+, where the first map is induced by the

quotient map X → X/G.

We abuse notation and let ξg denote the map
(
Λf̄X/G

)
+
→ 〈〈π1(X/G)f̄∗〉〉+

ξg
−→

Θ−1(g)+ and let ζg denote the map
(
Λf ·gX

)
+
→ 〈〈π1(X)fg∗〉〉+

ζg
−→ Θ−1(g)+.

Theorem B (Free case). Let CG(g) be the centralizer of g in G. For each g ∈ G

L(f · g) = |CG(g)|μg(tr/G(f))

ζgR(f · g) = |CG(g)|ξg

(
tr/π1(X/G)

(
f̃
))

.

Beyond the simplification to the free case, this statement differs from the statement
in the introduction in two ways. We can use functoriality of the trace [17] to recover
the algebraic descriptions of the traces. (This is the description of the equivariant
Reidemeister trace in [27].) We can use Theorem A to recover the original comparison
of tr/G with LG.

The essential underlying observation in this part is that the quotient map X →
X/G is a covering map. This allows us to use the multiplicativity of the Lefschetz
number and Reidemeister trace [23] to express the invariants for X in terms of the
invariants for X/G and the fiber. The fibers of X → X/G are finite, discrete, and
isomorphic to G, and the endomorphisms of these fibers induced by an equivariant
map of X are determined by their value on a single point. This allows us to easily
compute the fiberwise Lefschetz number and fiberwise Reidemeister trace of maps
f : X → X regarded as maps over X/G.

We prove Theorem A in §4. We prove Theorem B for the Lefschetz number in §5
and for the Reidemeister trace in §6.
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4. Homotopical invariants

We follow the notation of [23] and use (L̂X/G)(f) and (R̂X/G)(f) to denote the
fiberwise Lefschetz number and Reidemeister trace, respectively. These are stable
maps

(L̂X/G)(f) : Λ
f̄ (X/G)→ S0 and (R̂X/G)(f) : Λ

f̄ (X/G)→ Λf (X).

Given a path γ in X/G from x to f̄(x), we define an endomorphism of the fiber over
f̄(x)

Ff̄(x) → Fx
f
−→ Ff̄(x), (2)

where the first map is induced by the path γ. Then (L̂X/G)(f)(γ) is the Lefschetz

number of (2) and (R̂X/G)(f)(γ) is the Reidemeister trace of (2) composed with
the inclusion of the (2) twisted loops in Ff̄(x) into the f twisted loops in X. The
paper [23] considers only the nonequivariant case, but the same approach immediately

generalizes to equivariant invariants. We denote these invariants by (L̂X/G)G and

(R̂X/G)G.

Proposition 4.1. For an equivariant map f : X → X and a f̄ -twisted loop γ in X/G,

(L̂X/G)(f)(γ) =

{
χ(G) if Θ(γ) = e
0 otherwise

(L̂X/G)G(f)(γ) =

{
χG(G) if Θ(γ) = e
0 otherwise

(R̂X/G)(f)(γ) =

{
iγtr

�(Fγ) if Θ(γ) = e
0 otherwise

(R̂X/G)G(f)(γ) =

{
iγtr

�
G (Fγ) if Θ(γ) = e

0 otherwise.

Proof. For a lift γ̃ of γ, the image of γ̃(1) under the first map in (2) is γ̃(0), and
so the image under (2) is f(γ̃(0)) = γ̃(1)g for some g ∈ G. Since the endomorphism
in (2) is equivariant and Ff̄(x) is G-isomorphic to the G-set G, the endomorphism is
determined by the image of one point and so (2) is multiplication by g. In particular,
(2) is the identity map if g is the identity element of G and has no fixed points if g
is not the identity element of G.

The Euler characteristic of Ff̄(x) is the same as the Euler characteristic of G, so

(L̂X/G)(f)(γ) = χ(G) and (L̂X/G)G(f)(γ) = χG(G) if Θ(γ) = e [23, 1.9, 6.6]. Both
invariants are zero if Θ(γ) �= e.

The Reidemeister trace of the identity map of a discrete space is the transfer, and

the Reidemeister trace of a map with no fixed points is zero. Then (R̂X/G)(f)(γ) =

iγtr
�(Fγ) and (R̂X/G)G(f)(γ) = iγtr

�
G (Fγ) if Θ(γ) = e [23, 1.13, 7.6]. Both invariants

are zero otherwise.
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Proof of Theorem A (Free case). In [23, 1.17], we showed the triangles

S0
R(f̄)

��

L(f)
���

��
��

��
��

��
��

〈〈(X/G)f̄〉〉

L̂X/G(f)

��

S0
R(f̄)

��

R(f)
���

��
��

��
��

��
� 〈〈(X/G)f̄〉〉

R̂X/G(f)

��
S0, 〈〈Xf〉〉

(3)

commute. The same approach also shows the corresponding equivariant generaliza-
tions commute. (We use the trivial G action on X/G, and, if we regard R(f) as an
element of {S0,Λf̄X/G}G using the trivial action, we have RG(f̄) = R(f̄).)

By Proposition 4.1 the values of χ(G) · (L̂X/G)G(f) and χG(G) · (L̂X/G)(f) on any
twisted loop in X/G are the same, and so

χ(G) · LG(f) = χ(G) · (L̂X/G)G(f) ◦R(f̄) = χG(G) · (L̂X/G)(f) ◦R(f̄)

= χG(G) · L(f).

Using the isomorphism {S0,〈〈(X/G)f̄〉〉+}
∼= Zπ0(〈〈(X/G)f̄〉〉+), we can write R(f̄) as∑

aγγ, where aγ are integers and γ ∈ π0(〈〈(X/G)f̄〉〉+). Then the Reidemeister trace

result follows from the second diagram in (3) and Proposition 4.1.

For later results we will need to know a little more about the fiberwise Lefschetz
number and Reidemeister trace.

Proposition 4.2. If ConjG(h) is set of elements of G conjugate to h,

(L̂X/G)(f · g)(γ) =

{
|CG(h)| if Θ(γ) = h and g ∈ ConjG(h)
0 otherwise.

If x ∈ X/G is a fixed point of f̄ and x̃ is a lift of x to X so that f(x̃) = x̃h, then

(R̂X/G)(f · g)(cx) =

⎧⎨⎩
∑

{k∈G|k=hkg}

i(x̃k) if g ∈ ConjG(h)

0 otherwise,

where i is the inclusion of the fixed points of f · g into Λf ·gX as constant paths.

Proof. For a f̄ twisted loop γ in X/G and a lift γ̃ of γ that satisfies f(γ̃(0)) = γ̃(1)h,
the image of γ̃(1) under the composite

Ff̄(x) → Fx
f ·g
−−→ Ff̄(x)

is γ̃(1)hg and the image of γ̃(1)k is γ̃(1)hkg.

Since Ff̄(x) is discrete, the Lefschetz number is the number of points fixed by the
endomorphism. The group action of G on Fx is free, so we have a fixed point for
each k ∈ G where k = hkg. For any k ∈ G of this form the map l 
→ lk−1 defines a
bijection from the centralizer of h in G to {l ∈ G|l = hlg}.

The Reidemeister trace is the sum of the constant paths associated to the fixed
points.
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5. Lefschetz numbers for spaces with free actions

As we see from the previous section, working with parametrized spaces is con-
venient and powerful. Unfortunately, this approach does not immediately translate
to invariants defined using more classical approaches such as [7, 27, 28, 31, 32].
To compare the invariants defined here with these alternatives, we will follow the
approach in [10] and replace parametrized spaces by spaces with a group action.

To prove Theorem B for the Lefschetz number, we start with a description of
L(f · g) in terms of R(f̄). Let νg be the composite

Λf̄ (X/G)+
Θ
−→ 〈〈G〉〉+

μg
−→ S0.

Lemma 5.1. For each g ∈ G, the stable map

S0 R(f̄)
−−−→ 〈〈(X/G)f̄〉〉

∼= Λf̄ (X/G)+
νg
−→ S0

is 1
|CG(g)| (L(f · g)).

Proof. By Proposition 4.2 L̂X/G(f · g) agrees with the composite

〈〈(X/G)f̄〉〉
νg
−→ S0 |CG(g)|

−−−−−→ S0.

We have a commutative diagram

S0
R(f̄)

��

L(f ·g)
���

��
��

��
��

� 〈〈(X/G)f̄〉〉

L̂X/G(f ·g)

��
S0

as in (3), and so L(f · g) = L̂X/G(f · g) ◦R(f̄) = |CG(g)|νg ◦R(f̄).

To identify μg ◦ tr/G(f) and νg ◦R(f̄) we first provide another description of the
G-space X. Since X → X/G is a covering space, there is a classifying map φ : X/G→
BG and a (homotopy) pullback diagram

X
ψ

��

π

��

EG

π

��
X/G

φ
�� BG.

We let (EG, π) be EG�BG regarded as a space over BG× ∗ using π. In the same
way, (X,π) is X �X/G regarded as a space over X/G× ∗. The diagram above defines
an equivariant fiberwise equivalence [23, 3.3]

(X,π) ∼= φ(BG)� (EG, π)

and X+
∼= S0

X/G � φ(BG)� (EG, π).
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Lemma 5.2. There is a fiberwise map H : (X/G)f̄ � φ(BG)→ φ(BG), and the com-
posite

S0
X/G � φ(BG)� (EG, π)

f̄�id�id
−−−−−→ S0

X/G � (X/G)f̄ � φ(BG)� (EG, π)

id�H�id
−−−−−−→ S0

X/G � φ(BG)� (EG, π)

id�id�(−)g
−−−−−−−→ S0

X/G � φ(BG)� (EG, π)

is f · g : X+ → X+.

The fiberwise map (−)g : (EG, π)→ (EG, π) is multiplication by g.

Proof. If EG× EG has the diagonal G-action, the projection maps EG× EG→ EG
are G-equivariant and so there is a G-homotopy K : EG× EG× I → EG between
the projections [5, 14.4.4]. In the composite

X × I
(f×id)×id

�� X ×X × I
ψ×ψ×id

�� EG× EG× I
K �� EG ,

all maps are equivariant, so there is an induced map H : X/G× I → BG that is a
homotopy from φ ◦ f̄ to φ.

This homotopy defines a map H : Sf̄ � φBG→ φBG as in [23, 3.3]. The result
then follows by explicit computation.

Theorem 3.6 implies S0
X/G is right dualizable, and Theorem 3.7 implies φBG is

right dualizable. To use Lemma 5.2 and Theorem 3.14 to factor the trace we need to
describe the dual of (EG, π). If G is a finite group, (EG, π) is right dualizable [15,
15.1.1], but this is not the dual we need here.

We let

̂

(EG, π) denote the fiberwise space EG�BG regarded as a space over

∗ ×BG via π. Note that (EG, π) and

̂

(EG, π) both have G actions. We regard (EG, π)

as a space with a right G action and

̂

(EG, π) as a space with a left G action.

Lemma 5.3. There is a (G×G)-equivariant map

̂

(EG, π)� (EG, π)→ G+ and a

map �!S
0
BG := (BGI , ev0 × ev1)→ (EG, π) ∧G

̂

(EG, π) over BG×BG so that the
composites as in the definition of a dual pair are homotopic to identity maps through
homotopies that respect both the group action and the parameterized structure.

We use ∧G to indicate quotienting by the diagonal group action after the smash
product and � to indicate the bicategory composition in Ex.

While these do not define a dual pair in any of the bicategories in Example 3.2,
the given structure will allow us to use them in much the same way.

Proof. Define a map �!S
0
BG → (EG, π) ∧G

̂

(EG, π) by taking the quotient of the
evaluation map ev0 × ev1 : EGI → EG× EG by the pointwise action of G on the
domain and the diagonal action on the codomain. For each pair (x, y) ∈ EG×BG EG
there is an element g of G so that xg = y. This defines maps EG×BG EG→ G and̂

(EG, π)� (EG, π)→ G+.
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The image of (e, γ) under the composite
̂

(EG, π)��!S
0
BG

��

̂

(EG, π)� (EG, π)�

̂

(EG, π) �� G+ ∧G

̂

(EG, π)

is (g, γ̃(1)), where γ̃ is a lift of γ to EG and g is the element of G that takes e to

γ̃(0). In particular, if we compose with the isomorphisms

̂

(EG, π) ∼=

̂

(EG, π)��!S
0
BG

and G+ ∧G

̂

(EG, π) ∼=

̂

(EG, π), the map is homotopic to the identity map. The other
composite is similar.

Proof of Theorem B (Free Case, Lefschetz Number). As observed above, the maps in
Lemma 5.3 are not a coevaluation and evaluation for a dual pair, but we can use
Theorem 3.14 and these maps to define a coevaluation and evaluation

Sn → X+ ∧G DX and DX ∧X+ → G+ ∧ Sn

as in Theorem 3.4. Since the trace is independent of the choice of dual, we can equally
well use this dual to compute tr/G(f).

Applying Theorem 3.14 to the decomposition in Lemma 5.2, we see that tr/G(f)
is the composite

S0
R(f̄)

�� 〈〈(X/G)f̄〉〉
tr(H)

�� 〈〈�!S
0
BG〉〉

“χ”
�� 〈〈G+〉〉 ,

where the rightmost map is defined using the “dual pair” in Lemma 5.3. By [23, 5.7]
the image of a twisted loop γ : x 
→ f̄(x) in X/G under tr(H) is φ(γ) · α(x), where α
is the path from φ(f̄(x)) to φ(x) defined by the homotopy in Lemma 5.2. The map
“χ” lifts this path to EG and assigns the value g if multiplying the initial point of this
lift by g is the terminal point of the lift. We obtain the same element by first lifting
γ to X and a assigning a group element in the same way. Then μg ◦ “χ” ◦ tr(H) = νg
and

μg ◦ tr/G(f) = μg ◦ “χ” ◦ tr(H) ◦R(f̄) = νg ◦R(f̄).

6. Reidemeister traces for spaces with free actions

We can use very similar ideas to prove the corresponding result for the Reidemeister
trace.

Lemma 6.1. For each g ∈ G, the composite

S0 R(f̄)
−−−→ 〈〈(X/G)f̄〉〉

ξg
−→ Θ−1(g)+

is 1
|CG(g)|ζg(R(f · g)).

Proof. From Proposition 4.2, if x̃ is a lift of x so that f(x̃) = x̃h,

(R̂X/G)(f · g)(cx) =

⎧⎨⎩
∑

k∈CG(h)

ix(x̃k) if g ∈ ConjG(h)

0 otherwise.

When we compose with ζh, we disregard paths whose value under Θ is not h and
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we do not distinguish between the paths where Θ(γ) = h. In particular,

ζg ◦ (R̂X/G)(f · g)(cx) =

{
|CG(h)|cx if g ∈ ConjG(h)
0 otherwise.

Similarly, ξh is the identity on paths whose value under Θ is h and we disregard the

other paths. Then |CG(h)|ξg(cx) = ζg ◦ (R̂X/G)(f · g)(cx) and

|CG(h)|ξg ◦R(f̄) = ζg ◦ (R̂X/G)(f · g) ◦R(f̄) = ζg ◦R(f · g).

To complete the proof of Theorem B it only remains to compare ξg ◦ tr/G(f) and
ξg ◦R(f̄). This is essentially identical to the proof of the corresponding comparison
in the previous section.

Proof of Theorem B (Free Case, Reidemeister Trace). The quotient map X̃ → X →
X/G is classified by a map φ : X/G→ Bπ1(X/G), and so we can write X̃ as the
composite

S0
X/G � φ(Bπ1(X/G))� (Eπ1(X/G), π)

and f̃ · g as a composite

S0
X/G � φ(Bπ1(X/G))� (Eπ1(X/G), π)

f̄�id�id
−−−−−→ S0

X/G � (X/G)f̄ � φ(Bπ1(X/G))� (Eπ1(X/G), π)

id�H�id
−−−−−−→ S0

X/G � φ(Bπ1(X/G))� (Bπ1(X/G))B(f) � (Eπ1(X/G), π)

id�id�(−)g
−−−−−−−→ S0

X/G � φ(Bπ1(X/G))� (Eπ1(X/G), π) ∧ π1(X/G)f̄∗+.

The square

X/G
φ

��

f̄

��

Bπ1(X/G)

B(f)

��
X/G

φ
�� Bπ1(X/G)

induces a map H : (X/G)f̄ � φ(Bπ1(X/G))→ φ(Bπ1(X/G))� (Bπ1(X/G))B(f)as in
[23, 3.3]. If γ is a path in Bπ1(X/G) so that γ(1) = π(e), then

(−)g : (Bπ1(X/G))B(f) � (Eπ1(X/G), π)→ (Eπ1(X/G), π)

is defined by taking a pair (γ, e) to γ∗(f(e)g), where γ∗ is the map induced on fibers
by γ. This map does not respect the π1(X/G) action unless we twist the action on
the target by f .

The spaces S0
X/G and φ(Bπ1(X/G)) are right dualizable, and (Eπ1(X/G), π) has

a dual as in Lemma 5.3. This gives a factorization of tr/π1(X/G)(f̃) as the composite

S0 R(f̄)
−−−→ 〈〈X/Gf̄〉〉

tr(H)
−−−→ 〈〈(Bπ1(X/G))B(f)〉〉

“χ”
−−→ 〈〈π1(X/G)f∗〉〉+,

where the second and third maps take a twisted loop to its homotopy class. Then

〈〈X/Gf̄〉〉
tr(H)
−−−→ 〈〈(Bπ1(X/G))B(f)〉〉

“χ”
−−→ 〈〈π1(X/G)f∗〉〉+

ξg
−→ Θ−1(g)+
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is 〈〈X/Gf̄〉〉
ξg
−→ Θ−1(g)+.

Part 2. General actions

We now generalize to group actions that are not necessarily free. Using Theorems 2.6
and 3.13, to understand LG(f) and RG(f) it is enough to understand the invari-
ants LG(f(H)) and RG(f(H)) for each subgroup H of G. With this observation, the
following statement is the relevant form of Theorem A.

Theorem A (General case). For each subgroup H of G,

χ(WH)LG(f(H)) = χG(G/H)L(fH)

and there integers aγ so that

RG(f(H)) =
∑

aγ(iγ ◦ tr
�
G (Fγ)), R(f(H)) =

∑
aγ(iγ ◦ tr

�(Fγ))

RWH(fH) =
∑

aγ(i
′
γ ◦ tr

�
WH(F ′

γ)) and R(fH) =
∑

aγ(i
′
γ ◦ tr

�(F ′
γ)),

where all sums are taken over π0(Λ
fH/WH(XH/WH)).

The equivariant Lefschetz number of the endomorphism of X(H)/X>(H) induced
by f is denoted LG(f(H)), and L(fH) is the Lefschetz number of the endomorphism

of XH/X>H induced by f . Here Fγ is the fiber of X(H) → XH/WH over γ(1), iγ is
the inclusion as constant paths, F ′

γ is the fiber of XH → XH/WH over γ(1), and i′γ
is the inclusion of the fiber over γ(1) as constant paths.

For Theorem B we need to give a more explicit description of the relevant traces.
In Lemma 8.1 we will see that for each subgroup H of G the space XH ∪ CX>H , the
mapping cone of the inclusion X>H → XH , is dualizable in the bicategory GpTop as
a WH-space. The trace of the induced map

fH : XH ∪ CX>H → XH ∪ CX>H

is a map tr/WH(fH) : S0 → 〈〈WH〉〉+. As before, this trace is carrying too much infor-
mation. For each conjugacy class g in 〈〈WH〉〉+ there is a map μWH,g : 〈〈WH〉〉+ → S0.

In §9 we will take a very similar trace of an endomorphism of the universal cover of
XH . The result is a map tr/π1(XH)�WH(fH) : S0 → 〈〈(π1(X

H)�WH)fH〉〉
+
, and there

are corresponding quotient maps ξWH,g and ζWH,g.

Theorem B (General case). For each g ∈WH,

L(fH · g) = |CWH(g)|μWH,g(tr/WH(fH))

ζWH,gR(fH · g) = |CWH(g)|ξWH,gtr/π1(XH)�WH(f̃H).

One significant difference between the free case and the general case is that from
this point on we will restrict to closed smooth manifolds or finite CW complexes.
This reflects a single result, Lemma 7.1, which may have a generalization for ENRs.
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7. Homotopical Invariants

The proof of Theorem A follows the proof of the corresponding free result but
requires a refinement of the relative Reidemeister trace [18]. For a map Y → B and
A ⊂ Y , CB(Y,A) is the homotopy pushout of the maps

Y �B ← A�A→ A.

This is regarded as a parametrized space over ∗ × Y . The relative Reidemeister
trace of a map f : Y → Y with f(A) ⊂ A is the bicategorical trace of the induced
map

CY (Y,A)→ CY (Y,A)� Yf .

Lemma 7.1. Let Y be a simplicial complex, and let A ⊂ Y be a subcomplex. There
is a neighborhood U of A in Y so that CY \A(Y \A,U \A) is right dualizable.

It is possible that a similar result would hold for ENRs, but the only proof I know
of at this time makes significant use of the simplicial structure.

Proof. Choose a mapping cylinder neighborhood U of A in Y [4, 29]. There is a
retraction of U \A to ∂(U) and a corresponding retraction Y \A→ Y 0 := Y \ Int(U).
This gives an equivalence

(Y \A,U \A) ∼= (Y 0, ∂U).

Since (Y 0, ∂U) is a compact CW pair, it is a compact ENR pair, and [15, 18.5.2]
implies that CY 0(Y 0, ∂U) is right dualizable.

If i : Y 0 → Y \A is the inclusion, then CY 0(Y 0, ∂U)� i(Y \A) � CY \A(Y
0, ∂U)

[23, p. 1288] and Theorem 3.7 implies that CY \A(Y
0, ∂U) is right dualizable. By

excision [15, 18.4.5],

CY \A(Y
0, ∂U) � CY \A(Y \A,U \A).

Lemma 7.2. If A ⊂ Y are closed smooth manifolds and f : Y → Y is a continuous
map so that f(A) ⊂ A, there is a class in πs

0(Λ
f (Y \A)) so that the image in πs

0(Λ
fY )

is the relative Reidemeister trace of f .

Following the notation above, Λf (Y \A) := {(γ, y) ∈ (Y \A)I × Y |γ(1) = f(y)}.
From a classical view of the Reidemeister trace in terms of fixed-point indices and
fixed-point classes, this is a very reasonable statement since the constant paths at the
fixed points in Y \A are elements of π0(Λ

f (Y \A)) as well as elements of π0(Λ
fY ).

Proof. If i : Y \A→ Y is the inclusion, excision and [15, 18.4.4] imply

CY (Y,A) � CY \A(Y \A,U \A)� iY.

The induced map f : CY (Y,A)→ CY (Y,A)� Yf defines a map

CY \A(Y \A,U \A)� iY �� CY \A(Y \A,U \A)� iY � Yf .

Via adjunction and the dual pair in Theorem 3.7, we have a map

CY \A(Y \A,U \A) �� CY \A(Y \A,U \A)� iY � Yf◦i. (4)

Theorem 3.14 implies the diagram below where the vertical map is the inclusion of
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paths and RA(f) is the relative Reidemeister trace of f with respect to A commutes:

S0
tr(4)

��

RA(f)
���

��
��

��
��

〈〈 iYf◦i〉〉

��
〈〈Yf〉〉

We can lift RA(f) further. Since A is an NDR in Y , there is a map u : Y → I so
that u−1(0) = A and u−1([0, 1)) = U for some neighborhood U of A in Y . Then one
choice for (4) is

(y, t) 
→ ((f(x), tu(f(y))), (f(x), cf(x), x)).

Note that if y ∈ Y satisfies f(y) ∈ A, then the image of (y, t) is in the section. In
fact, the only points whose images are not in the section are those for fixed points
in Y \A. If P is the subspace (Y \A)×i (Y

I)×f (Y \A) consisting of triples where
the path lies entirely in Y \A and P is regarded as a space over (Y \A)× (Y \A),
then (4) lifts to define a map

CY \A(Y \A,U \A)→ CY \A(Y \A,U \A)� P+,

where P+ is P with a disjoint section added. This allows us to factor the Reidemeister
trace of f through the twisted loops in Y \A.

Let iH : XH := {x ∈ X | Gx = H} → XH denote the inclusion, and let πH : XH →
XH/WH denote the quotient map. If UH is an open neighborhood of X>H in XH

that retracts to X>H and

CHX := CXH/WH(XH/WH, (UH −X>H)/WH),

excision implies [15, 18.4.5] CXH (XH , X>H) can be written as the composite

CHX � (XH/WH)πH
� iH (XH).

Lemma 7.3. The map CXH (XH , X>H)→ CXH (XH , X>H)� (XH)fH induced by
fH factors as a composite

CHX � (XH/WH)πH
� iH (XH)→ CHX � P+ � (XH/WH)πH

� iH (XH)

→ CHX � (XH/WH)πH
� iH (XH)� (XH)fH � (XH)iH � iH (XH)

→ CHX � (XH/WH)πH
� iH (XH)� (XH)fH .

Following the notation above, P := XH ×iH (XH)I ×fH XH .

Proof. The first map is as in the proof of Lemma 7.2, and the last map is the evalu-
ation for the dual pair in Theorem 3.7.
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If P (f, g) is the homotopy pullback of maps f and g, we can define a map

P ×XH/WH P (id, πH)×XH
P (iH , id) �� P (id, πH)×XH

P (iH , id)×XH P (id, fH)

(γ, x), (β, y), (y, α)
� �� (γ, f(β̃(0))), (f(β̃(0)), f(β̃)), (f(α), α(1)),

where β̃ is the lift of β to a path in XH so that β̃(1) = y. This induces a map

P+ � (XH/WH)πH
� iH (XH)→ (XH/WH)πH

� iH (XH)� (XH)fH .

Then we have a map

P+ � (XH/WH)πH

∼
−→ P+ � (XH/WH)πH

��!S
0
XH/WH

→ P+ � (XH/WH)πH
� iH (XH)� (XH)iH

→ (XH/WH)πH
� iH (XH)� (XH)fH � (XH)iH ,

where the first map is an isomorphism, the second is the coevaluation for the dual
pair in Theorem 3.7, and the third is defined above.

Note that the same argument applies to the map

CX(H)(X(H), X>(H))→ CX(H)(X(H), X>(H))� (X(H))f(H) .

We will also be able to use identical arguments to prove both versions of the Rei-
demeister trace statements in Theorem A. Because of the remarkable similarity, we
only describe the first case.

Proof of Theorem A (General Case). Using Lemma 7.1 we can choose a neighbor-
hood UH of X>H in XH so that CHX is dualizable. Theorem 3.7 implies i(H)X(H)

is right dualizable. Since π(H) : X(H) → XH/WH is a fibration with finite fiber, the

space (XH/WH)π(H)
is right dualizable by [23, 4.7]. Then CX(H)(X(H), X>(H)) is

right dualizable and Theorem 3.14 and Lemma 7.3 give us a decomposition of the
relative Reidemeister trace as the composite

S0 → 〈〈P〉〉→ 〈〈 i(H)X(H) �X
(H)

f(H) �X
(H)

i(H)〉〉→ 〈〈X
(H)

f(H)〉〉,

where the first map is the lift of the relative Reidemeister trace of f̄ (H) to the twisted
loops in XH/WH. The second associates to a twisted loop in XH/WH the Reide-
meister trace of the induced endomorphism of the fiber. (There is an induced endo-
morphism since the path is entirely contained in XH/WH and X(H) → XH/WH is a
fibration.) The third map is the inclusion of paths.

The computation of the Reidemeister trace of the fiber is as in the proof of Proposi-
tion 4.1. Since the factoring applies in both the equivariant and nonequivariant cases,
we have the desired decompositions of the Reidemeister trace.

If we choose the integers ax so that R(fH/WH) =
∑

x∈Fix(fH)

axcx is the relative Rei-

demeister trace of fH/WH relative to the subspace X>H/WH, we have the decom-
position in the statement of the theorem.
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If we compose with the collapse maps ΛfH

XH → ∗, identifications of the Reide-
meister trace gives corresponding identifications of the Lefschetz number:

LG(f(H)) =
∑

x∈Fix(fH)(e)

axχG(Fx) = χG(G/H)
∑

x∈Fix(fH)(e)

ax

L(f(H)) =
∑

x∈Fix(fH)(e)

axχ(Fx) = χ(G/H)
∑

x∈Fix(fH)(e)

ax

and χ(G/H)LG(f(H)) = χG(G/H)L(f(H)).
To replace L(f(H)) by a multiple of L(fH), note that

X(H)/X>(H) ∼=
∨

K∈ConjG(H)

XK/X>K and so L(f(H)) =
∑

K∈ConjG(H)

L(fK).

Traces are invariant under cyclic permutation, so if K and H are conjugate, L(fK) =
L(fH). Then χ(WH)L(f(H)) = χ(G/H)L(fH), and so

χ(WH)χ(G/H)LG(f(H)) = χ(WH)χG(G/H)L(f(H)) = χ(G/H)χG(G/H)L(fH).

8. Lefschetz numbers for G-spaces

Much of the work required to prove the general case of Theorem B has been done
in the previous section and in the corresponding results in Part 1.

Lemma 8.1. If X is a compact G-ENR or closed smooth G-manifold, then XH ∪
CX>H is dualizable as a WH-space in GpTop.

It is important to note that we cannot expect dualizability for XH in GpTop if the
action of H is not free. This is analogous to the algebraic requirement that dualizable
modules must be projective.

Proof. If X is a compact G-ENR, then XH is a closed WH-ENR. As in the proof of
Theorem 2.6, X>H is aWH-ENR and the inclusion X>H → XH is aWH-cofibration.
Using Theorem 2.5, XH/X>H is WH-dualizable and, since the action of WH is free
away from the basepoint, [1, 8.6] implies that XH/X>H is dualizable in GpTop and
the dual agrees with the WH-equivariant dual.

This statement is essentially the only change we need to make in the proof of the
free case of Theorem B for the Lefschetz number.

Proof of Theorem B (General case, Lefschetz number). If UH is a neighborhood of
X>H in XH that retracts onto X>H and UH := UH \X>H , then

XH ∪ C(X>H) � XH ∪ C(UH).

Since the action of WH on XH is free, there is a map φ : XH/WH → BWH that
classifies XH → XH/WH. We can choose UH so that it is WH equivariant and it is
classified by the restriction of φ to UH/WH. The result then follows from the proof
of the free case if we replace G by WH and S0

X by CXH/WH(XH/WH,UH/WH).
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We can collect these traces tr/WH(fH) into a single trace by generalizing from the
category GpTop to the category of profunctors. Associated to a symmetric monoidal
category V with unit S and monoidal product ⊗ there is a bicategory Pro(V ) where

• the objects are small categories;

• between two small categories A and B we have the category of functors

A×Bop → V

and their natural transformations;

• for any small category A, there is a functor UA : A×Aop → V defined by
UA(a, a

′) = �A(a,a′)S;

• for functors X : A×Bop → V and Y : B × Cop → V , we define X � Y : A×
Cop → V by taking (X � Y )(a, c) to be the coequalizer of the diagram∐

b→b′∈B

X(a, b)⊗ Y (b′, c) ��
��
∐

b∈obB

X(a, b)⊗ Y (b, c),

where the maps are induced by the action of the morphisms of B on X and Y ;
and

• the shadow of X : A×Aop → V is the coequalizer of the diagram∐
a→a′∈ob(A )

Z(a, a′) ��
��

∐
a∈ob(A)

Z(a, a) .

The symmetry isomorphism in V defines the map

〈〈X � Y 〉〉→ 〈〈Y �X〉〉.

For topological examples we replace coequalizers by homotopy coequalizers using
the bar resolution. As in Top, GpTop, and Ex, we say a functor A×Bop → Top is
dualizable if the composite with the suspension spectrum functor is dualizable. In
some cases this can be described using natural transformations η : Sn ∧A+ → X � Y
and ε : Y �X → Sn ∧B+ in Top so that the usual duality composites are homotopic
to the identity after suspension by a sufficiently large sphere.

The generalization of the group G is the component category.

Definition 8.2. The equivariant component category Π0(G,X) for a G-space
X has objects G-maps x(H) : G/H → X. The morphisms from x(H) to y(K) are the
G-maps

α : G/H → G/K

such that y(K) ◦ α and x(H) are G-homotopic.

For any g ∈ G so that g−1Hg ⊂ K, there is a G-map Rg : G/H → G/K defined
by Rg(lH) = lgK. All G-maps G/H → G/K are of this form, and two such maps Rg

and Rh are the same only if gh−1 ∈ K.

If x(H) : G/H → X is a G-map and Cx is the component of XH that contains
x(eH), let XH(x) be the pullback of the quotient map XH → XH/WH and the
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inclusion (WHCx)/WH → XH/WH. If X>H(x) := {y ∈ XH(x)|H � Gy}, define a
functor

G|X : Π0(G,X)op → Top

by G|X(x(H)) = XH(x)/X>H(x). On morphisms we use the induced group action.

Proposition 8.3. If X is a compact G-ENR or closed smooth G-manifold, then G|X
is dualizable.

Proof. Using [18, 3.7], it is enough to show that G|X(x(H)) is dualizable for each
object x(H) relative to the action by Π0(G,X)(x(H), x(H)). This is Lemma 8.1.

Given an equivariant map f : X → X, let Πf
0 (G,X) be the functor Π0(G,X)×

Π0(G,X)op → Top defined by

Πf
0 (G,X)(x(H), y(K)) := Π0(G,X)(f(y(K)), x(H)).

Then an endomorphism f : X → X induces a natural transformation

f : G|X → G|X �Πf
0 (G,X). (5)

The trace of f is a map S0 → 〈〈Πf
0 (G,X)〉〉.

Proposition 8.4. If WHx,f := {g ∈WH|[f(x)g] = [x] ∈ π0(X
H)} and B(X) is the

isomorphism classes of objects of Π0(G,X), there is an isomorphism

δ : 〈〈Πf
0 (G,X)〉〉+ →

∐
x(H)∈B(X)

〈〈WHx,f〉〉+.

If δx(H),f : 〈〈Π
f
0 (G,X)〉〉+ → 〈〈WHx,f〉〉+ is one of the projections, the composite

S0 tr(f̄)
−−−→ 〈〈Πf

0 (G,X)〉〉
δx(H),f
−−−−→ 〈〈WHx,f〉〉

is tr/WH(f).

Proof. Using the identifications

Π0(G,X)(f(x(H)), x(H)) = {Rg : G/H → G/H | f(x(H)) ◦Rg ∼G x(H)}

= {g ∈WH | [f(x(H))g] = [x(H)] ∈ π0(X
H)},

we have the isomorphism δ above. Then [18, 3.6, 3.7] completes the proof.

We can also compose with the cellular chain complex functor to define a functor

C∗(G|X) : Π0(G,X)op → ChQ.

If X is a compact G-ENR or closed smooth G-manifold, this functor is dualizable
by functoriality. The natural transformation f : G|X → G|X �Πf

0 (G,X) induces a
natural transformation

f∗ : C∗

(
G|X

)
→ C∗

(
G|X

)
�QΠf

0 (G,X), (6)

where QΠf
0 (G,X) is is the functor Π0(G,X)×Π0(G,X)→ ChQ defined by

QΠf
0 (G,X)(x(H), y(K)) := QΠ0(G,X)(f(y(K)), x(H)).

Functoriality of the trace implies the trace of (6) agrees with the trace of (5). The
following result is an immediate consequence.
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Theorem 8.5. If f : X → X is an equivariant map and the set

{x ∈ X|there is g ∈ G such that f(x) = xg}

is empty, then the trace of (6) is trivial.

9. Reidemeister traces for G-spaces

We can now combine §6 and §8 and give another description of the Reidemeister
trace for spaces with a group action that is not necessarily free. We start with the
common generalization of the fundamental group and the component category.

Definition 9.1. The objects of the equivariant fundamental category Π(G,X)
of a G-space X are the G-maps x(H) : G/H → X. A morphism from x(H) to y(K)
is a G-map

Rg : G/H → G/K

and a homotopy class of G-maps

w(H) : G/H × I → X

relative to G/H × ∂I such that w(H)(−, 0) = x(H) and w(H)(−, 1) = y(K) ◦Rg.

The composite of (Rg, w(H)) and (Rh, v(K)) is (Rh ◦Rg, (v(K) ◦Rg)w(H)).

Let X̃H(x) be the universal cover of XH(x). The usual action of paths on the
cover defines an action of an endomorphism (Rg, w(H)) of x(H) in Π(G,X) on a

point x̃ in X̃H(x) by x̃ 
→ (x̃g) · w(H)(e). Let X>H(x) be the pullback of X̃H(x)

along the inclusion X>H → XH , and let XH(x) be the pullback of X̃H(x) along
the inclusion XH → XH . The group action of Π(G,X)(x(H), x(H)) defines a group
action on XH(x). Define a functor

X̂ : Π(G,X)→ Top

by X̂(x(H)) := X̃H(x) ∪ C(X>H(x)).

Lemma 9.2. If X is a compact G-ENR or a closed smoothG-manifold, then X̂(x(H))
is dualizable in GpTop as a Π(G,X)(x(H), x(H))-space.

Proof. There is a diagram

XH(x)
π̃H ��

��

XH(x)
πH ��

iH

��

XH(x)/WH

��
X̃H(x)

π̃H
�� XH(x) �� XH(x)/WH,

where the vertical maps are inclusions and the horizontal maps are quotients. The

top corner is a pullback square and hence a homotopy pullback since X̃H → XH is a
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covering map. If π : XH(x)→ ∗, then

(XH(x)/WH)πH
� iHXH(x)� (XH(x))π̃H � π∗ � (XH(x)/WH)πH π̃H

)� π∗

�

̂

(XH(x), πH π̃H)+.

There is an isomorphism

Π(G,X)(x(H), x(H)) �� π1(X
H)�WH

(Rg, w(H)) �� (w(eH), g),

and this is compatible with the actions of each group on XH(x). The composite
of quotient maps XH(x)→ XH(x)→ XH(x)/WH is the quotient by the action of
π1(X

H)�WH. Then we can use the approach of Lemma 5.3 to define maps

�!S
0
XH/WH →

̂

(XH(x), πH π̃H) ∧π1(XH)�WH (XH(x), πH π̃H)

(XH(x), πH π̃H)�

̂

(XH(x), πH π̃H)→ (π1(X
H)�WH)+

so that the required triangle diagrams commute.
Using the decomposition before Lemma 7.3 and [15, 18.4.4],

X̃H(x)∪C(X>H(x)) � C
X̃H(x)

(X̃H(x), X>H(x))� π∗

� CXH(x)(X
H(x), X>H(x))� (XH(x))π̃H � π∗

� CHX(x)� (XH(x)/WH)πH
� iHXH(x)� (XH(x))π̃H � π ∗ .

From Lemma 7.1 CHX(x) := CXH(x)/WH(XH(x)/WH, (UH −X>H)/WH) is right
dualizable. The remaining parts of the decomposition are dualizable by the discussion
above.

Lemma 9.2 extends in the same way that Proposition 8.3 follows from Lemma 8.1.

Proposition 9.3. If X is a compact G-ENR, then X̂ is dualizable as a right Π(G,X)-
space.

Let Πf (G,X) be the functor Π(G,X)-Π(G,X)op → Top defined by

Πf (G,X)(x(H), y(K)) := Π(G,X)(f(y(K)), x(H)).

Then an equivariant map f : X → X defines a natural transformation f̃ : X̂ → X̂ �
Πf (G,X). The trace of f̃ is a map 〈〈S0〉〉→ 〈〈Πf (G,X)〉〉.

The following result is a consequence of [18, 3.6, 3.7].

Proposition 9.4. There is an isomorphism

〈〈Πf (G,X)〉〉∼=
∐
〈〈Πf (G,X)〉〉(x(H), x(H)),

where the coproduct is taken over a choice of representatives of the isomorphism
classes of objects of Π(G,X). The image of tr(f̃) under the projection∐

〈〈Πf (G,X)〉〉(x(H), x(H))→ 〈〈Πf (G,X)〉〉(x(H), x(H))

is the trace of the induced map X̂(x(H))→ X̂(x(H))�Πf (G,X)(x(H), x(H)) in
GpTop with respect to the group action by Π(G,X)(x(H), x(H)).



186 KATE PONTO

Exactly as before, we can compose the dual pair for X̂ with the cellular chain
complex functor and define algebraic invariants. This is the refined equivariant Lef-
schetz number from [27, 5.7]. Using functoriality of the trace, this agrees with the
topologically defined trace of f̃ : X̂ → X̂ �Πf (G,X).

We can now finish the proof of Theorem B. The map Θ defined in the Part 1
extends to a map

ΘWH : 〈〈Πf (G,X)(x(H), x(H))〉〉→ 〈〈WH〉〉

by ΘWH(Rg, w) = g. Let

〈〈Πf (G,X)(x(H), x(H))〉〉+
ξWH,g
−−−−→ Θ−1

WH(g)+ and 〈〈π1(X
H)gfH

∗

〉〉
+

ζWH,g
−−−−→ Θ−1

WH(g)+

be collapse maps generalizing the maps ξg and ζg.

Proof of Theorem B (General case, Reidemeister trace). We can use essentially the
same proof as in the case of a free action.

The trace tr/π1(XH)�WH(f̃(H)) is the trace of the map

X̃H(x) ∪ C(X>H(x))→
(
X̃H(x) ∪ C(X>H(x))

)
∧π1(XH)�WH (π1(X

H)�WH)fH
∗

induced by fH . Using the discussion above, X̃H(x) ∪ C(X>H(x)) is the composite
CHX(x)� (XH(x)/WH)πH

� iHXH(x)� (XH(x))π̃H � π∗. We can replace this by

CHX(x)� (XH(x)/WH)πH
� (XH(x))π̃H

� ĩHXH(x)� π∗, where ĩH is the induced

map XH(x)→ X̃H(x). We can further simplify to CHX(x)� (XH(x)/WH)πH◦π̃H
�

π◦ĩH∗.
There is a map φ : XH(x)/WH → B(π1(X

H)�WH) and a pullback diagram

XH(x)
φ̃

��

πH π̃H

��

E(π1(X
H)�WH)

π

��
XH(x)/WH

φ
�� B(π1(X

H)�WH).

Then

φB(π1(X
H)�WH)�B(π1(X

H)�WH)π
∼= (XH(x)/WH)πH π̃H

� φ̃E(π1(X
H)�WH).

Using the identifications B(π1(X
H)�WH)π � φ̃◦π◦ĩH∗

∼= (E(π1(X
H)�WH), π) and

φ̃E(π1(X
H)�WH)� π◦ĩH∗

∼= φ̃◦π◦ĩH∗, we can write X̃H(x) ∪ C(X>H(x)) as

CHX(x)� φB(π1(X
H)�WH)� (E(π1(X

H)�WH), π).

As in the free case, there is a corresponding decomposition of the map induced by
f and we have the factoring of the trace.

10. Equivariant Nielsen numbers

Fadell and Wong [7] and Wilczyński [30] have given very different proofs of the
converse to the equivariant Lefschetz fixed-point theorem. They used generalizations
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of the Nielsen number. We can compare their invariant with the equivariant Reide-
meister trace using the results above. We start with a consequence of Theorem A.

Proposition 10.1. RG(f) is zero if and only if R(fH) is zero for all subgroups H
of G.

Let Iso(X) be a choice of representatives for the isomorphism classes of objects
in Π0(G,X). Without loss of generality we may assume that we have first chosen
representatives for each conjugacy class of subgroups of G and that only these rep-
resentatives appear among the objects of Iso(X). Let Iso(X)(H) be the isomorphism
classes of objects associated to maps G/H → X.

Lemma 10.2. For each subgroup H of G the forgetful map ZIso(X)(H)→ Zπ0(X
H)

defined by x(H) 
→
∑

gH∈WH/H x(gH) is injective.

Proof. The image of each x(H) is nontrivial since all terms appear with coefficient 1.
Suppose that x(gH) and y(g′H) are in the same component of XH . Then x(H)

and g−1g′y(H) are in the same component of XH , and, in particular, x(H) and y(H)
represent isomorphic objects in Iso(X)(H).

Proof of Proposition 10.1. The zeroth equivariant stable homotopy group of a G-
space X+ is the free abelian group generated by x(H) ◦ tr�G (G/H) for x(H) ∈ Iso(X)
[5, 2.8.13.7]. Combining coefficients if necessary, we can use Theorem A to express
RG(f) as a sum ∑

γ∈Iso(ΛfX)

aγ(iγ ◦ tr
�
G (Fγ)),

where each element in Iso(ΛfX) is associated to exactly one coefficient. Then RG(f)
is zero if and only if each of the aγ are zero.

Additivity of the Reidemeister trace implies that R(fH) is zero for all subgroups
H of G if and only if R(fH) is zero for all subgroups H of G. Then Theorem A allows
us to conclude that

R(fH) =
∑

aγ(i
′
γ ◦ tr

�(F ′
γ)),

where we have exactly the same coefficients aγ as above and we sum over the elements
of Iso(ΛfX)(H).

The invariant R(fH) is the image of RWH(fH) under the forgetful map, and so
Lemma 10.2 implies R(fH) is zero if and only if each of the aγ are zero.

Recall that two fixed points x and y in XH are in the same fixed-point class if

the images of the constant paths at x and y are in the same component of ΛfH

XH .
We say x and y are in the same WH-fixed-point class if there is a g ∈WH so that

the constant paths at x and yg are in the same component of ΛfH

XH . Note that
there is a map from the fixed-point classes to the WH-fixed-point classes.

If H is subconjugate to K, the inclusion induces a map τH�K from the WK-fixed-
point classes to the WH-fixed-point classes. We let WH-fpc denote the set of WH-
fixed-point classes, and for α ∈WH-fpc we let i(fH , α) denote the nonequivariant
fixed-point index of the fixed points in the class α with respect to the map fH : XH →
XH . (At this point it is convenient to replace f by a homotopic map that it taut and
has isolated fixed points. See §2.)
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Definition 10.3 ([31]). The equivariant Nielsen number of f , NG(f), is the
function from the conjugacy classes of subgroups of G to the integers defined by

NG(f)(H) = �

{
α ∈WH-fpc

∣∣∣∣ i
(
fH , α

)
�= 0 and i

(
fK , δ

)
= 0 for all

δ ∈WK-fpc so that τH�K(δ) = α

}
.

Note that the equivariant Nielsen number is not the number of generators in the
equivariant Reidemeister trace with nonzero coefficient. The equivariant Nielsen num-
ber is a nonredundant count of the number of nonzero coefficients. In particular, the
coefficients of equivariant Reidemeister trace do not give a lower bound for the number
of fixed points.

Theorem 10.4. The equivariant Nielsen number of a map is zero if and only if the
equivariant Reidemeister trace is zero.

Proof. For each g ∈WH the diagram

XH
(−)·g

��

f
��

XH

f
��

XH
(−)·g

�� XH

commutes, and so for each fixed point x of fH , the indices of x and xg are the same
[2, IV.B.7]. This implies that a WH-fixed-point class can only have index zero if all
the associated (classical) fixed-point classes have index zero.

The equivariant Nielsen number is trivial if and only if the indices of all WH-fixed-
point classes for all the induced maps fH : XH → XH are zero. This holds if and only
if the indices for all the fixed-point classes of the maps fH are zero. This is equivalent
to R(fH) is zero for all subgroups H of G. Proposition 10.1 completes the proof.

It is unfortunate but necessary that the comparison in this section passes through
the nonequivariant Reidemeister traces for isotropy subspaces. In particular, both the
equivariant Nielsen number and the equivariant Reidemeister trace can be used to
give lower bounds for the number of fixed points—see [31] for the Nielsen number
and [25] for the Reidemeister trace—but this is lost with the classical Reidemeister
trace. This essential incompatibility is unsurprising since these two approaches are
fundamentally very different.
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