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OPERATIONS ON POLYHEDRAL PRODUCTS AND A NEW
TOPOLOGICAL CONSTRUCTION OF INFINITE FAMILIES

OF TORIC MANIFOLDS

A. BAHRI, M. BENDERSKY, F. R. COHEN and S. GITLER

(communicated by Donald M. Davis)

Abstract
A combinatorial construction is used to analyze the proper-

ties of polyhedral products [1] and generalized moment-angle
complexes with respect to certain operations on CW pairs
including exponentiation. This allows for the construction of
infinite families of toric manifolds, associated to a given one,
in a way that simplifies the combinatorial input and, conse-
quently, the presentation of the cohomology rings. The new
input is the interaction of a purely combinatorial construc-
tion with natural associated geometric constructions related
to polyhedral products and toric manifolds. Applications of
the methods and results developed here have appeared in
[24, 25, 15, 18, 10, 23], and [19].

This paper is dedicated to the memory of Samuel Gitler.

1. Introduction

The polyhedral product Z(K; (X,A)) is a CW-complex valued functor of two
variables: the first, an abstract simplicial complex K on m vertices and the second,
a family of (based) CW pairs

(X,A) = {(X1, A1), (X2, A2), . . . , (Xm, Am)}.

It is defined as a union of products inside
m∏
i=1

Xi each parameterized by a simplex in

the simplicial complex K.
Polyhedral products generalize the spaces called moment-angle complexes which

were developed first by Buchstaber and Panov in [7] and correspond to the case
(Xi, Ai) = (D2, S1), i = 1, 2, . . . ,m. At the core of the subject of toric topology, which
began as a topological approach to toric geometry, are three families of spaces:
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1. polyhedral products and moment-angle manifolds,

2. Davis–Januszkiewicz spaces, and

3. toric manifolds and real toric manifolds.

This paper is devoted to an analysis of the properties of these spaces with respect
to an operation

J : K −→ K(J)

from abstract simplicial complexes with m vertices to abstract simplicial complexes,
which is determined by a sequence of positive integers J = (j1, j2, . . . , jm). Here, the
simplicial complex K(J) has d(J) = j1 + j2 + · · ·+ jm vertices. Several applications
to toric topology are discussed in detail.

By abuse of notation, the symbol Z
(
K(J); (X,A)

)
is used to denote the polyhedral

product determined by the simplicial complex K(J) and the family of pairs obtained
from (X,A) by repeating each (Xi, Ai), ji times in sequence. In Section 7, another
operation J is defined on families of CW-pairs yielding an identity of polyhedral
products

Z
(
K(J); (X,A)

)
= Z(K; J(X,A)

)
.

This result has consequences for the case

(X,A) = (D2J , S2J−1) =
{
(D2ji , S2ji−1)

}m
i=1

,

corresponding to the polyhedral products that are called now generalized moment-
angle complexes. The central result here is the following.

Theorem 7.5. There is an action of Tm on polyhedral products Z(K; (D2J , S2J−1))
and Z

(
K(J); (D2, S1)

)
, with respect to which they are equivariantly homeomorphic.

When combinedwith Theorem 1.8 of [3], this theorem yields an immediate corollary.

Corollary 7.6. The spaces Z(K; (D2, S1)) and Z
(
K(J); (D2, S1)

)
have isomorphic

ungraded cohomology rings.

Another application links the spaces (D2J , S2J−1) to the study of toric manifolds
in a new way.

For the much studied case (Xi, Ai) = (D1, S0), i = 1, 2, . . . ,m, it follows from the
results in Section 7 that every moment-angle complex Z(K; (D2, S1)) can be realized
as Z

(
K(J); (D1, S0)

)
for J = (2, 2, . . . , 2). Therefore, in a certain sense, the “real”

moment-angle complex is the more basic object. In the context of toric manifolds
over a simple polytope Pn, with simplicial complex K dual to the boundary ∂Pn,
the spaces Z(∂Pn; (D2, S1)) and Z(∂Pn; (D1, S0)), which in this case are differen-
tiable manifolds, were introduced by Davis and Januszkiewicz in [12]. They used the
latter to construct spaces known as small covers, the subject of considerable current
investigation.

The fundamental construction of Davis and Januszkiewicz [12, Section 1.5] realizes
all toric manifolds M2n and, in particular, all smooth projective toric varieties. From
this construction it follows that M2n can be described as the quotient of an (m+
n)-dimensional moment-angle complex by the free action of a certain real (m− n)-
dimensional torus Tm−n ⊂ Tm. This subtorus is specified usually by a characteristic
map λ.
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Beginning with a toric manifold M2n, its associated simple polytope Pn having
m facets and characteristic map λ, an infinite family of new toric manifolds M(J)
is constructed, one for each sequence of positive integers J = (j1, j2, . . . , jm). The
manifoldsM(J) are determined by a new polytope P (J) and a new characteristic map
λ(J). The outcome here (Theorem 4.2) is that the integral cohomology ring of M(J)
is described completely in terms of the original map λ and the original polytope Pn.
The manifolds M(J) are a substantial new concrete class of toric manifolds that come
equipped with a complete fan (where appropriate), combinatorial, and topological
information. These spaces are a new, systematic infinite family of toric manifolds
which have tractable as well as natural properties. Furthermore, these constructions
arise from an operation defined on a category of finite simplicial complexes sending
K to K(J) and so provide a natural construction.

In Section 9, the construction and properties of these manifolds M(J) are analyzed
in the context of generalized moment-angle complexes. As above, to the polytope Pn

is associated the simplicial complex K dual to ∂Pn and a generalized moment-angle
complex Z(K; (D2J , S2J−1)), and to P (J), which has boundary dual to K(J), is
associated the moment-angle complex Z

(
K(J); (D2, S1)

)
. Theorem 7.5 connects the

construction K(J) to the study of toric manifolds. In describing the new manifolds
M(J), diffeomorphisms (Theorems 7.5 and 9.2)

Z
(
K(J); (D2, S1)

)/
Tm−n −→ M(J) ←− Z(K; (D2J , S2J−1))

/
Tm−n

mirror geometrically the reduction in combinatorial complexity from the characteris-
tic pair

(
λ(J), P (J)

)
to the pair (λ, P 2n). Significant in the theory of toric manifolds

is the role played by the Davis–Januszkiewicz spaces. These are homotopy equiva-
lent to polyhedral products of the form Z(K; (CP∞, ∗)). Key in the theory that is
developed here are related spaces, denoted by Z

(
K; (CP∞,CP J−1)

)
. They substi-

tute for the usual Davis–Januszkiewicz spaces Z
(
K(J); (CP∞, ∗)). Their properties

and relationship to the manifolds M(J) are discussed in Theorems 10.5 and 11.1.
In contrast to the cohomology of the Davis-Januszkiewicz spaces, these spaces have
integral cohomology rings that are monomial ideal rings, but the monomials are not
necessarily square-free. The construction of the toric manifolds M(J) leads to the
idea of “nests” of toric manifolds, which is discussed in the final section.

Remark. Unless indicated otherwise, all cohomology rings throughout are taken with
integral coefficients.

The intersections of certain quadrics are known to be diffeomorphic to moment-
angle manifolds [6, 17], and, implicitly, in [7, Construction 3.1.8]. After a first draft
of this article was written in 2008, the authors learned of the work of S. Lopez
de Medrano on the intersections of quadrics [21, 20]. Results in [20] depend on the
consequences of a doubling of variables and a duplication of coefficients in the defining
equations; this translates into an instance of the general construction given here.

The simplicial wedge construction, in the context of toric varieties, has appeared
in the work of G. Ewald [16]. The ideas presented are distinguished from those of
[16] by virtue of the following:

1. Not all the manifolds M(J) discussed here are non-singular toric varieties.

2. The combinatorial constructions are analyzed in the context of polyhedral prod-
ucts, culminating in Theorem 7.2.
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3. A theory is constructed for the manifoldsM(J) that realizes them as quotients of
generalized moment-angle complexes and parallels constructions developed for
toric manifolds by Davis and Januszkiewicz [12] and Buschstaber and Panov
[9].

Moreover, it is shown in the preprint [5] that the manifolds M(J) can be described
directly by a generalization of Davis and Januszkiewicz’s original construction.

As is mentioned in the abstract, several applications of the constructions presented
here have appeared both in the literature and in preprint form.
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2. A construction on simplicial complexes

Let K be a simplicial complex of dimension n− 1 on vertices {v1, v2, . . . , vm}, and
let J = (j1, j2, . . . , jm) be a sequence of positive integers.

Definition 2.1. A minimal non-face of a simplicial complex K is a sequence of ver-
tices of K that is not a simplex of K but any proper subset is a simplex of K. Let
K be as above. Denote by K(J) the simplicial complex on j1 + j2 + · · ·+ jm new
vertices, labelled

v11, v12, . . . , v1j1 , v21, v22, . . . , v2j2 , . . . , vm1, vm2, . . . , vmjm ,

with the property that{
vi11, vi12, . . . , vi1ji1 , vi21, vi22, . . . , vi2ji2 , . . . , vik1, vik2, . . . , vikjik

}
is a minimal non-face of K(J) if and only if {vi1 , vi2 , . . . , vik} is a minimal non-face
of K. Moreover, all minimal non-faces of K(J) have this form.

An alternative construction of the simplicial complex K(J) will reveal the fact that
K(J) is dual to the boundary of P (J) if K is dual to ∂Pn. Recall that for σ ∈ K,
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the link of σ in K is the set

linkKσ := {τ ∈ K : σ ∪ τ ∈ K,σ ∩ τ = ∅}.
The join of two simplicial complexes K1, K2 on disjoint vertex sets S1 and S2, respec-
tively, is given by

K1 ∗K2 := {σ ⊂ S1 ∪ S2 : σ = σ1 ∪ σ2, σ1 ∈ K1, σ2 ∈ K2}.
Construction 1. As above, let K be the simplicial complex on vertices {v1, v2, . . . ,
vm}. Choose a fixed vertex vi in K and define a new simplicial complex K(vi) with
m+ 1 vertices labelled v1, . . . , vi−1, vi1, vi2, vi+1, . . . , vm, by

K(vi) := {vi1, vi2} ∗ linkK{vi} ∪ {{vi1}, {vi2}} ∗ (K \ {vi}). (1)

Next, the vertices of K(vi), other than vi1 and vi2, are re-labelled by setting vk = vk1
if k 
= i. Therefore, the new vertex set of K(vi) becomes

S = {v11, . . . , v(i−1)1, vi1, vi2, v(i+1)1, . . . , vm1}.
Example 1. The easiest example is that of K =

{
v1}, {v2} two disjoint points. Here,

K(v1) has three vertices {v11, v12, v21}, linkK{v1} = ∅, and K \ {v1} = v2. So (1)
becomes

{v11, v12} ∗∅ ∪ {{v11}, {v12}} ∗ {v2} = {v11, v12} ∪ ({v11, v21} ∪ {v12, v21}
)
,
(2)

which is the boundary of a two-simplex.

In [22, p. 578], this construction is called the simplicial wedge of K on v. Notice
that if {vi1 , vi2 , . . . , vik} is a minimal non-face ofK with ij 
= i for all j, then it remains
a minimal non-face of K(vi). The simplex {vi1, vi2} becomes part of a simplex

{vi11, vi21, . . . , vik1, vi1, vi2, vi(k+1)1, . . . , vis1} ∈ {vi1, vi2} ∗ linkK{vi} ⊆ K(vi)

if and only if

{vi1 , vi2 , . . . , vik , vi, vik+1
, . . . , vis} ∈ K.

Hence, according to Definition 2.1, K(vi) = K(J), where

J = (1, 1, . . . , 1, 2, 1, . . . , 1)

is the m-tuple with “2” appearing in the ith coordinate. According to [22, p. 582],
K(vi) is dual to the boundary of a simple polytope P (vi) of dimension n+ 1 with
m+ 1 facets if K is dual to the boundary of a simple polytope Pn of dimension n with
m facets. Beginning with J = (1, 1, . . . , 1), Construction 1 may be iterated to produce
K(J) for any J = (j1, j2, . . . , jm). The induction from J = (j1, j2, . . . , jm) to the new
sequence J ′ = (j1, j2, . . . , ji−1, ji + 1, ji+1, . . . , jm) necessitates a choice of vertex v
from among {vi1, vi2, . . . , viji} in order to form K(J)(v), as in Construction 1. The
fundamental property, described in Definition 2.1, ensures that any choice of v will
result in precisely the same minimal non-simplices in K(J)(v) = K(J ′).

The next theorem follows from these observations. Set d(J) = j1 + j2 + · · ·+ jm.

Theorem 2.2. Let J = (j1, j2, . . . , jm), and suppose K is dual to the boundary of a
simple polytope Pnhaving m facets. Then K(J) is dual to the boundary of a simple
polytope P (J) of dimension d(J)−m+ n having d(J) facets. �
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This section ends with a simple necessary criterion for a simplicial complex to be
in the image of the simplicial wedge construction. The condition follows immediately
from the definition of the construction.

Remark. If a simplicial complex K ′ exists satisfying K = K ′(v) for some {v} ∈ K ′,
then K must contain vertices v1 and v2 satisfying:

1. the one-simplex {v1, v2} ∈ K and

2. interchanging v1 and v2 is a simplicial automorphism of K.

3. New toric manifolds made from a given one

A toric manifold M2n is a manifold covered by local charts Cn, each with the
standard action of a real n-dimensional torus Tn, compatible in such a way that the
quotient M2n

/
Tn has the structure of a simple polytope Pn. Here, “simple” means

that Pn has the property that at each vertex exactly n facets intersect. Under the Tn

action, each copy of Cn must project to an Rn
+ neighborhood of a vertex of Pn. The

fundamental construction of Davis and Januszkiewicz [12, Section 1.5] is described
briefly below. It realizes all toric manifolds and, in particular, all smooth projective
toric varieties. Let

F = {F1, F2, . . . , Fm}
denote the set of facets of Pn. The fact that Pn is simple implies that every
codimension-l face F can be written uniquely as

F = Fi1 ∩ Fi2 ∩ · · · ∩ Fil ,

where the Fij are the facets containing F . Let

λ : F −→ Z
n (3)

be a function into an n-dimensional integer lattice satisfying the condition that when-
ever F = Fi1 ∩ Fi2 ∩ · · · ∩ Fil then {λ(Fi1), λ(Fi2), . . . , λ(Fil)} span an l-dimensional
submodule of Zn that is a direct summand. Such a map is called a characteristic
function associated to Pn. Next, regarding Rn as the Lie algebra of Tn, the map λ
is used to associate to each codimension-l face F of Pn a rank-l subgroup GF ⊂ Tn.
Specifically, writing λ(Fij ) = (λ1ij , λ2ij , . . . , λnij ) gives

GF =
{(

e2πi(λ1i1 t1+λ1i2 t2+···+λ1il
tl), . . . , e2πi(λni1 t1+λni2 t2+···+λnil

tl)
) ∈ Tn

}
,

where ti ∈ R, i = 1, 2, . . . , l. Finally, let p ∈ Pn and F (p) be the unique face with p
in its relative interior. Define an equivalence relation ∼ on Tn × Pn by (g, p) ∼ (h, q)
if and only if p = q and g−1h ∈ GF (p)

∼= T l. Then

M2n ∼= M2n(λ) = Tn × Pn
/∼ (4)

is a smooth, closed, connected, 2n-dimensional manifold with Tn action induced by
left translation [12, p. 423]. A projection π : M2n → Pn onto the polytope is induced
from the projection Tn× Pn→ Pn.

Remark. In the cases when M2n is a projective non-singular toric variety, Pn and λ
encode the information in the defining fan.
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Suppose that K is dual to to the boundary a simple polytope Pn having m facets.
Recall that the duality here is in the sense that the facets of Pn correspond to the
vertices of K. A set of vertices in K is a simplex if and only if the corresponding
facets in Pn all intersect. At each vertex of a simple polytope Pn, exactly n facets
intersect.

A characteristic function λ : F −→ Zn assigns an integer vector to each facet of the
simple polytope Pn. It can be considered as an (n×m)-matrix, λ : Zm −→ Zn, with
integer entries and columns indexed by the facets of Pn. The condition following (3)
may be interpreted as requiring all n× n minors of λ, corresponding to the vertices
of Pn, to be ±1. Given λ and J = (j1, j2, . . . , jm), a new function

λ(J) : Zd(J) −→ Z
d(J)−m+n

can be constructed by taking λ(J) to be the ((d(J)−m+ n)× d(J))-matrix described
in Figure 1, below. In the diagram, the columns of the matrix are indexed by the ver-
tices of K(J), and Ik denotes a k × k identity sub-matrix.

v12 · · · v1j1 v22 · · · v2j2 · · · vm2 · · · vmjm v11 v21 · · · vm1

Ij1−1 0 · · · 0

−1
...
−1

0

0 Ij2−1 0 0

0
...
0

−1
...
−1

0

... 0
. . . 0

...

0
... 0 Ijm−1 0

−1
...
−1

0 0 0 0 λ

1
2
...
m

1 2 · · · m

Figure 1. The matrix λ(J)

Remark 3.1. It was brought to the authors’ attention by Jongbaek Song that the two
((n+ 2)×(m+ 2))-matrices, λ(3, 1, . . . , 1) and λ(2, 1, . . . , 1), where λ = λ(2, 1, . . . , 1),
differ by an element of SL(n+ 2,Z). This allows for inductive arguments in this con-
text of toric manifolds.

The next theorem constructs an infinite family of toric manifolds “derived” from
the information in λ, Pn, and J = (j1, j2, . . . , jm).

Theorem 3.2. If λ is a characteristic map for a 2n-dimensional toric manifold M ,
then λ(J) is the characteristic map for a toric manifold M(J) of dimension 2d(J)−
2m+ 2n.
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Proof. Theorem 2.2 ensures that P (J) is a simple polytope of dimension d(J)−
m+ n. It remains to show that for each vertex of P (J) the corresponding

(
d(J)−

m+ n
)× (d(J)−m+ n

)
minor of λ(J) is equal to ±1. The proof is by induction.

Consider first the case J = (1, 1, . . . , 1,
i
2, 1, . . . , 1). Corresponding to the re-indexing

of the vertices of K(J), the facets of P (J) are indexed as follows:

F(J) = {F11, F21, . . . , F(i−1)1, Fi1, Fi2, F(i+1)1, . . . , Fm1}
The matrix λ(J) now has the form

Fi2 F11 Fi1 Fm1⎛
⎜⎜⎜⎝

1 0 · · · −1 0 0
0 λ11 · · · λ1i · · · λ1m

0
...

...
...

0 λn1 · · · λni · · · λnm

⎞
⎟⎟⎟⎠ ,

where λ = (λij) is the original matrix. (Recall that vertices vik of K(J) correspond to
facets Fik of the polytope P (J).) The minors corresponding to the new (n+ 1)-fold
intersections of facets, are of two types:

1. those which include columns indexed by both Fi1 and Fi2, and

2. those which include columns indexed by either Fi1 or Fi2 but not both.

This observation follows from the fact that the simplicial wedge construction
ensures that each new maximal simplex of K(J) = K(vi) must contain either vi1
or vi2. According to the discussion following Construction 1, the first type arise from
intersections

Fi1 ∩ Fi2 ∩ · · · ∩ Fik ∩ Fi ∩ Fik+1
∩ · · · ∩ Fin (5)

of n facets in Pn. In P (J), they give (n+ 1)-fold intersections

Fi11 ∩ Fi21 ∩ · · · ∩ Fik1 ∩ Fi1 ∩ Fi2 ∩ Fi(k+1)1
∩ · · · ∩ Fin1.

The corresponding (n+ 1)× (n+ 1) minors in the matrix λ(J) above are

Fi2 Fi11 Fik1 Fi1 Fik+11 Fin1

1 0 · · · 0 −1 0 0 0
0 λ1i1 · · · λ1ik λ1i λ1ik+1

· · · λ1in
...

...
...

...
...

...
0 λni1 · · · λnik λni λ1ik+1

· · · λnin

.

Expanding by the first row gives ±1 by (5). Now (n+ 1)-fold intersections of facets of
the second type, which contain Fi2 but not Fi1 (or vice versa) arise from intersections
in P that do not involve the facet Fi. That is, they are of the form

Fi1 ∩ Fi2 ∩ · · · ∩ Fik ∩ Fik+1
∩ · · · ∩ Fin , ij 
= i. (6)

In P (J), the intersection is

F12 ∩ Fi11 ∩ Fi21 ∩ · · · ∩ Fik1 ∩ Fi(k+1)1
∩ · · · ∩ Fin1, ij 
= i.
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The (n+ 1)× (n+ 1) minor in λ(J) will have the form

Fi2 Fi11 Fin1

1 0 · · · 0
0 λ1i1 · · · λ1in
...

...
...

0 λni1 · · · λnin

and so will have the value ±1. Finally, (n+ 1)-fold intersections of facets of the second
type, which contain Fi1 but not Fi2 again arise from intersections of the type 6. In
P (J) the intersection is

Fi11 ∩ Fi21 ∩ · · · ∩ Fik1 ∩ Fi1 ∩ Fi(k+1)1
∩ · · · ∩ Fin1.

and the corresponding (n+ 1)× (n+ 1) minor in λ(J) has the form

Fi11 Fik1 Fi1 Fik+11 Fin1

0 · · · 0 −1 0 0 0
λ1i1 · · · λ1ik λ1i λ1ik+1

· · · λ1in
...

...
...

...
...

λni1 · · · λnik λni λ1ik+1
· · · λnin

.

Expansion by the first row gives the n× n minor in λ

λ1i1 · · · λ1ik λ1ik+1
· · · λ1in

...
...

...
...

λni1 · · · λnik λ1ik+1
· · · λnin

,

which has the value ±1 because it corresponds to (6). The inductive step passes from
the m-tuple J = (j1, j2, . . . , jm) to J ′ = (j1, j2, . . . , jk−1, jk + 1, jk+1 . . . , jm) and fol-
lows the same argument, replacing the characteristic map λ in the discussion above
with λ(J), This completes the proof.

Remark 3.3. In a recent preprint [5], the authors show that the manifolds M(J)
can be obtained alternatively by a reinterpretation and generalization of the Davis–
Januszkiewicz construction (4).

4. The cohomology of the toric manifolds M(J)

The rows of the matrix λ(J) determine an ideal LM(J) generated by linear relations
among the generators of the Stanley–Reisner ring of K(J). These are given by

vit − vi1 = 0, t = 2, . . . , ji, i = 1, . . . ,m (7)
λi1v11 + λi2v21 + · · ·+ λimvm1 = 0, i = 1, . . . , n.

Notice that the second set of relations are those corresponding to the linear ideal
determined by the matrix λ. The next result is the Davis–Januszkiewicz (Danilov–
Jurkewicz) theorem [12, Theorem 4.14] for the toric manifold M(J).
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Theorem 4.1. The cohomology ring H∗(M(J);Z) is isomorphic to

Z[v11, v12, . . . , v1j1 , v21, v22, . . . , v2j2 , . . . , vm1, vm2, . . . , vmjm ]
/(

IK(J) + LM(J)

)
,

where IK(J) denotes the Stanley–Reisner ideal for the simplicial complex K(J). �

Applying the linear relations (7) and rewriting vi1 as vi allows a significant sim-
plification of this description.

Theorem 4.2. The cohomology ring H∗(M(J);Z) is isomorphic to

Z[v1, v2, . . . , vm]
/
(IJK + LM ),

where each vi has degree 2, LM is the ideal in the Stanley–Reisner ring of K generated
by the rows of the matrix λ and IJK is the ideal of relations generated by all monomials
of the form

v
ji1
i1

v
ji2
i2

· · · vjikik
(8)

corresponding to the minimal non-simplex {vi1 , vi2 , . . . , vik} of K.

Proof. Linear relations (7) and the relabeling of vi1 as vi convert the monomials
generating IK(J) into those of (8) and the relations LM(J) into the relations LM .

5. A class of examples

In this section is constructed a family of toric manifolds beginning with the example
M4 for which the simple polytope P 2 is the two-dimensional square having four facets
and the characteristic map λ is given by the 2× 4-matrix

λ =

(
1 −1 1 0
2 −1 0 1

)
.

The cohomology of M4 is computed from the Davis–Januszkiewicz theorem [12, The-
orem 4.14]. It is the quotient of the polynomial ring Z[v1, v2, v3, v4] on four two-
dimensional generators by a linear ideal LM4 and a monomial ideal IK , where K is
the simplicial complex dual to ∂P 2. The ideal LM4 is generated by v1 − v2 + v3 and
2v1 − v2 + v4, and the ideal IK is generated by v1v3 and v2v4. These relations give
the computation

H∗(M4) ∼= Z[v1, v3]
/〈v1v3, v21 = v23〉.

This is the cohomology ring of the connected sum CP 2#CP 2, so the cohomological
rigidity results of [11] imply that M4 is homeomorphic to CP 2#CP 2.

Next, take J = (1, p, 1, q) to get M(J) (= M4(J)). Theorem 4.2 gives H∗(M(J))
as the quotient of the polynomial ring Z[v1, v2, v3, v4] by the linear ideal LM4 and
a monomial ideal IJK . As before, the ideal LM4 is generated by v1 − v2 + v3 and
2v1 − v2 + v4, and the ideal IJK is generated by v1v3 and vp2v

q
4. These relations are
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simplified by using the fact that v1v3 = 0 to get

(v3 − v1)
p = vp3 + (−1)pvp1 and (v3 + v1)

q = vq3 + vq1.

Writing 0 = vp2v
q
4 = (v3 − v1)

p(v3 + v1)
q gives

0 = (vp3 + (−1)pvp1)(v
q
3 + vq1) = vp+q

3 + (−1)pvp+q
1 .

Thus vp+q
3 = (−1)p+1vp+q

1 , giving

H∗(M(J)
) ∼= Z[v1, v3]

/〈v1v3, vp+q
3 = (−1)p+1vp+q

1 〉.
This is the cohomology ring of the connected sum CP p+q#(−1)pCP p+q, where, here,
the (−1)p indicates an orientation change with p. Again the cohomological rigidity
results of [11] imply that MJ is homeomorphic to CP p+q#(−1)pCP p+q.

Remark. The situation becomes more complex for general J = (j1, j2, j3, j4), with all
ji > 1. The “heights” of v1 and v3 are harder to determine. It would interesting to
know if for this particular manifold M4, non-trivial examples of sequences J and J ′

exist so that M(J) and M(J ′) have isomorphic cohomology rings.
J. Song and S. Choi have produced examples of non-diffeomorphic toric manifolds

M and N and a sequence J so that M(J) and N(J) are diffeomorphic.

6. Polyhedral products

Let K be a simplicial complex with m vertices, and let (X,A) denote a family of
CW pairs

(X1, A1), (X2, A2), . . . , (Xm, Am).

When all the pairs (Xi, Ai) are the same pair (X,A), the family (X,A) is written
simply as (X,A). A polyhedral product is a topological space

Z(K; (X,A)) ⊆
m∏
i=1

Xi ,

defined as a colimit by a diagram D : K → CW∗. At each σ ∈ K, it is given by

D(σ) =

m∏
i=1

Wi, where Wi =

{
Xi if i ∈ σ

Ai if i ∈ [m]− σ.
(9)

Here, the colimit is a union given by

Z(K; (X,A)) =
⋃
σ∈K

D(σ).

Detailed background information about polyhedral products may be found in [7, 9,
1, 2] (and in the unpublished notes of N. Strickland).

The family of CW -pairs (X,A) to be investigated here is specified by the sequence
of positive integers J = (j1, . . . , jm) and is given by

(X,A) = (D2J , S2J−1) =
{
(D2ji , S2ji−1)

}m
i=1

. (10)

(Presently, it will become necessary to consider the discs D2ji as embedded naturally
in Cji .) If J = (1, 1, . . . , 1), the space Z(K; (D2J , S2J−1)) is an ordinary moment-
angle complex and is written Z(K; (D2, S1)).
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For fixed K, the spaces Z(K; (D2J , S2J−1)) all have the property of being stably
wedge equivalent.

Definition 6.1. Two spaces X and Y are said to be stably wedge equivalent if there
are stable homotopy equivalences

X ∼ X1 ∨X2 ∨ . . . ∨Xt and Y ∼ Y1 ∨ Y2 ∨ . . . ∨ Yt

and Xi is stably homotopy equivalent to Yi for all i = 1, 2, . . . , t.

The next proposition follows directly from the stable splitting theorems for gener-
alized moment-angle complexes of [1], [2, Corollary 2.24] and [3, Theorem 1.4] that
describes the cohomology ring structure in terms of the stable splitting.

Proposition 6.2. For fixed K and all J = (j1, . . . , jm), the spaces Z(K; (D2J , S2J−1))
are all stably wedge equivalent, and, moreover, they have isomorphic ungraded coho-
mology rings. �

7. The simplicial wedge construction and polyhedral products

Recall that a product of CW pairs is defined by

(X,A)× (Y,B) :=
(
X × Y, (X ×B) ∪ (A× Y )

)
. (11)

The k-fold iteration (X,A)× · · · × (X,A) is denoted by (X,A)k.
Let K be a simplicial complex on m vertices {v1, v2, . . . , vm}, and let (X,A) denote

the family of CW pairs

(X1, A1), (X2, A2), . . . , (Xm, Am).

In light of Definition 2.1, it becomes necessary at this point to introduce a notational
convention to avoid expressions becoming too unwieldy.

Convention. Let J = (j1, j2, . . . , jm) be sequence of positive integers K(J) as in
Definition 2.1 and the family of pairs (X,A) as above. Denote by Z

(
K(J); (X,A)

)
the polyhedral product determined by the simplicial complex K(J) and the family of
pairs obtained from (X,A) by repeating each (Xi, Ai), ji times in sequence.

Fix i ∈ {1, 2, . . . ,m}, and define a family of CW pairs (Y ,B) by

(Yk, Bk) =

{
(Xk, Ak) if k 
= i

(Xi, Ai)
2 if k = i.

Theorem 7.1. The polyhedral product spaces Z(K; (Y ,B)) and Z
(
K(vi); (X,A)

)
are

equal subspaces of W1 × · · · ×Wm, where

Wk =

{
Xk if k 
= i

Xk ×Xk, if k = i.

Proof. As in Construction 1, the vertices of K(vi) are

S = {v11, . . . , v(i−1)1, vi1, vi2, v(i+1)1, . . . , vm1}.
Let σ = {vt1 , vt2 , . . . , vtk} be a maximal simplex in K. If vi = vts ∈ σ, then D(σ) is
equal to D(σ′) ⊂ Z

(
K(vi); (X,A)

)
, where
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σ′ = {vt11, vt21, . . . , v(ts−1)1, vts1, vts2, v(ts+1)1, . . . , vtk1}.
If vi /∈ σ, then D(σ) is identified (by the identity map) with D(σ′1) ∪D(σ′2) ⊂
Z
(
K(vi); (X,A)

)
, where

σ′1 = {vt11, vt21, . . . , vtk1, vi1},
σ′2 = {vt11, vt21, . . . , vtk1, vi2}.

(Here, the vertices may not be in their correct order.) The fact that the wedge con-
struction ensures that the maximal simplices σ′1 and σ′2 exist in K(vi) has been used
here. This procedure exhausts all maximal simplices in K(vi) and completes the
equivalence.

The next iteration of this procedure is slightly more involved but serves to describe
all iterations. Choose j ∈ {1, 2, . . . ,m}. If j 
= i, the new family (Y ,B) is defined by

(Yk, Bk) =

{
(Xk, Ak) if k 
= i, j

(Xk, Ak)
2 if k = i, j.

In this case, K(vi) is replaced with
(
K(vi)

)
(vj1) and the procedure is exactly as

described above. The result is that Z(K; (Y ,B)) and Z
(
(K(vi))(vj1); (X,A)

)
are

equivalent subspaces of W1 × · · · ×Wm, where

Wk =

{
Xk if k 
= i, j

Xk ×Xk, if k = i, j.

In the case j = i, the new family (Y ,B) will have

(Yk, Bk) =

{
(Xk, Ak) if k 
= i

(Xi, Ai)
3 if k = i.

In this case,K(vi) is replaced with either
(
K(vi)

)
(vi1) or

(
K(vi)

)
(vi2). The symmetry

of the wedge construction ensures that these two simplicial complexes are isomorphic
as simplicial complexes. The result is that Z(K; (Y ,B)) and Z

(
(K(vi))(vi1); (X,A)

)
are equivalent subspaces of W1 × · · · ×Wm, where

Wk =

{
Xk if k 
= i∏3

s=1 Xk if k = i.

The general iteration procedure is now straightforward; the result is recorded in the
next theorem.

Theorem 7.2. Let K be a simplicial complex with m vertices, and let (X,A) denote
a family of CW pairs

{(X1, A1), (X2, A2), . . . , (Xm, Am)}.
For J = (j1, j2, . . . , jm), a sequence of positive integers, define a new family of pairs

J(X,A) = (Y ,B)) by (Yk, Bk) = (Xk, Ak)
jk , k = 1, 2, . . . ,m.

Then, the polyhedral product spaces Z(K; J(X,A)) and Z
(
K(J); (X,A)

)
are equal

subspaces of Xj1
1 ×Xj2

2 × · · · ×Xjm
m . �
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This result is applied to the family where (Xi, Ai) = (D2, S1) for all i = 1, 2, . . . ,m.
In this case,

(Yk, Bk) = (Xk, Ak)
jk =

(
(D2)jk , ∂

(
(D2)jk

))
,

where ∂
(
(D2)ji

)
denotes the boundary of a ji-fold product of two-discs. For this

particular case, the family (Y ,B) is denoted by

(B2J , ∂B2J ) :=
{(

(D2)ji , ∂
(
(D2)ji

)}m
i=1

.

Theorem 7.2 implies now the next corollary.

Corollary 7.3. The generalized moment-angle complex Z(K; (B2J , ∂B2J)) and the
moment-angle complex Z

(
K(J); (D2, S1)

)
are equal subspaces of

(D2)j1 × (D2)j2 × · · · × (D2)jm = (D2)d(J).

Remark. Notice that by considering (D2)d(J) ⊂ Cd(J), both moment-angle complexes
inherit an action of the real torus T d(J) with respect to which they are equivariantly
equivalent.

An entirely similar argument shows that taking (Xi, Ai) = (D1, S0) for all i =
1, . . . ,m and J = (2, 2, . . . , 2), yields the result that the spaces Z(K; (D1 ×D1,
∂(D1 ×D1)) and Z(K(J); (D1, S0)) are equivalent subspaces of (D1)2 × (D1)2 ×
· · · × (D1)2. It follows by the arguments below that Z(K; (D2, S1)) and Z(K(J);
(D1, S0)) are diffeomorphic.

Recall now the family of pairs (D2J , S2J−1) described in (10). Observe that for
the corresponding generalized moment-angle complex there is a natural embedding

Z(K; (D2J , S2J−1)) ⊆ D2j1 ×D2j2 × · · · ×D2jm

The next goal is to verify that the spaces Z(K; (B2J , ∂B2J )) and Z(K; (D2J , S2J−1))
are equivariantly homeomorphic with respect to various torus actions.

Let (D2)ji ⊂ Cji be embedded in the usual way, and choose a standard homeo-
morphisms of pairs hi :

(
(D2)ji , ∂

(
(D2)ji

) −→ (D2ji , S2ji−1). Define an action of the
circle T 1 on D2ji by

t · hi(z1, z2, . . . , zji) = hi(tz1, tz2, . . . , tzji).

Next, denote the ji-tuple (z1, z2, . . . , zji) by the symbol zji and define an action of

Tm on (D2)d(J) by

(t1, t2, . . . , tm) · (zj1 , zj2 , . . . , zjm) = (t1zj1 , t2zj2 , . . . , tmzjm) (12)

where tizji has the usual meaning (tiz1, tiz2, . . . , tizji). Notice that this action of Tm

is a restriction of the natural action of the torus T d(J) on (D2)d(J). An action of Tm

is induced on D2j1 ×D2j2 × · · · ×D2jm by

(t1, t2, . . . , tm) · (h1(zj1), h2(zj2), . . . , hm(zjm)
)

=
(
h1(t1zj1), h2(t2zj2), . . . , hm(tmzjm)

)
. (13)

The homeomorphisms hi give rise to a homeomorphism, equivariant with respect to
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the Tm-action above,

H : (D2)d(J) −→ D2j1 ×D2j2 × · · · ×D2jm (14)

by H(zj1 , zj2 , . . . , zjm) =
(
h1(zj1), h2(zj2), . . . , hm(zjm)

)
. The map H extends to a

homeomorphism of generalized moment-angle complexes.

Lemma 7.4. The homeomorphism H extends to a homeomorphism of generalized
moment-angle complexes Z(K; (B2J , ∂B2J)) and Z(K; (D2J , S2J−1)), which is equiv-
ariant with respect to the Tm-action defined by (13).

Proof. The map H induces a homeomorphisms at the level of the appropriate spaces
D(σ) defined in (9), compatible with the maps defining both colimits.

Combining this observation with Corollary 7.3 and the remark following it yields
a key result.

Theorem 7.5. There is an action of Tm on polyhedral products Z(K; (D2J , S2J−1))
and Z

(
K(J); (D2, S1)

)
with respect to which they are equivariantly homeomorphic. �

When combinedwithTheorem 1.8 of [3], this theorem yields an immediate corollary.

Corollary 7.6. The spaces Z(K; (D2, S1)) and Z
(
K(J); (D2, S1)

)
have isomorphic

ungraded cohomology rings. �
These results yield an observation about the action of the Steenrod algebra.

Corollary 7.7. There is an isomorphism of ungraded Z/2-modules

H∗(Z(K; (D2, S1));Z/2
) −→ H∗(Z(K(J); (D2, S1)

)
;Z/2

)
that commutes with the action of the Steenrod algebra.

Proof. The Steenrod operations are stable operations, and hence the splitting theo-
rem [2, Theorem 2.21] implies that there is an isomorphism of ungraded Z/2-modules

H∗(Z(K; (D2, S1));Z/2
) −→ H∗(Z(K; (D2J , S2J−1));Z/2

)
that commutes with the action of the Steenrod algebra. The result follows from
Theorem 7.5.

Remark. Corollary 7.7 holds equally well for Z/p with p an odd prime.

8. A generalization to topological joins

As usual, let K be a simplicial complex on m vertices, and let J = (j1, j2, . . . , jm),
be a sequence of positive integers. Consider the family of pairs

(CX,X) =
{
(CXi, Xi)

}m
i=1

,

where each space Xi is a CW complex and CXi denotes the cone on Xi. Applying
Theorem 7.2 to this family of pairs yields an equivalence of polyhedral products

Z(K; J(CX,X)) −→ Z
(
K(J); (CX,X)

)
, (15)

where, as before, J(CX,X) = (Y ,B) with (Yk, Bk) = (CXk, Xk)
jk , k = 1, 2, . . . ,m.

The equivalence is as subspaces of (CX1)
j1 × (CX2)

j2 × · · · × (CXm)jm . The next
lemma, which is well known, is a key ingredient.
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Lemma 8.1. For any finite CW complex X, there is a homeomorphism of pairs(
C(X ∗X), X ∗X) f−→ (CX,X)2,

where ∗ denotes the topological join.

Proof. Represent a point in C(X ∗X) by
[
s, [x1, t, x2]

]
. Define the homeomorphism

f by

f
([
s, [x1, t, x2]

])
=
(
[2s ·min{t, 1/2}, x1], [2s ·min{1− t, 1/2}, x2]

) ∈ CX × CX,

where the cone point is at s = 0. At s = 1, f is the usual homeomorphism

X ∗X −→ (CX ×X) ∪ (X × CX).

The map f is a continuous bijection between compact Hausdorff spaces and hence is
a homeomorphism.

Next, define a family of CW pairs by(
C(�JX), �JX

)
:=
{(

C(Xi ∗Xi ∗ · · · ∗Xi︸ ︷︷ ︸
ji

), Xi ∗Xi ∗ · · · ∗Xi︸ ︷︷ ︸
ji

)}m
i=1

.

The map f of Lemma 8.1 iterates easily to produce a homeomorphism of pairs(
C(Xk ∗Xk ∗ · · · ∗Xk︸ ︷︷ ︸

jk

), Xk ∗Xk ∗ · · · ∗Xk︸ ︷︷ ︸
jk

) fjk−→ (CXk, Xk)
jk ,

which extends to a map of families of pairs(
C(�JX), �JX

) fJ−→ (Y ,B)).

The results above combine now to give the next theorem.

Theorem 8.2. There is a homeomorphism of polyhedral products

Z
(
K;
(
C(�JX), �JX

)) −→ Z
(
K(J); (CX,X)

)
.

Proof. The homeomorphism is given by composing the homeomorphism of polyhedral
products induced by fJ with the homeomorphism of (15).

9. Toric manifolds and generalized moment-angle complexes

The information in a toric manifold M2n can be recorded concisely as a triple
(Pn, λ,M2n). Let K be the simplicial complex dual to the boundary of the polytope
Pn. The moment-angle manifold Z(K; (D2, S1)) is a subcomplex of the product of
two-discs

Z(K; (D2, S1)) ⊆ (D2)m ⊂ C
m.

As such, it has a natural action of the real m-torus Tm. If λ satisfies the condition fol-
lowing (3), then the kernel of λ, a subgroup Tm−n ⊂ Tm, acts freely on Z(K; (D2, S1))
and the quotient is homeomorphic to M2n [12, p. 434], and [9, p. 86]. The action of
Tn on M2n, which yields Pn as orbit space, is that given by the action of the quotient
Tm/Tm−n on Z(K; (D2, S1))

/
Tm−n.
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The freeness of the action of Tm−n on Z(K; (D2, S1)) implies a homotopy equiv-
alence of Borel spaces

ETm ×Tm Z(K; (D2, S1)) −→ ETn ×Tn M2n. (16)

Moreover, for any simplicial complex K, there is an equivalence [9]

ETm ×Tm Z(K; (D2, S1)) ∼= Z(K; (CP∞, ∗)), (17)

where the right-hand side is a polyhedral product which is a subcomplex of the
product space (CP∞)m. These spaces are called (loosely) the Davis–Januszkiewicz
spaces associated to the simplicial complexK and are denoted by the symbol DJ (K).
Also, the cohomology ringH∗(DJ (K);Z) is the Stanley–Reisner ring of the simplicial
complex K. The Serre spectral sequence of the fibration

M2n −→ ETn ×Tn M2n p−→ BTn (18)

yields an entirely topological computation of the ringH∗(M ;Z). Known as the Davis–
Januszkiewicz theorem, it generalizes the Danilov–Jurkewicz theorem for projective
non-singular toric varieties, [12]. Applied to the manifoldsM(J), it gives Theorem 4.1.

Given (Pn, λ,M2n), let λ(J) be the matrix defined by Figure 1. Choosing a stan-
dard basis and following [9], the kernel of λ, as a sub-torus of Tm, is specified by an
m× (m− n)-matrix S = (sij). Explicitly, it is given by

ker λ =
{(

e2πi(s11φ1+···+s1(m−n)φm−n), . . . , e2πi(sm1φ1+···+sm(m−n)φm−n)
) ∈ Tm

}
,

where φi ∈ R, i = 1, 2, . . . ,m− n. The form of the matrix in Figure 1 reveals the
kernel of λ(J) to be specified by the d(J)× (m− n)-matrix S(J) = (sJlk), where

sJlk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s1k, if 1 � l � j1,

s2k, if j1 + 1 � l � j1 + j2,

s3k, if j1 + j2 + 1 � l � j1 + j2 + j3,

...

smk, if j1 + j2 + · · ·+ jm−1 + 1 � l � j1 + j2 + j3 + · · ·+ jm = d(J).

(19)

Notice that this description makes explicit the isomorphism: kerλ(J)∼= kerλ∼= Tm−n.
The action of kerλ(J) on both Z(K; (D2J , S2J−1)) and Z

(
K(J); (D2, S1))

)
is via

the inclusions

kerλ(J) ⊂ Tm ⊂ T d(J),

where the first inclusion is determined by the matrix S and (19); the second is deter-
mined by (13). Now, kerλ(J) acts freely on Z

(
K(J); (D2, S1)

)
by Theorem 3.2 and

hence on Z(K; (D2J , S2J−1)) by Theorem 7.5, which implies also the result following.

Lemma 9.1. There is a homeomorphism of orbit spaces

Z
(
K(J); (D2, S1))

)/
ker λ(J) −→ Z(K; (D2J , S2J−1))

/
kerλ(J).

Remark. The space on the left acquires a differentiable structure from the general
topological theory of toric manifolds, [12, 8]. The homeomorphism of Lemma 9.1
imposes then a differentiable structure on the space on the right.
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Recall now that Theorem 3.2 and the discussion at the beginning of this section
imply thatM(J) is diffeomorphic to Z

(
K(J); (D2, S1))

)/
ker λ(J). The main theorem

follows from Lemma 9.1.

Theorem 9.2. There is a diffeomorphism

M(J) −→ Z(K; (D2J , S2J−1))
/
kerλ(J).

10. The analogue of the Davis–Januszkiewicz space

The fibration (18) is used in the standard theory to exhibit H∗(M2n;Z) as a
quotient of the cohomology of the Davis–Januszkiewicz space. In its various guises,
this space is

DJ (K) := ETn ×Tn M2n � ETm ×Tm Z(K; (D2, S1)) � Z(K; (CP∞, ∗)).
The recognition of M(J) as the quotient Z(K(J); (D2, S1))

/
kerλ(J) yields the coho-

mology calculation in Theorem 4.1. To get the more concise calculation afforded by
Theorem 4.2, the description of M(J) given by Theorem 9.2 is used instead. There-
fore, an appropriate analogue of the space DJ (K) is needed.

Define a family of CW pairs by

(CP∞,CP J−1) :=
{
(CP∞,CP j1−1), . . . , (CP∞,CP jm−1)

}
and consider the polyhedral product

Z(K; (CP∞,CP J−1)) ⊆ (CP∞)m = BTm.

Theorem 10.1. There is a homotopy equivalence

ETm ×Tm Z(K; (D2J , S2J−1))
α−→ Z(K; (CP∞,CP J−1)),

making the following diagram commute:

ETm ×Tm Z(K; (D2J , S2J−1))
α ��

p1

��

Z(K; (CP∞,CP J−1))

i

��
BTm = �� BTm.

Proof. For the pair (X,A) = (D2J , S2J−1), consider D(σ) as in (9). The action of
Tm leaves D(σ) invariant, so

ETm ×Tm Z(K; (D2J , S2J−1)) = ETm ×Tm

( ∪σ∈K D(σ)
)
=
⋃
σ∈K

ETm ×Tm D(σ).

The torus Tm acts diagonally, so it suffices to observe that, as a pair,(
ET 1 ×T 1 D2jk , ET 1 ×T 1 S2jk−1

) � (CP∞,CP jk−1).

This follows by an argument based on the fact that the left-hand side is a disc–sphere
bundle pair over CP∞.

D2jk is contractible and T 1 acts freely on S2jk−1. Therefore, the Borel construction
converts D(σ) for the family of pairs (D2J , S2J−1) into D(σ) for the family of pairs
(CP∞,CP J−1). Moreover, the map α is constructed as a factorization of p1, so the
diagram does commute.
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Remark 10.2. It is necessary to record certain standard facts about cell decompo-
sitions and their implications for the polyhedral product complexes Z(K; (CP∞,
CP J−1)). The classical example of C. Dowker [14] shows that some care is needed.

Let J = (j1, j2, . . . , jm) be as above, and fixN > ji − 1, i = 1, 2, . . . ,m. For σ ∈ K,
consider the space

DN (σ) =
m∏
i=1

Wi, where Wi =

{
CPN if i ∈ σ

CP ji−1 if i ∈ [m]− σ.
(20)

The compact spaces CPN and CP ji−1, i = 1, 2, . . . ,m are each assumed to be given
the CW decomposition with one cell in each even dimension up to the top. This
induces a cell decomposition of the product DN (σ), with each cell homeomorphic to
a product of cells of even dimension, each in one of the spaces Wi. The compactness
implies that the product topology and compactly generated topology agree.

Consider now the spaces D(σ), from (9), in Z(K; (CP∞,CP J−1)):

D(σ) =
m∏
i=1

Wi, where Wi =

{
CP∞ if i ∈ σ

CP ji−1 if i ∈ [m]− σ.
(21)

The spaces D(σ) are each a colimit, over increasing N , of the spaces DN (σ). The
colimit is via compatible inclusions, and so each space D(σ) inherits a CW structure
with cells in even dimension. Finally,

Z(K; (CP∞,CP J−1)) =
⋃
σ∈K

D(σ)

is a finite colimit of spaces that have compatible cell structures on intersections, and
so inherits a cell structure with cells concentrated in even dimension.

From these considerations follows the next lemma.

Lemma 10.3. The inclusion of the subcomplex Z(K; (CP∞,CP J−1))⊆BTm induces
a surjective map

H∗(BTm;Z) −→ H∗(Z(K; (CP∞,CP J−1));Z
)
.

Let IJK be the ideal in Z[v1, v2, . . . , vm] described in Theorem 4.2. It is generated

by all monomials v
ji1
i1

v
ji2
i2

· · · vjikik
corresponding to minimal non-simplices {vi1 , vi2 , . . . ,

vik} of K.

Definition 10.4. LetK be a simplicial complex onm vertices, and let J = (j1, j2, . . . ,
jm), be a sequence of positive integers. The ring Z[v1, v2, . . . , vm]

/
IJK is called the J-

weighted Stanley–Reisner ring of K and is denoted by the symbol SRJ (K). The poly-
hedral product Z(K; (CP∞,CP J−1)) is called the J-weighted Davis–Januszkiewicz
space and is denoted by DJ J(K).

Theorem 10.5. There is an isomorphism of rings

H∗(Z(K; (CP∞,CP J−1));Z) −→ Z[v1, v2, . . . , vm]
/
IJK .
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Proof. Since Z(K; (CP∞,CP J−1)) is a cellular subcomplex of (CP∞)m, having cells
in even degree only, the kernel of the surjective map

H∗(CP∞)m;Z) −→ H∗(Z(K; (CP∞,CP J−1));Z
)

is determined by an argument entirely analogous to that of [8, Proposition 4.3.1].

Remark 10.6. This result has been extended by the authors in [4] to realize geometri-
cally a large class of monomial ideal rings using simplicial complexes. The construction
itself generalizes to realize all monomial ideal rings.

11. Generalized moment-angle complexes and the cohomology
of M(J)

The computation of H∗(M2n;Z) in [12] is generalized to recover Theorem 4.2
directly from the results of the previous section. Traditionally, ([12, 9]), the canonical
diagram of fibrations

kerλ(J) ��

��

E(kerλ(J)) ��

��

B(kerλ(J))

��
Z(K(J); (D2, S1)) ��

r′

��

ET d(J) ×Td(J) Z(K(J); (D2, S1))
p′1 ��

q′ �
��

BT d(J)

B(λ(J))

��
M(J)

i′ �� ET d(J)−m+n ×Td(J)−m+n M(J))
p′2 �� BT d(J)−m+n

is used, in conjunction with the Serre spectral sequence of the fibration in the bottom
row, to obtain the standard description of H∗(M2n;Z) given by Theorem 4.1.

The more condensed calculation in Theorem 4.2 is obtained by considering instead
the homotopy commutative diagram of fibrations

kerλ(J) ��

��

E(kerλ(J)) ��

��

B(kerλ(J))

��
Z(K; (D2J , S2J−1)) ��

r

��

ETm ×Tm Z(K; (D2J , S2J−1))
p1 ��

q �
��

BTm

Bλ

��
M(J)

i �� ETn ×Tn M(J))
p2 �� BTn.

(22)

In the diagram, r is the map given by Theorem 9.2 and the insertion of the map Bλ
is possible by (19) and the comment following it. The equivalence q is a consequence
of the splitting Tm ∼= kerλ(J)× Tn as topological groups and the fact that kerλ(J)
acts freely on Z(K; (D2J , S2J−1)).

Theorem 10.1 allows the replacement, up to homotopy, of the fibration along the
bottom row of the diagram with

M(J) −→ Z(K; (CP∞,CP J−1))
p−→ BTn. (23)
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These observations allow for an alternative approach to the calculation of Theo-
rem 4.2.

Theorem 11.1. There is an isomorphism of rings

H∗(M(J);Z) −→ H∗(Z(K; (CP∞,CP J−1));Z
)/

L,

where L is the two-sided ideal generated by the image of the map p∗.

Proof. In the Serre spectral sequence associated with (23), all groups are concentrated
in even degree. This is true for H∗(M(J);Z) because M(J) is a toric manifold by
Theorem 3.2 and, for H∗(Z(K; (CP∞,CP J−1));Z

)
, by Theorem 10.5. The spectral

sequence collapses. The E2-term is given by

H∗(M(J))⊗H∗(BTn).

It follows that H∗(M(J)) is the quotient of H∗(Z(K; (CP∞,CP J−1))
)
by the two-

sided ideal generated by the image of p∗.

It remains to identify the ideal L in Theorem 11.1. With reference to the right-
hand bottom square in diagram (22), the map p∗ is the composition (α−1)∗ ◦ (p∗1 ◦ s∗),
where the map α is the equivalence of Theorem 10.1. Therefore, the image of p∗ is
the image of the composition

H∗(BTn)
s∗ ��

∼=
��

H∗(BTm) ��

∼=
��

SRJ (K)

∼=
��

Z[u1, u2, . . . , un] �� Z[v1, v2, . . . , vm] �� Z[v1, v2, . . . , vm]
/
IJK .

This is specified by (19) and generates the ideal LM of Theorem 4.2, determined by
the rows of the original matrix λ. Therefore, L = LM and Theorem 11.1 becomes

H∗(M(J);Z) ∼= Z[v1, v2, . . . , vm]
/
(IJK + LM ), (24)

recovering Theorem 4.2 completely from the topological point of view of generalized
moment-angle complexes.

12. Nests

Let J = (j1, j2 . . . , jm) and L = (l1, l2, . . . , lm) be sequences of positive integers.
The direct product ordering on such sequences is given by J < L if ji � li for all i
and, for at least one k ∈ {1, 2, . . . ,m}, jk < lk. If J < L, the inclusions D2ji ⊆ D2li

induce an equivariant embedding

Z(K; (D2J , S2J−1)) ⊂ Z(K; (D2L, S2L−1))

and, consequently, an embedding ζ :M(J)→M(L). The next proposition follows easily.
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Proposition 12.1. For J < L, the normal bundle of the embedding ζ is

m⊕
i=1

(li − ji)αi, (25)

where αi is the line bundle over M(J) with first Chern class ci(αi) = vi, the class
from the cohomology description (24). Moreover, the induced map

i∗ : Hk(M(L);Z) −→ Hk(M(J);Z)

is an epimorphism that is an isomorphism for k = 2.

Proof. Diagram (22) implies that the diagram below commutes up to homotopy.
(Notice here that the rows are not fibrations up to homotopy.)

M(J)
i ��

ζ

��

ETm ×Tm Z(K; (D2J , S2J−1))
pJ
1 ��

ζ
��

BTm

��
M(L)

i �� ETm ×Tm Z(K; (D2L, S2L−1))
pL
1 �� BTm.

Theorems 10.1 and 10.5 imply that ζ
∗
is onto, and the Serre spectral sequence part

of the proof of Theorem 11.1 shows that i∗ is onto. This implies that ζ∗ is onto too.
The first part of the proposition follows from the fact that each canonical bundle Li

over BTm pulls back to the bundle liαi over M(L) and to jiαi over M(J).

A “nest” of toric manifolds is constructed below from a given toric manifold triple
(Pn,M2n, λ), an initial sequence J0 = (1, 1, . . . , 1) with m entries corresponding to
the number of facets of P 2n and a sequence J0 < J1 < J2 < · · · with the property
that d(Ji+1) = d(Ji) + 1. (The symbol d(J) is defined at the end of Section 2).

Proposition 12.2. Given a toric manifold (Pn,M2n, λ), and a sequence J0 < J1 <
J2 < · · · as above, there is a nest of toric manifolds

M2n = M(J0) ⊂ M(J1) ⊂ · · · ⊂ M(Jk) ⊂ . . . ,

where d(Ji) = m+ i, the dimension of M(Ji) is 2n+ 2i and M(Ji) ⊂ M(Ji+1) is a
codimension-two embedding. Furthermore, there is a sequence of epimorphisms

· · · −→ Hk(M(Ji);Z) −→ Hk(M(Ji−1);Z) −→ · · · −→ Hk(M2n;Z)

which are isomorphisms for k = 2. �

Problem: Beginning with a toric manifold (Pn,M2n, λ), find invariants, possibly
in terms of λ, that will detect diffeomorphic (homotopic) manifolds in nests corre-
sponding to different sequences J0 < J1 < J2 < · · · .
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