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MOTIVIC STRICT RING SPECTRA REPRESENTING
SEMI-TOPOLOGICAL COHOMOLOGY THEORIES

JEREMIAH HELLER

(communicated by J.F. Jardine)

Abstract
We show that Shipley’s “detection functor” for symmet-

ric spectra generalizes to motivic symmetric spectra. As an
application, we construct motivic strict ring spectra represent-
ing morphic cohomology, semi-topological K-theory, and semi-
topological cobordism for complex varieties. As a further appli-
cation to semi-topological cobordism, we show that it is related
to semi-topological K-theory via a Conner–Floyd type isomor-
phism and that after inverting a lift of the Friedlander–Mazur
s-element in morphic cohomology, semi-topological cobordism
becomes isomorphic to periodic complex cobordism.

1. Introduction

Motivic homotopy theory has been a very successful generalization of classical
homotopy theory into the algebro-geometric setting and has shown itself to be the
appropriate setting in which to analyze, or even define, many interesting algebro-
geometric invariants. An understanding of a cohomology theory is intimately linked
to an understanding of the object that represents it. Working in the modern setting
of highly structured ring spectra yields representing objects that capture and reflect
fine algebraic structure of the cohomology theory of interest. This has important
calculational and theoretical ramifications and has been the source of much exciting
development in homotopy theory in the past two decades.

The goal of this paper is twofold. In the second part of the paper, we study certain
cohomology theories for complex varieties in the motivic stable homotopy category.
In the course of their construction, it is necessary to have a lax symmetric monoidal
fibrant replacement functor if one is to obtain motivic strict ring spectra as repre-
senting objects. (The terminology “strict ring spectra” is used here to emphasize that
we consider monoids in the category of motivic symmetric spectra and not merely
after passage to the homotopy category). The usual fibrant replacement functors for
motivic symmetric spectra are produced via the small object argument and so aren’t
suitable for this purpose. Thus the first part of the paper is devoted to importing a
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construction of Shipley into the motivic setting, which then leads to a lax symmetric
monoidal fibrant replacement functor for motivic symmetric spectra. This is carried
out in Section 3.

The two main examples of a semi-topological cohomology theory are morphic coho-
mology, introduced by Friedlander and Lawson in [FL92] and semi-topological K-
theory introduced by Friedlander and Walker [FW02]. In [Hel06] we introduced a
semi-topological cobordism theory. These cohomology theories form a rather inter-
esting class of invariants for complex algebraic varieties, which are linked to hard and
important problems in algebraic geometry. For example, Beilinson [Bei12] shows that
a certain conjecture of Suslin regarding the comparison between morphic cohomol-
ogy and singular cohomology (analogous to the Beilinson–Lichtenbaum conjectures
relating motivic cohomology and étale cohomology) implies Grothendieck’s standard
conjectures.

Friedlander and Walker originally define semi-topological K-theory of a normal
complex variety X in terms of the homotopy groups of the homotopy group comple-
tion of Mor(X,Grass), the set of algebraic maps equipped with a natural topology.
When X is projective, this is the analytic topology associated to the set of com-
plex points of a certain ind-scheme. This definition is intuitively appealing but hard
to work with in practice. In order to further analyze these theories, Friedlander and
Walker [FW01] introduce a construction that they call the “singular semi-topological
complex” for a presheaf F on the category Sch/C of schemes over C. This construction
is a model for topological realization, and the value of F sst(X) is the topological real-
ization of the functor mapping space hom(X,F ). From this viewpoint, it is not very
hard to see how to define representing spectra for the semi-topological cohomology
theories. One simply takes any fibrant model for E and defines QsstE to be the result
of Friedlander and Walker’s construction applied levelwise. The fibrant replacement
is necessary as hom(X,F ) only has homotopical meaning when F is fibrant. Using
the explicit fibrant replacement functor constructed in Section 3, this construction
preserves strict ring spectra.

In Section 4 we formally define the motivic versionQsst of Friedlander and Walker’s
construction and record some first properties. Two key features of morphic cohomol-
ogy and semi-topological K-theory are that they factor the topological realization
map and that with finite coefficients they agree with the algebraic theory. These are
completely general properties of Qsst, as we verify in Theorem 4.9. Topological real-
ization LReC : SH(C)→ SH has a right adjoint SingC and the unit of the adjunction
factors as id→ Qsst → RSingC LReC. This is rather formal. The second property,
that id→ Qsst ∧MA is an equivalence, where MA is a Moore spectrum for a finite
abelian group A, is a consequence of a Suslin rigidity theorem for motivic spectra.

To relate the construction Qsst, defined on the level of motivic spectra, to Friedlan-
der and Walker’s construction, defined on the level of motivic spaces, it is necessary to
recognize when Qsst produces an ΩP1 -spectrum. This is carried out in Corollary 5.4.
If a motivic spectrum E satisfies a certain connectivity hypothesis—namely, that
[Σi,−qX+, E]SH(C) = 0 for i < −2q and q ⩾ 0—then QsstE is an ΩP1 -spectrum. It
is then an immediate consequence of Friedlander and Walker’s work that QsstMZ
represents morphic cohomology and QsstKGL represents semi-topological K-theory,
where MZ (resp. KGL) are motivic spectra representing motivic cohomology (resp.
algebraic K-theory). Since the motivic spectra MZ, KGL, and MGL all have models
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that are commutative motivic strict ring spectra, we immediately obtain commuta-
tive motivic strict ring spectra representing morphic cohomology, semi-topological
K-theory, and semi-topological cobordism.

A further fundamental property of morphic cohomology and semi-topological K-
theory is that LqH2q(X) and Ksst

0 (X) are computable respectively in terms of the
group of codimension q-cycles modulo algebraic equivalence and the Grothendieck
group of vector bundles modulo algebraic equivalence. In Proposition 5.12 we show
that if Ek,q(X) = 0 for all smooth X and k > 2q, then E2q,q

sst (X) = E2q,q(X)/ ∼alg.
This includes the case of cobordism, and so we have that for smooth X

Ωq(X)/ ∼alg

∼=−→ MGL2q,q(X)/ ∼alg

∼=−→ MGL2q,q
sst (X).

The final fundamental property of morphic cohomology and semi-topological K-
theory is that LqH∗(C) = H∗(pt) (for q ⩾ 0) and that Ksst

∗ (pt) = ku−∗(pt). In The-
orem 5.15 we generalize this to show that if E is in SH(C)eff , then

E−p,q
sst (C) = πp,−q(QsstE)(C)

∼=−→ πpLReCE,

for q ⩾ 0. Note that this theorem does not apply to KGL but does apply to the P1-
connectiveK-theory kgl := f0KGL. This result can be viewed as an integral extension
of a result of Levine [Lev12a, Theorem 7.1], and, as in loc. cit., we rely on the conver-
gence of Voevodsky’s slice tower over C, proved by Levine (more generally for fields
with finite cohomological dimension). Theorem 5.15 also applies to cobordism, but
this theory has plenty of interesting information in weights q ⩽ 0. A full computation
of MGLp,q

sst (C) is given in Remark 6.2,

MGLp,b
sst(C) =

{
MUp p ⩽ 2b

0 else.

This is computed using a comparison of the spectral sequence arising from an applica-
tion of Qsst to the slice spectral sequence of MGL and the Atiyah–Hirzebruch spectral
sequence for MU .

Two further applications to semi-topological cobordism are given in Section 6,
relying on the product structure on QsstMGL. The Friedlander–Mazur s-element in
L1H0(C) lifts to an element s ∈ MGL0,1

sst (C), and upon inverting this element, we
have

(⊕qMGL2q+∗,q
sst (X))[s−1] = ⊕qMU2q+∗(X).

The second is a semi-topological Conner–Floyd isomorphism

MGL∗
sst(X)⊗MGL0

sst
Ksst

0 = Ksst
−∗(X).

The existence of these semi-topological cohomology theories suggests that one might
hope for a “semi-topological” homotopy theory, in which Friedlander and Walker’s
construction could be viewed as a fibrant replacement functor. Whether this is pos-
sible or not is an entirely open problem. For example, it is not even known whether
QsstQsstKGL ≃ QsstKGL or not.

Finally, we mention that a motivic extension of Friedlander and Walker’s construc-
tion (without products) has also appeared recently in [KP13].
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An outline of this paper is as follows. In Section 2 we fix notation and recall some
basic facts about motivic homotopy theory. In Section 3 we construct the motivic ver-
sion of Shipley’s detection functor and use it to produce a lax symmetric monoidal
fibrant replacement functor. The motivic version of Friedlander and Walker’s con-
struction is defined in Section 4 and some first general properties are recorded. In
Section 5 we record some examples of this construction and some fundamental prop-
erties of the motivic Friedlander–Walker construction applied to nice motivic spectra.
Finally, in Section 6 we conclude with some applications to semi-topological cobor-
dism.

Notation:We write Sch/C for the category of separated schemes of finite type over
C and Sm/C for the category of smooth schemes over C. Our indexing convention for
the motivic spheres is the standard one, Sp,q = Sp−q ∧G∧q

m . For a motivic spectrum
E, we write πp,qE : Sm/Cop → Ab for the presheaf of abelian groups πp,qE(X) =
[Sp,q ∧X+, E]SH(C).

2. Preliminaries

In this section we recall the definitions and properties of the models that we use for
the stable motivic homotopy category. In this section and the next, S is a Noetherian
base scheme of finite Krull dimension. Our motivic suspension coordinate is any
flasque cofibrant motivic space T , which is isomorphic to (P1,∞) in H•(S). Standard
choices for T are S1 ∧Gm, A1/A1 − 0, and P1.

2.1. Motivic model structures
A based motivic space F on S is a presheaf of based simplicial sets F : Sm/Sop →

sSet•, and we write Spc•(S) for the category of based motivic spaces over S. The
motivic model structure on Spc•(S) that we use in this paper is the Bousfield local-
ization of the global flasque model structure at Nisnevich local and A1-equivalences,
which is a cellular and proper model category. Write H•(S) for its homotopy category
(which is equivalent to Morel-Voevodsky’s homotopy category). We refer to [Isa05]
for details.

In general, if K is a based motivic space K, we write hom(K,−) for the right
adjoint of K ∧ −. We write ΣTF = T ∧ F and ΩTF = hom(T, F ).

A T -spectrum consists of based motivic spaces E = (E0, E1, · · · ) together with
structure maps σi : Ei ∧ T → Ei+1. A map of T -spectra E → E′ consists of maps
Ei → E′

i compatible with the structure maps. Write SptT (S) for the category of T -
spectra. As T is cofibrant and Spc•(S) is proper, cellular, and cofibrantly generated,
Hovey’s machinery [Hov01] yields a stable model structure on SptT (S), which is
again proper, cellular, and cofibrantly generated. A spectrum E is fibrant in SptT (S)
if it is an ΩT -spectra: each Ei is motivic fibrant and Ei → ΩTEi+1 is a motivic
equivalence.

The identity on SptT (S) gives a left Quillen equivalence between this model struc-
ture Jardine’s model structure [Jar00], formed using the injective model structure
on based motivic spaces.

A symmetric T -spectrum on S consists of a T -spectrum E such that each En has a
Σn-action and that every map σr : Xn ∧ T r → Xn+r obtained as the iteration of the
structure maps is Σn × Σr-equivariant. A map of symmetric spectra E → F is a map
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of spectra such that Ei → Fi is Σi-equivariant. We write SptΣT (S) for the category of
symmetric spectra.

Hovey’s machinery [Hov01] applies to produce a stablemodel structure on SptΣT (S).
This model structure is proper, cellular, and monoidal. By [Hov01, Theorem 8.8], a
symmetric T -spectrum E is fibrant if and only if it is an ΩT -spectra.

There is a Quillen equivalences functor V : SptT (S) ⇄ SptΣT (S) : U , where U for-
gets the extra structure of a symmetric spectrum. The distinction between equiva-
lences in these two categories is important to keep in mind: a stable equivalence in
SptΣT (S) need not induce an isomorphism on naive stable motivic homotopy groups.
This will be important in Section 3.

Definition 2.1.

1. A map X → Y of symmetric spectra is said to be a U -equivalence if U(X)→
U(Y ) is a stable equivalence in SptT (S).

2. A symmetric spectrum X is semistable if X → Xfib is a U -equivalence, where
(−)fib is a stably fibrant replacement.

The utility of this notion is that when X is semistable, the underlying spectrum
UX agrees with the value of the total derived functor (RU)(X).

We finish by describing a set of generating trivial cofibrations for the stable struc-
ture, which will be used in the next section. The category SptΣT (S) has a projective
model structure: a map f : E → E′ is a weak equivalence or fibration if and only if
each Ei → E′

i is one in Spc•(S). Factor the map Fn+1(X ∧ T )→ Fn(X) as a pro-
jective cofibration λX

n : Fn+1(X ∧ T )→ Cn(X) followed by a trivial level fibration
Cn(X)→ Fn(X) (where Fn : Spc•(S)→ SptΣT (S) is the left adjoint to the functor
E 7→ En). Let Jmot be a set of generating trivial cofibrations for Spc•(S) whose
domains are small relative to the generating cofibrations. Then Jproj = ∪nFnJ

mot

is a set of generating trivial cofibrations for the projective level model structure
on SptΣT (S) by [Hov01, Section 8]. Recall that the pushout product i2 j of two
morphisms i : A→ X and j : B → Y is the morphism i2 j : A ∧ Y

⨿
A∧B X ∧B →

X ∧ Y . Define

JΣ = Jproj ∪ {λX+
n 2

(
∂∆k

+ → ∆k
+

)
|X ∈ Sm/S, n ⩾ 0, k ⩾ 0}. (1)

Given a set of maps A in a category C, an A-injective is defined to be a map that
has the right lifting property with respect to maps in A, and an A-cofibration is a
map that has the left lifting property with respect to A-injectives.

Proposition 2.2. The set JΣ forms a set of generating trivial cofibrations for the
stable model structure on SptΣT (S).

Proof. We have to show that the JΣ-cofibrations are the trivial stable cofibrations.
Elements of JΣ are trivial stable cofibrations. A JΣ-cofibration is a stable trivial
cofibration because it is retract of a relative JΣ-cell complex.

Now suppose that f : A→ B is a stable trivial cofibration. The domains of JΣ are
small relative to cofibrations; in particular, we may apply the small-object argument
[Hir03a, Proposition 10.5.16] to factor f as the composition of a JΣ-cofibration i :
A→ C followed by a JΣ-injective p : C → B. As both f and i are stable equivalences,
so is p. By Lemma 2.3, below, p is a trivial level fibration. This implies that f has
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the left lifting property with respect to p, which in turn implies that f is a retract of
i and hence a JΣ-cofibration.

Lemma 2.3. Suppose that p : E → D is a JΣ-injective and a stable equivalence. Then
it is a level trivial fibration.

Proof. As it has the right lifting property with respect to Jproj , it is a level fibration.
Consider the fiberH of p. As JΣ-injectives are closed under pull-back, the mapH → ∗
is JΣ-injective. In particular, it has the right lifting property with respect to every

λ
X+
n 2

(
∂∆k

+ → ∆k
+

)
, which implies that Hom(X,Hn)→ Hom(X,ΩTHn+1) is a weak

equivalence of simplicial sets for every X in Sm/S. In particular, H is a stably fibrant
motivic spectrum. The map E/H → D is a stable equivalence, and thus E → E/H is
a stable equivalence. This implies that H → ∗ is a stable equivalence, and thus each
Hn → ∗ is a motivic equivalence, which implies the result.

2.2. Simplicial objects
In this section we record a few useful facts regarding simplicial motivic symmetric

spectra and their realizations for which we don’t have a reference directly applying
to our setting.

Proposition 2.4. Suppose that

A //

��

B

��
X // Y

is a pushout in SptΣT (S) where A→ X is a monomorphism. Write P for the homotopy
pushout in SptΣT (S) (resp. in SptT (S)) of X ← A→ B. Then the map P → Y is a
stable equivalence (resp. U -equivalence).

Proof. Recall that the homotopy pushout is the ordinary pushout of the diagram
(Xcof)′ ← Acof → Bcof , where (−)cof is a stable cofibrant replacement functor and
Acof → (Xcof)′ → Xcof is a factorization of Acof → Xcof as a stable cofibration fol-
lowed by a level trivial fibration. The proposition thus follows immediately from
Lemmas 2.5 and 2.6, below.

Lemma 2.5. Let

A
f //

��

B

��
X

f ′
// Y

be a pushout in SptΣT (S) where A→ X is a monomorphism. If f : A→ B is a stable
equivalence (resp. U equivalence), then so is X → Y .

Proof. Pushouts along monomorphisms preserve levelwise equivalences. This follows
from i) the left properness of the injective motivic model structure, ii) the fact that
injective cofibrations of motivic spaces are the monomorphisms, and iii) the fact that
equivalences in Spc•(S) agree with those in the injective motivic structure.
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Let A→ B is a stable equivalence, and write A→ B′ → B for a factorization in
terms of a stable trivial cofibration followed by a level trivial fibration B′ → B. As
X → X

⨿
A B′ is the pushout of a trivial stable cofibration, it is a stable equivalence.

The previous observation implies that X
⨿

A B′ → Y is a level equivalence.
Apply the functor U and the argument in the previous paragraph to get the state-

ment concerning U -equivalences.

Lemma 2.6. Suppose that

C1

��

A1
? _

i1oo

��

// B1

��
C2 A2

? _
i2oo // B2

is a commutative diagram in SptT (S), where the vertical arrows are stable equiva-
lences (resp. U -equivalences) and i1, i2 are monomorphisms. Then the induced map
C1

⨿
A1

B1 → C2

⨿
A2

B2 is a stable equivalence (resp. U -equivalence).

Proof. The previous lemma reduces the statement to the case when the right horizon-
tal maps are cofibrations (consider a factorization of Ai → Bi into a stable cofibration
followed by a level trivial fibration). The statement is then a standard fact about left
proper model categories.

Definition 2.7. The diagonal |W | of a simplicial object d 7→W (d) in SptΣT (S) is the
levelwise, schemewise diagonal. That is, |W |i = diag(d 7→W (d)i) is the schemewise
application of the usual diagonal functor for bisimplicial sets. The structure maps are
given by diag (W (d)i) ∧ T = diag (W (d)i ∧ T )→ diag (W (d)i+1).

We have a coequalizer diagram
⨿

m→n W (n) ∧∆m
+ ⇒

⨿
n W (n) ∧∆n

+ → |W | in
SptΣT (S). Filter |W | by

|W |(n) = Image

⨿
k⩽n

W (k) ∧∆k
+ → |W |

 ⊆ |W |
and |W |(n) = ∗ for n < 0. Let s[r]W (p) = ∪0⩽i⩽rW (p) ⊆W (p+ 1). We obtain two
pushout squares,

s[r]W (p− 1) �
� //

��

W (p)

��
s[r]W (p) // s[r+1]W (p)

(2)

and

s[p]W (p) ∧∆p+1
+

⨿
s[p]W (p)∧∂∆p+1

+
W (p+ 1) ∧ ∂∆p+1

+
� � //

��

W (p+ 1) ∧∆p+1
+

��
|W |(p) // |W |(p+1).

(3)

A standard inductive argument yields the following.
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Theorem 2.8. Let X(d)→ Y (d) be a map of simplicial objects in SptΣT (S) that is
a level equivalence (resp. U -equivalence, resp. stable equivalence) for each d. Then
the induced map |X| → |Y | is a level equivalence, (resp. U -equivalence, resp. stable
equivalence).

There are two points of view commonly taken regarding homotopy colimits in a
model category (which ultimately yield the same result in the homotopy category).
One is that homotopy colimits are defined as the derived functors of colimits and the
other is that they are the result of applying a direct formula such as the Bousfield–Kan
formula [BK72]. The former approach is taken in [CS02] and the latter in [Hir03b].
For our purposes it is convenient to define a homotopy colimit to be the result of
applying an explicit formula—namely, the bar construction.

Definition 2.9. Let J be a small category. The homotopy colimit of a functor F :
J → SptΣT (S) is the realization |B(∗, J, F )| of the simplicial object

B(∗, J, F )n =
⨿

jn→···→j0

F (jn).

Note that (hocolimJ F )n(X) = hocolimJ(Fn(X)).

Lemma 2.10. Let F,G : J → SptΣT (S) be two functors and F → G a natural trans-
formation such that F (j)→ G(j) is a levelwise equivalence (resp. U -equivalence,
resp. stable equivalence). Then hocolimJ F → hocolimJ G is also a levelwise equiv-
alence (resp. U -equivalence, resp. stable equivalence).

Proof. This follows from Theorem 2.8 together with the fact that coproducts preserve
levelwise equivalences (resp. U -equivalences, resp. stable equivalences).

Next, we record a spectral sequence relating the homotopy presheaves of a simpli-
cial motivic spectrum to those of its diagonal. This will be useful for our applications
in the later sections. The construction presented here is a motivic translation of Jar-
dine’s construction [Jar97] in the case of ordinary simplicial spectra.

A motivic spectrum X is said to be compact provided the functor [X,−]SH(S)

commutes with filtered colimits.

Theorem 2.11. Let d 7→ E(d) be a simplicial object in SptΣT (S). For any compact
motivic spectrum X, we have a convergent spectral sequence

E2
p,q = Hp

(
d 7→ [Σq,tX, E(d)]SH(S)

)
=⇒ [Σp+q,tX, |E|]SH(S).

Proof. Jardine’s construction given in [Jar97, Proposition 4.21] in the case of ordi-
nary simplicial spectra applies in the motivic setting. We present the main points and
refer to loc. cit. for complete details.

Write |E|(p/p−1) = |E|(p)/|E|(p−1). We have homotopy cofiber sequences

|E|(p−1) → |E|(p) → |E|(p/p−1) ∂−→ Σ1,0|E|(p−1).

Setting D1
p,q = [Σp+q,tX, |E|(p)] and E1

p,q = [Σp+q,tX, |E|(p/p−1)] yields an exact cou-
ple and hence an associated spectral sequence. The target of this spectral sequence
is D∞

n = colimp→∞ D1
p,n−p = colimp→∞[Σn,tX, |E|(p)] = [Σn,tX, |E|]. Since D1

p,q = 0
for p < 0, the spectral sequence is convergent.
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The differential E1
p,q → E1

p−1,q is induced by applying [Σp+q,tX,−] to the com-

posite map |E|(p/p−1) ∂−→ Σ1,0|E|(p−1) ϕ−→ Σ1,0|E|(p−1/p−2). An examination, similar
to that in [Jar97, p. 102], of the pushout squares (2) and (3) appearing before The-
orem 2.8 shows that there is a natural isomorphism

|E|(p/p−1) ∼= (E(p)/s[p−1]E(p− 1)) ∧ Sp. (4)

For a simplicial abelian group A∗, define as usual s[r]A to be the subgroup generated
by the images of the si, 0 ⩽ i ⩽ r. The argument of [Jar97, Lemma 4.15] applies here
and shows that the inclusion s[r][Σ

n,tX,E(p)] ⊆ [Σn,tX,E(p)] has a natural factor-
ization

s[r][Σ
n,tX,E(p)] �

� //

∼=
��

[Σn,tX,E(p)]

[Σp+q,tX, s[r]E(p)].

i∗

66llllllllllllll

This yields the natural isomorphism

E1
p,q = [Σq,tX,E(p)]/s[p−1][Σ

n,tX,E(p)] = Np

(
d 7→ [Σq,tX,E(d)]

)
, (5)

where N∗A is the normalized chain complex associated to a simplicial abelian group.

It remains to identify the homology of E1
∗,q with that of the simplicial abelian

group d 7→ [Σq,tX,E(d)]. First, we consider the comparison diagram

E(p) ∧ skp−2 ∆
p
+
� � //

��

E(p) ∧ ∂∆p
+
� � //

��

E(p) ∧∆p
+

��
|E|(p−2) �

� // |E|(p−1) �
� // |E|(p).

This yields the commutative diagram

E(p) ∧ Sp ∂ //

��

Σ1,0E(p) ∧ ∂∆p
+

ϕ //

��

Σ0,1E(p) ∧ ∂∆p
+/ skp−2 ∆

p
+

��
|E|(p/p−1) ∂ // |E|(p−1)

ϕ // |E|(p−1/p−2).

(6)

The simplicial set ∂∆p
+/ skp−2 ∆

p
+ is a (p+ 1)-fold wedge of copies of Sp−1, with

the ith summand corresponding to the collapsing of all but the ith face of ∆p to
a point. Applying [Σp+q,tX,−] and using this identification, the top row becomes
[Σq,tX,E(p)]→ ⊕0⩽i⩽p[Σ

q,tX,E(p)]. The map into the ith component is multipli-

cation by the degree of the map Sp → Sp that is the composite of Sp ∂−→ Σ∂∆p
+

ϕ−→
Σ∂∆p

+/ skp−2 ∆
p
+ with the projection ∂∆p

+/ skp−2 ∆
p
+ → Sp−1 to the ith component.

In [Jar97, Lemma 4.9] it is shown that this map has degree (−1)i.
The composition E(p) ∧∆p−1

+ → E(p) ∧∆p
+ → |E| induced by di and the compo-

sition induced by di, E(p) ∧∆p−1
+ → E(p− 1) ∧∆p−1

+ → |E| coincide. One concludes
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that there is a commutative diagram

⊕i[Σ
q,tX,E(p)]

∼= //

∑
(−1)idi

��

[Σp+q−1,tX,E(p) ∧ ∂∆p
+/ skp−2 ∆

p
+]

))SSS
SSSS

SSSS
SSSS

[Σq,tX,E(p− 1)] // [Σp+q−1,tX,E(p) ∧ Sp−1] // Ep−1,q
1 .

(7)

Combining the diagrams (4), (5), (6), and (7) easily yields the desired identification
of the E2-term.

3. Shipley’s construction in motivic homotopy theory

In this section we show that Shipley’s detection functor [Shi00] for symmetric
spectra in simplicial sets admits a generalization to motivic symmetric spectra. As a
result, we obtain a lax symmetric monoidal fibrant replacement functor on motivic
symmetric spectra, which will be used in the next section. The construction in this
section follows Shipley’s strategy in loc. cit., and ultimately the key point is to relate
certain free I-diagrams in motivic symmetric spectra with free motivic symmetric
spectra. At this point, Shipley makes use of spacewise connectivity arguments based
on the Blakers–Massey and the Freudenthal Suspension theorems, which do not apply
in the motivic setting. Fortunately, these spacewise arguments are readily replaced
with a spectrum-level argument that does apply to motivic symmetric spectra.

As observed in [RSØ10, Lemma 2.2], there is a lax symmetric monoidal fibrant
replacement functor L′ on Spc•(S). This in turn induces a lax symmetric monoidal
levelwise fibrant replacement on SptΣT (S), which we again denote by L′.

We write I for the category whose objects are the finite sets n = {1, . . . , n} and
whose morphisms are injections. Let K be a based motivic space. Recall that the free
symmetric spectrum FmK is defined by

Fm(K)n = (Σn)+ ∧Σn−m (K ∧ Tn−m)

if n ⩾ m and otherwise (FmK)n = ∗. We have an isomorphism of Σn-sets, I(m,n) ∼=
Σn/Σn−m. It follows that FmK admits the following alternate description (FmK)n =
I(m,n)+ ∧K ∧ Tn−m. This second description of the free spectra FmK is important
for Lemma 3.3, which is the key to showing that Shipley’s detection functorD, defined
below, preserves stable equivalences.

Definition 3.1. Let X be a symmetric motivic spectrum. Define a functor DX :
I → SptΣT (S) as follows. On objects, DX(n) = Ωn

TL′F0Xn. Every morphism in I is
a composition of a standard inclusion and an isomorphism. For an isomorphism α :
m ∼= m, define DX(α) to be the composite of the conjugation action on the loop
coordinates together with the action on Xm. For a standard inclusion ι : n ⊆ n+ k,
define DX(ι) : Ωn

TL′F0Xn → Ωn+k
T L′F0Xn+k to be Ωn

TL′ applied to the composite
induced by the structure map

F0Xn → F0Ω
k
TXn+k → Ωk

TF0Xn+k

followed by the natural map L′Ωk
TF0Xn+k → Ωk

TL′F0Xn+k.
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Shipley’s detection functor D : SptΣT (S)→ SptΣT (S) is defined by

DX = hocolim
I

DX ,

where hocolim is defined via a bar construction model (see Definition 2.9).

Write N ⊆ I for the subcategory whose objects are n and nonidentity morphisms
are the standard inclusions. Colimit diagrams over N are homotopy colimit diagrams.
Note that (colimNDX)n = colimk Ω

k
TL′Σn

TXk, where the transition maps are induced
by the structure maps of X, which is a model for the fibrant replacement in SptT (S).

Write ω for the set of natural numbers and Iω for the category whose objects are
the finite sets n together with ω and whose morphisms are injections. Given a functor
F : I → sSet•, write LhKF : Iω → sSet• for the left homotopy Kan extension of F .
Let M ⊆ Iω be the full subcategory containing the object ω. Shipley attributes the
following useful proposition to J. Smith, which we restate in the setting of motivic
spectra for convenience.

Proposition 3.2 ([Shi00, Proposition 2.2.9]). Let F : I → SptΣT (S) be a functor.
Then there are natural weak equivalences

1. hocolim
M

LhKF (ω)
≃−→ hocolim

Iω

F , and

2. hocolim
N

F
≃−→ LhKF (ω).

Proof. Homotopy colimits of motivic spectra are computed level and objectwise, and
so the result proved in loc. cit. for functors F : I → sSet• applies here as well.

For each m and motivic spectrum W , define FreeIm(W ) : I → SptΣT (S) by

FreeIm(W )(n) = I(m,n)+ ∧W.

This is a freely generated I-diagram, and the functor W 7→ FreeIm(W ) is left adjoint
to evaluation at m.

Lemma 3.3. Let K be a based motivic space. There is a natural map of motivic
symmetric spectra

Ωm
T L′F0K

≃−→ DFmK

that is a U -equivalence.

Proof. The inclusion K → I(m,m)+ ∧K as the wedge summand corresponding to
the identity induces the map Ωm

T L′F0K→Ωm
T L′F0(I(m,m)+ ∧K) =DFmK(m). The

adjoint is a map of I-diagrams

FreeIm(Ωm
T L′F0K)→ DFmK .

For n in I, with n ⩾ m, this map is a composition

I(m,n)+ ∧ Ωm
T L′(F0K)→ Ωm

T L′(F0(I(m,n)+ ∧K))

→ Ωm
T Ωn−m

T L′F0(I(m,n)+ ∧K ∧ Tn−m).

The first map is the map that on the factor indexed by α : m→ n is induced by includ-
ingK → I(m,n)+ ∧K as the αth wedge summand. The second map is obtained from
the natural transformation id→ Ωn−m

T (− ∧ Tn−m).
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The first map is an equivalence on underlying T -spectra as finite products and
coproducts agree in Ho(SptT (S)). The second map is isomorphic in Ho(SptT (S)) to
an iterated application of the transformation id→ ΩTΣT , and thus a U -equivalence.

Now, since the map FreeI(Ωm
T L′F0K)(n)→ DFmK(n) is a U -equivalence for all

n ⩾ m, the induced map on homotopy colimits is a U -equivalence. But the homotopy
colimit over a free diagram is equivalent to the colimit, and so we obtain the desired

U -equivalences Ωm
T L′F0K

≃−→ hocolimI FreeIm(Ωm
T L′F0K)

≃−→ DFmK .

Theorem 3.4. The functor D has the following properties:

1. For any X, DX is semi-stable.

2. If f : X → Y is a U -equivalence, then DX → DY is a level-equivalence.

3. If f is a stable equivalence then Df is a U -equivalence.

4. There is a natural zig-zag of U -equivalences relating Xfib and DX.

Proof of (1). The nth level of DX is hocolimk∈I Ωk
TL′Σn

TXk, with the Σn-action
coming from that on the coordinates of Σn

T . As the action of an even permutation
on a sphere is trivial in H•(k), it follows from [RSØ10, Proposition 3.2] that DX is
semi-stable.

Proof of (2). This follows immediately from Proposition 3.2 together with the fact
that hocolimNDX is a fibrant replacement functor on SptT (S).

Proof of (3). Suppose thatX → Y is a stable equivalence. We may factor it as a sta-
ble trivial cofibration followed by a level trivial fibration. As D preserves level equiva-
lences, it is enough to show that D takes stable trivial cofibrations to U -equivalences.
Trivial cofibrations are obtained as retracts of sequential colimits of pushouts of gen-
erating trivial cofibrations. Retracts and sequential colimits preserve U -equivalences.
This means that we need to show that U sends pushouts along cofibrations to homo-
topy pushouts and sends generating trivial cofibrations to U -equivalences.

Let Y be the pushout of X ← A→ B, where A→ X is a cofibration. For each n,
the diagram

F0An
//

��

F0Bn

��
F0Xn

// F0Yn

is a homotopy pushout. (Pushouts are formed levelwise; thus Yn is the pushout in
motivic spaces of Xn ← An → Bn, F0 preserves pushouts, and the resulting square
is a homotopy pushout by Proposition 2.4). The functor Ωn

TL′ preserves homotopy
pushouts. Since homotopy colimits commute, we conclude that

DA //

��

DB

��
DX // DY

is a homotopy pushout.
Recall the set JΣ (see (1)), of generating trivial cofibrations. Some of the maps

in this set are level equivalences, which are preserved by D. If K is a motivic space,
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then Lemma 3.3 implies that D(Fn+1(K ∧ T ))→ D(Fn(K)) is a U -equivalence. From
this and the fact that that D is compatible with homotopy pushouts, it follows that

D(λ
X+
n 2 g) is a U -equivalence.

Proof of (4). Define MX = hocolimI Ωn
TL′shnX. We have a natural inclusion X →

MX and the map F0Xn → shnX induces the natural map DX →MX. We thus have
a natural diagram

X //

��

MX

��

DXoo

��
Xfib // MXfib DXfib.oo

The right vertical arrow is a U -equivalence by the previous part. Since Xfib is an
ΩT -spectrum, it is not hard to see that the bottom arrows are level equivalences.
This provides the desired zig-zag of U -equivalences relating Xfib and DX.

Theorem 3.5. The functor D is lax symmetric monoidal and L′D2X is a lax sym-
metric monoidal fibrant replacement functor.

Proof. Consider the symmetric monoidal product + : I × I → I defined on objects
by (n,m) 7→ n+m and by the obvious formula on morphisms. Given spectra X and
Y , we have an I × I diagram DX ∧ DY defined by

(DX ∧ DY )(n,m) = DX(n) ∧ DY (m) = Ωn
TL′F0Xn ∧ Ωm

T L′F0Ym.

We have a pairing DX ∧ DY → (DX∧Y ) ◦+ given by

Ωn
TL′F0Xn ∧ Ωm

T L′F0Ym → Ωn+m
T (L′F0Xn ∧ L′F0Ym)

→ Ωn+m
T L′F0(Xn ∧ Ym)→ Ωn+m

T L′F0(X ∧ Y )n+m.

Taking homotopy colimits, we have the natural mapDX ∧DY → D(X ∧ Y ) obtained
from the composite on homotopy colimits

DX ∧DY = hocolim
I

DX ∧ hocolim
I

DY → hocolim
I×I

DX ∧ DY

→ hocolim
I×I

(DX∧Y ) ◦+→ hocolim
I

DX∧Y = D(X ∧ Y ).

That L′D2X is a fibrant model for X follows from the previous theorem.

4. Semi-topological cohomology theories

In this section we extend Friedlander and Walker’s “singular semi-topological”
construction to a motivic construction Qsst that is lax symmetric monoidal. As a
consequence, monoids in motivic symmetric spectra are preserved by this construc-
tion, and ultimately it produces motivic strict ring spectra representing morphic
cohomology, semi-topological K-theory, and semi-topological cobordism.

4.1. Motivic homotopy on singular schemes
Friedlander and Walker’s constructions and techniques apply to presheaves defined

on all of Sch/C. Because of this, it is useful to work with motivic spaces defined on
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all schemes, an approach that yields the same stable motivic homotopy category in
the presence of resolution of singularities. Let k be a field-admitting resolution of
singularities. We write Spc•(Sch/k) for the category of presheaves F : Sch/kop →
sSet• and equip it with the flasque, cdh-, A1-local model structure. In this setting, we
sometimes write Spc•(Sm/k) for the model category previously denoted Spc•(k) (i.e.
the model category of motivic spaces on Sm/k equipped with the flasque, Nisnevich,
A1-local model structure).

From now on we will take (P1,∞) as our motivic suspension coordinate. The model
categories of P1-spectra and symmetric P1-spectra on Sch/k are defined in exactly the
same way as in Section 2. We denote these categories respectively by SptP1(Sch/k)
and SptΣP1(Sch/k). Write i : Sm/k ⊆ Sch/k for the inclusion of categories. The Quillen
pair i∗ : Spc•(k) ⇄ Spc•(Sch/k) : i∗ is a Quillen pair on spectra, and it is a Quillen
equivalence by a theorem of Voevodsky.

Theorem 4.1. Let k be a field-admitting resolution of singularities in the sense of
[Voe10, Definition 4.1]. Then

i∗ : SptΣP1(k) ⇄ SptΣP1(Sch/k) : i∗

and

i∗ : SptP1(k) ⇄ SptP1(Sch/k) : i∗

are Quillen equivalences. Moreover, i∗ is strong symmetric monoidal and there exists
a lax symmetric monoidal fibrant replacement functor for SptΣP1(Sch/k).

Proof. The Quillen equivalences follow immediately from [Voe10] because the model
structures we use are all equivalent to the one used there. The second statement
follows from the fact that Sm/k ⊆ Sch/k is strong symmetric monoidal. The con-
struction of a lax symmetric monoidal fibrant replacement functor in Section 3 works
equally well for SptP1(Sch/k).

Remark 4.2. For a motivic spectrum E, we have a presheaf of abelian groups πs,tE
on Sm/k, U 7→ [Σs,tU+, E]SH(k). We will use the same notation for the presheaf on
Sch/k defined by the same formula.

4.2. Topological realization
The functor Sch/C→ sSet• that sends X to SingX(C)+ can be extended to a

functor ReC : Spc•(Sch/C)→ sSet• by

ReCF = colim
(X×∆n)+→F

(SingX(C)×∆n)+.

This functor has a right adjoint defined by SingC(K)(X)=Hom(SingX(C),K) (where
Hom(−,−) is the simplicial set of maps).

Remark 4.3. Write Re′C : Spc•(Sm/C)→ Top• for the “usual” topological realization
functor defined by Re′CF = colim(X×∆n)+→F (X(C)×∆n

top)+. This is related to the

topological realization considered here by SingLRe′CF ≃ ReCLi∗F .

Proposition 4.4. The adjoint pair

ReC : Spc•(Sch/C) ⇄ sSet• : SingC
is a Quillen adjunction. Moreover, ReC is a strong monoidal functor.
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Proof. The argument is similar to that given in [PPR09b, Theorem A.23]. The key
point is that by standard facts about localizations of model categories it suffices to
show that these are Quillen pairs on the global flasque model structure and the left
adjoints send cdh-distinguished squares to homotopy pushouts and send maps of the
form X+ → (X × A1)+ to weak equivalences.

To show that the left adjoints are a Quillen pair on the global flasque model
structure, it suffices by Dugger’s lemma [Dug01, Corollary A2] to show that the
right adjoints of these pairs preserve trivial fibrations as well as fibrations between
fibrant objects. This follows from the fact that ReC maps the generating cofibrations
I to cofibrations in sSet• maps generating trivial cofibrations J to weak homotopy
equivalences in sSet•.

As A1(C) is contractible, ReC sends maps of the form X+ → (X × A1)+ to homo-
topy equivalences. That ReC sends Nisnevich distinguished squares to homotopy
pushouts follows from the arguments in [DI04, Section 5]. Suppose that

B
j //

��

Y

p

��
A

i // X

is a distinguished cdh-square. We have X(C) = A(C)
⨿

B(C) Y (C), and Y (C) can be

triangulated so that B(C) ⊆ Y (C) is a subcomplex. This implies that X(C) is the
homotopy pushout out A(C)← B(C)→ Y (C). Since Sing preserves homotopy col-
imits (see, for example, [Hir03a, Proposition 18.9.12]), this implies that ReC sends
distinguished squares to homotopy pushouts.

The last statement is a simple consequence of the standard fact that there is a
natural homeomorphism (X × Y )(C) ∼= X(C)× Y (C).

Note that if X is a pointed scheme, then with the definitions above ReC(X) is equal
to SingX(C) equipped with the obvious basepoint. Write S̃2 = ReC(P1) = SingCP1,
where P1 is pointed at ∞. There is a canonical weak equivalence S2 ≃ S̃2. The cate-
gories of spectra SptS̃2(sSet•) and symmetric spectra SptΣ

S̃2(sSet•) are equipped with
stable model structures using [Hov01], and the resulting homotopy categories are
equivalent (as closed symmetric monoidal triangulated categories) to the usual stable
homotopy category of S1-spectra.

If E is a P1-spectrum, define the S̃2-spectrum ReCE by (ReCE)i = ReCEi with
structure maps ReCEi ∧ ReC(P1) = ReC(Ei ∧ P1)→ ReCEi+1. The functor SingC
extends as well to a functor on the S̃2-spectrum. We obtain an adjoint pair of functors
ReC : SptΣT (Sch/C) ⇄ SptΣ

S̃2(sSet•) : SingC and similarly for ordinary spectra.

Theorem 4.5. The adjoint pairs ReC : Spt
Σ
T (Sch/C) ⇄ SptΣ

S̃2(sSet•) :SingC and
ReC : SptT (Sch/C) ⇄ SptS̃2(sSet•) : SingC are Quillen adjoint pairs. In the first case,
ReC is strict symmetric monoidal.

Proof. One may argue as in [PPR09b, Theorem A.45].

4.3. Friedlander and Walker’s construction
Let F : Sch/Cop → sSet be a presheaf of simplicial sets. Let T be a topological

space. Define F (X × T ) to by the left Kan extension along Sch/C→ Top. That is,
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F (X × T ) = colimT→Y (C) F (X × Y ), where the indexing category is the filtered cat-
egory whose objects are continuous maps T → Y (C) and whose morphisms are maps
of schemes making the obvious triangle commute. Now define

F sst(X) = diag(d 7→ F (X ×∆d
top)).

If F is based, then so is F sst. If F = X+ is representable, then it is not hard to
see that F (∆•

top) = SingX(C)+. As (−)sst commutes with colimits, F sst may also be
described as the presheaf

F sst(X) = ReC(hom(X,F )).

Let E be a P1-spectrum or symmetric P1-spectrum on Sch/C. Define

F (∆d
top, E) = colim

∆d
top→W (C)

F (W,E), (8)

where F (−, E) is the function spectrum. We have a simplicial object F (∆•
top, E) in

SptΣP1(Sch/C), and we define

Esst = |F (∆•
top, E)|.

Note that Esst is equivalently described as Esst = (Esst
0 , Esst

1 , . . .) with structure maps
given by Esst

i ∧ P1 → Esst
i ∧ (P1)sst = (Ei ∧ P1)sst → Esst

i+1.

Fix a lax symmetric monoidal fibrant replacement functor (−)fib on SptΣP1(Sch/C).

Definition 4.6. For a motivic spectrum E on Sch/C, define QsstE = (Efib)sst. If E
is a motivic spectrum defined on Sm/C, then define QsstE = QsstLi∗E.

The semi-topological E-theory is the cohomology theory represented by QsstE in
SH(C)—that is, Ep,q

sst (X) = [X+,Σ
p,qQsstE]SH(C).

Note also that there is a natural convergent spectral sequence

E2
p,q = Hp

(
d 7→ πq,tE(X ×∆d

top))
)
=⇒ πp+q,tQsstE(X) (9)

obtained from Theorem 2.11.
Friedlander and Walker’s recognition principle is a useful tool for studying semi-

topological cohomology theories. Recall that Voevodsky’s h-topology on Sch/C is the
Grothendieck topology whose covers are finite collections of maps {Ui → X} such
that

⨿
Ui → X is a universal quotient map.

Theorem 4.7 ([FW03, Theorem 2.6]). Let F → G be a natural transformation of
presheaves of abelian groups on Sch/C such that Fh → Gh is an isomorphism of h-
sheaves. Then F (∆•

top)→ G(∆•
top) is a homotopy equivalence of simplicial abelian

groups.

Corollary 4.8. Suppose that E1 → E2 is a a map of motivic spectra on Sch/k such
that (πs,tE1(X ×−))h → (πs,tE2(X ×−))h is an isomorphism of h-sheaves for all s,
t. Then π∗,∗QsstE1(X)→ π∗,∗QsstE2(X) is an isomorphism.

Proof. Consider the spectral sequences (9) for E1 and E2. By Theorem 4.7 the natural
comparison map between the two spectral sequences induces an isomorphism on the
E2-page. It now follows that πp+q,tE

sst
1 (X)→ πp+q,tE

sst
2 (X) is an isomorphism.
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Theorem 4.9. 1. The functor Qsst : SptΣP1(Sch/C)→ SptΣP1(Sch/C) induces a
functor Qsst : SH(C)→ SH(C) that is lax symmetric monoidal, coproduct pre-
serving, and triangulated.

2. There is a monoidal natural transformation id→ Qsst which fits into a sequence
of monoidal natural transformations of lax symmetric monoidal functors

id→ Qsst → RSingC LReC,

where the composite id→ RSingC LReC is the unit of the adjunction.

3. Let A be a finite abelian group, and let MA be a Moore spectrum for A. The
natural transformation id ∧MA→ Qsst ∧MA is an equivalence.

Proof. (1) If E → F is a motivic stable equivalence, then (Efib)i → (F fib)i is a
schemewise equivalence for each i. Since filtered colimits preserve weak equivalences,
we have that Qsst : SH(C)→ SH(C) is well defined.

We have schemewise, levelwise weak equivalences
⨿

Xfib
i ≃ (

⨿
Xi)

fib, which implies
that Qsst preserves coproducts. Homotopy fiber and cofiber sequences agree in
SptΣP1(Sch/C) and so F (W,Efib)→ F (W,F fib)→ F (W,Gfib) is a homotopy cofiber
sequence for all W . Filtered colimits preserve homotopy fiber sequences, and so for
each d,

F (∆d
top, E

fib)→ F (∆d
top, F

fib)→ F (∆d
top, G

fib)

is a homotopy cofiber sequence. Taking the realization yields a homotopy cofiber
sequence

|F (∆•
top, E

fib)| → |F (∆•
top, F

fib)| → |F (∆•
top, G

fib)|,

which implies that Qsst : SH(C)→ SH(C) is a triangulated functor.
(2) The symmetric monoidal structure on SH(C) is defined by (−)cof ∧ (−)cof

in SptΣP1(Sch/C), where (−)cof is a cofibrant replacement functor. We have natural
maps (QsstF )cof ∧ (QsstG)cof → QsstF ∧QsstG→ Qsst(F ∧G), which implies that
Qsst : SH(C)→ SH(C) is lax symmetric monoidal.

If E is a symmetric P1-spectrum, then we have a symmetric S̃2-spectrum Esst(C)
defined by Esst(C) = (Esst

0 (C), Esst
1 (C), . . .) with structure maps given as the compos-

ite Esst
i (C) ∧ S̃2 = (Ei ∧ P1)sst(C)→ Esst

i+1(C). We claim that the spectrum
QsstE(C) := (Efib)sst(C) agrees with LReCE in SH. As both functors LReC(−) and
Qsst(−)(C) preserve stable equivalences, it suffices to verify the claim when E is
both cofibrant and fibrant. If E is cofibrant, then LReCE ≃ Esst(C). If E is fibrant,
then each Esst

i → (QsstE)i is a schemewise equivalence, which implies that Esst(C) ≃
QsstE(C). If F is a motivic space, the argument of [FHW04, Lemma 3.2] shows that
the natural transformation F → Sing ReF factors through a natural transformation
F → F sst. If E is a P1-spectrum, then this natural transformation is compatible with
the structure maps and so the natural transformation E → SingQsstE(C) factors
through E → Esst. These are evidently lax symmetric monoidal transformations.

(3) Let E be a motivic spectrum, and write E′ = E ∧MA. Consider a smooth
complex variety X, and let s and t be integers. Write Fs,t(U) = πs,tE

′(X) for the
constant presheaf of abelian groups on Sch/C. We have a map of presheaves Fs,t(−)→
πs,tE

′(X ×−). By [Yag11, Corollary 2.5] this map induces an isomorphism on Oh
X,x

for any closed point x ∈ X and smooth X. This implies that the map (Fs,t)h →
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(πs,tE
′(X ×−))h of h-sheaves is an isomorphism for all s, t. It follows from Corol-

lary 4.8 that πs,tE
′(X) = πs,tQsstE′(X) for all s, t.

5. Examples and basic properties

The two original examples of a semi-topological cohomology theory are morphic
cohomology, introduced by Friedlander and Lawson [FL92], and semi-topological K-
theory, introduced by Friedlander and Walker [FW02]. In this section, we verify Qsst

as defined above recovers these theories. In addition, we show that under certain
circumstances the group E2q,q

sst (X) agrees with E2q,q(X)/ ∼alg, the algebraic theory
modulo algebraic equivalence. We also show that for effective motivic spectra, the
coefficients of the associated semi-topological cohomology theory agrees with that of
the associated topological theory.

5.1. Almost fibrant semi-topological spectra
Relating the motivic version of Friedlander and Walker’s construction given in

the previous section to their original construction boils down to recognizing when
Qsst produces an ΩP1-spectrum. This is a consequence of the following variation on
[FHW04, Corollary 2.7].

Theorem 5.1 (cf. [FHW04, Corollary 2.7]). Let F3 → F2 → F1 be a sequence of
natural transformations of presheaves of infinite loop spaces on Sch/C. Suppose fur-
ther that F1(U), F2(U) are connected for all smooth U and that for any X in Sch/C
the sequence F3(X)→ F2(X)→ F1(X) is constant. If it is a homotopy fiber sequence
when X is smooth, then

F sst
3 (U)→ F sst

2 (U)→ F sst
1 (U)

is also a homotopy fiber sequence for all smooth U .

Proof. A similar argument as that used in loc. cit. applies here. Define F ′
2(X) and

F ′
1(X) to be the connected component of F2(X) and F1(X), respectively, and define

F ′
3(X) = hofib(F ′

2(X)→ F ′
1(X)). This yields the sequence of presheaves of infinite

loop spaces F ′
3 → F ′

2 → F ′
1, where for anyX in Sch/C the sequence F ′

3(X)→F ′
2(X)→

F ′
1(X) is a homotopy fiber sequence. Filtered colimits preserve homotopy fiber

sequences, and so F ′
3(U ×∆d

top)→ F ′
2(U ×∆d

top)→ F ′
1(U ×∆d

top) is a homotopy fiber

sequence for any U . As F ′
1(U ×∆d

top) and F ′
2(U ×∆d

top) are connected, [BF78, The-
orem B.4] implies that (F ′

3)
sst(U)→ (F ′

2)
sst(U)→ (F ′

1)
sst(U) is a homotopy fiber

sequence. Now assume that U is smooth. For each i, the map F ′
i (U ×X)→ Fi(U ×

X) is a weak equivalence whenever X is also smooth. It now follows from [FHW04,
Theorem 2.6] that (F ′

i )
sst(U)→ F sst

i (U) is a weak equivalence for each i, yielding the
result.

Corollary 5.2. Let E be a presheaf of infinite loop spaces on Sch/C. Suppose that
there is another presheaf E1 of infinite loop spaces and a map E → ΩE1 of presheaves
of infinite loop spaces that induces a weak equivalence E(X) ≃ ΩE1(X) for all smooth
X, and that E1(X) is connected for all smooth X.

1. If E satisfies Nisnevich (resp. cdh) descent on Sm/C then so does Esst.
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2. If E is homotopy invariant on Sm/C, then so is Esst.

3. If E satisfies Nisnevich descent on Sm/C and is homotopy invariant, then
Ωr

P1Esst → (Ωr
P1E)sst is a schemewise equivalence on Sm/C.

Proof. First, observe that (ΩE1)
sst(X) ≃ ΩEsst

1 (X) for any smooth X because
(ΩE1)

sst(X)→ ∗ → Esst
1 (X) is a homotopy fiber sequence by Theorem 5.1. If E

satisfies Nisnevich (resp. cdh) descent on Sm/C, then so does E1. Consider the square

Esst
1 (Y )

��

// Esst
1 (B)

��
Esst

1 (X) // Esst
1 (A)

associated to a distinguished square on Sm/C. Write F (U) = hofib(E1(Y × U)→
E1(B × U)) and G(U) = hofib(E1(X × U)→ E1(A× U). By Theorem 5.1, F sst(C) is
the homotopy fiber of the top horizontal arrow of this square and Gsst(C) is the homo-
topy fiber of the bottom horizontal arrow. Since F (U)→ G(U) is a weak equivalence
for all smooth U , it follows from [FHW04, Theorem 2.6] that F sst(C)→ Gsst(C) is a
homotopy equivalence and therefore Esst

1 satisfies descent on Sm/C and thus so does
Esst.

Similarly, since E is homotopy invariant on Sm/C, it follows from [FHW04, The-
orem 2.6] that Esst is homotopy invariant on Sm/C.

If Esst satisfies descent and is homotopy invariant, then for any smooth X we
have a homotopy fiber sequence ΩP1Esst

1 (X)→ Esst
1 (P1 ×X)→ Esst

1 (P0 ×X). The-
orem 5.1 implies that for any smooth X we also have a homotopy fiber sequence
(Ω1

P1E1)
sst(X)→ Esst

1 (P1 ×X)→ Esst
1 (P0 ×X), which immediately implies that we

have (Ω1
P1E1)

sst(X) ≃ Ω1
P1Esst

1 (X). Note that the inclusion P0 → P1 induces a sur-
jection πkE1(P1 ×X)→ πkE1(P0 ×X) as it has a splitting induced by P1 → P0.
This implies that π0ΩP1E1(X)→ π0E1(P1 ×X) is injective and in particular that
Ω1

P1E1(X) is connected whenX is smooth. Iterating the previous argument, we obtain
(Ωr

P1E1)
sst(X) ≃ Ωr

P1Esst
1 (X). Finally, since these are connected on Sm/C, we have

that Ω(Ωr
P1E1)

sst(X) ≃ (ΩΩr
P1E1)

sst(X). The final statement now follows by combin-
ing these weak equivalences.

Definition 5.3. We say that a motivic spectrum E on Sch/C is almost fibrant on
Sm/C if each restriction i∗Ek satisfies cdh-descent on Sm/C and is homotopy invari-
ant, and Ek(X)→ ΩP1Ek+1(X) is a weak equivalence for all smooth X.

If E is almost fibrant on Sm/C, then i∗Ek(X)→ (Ri∗E)k(X) is a weak equivalence
for any smooth X and k.

Corollary 5.4. Let E be a motivic spectrum such that πi,−qE(X) = 0 for i < −2q,
q ⩾ 0, and smooth X. Then QsstE is almost fibrant on Sm/C. In particular, if E is
itself almost fibrant on Sm/C, then (QsstE)i(X) ≃ Esst

i (X) and we have

Es,q
sst(X) := [Σ−s,−qX+,QsstE]SH(C) = π2q−sE

sst
q (X)

for all smooth X, any q, and s ⩽ 2q (where Esst
q = Ωq

P1E
sst
0 , if q ⩽ 0).
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Proof. We may replace E by Efib. Each Eq is a presheaf of infinite loop spaces. For
X smooth we have Eq(X) ≃ ΩΩGmEq+1(X) and ΩGmEq+1(X) is connected under
the hypothesis on E. It then follows from Corollary 5.2 that QsstE is almost fibrant
on Sm/C.

5.2. Morphic Cohomology
We begin with morphic cohomology, introduced by Friedlander and Lawson [FL92].

The main point concerning representability is the reformulation due to Friedlander
and Walker [FW03] that morphic cohomology for smooth quasi-projective varieties
can be obtained by applying (−)sst to the complex of equidimensional cycles.

Let X be a complex variety. Recall the presheaf zequi(X, 0)(−) of equidimen-
sional cycles constructed in [SV00]. This is the unique qfh-sheaf on Sch/C such
that for a normal variety U the group zequi(X, 0)(U) is the free abelian group gen-
erated by closed, irreducible subvarieties V ⊆ U ×X which are equidimensional of
relative dimension 0 over some irreducible component of U . When Y is projective,
then zequi(Y, 0)(−) = Ztr(Y ) is the free presheaf with transfers generated by Y .

For a presheaf of groups F , we write C∗F = F (−×∆∗
C). For any smooth X we

have

π2q−pC∗zequi(Aq, 0)(X) = Hp
M(X,Z(q)),

where the right-hand side is the Suslin–Voevodsky definition of motivic cohomology;
see, for example [MVW06, Corollary 18.4, Theorem 19.1].

Definition 5.5. Let Y be a complex variety, define the motivic spectrum MZc(Y )
(on Sch/C) by MZc(Y )k = C∗zequi(Y × Ak, 0) and structure maps are given by

C∗zequi(Y × Ak, 0) ∧ P1 → C∗zequi(Y × Ak, 0) ∧ zequi(P1, 0)

→ C∗zequi(Y × Ak, 0) ∧ zequi(A1, 0)→ C∗zequi(Y × Ak+1, 0).

WriteMZ = MZc(C), which is an almost fibrant model for the motivic cohomology
spectrum. More generally, if Y is projective, then MZc(Y ) is an almost fibrant model
(see Definition 5.3) for Y+ ∧MZ on Sm/C. If Y is quasi-projective, then it is an
almost fibrant model on Sm/C for (Y /Y∞) ∧MZ, where Y ⊆ Y is a projectivization
and Y∞ = Y − Y .

By [FW03, Corollary 3.5], if X is smooth and quasi-projective then (MZk)
sst(X)

computes morphic cohomology, in the sense that πj(MZk)
sst(X) = LkH2j−k(X). By

Corollary 5.4 it then follows thatMZsst := QsstMZ represents morphic cohomology of
smooth complex varieties. The pairings zequi(An, 0) ∧ zequi(Am, 0)→ zequi(An+m, 0)
give MZ the structure of a commutative motivic ring spectrum, which induces the
usual product structure on motivic cohomology, see, for example, [Wei99]. This gives
MZsst the structure of a commutative strict ring spectrum as well. In summary, we
have verified the following proposition.

Proposition 5.6. The commutative motivic strict ring spectrum MZsst represents
morphic cohomology theory in the sense that

[X+,Σ
p,qMZsst]SH(C) = LqHp(X)

for all p, q, and smooth quasi-projective complex varieties X.
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5.3. Semi-topological K-theory
Consider KW (X), the Waldhausen K-theory space of bounded complexes of big

vector bundles on X. This defines a presheaf of simplicial sets on Sch/C. The semi-
topological K-theory of X is defined by

Ksst
q (X) = (KW )sst(X).

Voevodsky [Voe98] constructed a P1-spectrum representing algebraic K-theory
on smooth schemes which is essentially unique. We refer to [PPR09b] for details.
Write KGL for the P1-spectrum on Sch/C defined as follows. Let KW → KW be a
motivic fibrant replacement (in Spc•(Sch/C)). Since K-theory is homotopy invariant
and satisfies Nisnevich and cdh-descent on Sm/C, we have that KW (X)→ KW (X) is
a weak equivalence for any smooth X. Now let KW → K be a cofibrant replacement,
so that K is a motivic fibrant and cofibrant model for KW on Sch/C.

Define ϵ : K ∧ P1 → K to be a lift of the mapKW ∧ P1 → KW in H•(k)cdh given by
multiplication with h = [O(−1)]− [O] ∈ K0(P1). The resulting P1-spectrum KGL :=
(K,K, . . .) is almost fibrant on Sm/C and its restriction to Sm/C agrees with the usual
construction of a spectrum representing algebraic K-theory. Recall [SØ09, GS09]
that there is an element β ∈ π2,1(Σ

∞BGm+) such that we have a stable equivalence
i∗KGL ≃ (Σ∞BGm+)[β

−1]. We write β as well for its image in π2,1(QsstΣ∞BGm+).
Recall also that in [RSØ10] a strict motivic ring spectrum KGL on Sm/C is con-
structed.

Proposition 5.7. The commutative strict motivic ring spectrum KGLsst := QsstKGL
represents semi-topological K-theory in the sense that

[Σp,qX+,QsstKGL]SH(C) = Ksst
p (X)

for all p, q, and smooth quasi-projective complex varieties X. Moreover, there is a
stable equivalence KGLsst ≃ (QsstΣ∞BGm+)[β

−1].

Proof. It follows immediately from Corollary 5.4 and the definition of semi-topological
K-theory thatQsstKGL represents semi-topologicalK-theory. In [RSØ10] it is shown
that there is a stable equivalence of P1-spectra KGL→ KGL, and so KGLsst is a strict
motivic ring spectrum representing semi-topological K-theory. The second statement
follows immediately in light of the fact that Qsst and hocolimN commute.

5.4. Semi-topological cobordism
Semi-topological cobordism was originally defined in [Hel06] using a motivic ver-

sion of Friedlander and Walker’s construction (defined in terms of S1-T -bispectra)
that did not necessarily preserve strict ring spectra. Recall that the motivic cobordism
spectrum MGL is defined by

MGLn = colim
m⩾n

Th(γn,mn),

where γn,mn is the tautological bundle γn,mn → Grassn,mn over the Grassmannian of
n planes in Amn and Th(−) is the Thom space. It is a commutative motivic symmetric
ring T -spectrum, where T = A1/A1 − 0, and we write MGL for the associated P1-
spectrum. We refer to [PPR09a, Section 2.1] for full details. The semi-topological
cobordism spectrum is MGLsst := QsstMGL.
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Remark 5.8. The usual construction of MGL can be repeated on Sch/C. Temporarily
write MGL′ for the resulting motivic cobordism spectrum on Sch/C. Then i∗MGL =
MGL′. The functor i∗ : SptΣT (Sm/k)→ SptΣT (Sch/k) preserves level equivalences be-
tween level cofibrant objects. As MGL is level cofibrant and the map MGLcof → MGL
is a level equivalence (where (−)cof is a stable cofibrant replacement), it follows that
Li∗MGL→ i∗MGL = MGL′ is a level equivalence.

As MGL is a strict commutative ring spectrum in SptΣP1(Sch/C), MGLsst is also
a strict commutative ring spectrum. The lax monoidal natural transformation id→
Qsst implies that we have a canonical ring map MGL→ MGLsst, and so MGLsst has
a canonical orientation.

In Section 6 we use the periodic semi-topological cobordism spectrum PMGLsst =∨
n∈Z Σ

2n,nMGLsst. This is a ring spectrum in the evident way (see [GS09]) and has
a strict ring model, (see [GS09, Proposition 5.4] and [RSØ10, Remark 3.7]).

Proposition 5.9. There is an element β ∈ π2,1BGL such that there is natural equiv-
alence PMGLsst ≃ (QsstΣ∞BGL+)[β

−1].

Proof. It follows from [GS09, Corollary 3.10] that Qsst commutes with coproducts,
and that Qsst and hocolimN commute.

5.5. Algebraic equivalence
A fundamental property of morphic cohomology and semi-topological K-theory is

that LqH2q(X) and Ksst
0 (X) are computable, respectively, in terms of the group of

codimension q-cycles modulo algebraic equivalence and the Grothendieck group of
vector bundles modulo algebraic equivalence. This relationship can be generalized to
a wide class of motivic spectra.

Definition 5.10. Let A be a presheaf of sets or groups on Sch/C. Two elements
α, β ∈ A(X) are said to be algebraically equivalent if there is a smooth, connected
curve C, two closed points c1, c2 ∈ C, and an element γ ∈ A(X × C) such that
γ|X×c1 = α and γ|X×c2 = β. Write ∼alg for the equivalence relation that this gener-
ates.

Lemma 5.11. Let E : Sch/Cop → sSet be a presheaf of Kan complexes. Then
π0E(X ×∆•

top) = π0E(X)/ ∼alg.

Proof. We have a coequalizer diagram

π0E(X ×∆1
top) ⇒ π0E(X)→ π0E

sst(X),

where the left hand arrows are induced by the respective inclusions ∆0
top → ∆1

top at
0 and 1. Replacing E by hom(X,E), it suffices to treat the case X = Spec(C).

If C is connected, any two points c0, c1 ∈ C(C) can be joined by a continuous map
f : ∆1

top → C(C) such that f(i) = ci. It follows that we have a well-defined surjection
π0E(C)/ ∼alg→ π0E

sst(C).
For injectivity, suppose that β, α ∈ π0E(C) map to the same element of π0E

sst(C).
This means that there is a Y ∈ Sch/C, a continuous map g : ∆1

top → Y (C), and a
γ ∈ F (Y ) such that α = γ|g(0) and β = γ|g(1). The required injectivity follows easily
from [Mum70, p. 56], which asserts that if W is irreducible and quasi-projective and
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w0, w1 ∈W (C) lie in the same topological component, then there exists a smooth
connected curve joining these points.

Proposition 5.12. Suppose that Ek,q(X) = 0 for all smooth X and k > 2q. Then
E2q,q

sst (X) = E2q,q(X)/ ∼alg.

Proof. By Corollary 5.4 we have that E2q,q
sst (X) = π0E

sst
q (X), and so the result follows

from Lemma 5.11.

Corollary 5.13. Let X be smooth, then for any q there are natural isomorphisms

Ωq(X)/ ∼alg

∼=−→ MGL2q,q(X)/ ∼alg

∼=−→ MGL2q,q
sst (X),

where Ω∗(−) is Levine–Morel algebraic cobordism.

Proof. Since MGLp,q(X) = 0 for p ⩾ 2q (which follows for example from the slice
spectral sequence; see Section 6), the previous result implies the second isomorphism.
Levine [Lev09, Theorem 3.1] shows that Ωq(X)→ MGL2q,q(X) is a natural isomor-
phism for any smooth X, which implies the first isomorphism.

5.6. Coefficients of semi-topological theories
Now we turn to a generalization of the relationships LqHp(C) = Hp(pt) and

Ksst
0 (pt) = ku0(pt).
We begin by recalling Voevodsky’s slice tower. Let SHeff (C) ⊆ SH(C) be the small-

est localizing subcategory containing all X+, X ∈ Sm/C, and let Σq
P1SH

eff (C) ⊆
SH(C) be the smallest localizing subcategory containing Σq

P1E for E in SHeff (C).
The inclusion iq : Σq

P1SH
eff (C) ⊆ SH(C) has a right adjoint, rq. Define fq = iqrq.

There is a natural map fqE → E that is the universal for maps from objects in

Σq
P1SH

eff (C) to E. Define sqE = cofib(fq+1E → fqE), which is the qth slice of E.
Using Voevodsky’s computation [Voe04] that s0S = MZ, Pelaez [Pel11] shows

that the slices sqE are all MZ-modules. Østvær and Röndigs [RØ08] show that
Voevodsky’s big category of motives DM(C) is equivalent, as a monoidal, triangulated
category, to the homotopy category of MZ-modules. Write DMeff (C) for the smallest
localizing subcategory of DM(C) containing all X+ ∧MZ, X ∈ Sm/C.

Lemma 5.14. For any E in DMeff (C) we have isomorphisms

π∗,0(QsstE)(C)
∼=−→ π∗LReCE.

Proof. Since LReC and π∗,0 are compatible with triangles and coproducts, it suffices
to verify the lemma in the case E = X+ ∧MZ, where X is a smooth projective com-
plex variety. We have the almost fibrant model MZ(X) := (C∗zequi(X × Ak, 0))k⩾0

for X+ ∧MZ (see Section 5.2). Therefore, πp,0(QsstE)(C) = πpC∗zequi(X, 0)(∆•
top) if

p > 0.
For projective Y , define Z0(Y ) = (

⨿
n⩾0 SymnY (C))+ where (−)+ denotes the

group completion of the displayed topological monoid, equipped with a topology via
the quotient topology. For any quasi-projective complex variety W define Z0(W ) =
Z0(W )/Z0(W −W ), where W ⊆W is a projectivization. We have a natural homo-
topy equivalence SingZ0(W ) ≃MZsst

c (W )(C). Indeed, by [FW03, Proposition 3.1],
there is a natural homotopy equivalence zequi(W, 0)(∆•

top) ≃ SingZ0(W ) and the
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natural map zequi(W, 0)(∆•
top)→ C∗zequi(W, 0)(∆•

top) = MZsst
c (W )(C) is a homotopy

equivalence; see, for example, [FW01, Lemma 1.2].

By the Dold–Thom theorem, πnZ0(W ) = HBM
n (W (C),Z), where HBM (−) is

Borel–Moore singular homology. For a projective complex variety X, the adjoint of
the map Z0(X × Ak) ∧ P1(C)→ Z0(X × Ak+1) induces the suspensions isomorphism
H̃n(X(C)k ∧ S2k) ∼= H̃n+2(X(C)+ ∧ S2k+2) in homology. Applying Sing and using
the above identifications,

zequi(X × Ak+1, 0)(∆•
top)→ ΩS̃2zequi(X × Ak, 0)(∆•

top)

is a homotopy equivalence. It follows that LReCMZ(X) is an ΩS̃2 -spectrum. In par-

ticular, if p ⩾ 0, then πp,0(QsstMZ(X))(C)
∼=−→ πpLReC(MZ(X)) is an isomorphism

and both groups are zero if p < 0.

Theorem 5.15. If E is in SH(C)eff and q ⩾ 0, then

E−p,q
sst (C) = πp,−q(QsstE)(C)

∼=−→ πpLReCE.

Proof. If q ⩾ 0 then πp,−qE = πp+2q,0(Σ
q
P1E). If E is effective, then so is Σq

P1E. It
thus suffices to verify the theorem for q = 0. Since LReC and πp,0 are compatible
with triangles and coproducts, it suffices to consider the case E = X+ for smooth X.
By [Lev12b, Theorem 4, Proposition 6.9], the slice tower · · · → f2X+ → f1X+ →
f0X+ = X+ converges. By Theorem 4.9(3), this implies that the tower obtained from
applying Qsst ∧MA also converges (where MA is the Moore spectrum associated to
a finite abelian group A). By [Lev12a, Lemma 6.1], if q ⩾ dim(X) + 1, then all of
the homotopy sheaves of fqX+ are torsion. This implies that Qsst(fqX+) ∧MQ = ∗
for q ⩾ dim(X) + 1 and so the tower · · · → Qsst(f2X+)→ Qsst(f1X+)→ Qsst(X+)
converges. The associated topological tower · · · → LReC(f2X+)→ LReC(f1X+)→
LReC(X+) also converges by [Lev12a, Theorem 5.2]. We thus have a comparison of
convergent spectral sequences

E2
p,q = πp+q,0(QsstsqX+)(C) =⇒ πp+q,0(QsstX+)(C)

↓
E2

p,q = πp+qLReC(sqX+) =⇒ πp+qX+.

Now, if E is in SH(C)eff , then each sqE is in DMeff (C). In particular, Lemma 5.14
implies that the comparison map induces an isomorphism on the E2-pages of these

spectral sequences. It follows that πp,0QsstE(C)
∼=−→ πpLReCE is an isomorphism.

Remark 5.16. Note that KGL is not effective and so Theorem 5.15 does not assert that
KGLp,0

sst (C) = π−pLReC(KGL) = KUp(pt) (which would be absurd). However the the-

orem does apply to the P1-connective K-theory, kgl := f0KGL. One has KGLp,0
sst (C) =

kglp,0sst (C), and it can be shown that LReC(kgl) = ku.

The theorem applies to MGL and so MGLp,q
sst (C) = MUp for all q ⩾ 0. However,

the groups MGLp,q
sst (C) for q ⩽ 0 are also interesting. See Remark 6.2 for a complete

calculation of these groups.
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6. Applications to semi-topological cobordism

In this section we give two applications to semi-topological cobordism, which rely
on the multiplicative nature of Qsst. The first is a natural isomorphism of the form
(⊕qMGL2q+∗,q

sst (X))[s−1] ∼= ⊕qMU2q+∗(X), where s is a lift of the Friedlander–Mazur
s-element in morphic cohomology. The second is a semi-topological Conner–Floyd
isomorphism relating semi-topological K-theory and semi-topological cobordism.

Voevodsky’s slice spectral sequence is recalled in Section 5.6. Write L∗ for the
Lazard ring, where the grading is such that MU2q = Lq. An unpublished result of
Hopkins and Morel implies that the slices for MGL are sqMGL = Σq

P1MZ⊗ L−q. A
proof of this result has recently appeared in work of Hoyois [Hoy12]. We have an

exact couple given by setting Dp,q,b
2 = π−p−q,b(f−qMGL)(X) and Ep,q,b

2 = π−p−q,b

(s−qMGL)(X) = Hp−q
M (X,Z(b− q))⊗ Lq. The resulting spectral sequence

Ep,q,b
2 (alg) = Hp−q

M (X,Z(b− q))⊗ Lq =⇒ MGLp+q,b(X)

is strongly convergent (see [Hoy12, Lemmas 7.9,7.10]). Since MGL is a commutative
ring spectrum, this is a multiplicative spectral sequence.

We have cofiber sequencesQsst(fq+1MGL)→Qsst(fqMGL)→Qsst(sqMGL), which
give rise to the spectral sequence

Ep,q,b
2 (sst) = Lb−qHp−q(X)⊗ Lq =⇒ MGLp+q,b

sst (X),

which is strongly convergent, one may argue as in the proof of Theorem 5.15. Alterna-
tively, using that (πp,bfqMGL)Nis = 0 for p− b < q (see [Hoy12, Lemma 7.10]), one
can show that πp,bQsst(fqMGL)(X) = 0 for p < q − b− dimX. It is multiplicative
because Qsst is lax symmetric monoidal, and so we have pairing of slice towers.

Proposition 6.1. The spectral sequence

Ep,q
2 (top) = Hp−q(X(C),Lq) =⇒MUp+q(X(C)),

associated to the cofiber sequences

LReC(fq+1MGL)→ LReC(fqMGL)→ LReC(sqMGL),

is the spectral arising from the Postnikov tower.

Proof. By [Hoy12, Lemma 7.10], fqMGL is “topologically q-connected” (in the ter-
minology of [Lev12a]). Applying [Lev12a, Theorem 5.2] to fqMGL, we conclude
that LReC(fqMGL) is (2q − 1)-connected. We have LReC(sqMGL) = Σ2qHπ2qMU ,
and so an easy inductive argument implies that LReC applied to the slice tower for
MGL agrees with the Postnikov tower.

Immediate from the constructions is that the natural comparison maps

{Ep,q,b
r (alg)} → {Ep,q,b

r (sst)} → {Ep,q
r (top)}

are compatible with the multiplicative structures.

Remark 6.2. When X = C, this comparison map of spectral sequence gives a com-
plete calculation of the coefficients of MGL∗,∗

sst (C), improving in this case the result

of Theorem 5.15. Since Ep,q,b
2 (sst) = 0 = Ep,q

r (top) if p ̸= q, both spectral sequences
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collapse. We have then that MGLs,b
sst(C)→MUs is an isomorphism if s ⩽ 2b and

MGLs,b
sst(C) = 0 if s > 2b.

Theorem 6.3. Let X be a smooth quasi-projective complex variety. If b ⩾ dim(X),

then the map MGLs,b
sst(X)→MUs(X(C)) is an isomorphism.

Proof. The comparison map LmHn(X)→ Hn(X(C)) is an isomorphism for all n
when m ⩾ dim(X). Consider the comparison map {Ep,q,b

r (sst)} → {Ep,q
r (top)}. Since

t ⩾ dimX, if b− q < dimX, then q > 0 and both sides are zero. Otherwise, q ⩽ 0,
and so Lb−qHp−q(X)⊗ Lq → Hp−q(X(C),Lq) is an isomorphism for all p− q. We

conclude that Ep,q,b
2 (sst)→ Ep,q

2 (top) is an isomorphism for all p, q, which implies
the result.

Corollary 6.4. There is an element s ∈ MGL0,1
sst(C) such that we have an isomor-

phism of graded rings

(⊕qMGL2q+∗,q(X))[s−1] = ⊕qMU2q+∗(X).

Proof. In [FW03, Proposition 5.6] Friedlander and Mazur’s s-operation in morphic
cohomology is reinterpreted as the cup product with an element s ∈ L1H0(C). Con-
sider the commutative square

MGL0,1
sst (C) //

��

L1H0(C)

��
MU0(pt) // H0(pt),

in which all arrows are isomorphisms. The element s ∈ L1H0(C) lifts to an element
s ∈ MGL0,1

sst (C). Since s ∈ L1H0(C) maps to 1 ∈ H0(pt), and 1 ∈MU0(pt) maps to
1 ∈ H0(pt), we see that the same is true for s ∈ MGL0,1

sst (C). We have a map of rings
as in the statement of the corollary, and the isomorphism follows from the fact that
MGLp,q

sst (X)→MUp(X(C)) is an isomorphism whenever q ⩾ dim(X).

We now turn to a semi-topological Conner–Floyd isomorphism.WriteMGLi
sst(X) =

⊕p−2q=iMGLp,q
sst (X).

Theorem 6.5. For any smooth X, there is a natural isomorphism

MGL∗
sst(X)⊗MGL0

sst(C) K
sst
0 (C) ∼= Ksst

−∗(X).

Proof. We show that for any compact motivic spaceW there is a natural isomorphism
PMGL0,0

sst (W )⊗PMGL0,0
sst (C)

KGL0,0
sst (C) ∼= KGL0,0

sst (W ), where PMGLsst is the periodic

semi-topological cobordism spectrum; see Section 5.4. The argument is similar to that
of [GS09, Theorem 5.3], so we give the main points and refer to loc. cit. for full details.

Recall that PMGLsst ≃ (Qsst(Σ∞BGL+))[β
−1] and KGLsst ≃ (Σ∞BGm+)[β

−1].
The map PMGLsst → KGLsst is induced under these equivalences by the determinant
BGL→ BGm, which is split by the inclusion BGm → BGL. This easily implies that
PMGL0,0

sst (W )⊗PMGL0,0
sst (C)

KGL0,0
sst (C) ∼= KGL0,0

sst (W ) is surjective.

Write J0(W ) = ker([W,PMGLsst]→ [W,KGLsst]). It suffices to show that the map
J0(W )⊗PMGL0,0

sst(C)
J0(C)→ J0(W ) is surjective. Since W is compact, an element of
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x ∈ J0(W ) is represented by a map fx : W → Σ−2n,−nQsstΣ∞BGL+ for some n. In
turn, since BGL = colimp,q Grassp,q, this element is represented by a map f : W →
Qsst(Σ∞(Grassp,q)+). Using this and that BGL→ BGm is split, a diagram chase as
in [GS09, Theorem 5.3] completes the proof.
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