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Abstract

We show that Voevodsky’s univalence axiom for homotopy
type theory is valid in categories of simplicial presheaves on
elegant Reedy categories. In addition to diagrams on inverse
categories, as considered in previous work of the author, this
includes bisimplicial sets and ©,-spaces. This has potential
applications to the study of homotopical models for higher cat-
egories.

1. Introduction

Type theory is a formal syntax for mathematical reasoning, with roots in con-
structive logic and computer science. Its types are traditionally viewed as set-like,
but can more generally be interpreted as objects of any sufficiently structured cate-
gory [,; thus formal derivations in type theory yield theorems in cate-
gory theory. Recently, it has emerged (see, e.g., [HS98,[War08,|[AW09,AK 11 vG12,
[Voell| LW 14| |Awo14]]) that this correspondence can be extended to certain model
categories, so that formal derivations in type theory can also yield theorems in homo-
topy theory. The resulting subject is known as homotopy type theory.

The collection of homotopical theorems that have been proven using type theory
is small but growing; see , Chapter 8] for a list as of its publication. So far,
all such theorems were already known by methods of classical homotopy theory, but
there are several advantages to the type-theoretic approach. One significant one is
that type theory can be interpreted in many model categories, so that a type-theoretic
proof of a theorem such as m;(S') = Z [LS13] is much more general than a classical
proof using topological spaces or simplicial sets. For example, Lumsdaine, Finster, and
Licata have already used type theory to produce a new proof of the Blakers—Massey
theorem [[Fav13], which thus applies in more general categories. When translated
across the categorical interpretation of type theory [], this proof becomes a
model-categorical one, which could in principle have been discovered by classical
homotopy theorists, but which in practice was not.
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Type theory also brings a more “internal” perspective to homotopy theory, yielding
more general constructions of various objects. For instance, in classical homotopy
theory one may consider the space hAut(X) of self-homotopy equivalences of a space
X, defined simply as the obvious subspace of the function space X*. Homotopy
type theory shows that an equivalent space to hAut(X) can be obtained by purely
categorical constructions, which is thereby applicable in more generality. (We will
describe this example in more detail in §E)

Finally, another advantage of type-theoretic homotopy theory is its convenient
treatment of fibrations. In type theory, a fibration over a space A is represented by
a type family indexed by A, which is a map from A into the universe type U. The
correctness of this representation is guaranteed by Voevodsky’s univalence axiom,
which identifies the path space of U with a certain space of equivalences, implying
that U is a “classifying space for fibrations.” Of course, classifying spaces also exist in
classical homotopy theory, but the systematic representation of fibrations as functions
in type theory simplifies many things, especially when working with spaces defined
as colimits (e.g., the “encode-decode method” described in [[Uni1d, Chapter 8]), or
when doing parametrized homotopy theory.

With these two advantages of type theory in mind, it becomes important to know in
which model categories we can interpret type theory, and in particular the univalence
axiom. Since univalence says that the universe is a classifying space for fibrations,
one natural categorical analogue would be the object classifiers of Rezk and Lurie
(see , 86.1.6] and also []) Thus, we may expect that type theory with the
univalence axiom could be interpreted in any model category with object classifiers,
and in particular in any presentation of an “(co, 1)-topos.”

The main problem with this, and with the interpretation of type theory more
generally, is that its formal syntax is stricter than the categorical structure available
in the desired models. The first model of the univalence axiom to overcome this
difficulty was also due to Voevodsky [[KLV124], using the model category sSet of
simplicial sets, which presents the (oo, 1)-category of oo-groupoids (the most basic
(00, 1)-topos).

In [Shuls], starting from Voevodsky’s model in sSet, I constructed a model of
type theory satisfying univalence in the Reedy model category sSet’, whenever I is an
inverse category. This paper will generalize that result to the Reedy model structure
on sSet®” whenever C is an elegant Reedy category, as in [B . (This result has
now been further generalized by Cisinski []) Elegant Reedy categories include
direct categories (the opposites of inverse categories), but also categories such as the
simplex category A, the n-fold simplex category A", and Joyal’s categories ©,,. Thus,
the (00, 1)-toposes of n-fold simplicial spaces and O,,-spaces admit models of type the-
ory satisfying the univalence axiom. We will not study such particular models further
in this paper, but since these toposes have been used as models for higher categories
(see, e.g., [Rez01], Rez1(]), their internal type theories may be useful in extending
the interpretation of type theory from (oo, 1)-categories to (0o, n)-categories.

The proof given in this paper does not depend on that of [] and is more simi-
lar in flavor to that of [KLV124)]. In particular, it is purely model-category-theoretic;
no knowledge of type theory is required. (Note that the model-categorical parts of the

construction of [KLV12a] are reproduced in the shorter paper [[KLV12H].) However,
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this new proof does not replace |, since it applies only to presheaves of sim-
plicial sets, whereas that of [Shulf| applies to diagrams in any category that models
type theory with univalence (such as the syntactic category of type theory itself) and
also generalizes to oplax limits and gluing constructions.

Remark 1.1. Most aspects of type theory aside from univalence (e.g., X-types, II-
types, and identity types) are now known to admit models in all (co,1)-toposes,
and indeed in all locally presentable, locally cartesian closed (0o, 1)-categories. By
the coherence theorem of [LW14] (see also [[Awo14)), it suffices to present such an
(00, 1)-category by a “type-theoretic model category” in the sense of 7 such as
a right proper Cininski model category [[Cis03, [Cis06]. That this is always possible
has been proven by Cisinski [[Cis12] and by Gepner and Kock ] Moreover, if
the (00, 1)-category is an (oo, 1)-topos, then we can choose fibrations of fibrant objects
representing its object classifiers, which will behave almost like universes and satisfy
the univalence axiom. What is missing is that such “universes” need not be strictly
closed under the type-forming operations; that is, the operation taking elements of
the universe to types only respects these operations up to equivalence. It is this extra
missing bit of strictness that we aim to provide here, in the special case of elegant
Reedy presheaves.

In fact, a good deal of the proof that we will present is not special to elegant
Reedy categories: it applies to any cofibrantly generated right proper model struc-
ture on a presheaf category whose cofibrations are the monomorphisms and such that
the codomains of the generating acyclic cofibrations are representable. The structure
of the paper reflects this fact. We begin in §E with some remarks on how to construct
univalent universes (i.e., universe objects satisfying the univalence axiom). In particu-
lar, we recall a method due to that enables us to reduce statements about
the universe, such as its univalence and fibrancy, to statements about fibrations.

In the next three sections (§E—E) we show that any presheaf model category with
the properties mentioned above satisfies almost all the requirements to represent a
univalent universe in the internal type theory; the only thing missing is a proof that
the universe is fibrant. Specifically, in §E we give a new construction of such universes
(two previous constructions can be found in [KLV12d] and in [Strid]); in §f] we
prove a postponed lemma from §E; and in §f] we verify the remaining requirements
for modeling universes in type theory, using [LW14,[KLV12a].

Finally, in §E we complete the proof in the case of elegant Reedy presheaves,
showing that such presheaf categories satisfy the above conditions and that, moreover,
their universes are fibrant. This depends on the explicit nature of the Reedy model
structure.

A remark about notation: we will denote fibrations and cofibrations in any model
category by A — B and A — B, respectively. Similarly, we write A > B and A =~ B
for acyclic fibrations and acyclic cofibrations.
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2. On proofs of univalence

The univalence axiom, when interpreted in a model category, is a statement about
a “universe object” U, which is fibrant and comes equipped with a fibration p: U — U
that is generic, in the sense that any fibration with “small fibers” is a pullback of p.
(The meaning of “small” will vary with the model; the important thing for modeling
type theory is that the small fibrations be closed under the category-theoretic ana-
logues of all the type forming operations. Thus, we usually take the small fibrations to
be those of cardinality smaller than some inaccessible cardinal, for some appropriate
meaning of “cardinality.” We will return to this in §E)

In homotopy theory, it would be natural to ask for the stronger property that U
is a classifying space for small fibrations, i.e., that homotopy classes of maps A — U
are in bijection with (rather than merely surjecting onto) equivalence classes of small
fibrations over A. The univalence axiom is a further strengthening of this: it says that
the path space of U is equivalent to the “universal space of equivalences” between
fibers of p (which we will define in §E) In particular, therefore, if two pullbacks of p
are equivalent, then their classifying maps are homotopic.

It is not difficult to obtain a fibrant univalent universe that classifies small fibra-
tions up to homotopy, i.e., such that any fibration with small fibers is a homotopy
pullback of the generic one. For instance, one can simply choose any fibration between
fibrant objects that represents an object classifier in the sense of [, §6.1.6]. How-
ever, for modeling type theory we are concerned with the class of fibrations occurring
as strict pullbacks of the generic one. Finding a fibrant universe that classifies all
fibrations with small fibers in this strict sense is where the difficulties lie in modeling
the univalence axiom.

Naively, we might expect that the construction of such an object would take place
in four steps:

1) Construct a particular small fibration p: U—U.
2
3
4

Prove that every small fibration is a (strict) pullback of p.
Prove that U is fibrant.

(1)
(2)
3)
(4)

Prove that the univalence axiom holds.

The proof in [Shulf] that univalence lifts to inverse diagrams follows this outline:
we construct a Reedy fibration p that satisfies and almost by definition, and
then follows by a somewhat lengthy, but direct, analysis of exactly what the
univalence axiom claims.

The proof of univalence for simplicial sets in [KLV124], by contrast, follows a

slightly different route. They first construct a fibration p: U — U that satisfies the
following stronger version of :

(2") Given the solid arrows in the following diagram, where A — B is a cofibration,
() — B is a small fibration, and both squares of solid arrows are pullbacks, there
exist the dashed arrows rendering the diagram commutative and the third square
also a pullback:
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In a context (such as simplicial sets) where all objects are cofibrant, taking A =0

in yields .

Condition can be rephrased in the following suggestive way: Suppose for the
sake of argument that there were a thing called Ll such that maps A — Ll were precisely
small fibrations over A. Then the small fibration p: U — U would be classified by a
map U — 4, and asserts that this map is an acyclic fibration. (One can even
make this precise by regarding il as a fibered category or groupoid.)

With in hand, and [4) can be reduced to statements not referring to U at
all. For instance, suppose we can show the following:

(3) If i: A»> B is an acyclic cofibration and P — A a small fibration, then there
exists a small fibration ) — B such that P = ¢*Q. In other words, the solid
arrows below can be completed to a pullback square as shown:

P-Q
A—— B

Then given an acyclic cofibration i: A~ B and a map f: A = U, gives us a
fibration @ over B that pulls back to f*U over A, and by we have g: B> U

with g*(} = @ and gi = f. Thus, follows. Intuitively, we are saying that since
U — 4l is an acyclic fibration, if 4l is fibrant then so is U.

For , we need to know the category-theoretic expression of the univalence axiom.
This asserts that a canonical map PU — Eq(ﬁ) is an equivalence, where PU denotes
the path object of U and Eq(f] ) is the universal space of equivalences over U x U; we
will define the latter precisely in §H By the 2-out-of-3 property, this is equivalent to
U — Eq(U) being an equivalence, and therefore also to either projection Eq(U) — U
being an equivalence. Since these projections are always fibrations, we want them to
be acyclic fibrations, but acyclic fibrations are characterized by a lifting property. If
we rephrase this property of the second projection in terms of actual fibrations and

equivalences (i.e., using the hypothetical 1), we obtain the following:

(4) Suppose given a cofibration i: A — B, small fibrations Do - B and E; — A,
and an equivalence w: E; = FEs of fibrations over A, where Fy := i*D5. Then
there exists a small fibration D over B and an equivalence v: D1 = Do over
B, which yields w when pulled back along .
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If holds, then for any commutative square

A —> Eq(U)

1

B——U
with i a cofibration, the given maps A — Eq(U) and B — U respectively classify w
and Dy as in [47]. Then gives D; and v, condition yields a classifying map
for Dy extending the composite A — U — U, and using the following lemma, we can

construct a lift in the above square, so that Eq(U) — U is an acyclic fibration.

Lemma 2.1. In a suitable model category, let D1 — B and Dy — B be fibrations
classified by maps B = U, letv: D1 — Do be a weak equivalence over B, leti: A — B

be a cofibration, and suppose we have a lift of A - B — U x U to Eq(U) that classifies
1*(v). Then this lift can be extended to B so as to classify v.

In particular, if all objects are cofibrant (as will be the case in all our examples),
then taking A = () in implies that any weak equivalence between fibrations
over B is classified by some map B — Eq(U).

The proof of is the only place where we need to know the actual
definition of Eq(U). This definition is determined by the specific formulation of the
univalence axiom in type theory and is somewhat technical, so we will consider it
separately in §4, postponing the proof of until then. For now, it suffices
to take [Lemma 2.1 as a (hopefully plausible) black box. In fact, one might argue that
just as determines a good notion of what it means to be a universe object in a
model category, the conclusion of is a good definition of what it means

for Eq(U) to be a “universal space of equivalences” therein.

3. Constructing univalent universes

Let us now consider in what level of generality we can prove , , and |(4").
Perhaps surprisingly, given that is a modification of the actual statement
of univalence, it seems to be the easiest to prove in the most generality. The proof
in for simplicial sets carries through almost word-for-word in a much more
general context.

Let C be a small category. We say a morphism f: A — B in the presheaf category
Set®” is k-small, for some cardinal number k, if for all ¢ € C and b € B, we have
|f-1(b)] < k. We denote by |C| the cardinality of the coproduct set Y- .ccC(c,¢)
consisting of all arrows in C.
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Theorem 3.1. If Set®” is a presheaf category that is a simplicial model category

whose cofibrations are exactly the monomorphisms, and K is a cardinal number larger
op

than |C|, then the k-small fibrations in Set®” satisfy .

Proof (from |[KLV12d/). Suppose given a cofibration i: A »— B, a k-small fibration
Dy — B, and an equivalence w: E1 = FE5 := i* D5 of k-small fibrations over A, we

want to construct Dy and the dashed arrows in the diagram shown below . Define
D; and v as the following pullback in Set®” /B, where i, denotes the right adjoint
of pullback *:

Dy —i.Eq

_
vl lz*(w)

Do T> 141Dy =2 i, F>.

Since i* preserves this pullback, and i, is fully faithful, v pulls back to w. It is
straightforward to check that Dy — B is k-small; it remains to show it is a fibration
and that v is an equivalence.

We factor w as an acyclic cofibration followed by an acyclic fibration and treat
the two cases separately. In the second case, i.(w) is an acyclic fibration and thus so
is v. In the first case, since Fy and FEs are fibrations over A, by [, 7.6.11 and
9.5.24], we have a simplicial deformation retraction H: A' @ Ey — Ey of E; onto E;
in Set®” /A, where ® denotes the tensor for the simplicial enrichment. Now 7 and v
are monic, so if P denotes the pushout

Ey— D,

then j is also a monomorphism. Since we are in a simplicial model category, the
pushout product on the left of the following square is an acyclic cofibration:

(AU ®D2) UAO®p (AI ®P) ﬁDQ

A'® Dy —— B.

The map at the top is induced by the identity on A° ® Dy =2 Dy, and on A' ® P by
a combination of nH on E, and the constant homotopy at v on D; (which agree in
E, since H is a deformation retraction). Since Dy — B is a fibration, H exists, and
since i*(H) = H is a deformation retraction into Fy, H is a deformation retraction
into Dy. Thus, v is the inclusion of a deformation retract, hence a weak equivalence,
and Dy — B, being a retract of Dy — B, is a fibration. O

I do not know any general context of this sort in which one can prove . However,
the situation with is better:
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Theorem 3.2. Suppose Set®” is a presheaf category that is a cofibrantly generated
model category in which all cofibrations are monomorphisms, and that the codomains
of the generating acyclic cofibrations are representable. Then there exists a k-small

fibration satisfying .

In the special case of simplicial sets, this theorem has been proven by [[KLV124]
and [Str14]], and their proofs generalize immediately to any category satisfying the
stated hypotheses. I will present a third, new, proof of this theorem, which I believe
makes the connection to (0o, 1)-categorical object classifiers rather clearer. But to
facilitate comparisons, I will first sketch the main ideas of the proofs of [KLV12a]
and [Btr14].

The basic idea of both of these proofs is that a presheaf U is (of course) defined
by giving its values at each object ¢ € C, while by the Yoneda lemma, elements of
U (c) are in bijective correspondence with maps Y. — U, where Y, is the representable
presheaf at c. Since maps into U are supposed to classify small fibrations, we should
define U(c) to be some set of small fibrations over Y. The problem is to choose a small
set of representatives for this collection of fibrations in such a way that U becomes a
strict functor (rather than a pseudofunctor). In [[KLV124d] this is done by imposing
well-orderings on the fibers, while in [Str14] it is done by considering presheaves on
the category of elements of Y. (i.e., the slice category C/c).

By contrast, in the proof I will now present we do not define U by giving its value
at each object. Indeed, the fact that we are in a presheaf category makes no overt
appearance; we will only need to know that the codomains of the generating acyclic
cofibrations X »> Y have the property that hom(Y, —) preserves small colimits. In
addition, we will need the following “exactness properties” of any Grothendieck topos.

(a) Given a family of commutative squares

X, —Z

|

in which the bottom family of morphisms are the coproduct injections and the
right-hand map is the same for all i, then the top family of morphisms form a
coproduct diagram (so that Z = ). X;) if and only if all the squares are pull-
backs. A category with this property is called (infinitary) extensive [CLW93].
Extensivity is equivalent to coproducts being stable and disjoint, and implies
that coproducts preserve monomorphisms and pullback squares.

|

(b) Given a commutative cube

X——
l\ .
A

Z
.
!
—|—C

.
B——
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in which A ~— B is a monomorphism, the bottom face is a pushout, and the left
and back faces are pullbacks, then the top face is a pushout if and only if the
front and right faces are pullbacks. A category with this property is called adhe-
sive ] Adhesivity is equivalent to pushout squares of monomorphisms
being also pullback squares and being stable under pullback ], and implies
that the pushout of a monomorphism is a monomorphism.

(c) Given a commutative diagram

X, X, X, X,
Ay Ay A, Ay

of transfinite sequences for @ < A, with A some limit ordinal, in which the bottom
row is a colimit diagram, and for each a < § < A the morphism A, — Ag is a
monomorphism and the square

Xa %X@

| ]

Aa—>Ag

is a pullback, then the top row is a colimit diagram if and only if for each oo < A
the square

Xo — X

|

Aa—>A)\

is a pullback. I have not been able to find a name in the literature for categories
with this property; I propose to call them exhaustive. Exhaustivity is equiv-
alent to asking that in a transfinite composite of monomorphisms, the copro-
jections into the colimit are also monomorphisms and the colimit is pullback-
stable } It implies that transfinite composites of monomorphisms preserve
pullbacks, and hence also monomorphisms.

Proof of [Theorem 3.4. Let T be a generating set of cofibrations. The proof may be
described as “constructing a cofibrant replacement of il by the small object argu-

ment,” where 4l is the hypothetical object classifying small fibrations on the nose. We
define a transfinite sequence

Uo Uy Us - Ua
Uo Uy Us - Ua

such that

(i) each map U, — U, is a k-small fibration,
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(ii) for ao < 8, the map U, — Upg is monic, and
Uy ——s
Uy r——

is a pullback (hence U, — U, 5 is also monic).

(iii) for a < B, the square

B

Sy &

B

For limit «, we take colimits of both sequences. (Including o = 0 as a limit, this means
we begin with ﬁo = Uy = )). By induction, these are colimits of monomorphisms and
all intermediate squares are pullbacks. Thus, by exhaustivity, and remain true
in the colimit. For |(i) in the colimit, it suffices to show that every commutative square
as on the left below has a lift, where X »> Y is a generating acyclic cofibration.

X ——U, X—>l~fw_|—>l7a
Y —U, Y —U, ——U,.

However, by assumption this means the object Y is a representable presheaf, and
thus the map Y — U, factors through U, for some v < a. Since U, is the pullback of

U, to U,, any commutative square as on the left above factors as on the right, and
since Uy — U, is a fibration, we can find a lift.
At a successor stage, given U, — U, we consider the set of pairs (¢, f, p), where
e i: A— Bisin Z, our generating set of cofibrations,
e f: A— U, is any morphism, and
e p: P — B lies in a small set of representatives for isomorphism classes of x-small
fibrations into B that are equipped with an isomorphism i*P = f*U,.

We define ﬁa+1 — Ugq+1 to make the top and bottom squares of the following cube

into pushouts:

S P Uap

Z(i,f,p) f*fja Uoc

>p
2ifm) A L Ua

B N

Z(i,f}p) B Ua+1-

Note that the coproducts Z(i £.0) exist because the set of triples (i, f,p) is small,
for which purpose it is essential that p belong to a small set of representatives for
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isomorphism classes.

Now by extensivity > ¢ is monic, so by adhesivity so is U, — Uyy1, giving .
Likewise, by extensivity the left and back faces are pullbacks, so by adhesivity so are
the right and front faces, giving .

Finally, for any generating acyclic cofibration X — Y, since Y is representable,
any map Y — U,41 factors through Z(i,f,p) B or U,. Since the front and right faces
are pullbacks, it follows that any commutative square of the form

X — ﬁa—i—l

]

Y —— Ua+1

factors through either Y p or Uy — Uy, both of which are fibrations (the former
by a similar argument using extensivity). Thus, we can lift in any square (@)7 SO
ﬁaH — Uq+1 18 a k-small fibration; thus holds.

Now since a presheaf category is locally presentable, there exists A such that the
domains of all morphisms in Z are A\-compact (i.e., their covariant representable func-
tors preserve A-filtered colimits). For such a A, if i: A»— Bisin Z, and f: A — U,
is a morphism, and p: P — B is a k-small fibration with i*P = f*ﬁ;n then by A-
compactness of A, f factors through U, for some a < A. By construction, (i, f,p)
then induces a map ¢g: B — U,41 with g*[}a_ﬂ =~ P: so holds for i € Z. It will
suffice, therefore, to prove the following lemma. O

Lemma 3.3. In a category satisfying the assumptions of [Theorem 3.2, let p: U — U

be a fibration. Then the class of monomorphisms i satisfying |(2") with respect to p is
closed under pushout, transfinite composition, and retracts (i.e., it is “saturated”).

Proof. For closure under pushouts, suppose we are given the solid arrows in the
diagram

X N g U
i ’ %
A C U

where the bottom square is a pushout, ¢ (hence also j) is monic, and the other two
squares of solid arrows are pullbacks. Then we can fill in the objects X and Y and the
dotted arrows to make all vertical faces of the cube pullbacks; hence by adhesivity
the top face is a pushout. Assuming i satisfies , we have a map B — U that pulls
back U to Y compatibly; thus the universal property of pushouts induces the dashed
arrows shown. Finally, stability of pushouts under pullback implies that the square
involving the dashed arrows is also a pullback.
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For closure under transfinite composites, suppose Ag — A, is a transfinite com-

posite of monomorphisms, and suppose we are given the solid arrows in the following
diagram making the left-hand rhombus and the outer rectangle pullbacks:

/’/’\

XO Gy Xl .......... [ )Xa B LI IR PRTPIP X)\
U A 121/1 /\fa Ay

U.

Then we can fill in the X, and the dotted arrows making the other squares all
pullbacks; hence by exhaustivity the top row is a colimit. Assuming each A, — Ag
satisfies , we can successively extend the maps Ag — U and Xy — U to all A, and
X, and hence in the colimit to Ay and X . Finally, stability of transfinite composites
under pullback implies that the induced squares are all also pullbacks.

For closure under retracts, suppose we are given the solid arrows

Z ...................... >X ...................... >Z—;ﬁ
g ‘ %
W .......... ......... 5 Y l ey W
C A % U
\ \ X 2
v/
J % ¥ s
D B D

where the composites C' —+ A — C and D — B — D are identities. Then we can fill in
X and Y and the dotted arrows making all squares pullbacks. Assuming i satisfies ,
we have a map B — U compatibly classifying Y, and then the composite D — B — U
compatibly classifies W. U

I say that this proof makes the connection to object classifiers clearer because it
depends mainly on the fact that the pseudo 2-functor

(Setcop)op — Cat
B — {fibrations over B}

preserves coproducts, pushouts of monomorphisms, and transfinite composites of
monomorphisms. These can of course be regarded as “stack” conditions. Moreover,
since the monomorphisms in question are cofibrations, these colimits are also homo-
topy colimits.
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By comparison, in , 6.1.6.3] object classifiers in an (oo, 1)-category % are
constructed under the assumption that the (oo, 1)-functor

E°P — (00, 1)Cat
B ~ {all morphisms into B}

preserves all (homotopy) colimits. In this situation one can simply apply the (oo, 1)-
categorical adjoint functor theorem, but this could be unraveled more explicitly into
a transfinite construction very like that in the above proof of .

In conclusion, we have a general context that is almost enough to construct fibrant
univalent universes; in any particular situation it suffices to check the one remaining
condition . We will do this for elegant simplicial presheaves in §ﬂ, but first we
have some holes to fill in.

4. Universal spaces of equivalences

In this section we will define the universal space of equivalences Eq(U) and prove
Lemma 2.1 The definition is exactly the categorical interpretation of Voevodsky’s
type-theoretic definition of equivalences. However, in keeping with the tone of this
paper, we will describe it without reference to type theory.

For all of this section, let .# be a locally cartesian closed, right proper, simplicial
model category whose cofibrations are the monomorphisms. This is roughly what is
needed for it to interpret type theory (it is somewhat stronger than being a type-
theoretic model category in the sense of ]) In particular, all objects of .# are
cofibrant.

Local cartesian closure implies that for any f: A — B, the pullback functor f* :
M |B — A |A has a right adjoint, which we denote II;. By adjointness, since f* pre-
serves cofibrations (i.e., monomorphisms), IT¢ preserves acyclic fibrations. Of course,
f* also has a left adjoint given by composing with f, which we denote ;. If f is
a fibration, then ¥ maps every fibration p: E — A to a fibration fp: E — B. We
write IT4 and ¥4 when f is the map A — 1 to the terminal object.

In general, the goal of the constructions we will present is to “internalize” state-
ments like “f and g are homotopic” or “f is an equivalence.” By this we mean, to first
approximation, that we construct an object V' of .# such that there isa map 1 — V
if and only if the statement in question holds. (More precisely, we want there to be a
map X — V if and only if the statement holds after pulling back to .#/X.) We may
think of V' as a “space” whose points are, up to homotopy, assertions or witnesses of
the statement in question — but we construct it abstractly, using category-theoretic
operations, rather than any knowledge we have about how the objects of .# are put
together.

For example, suppose we are given two maps f,g : A — B between fibrant objects,
and suppose we would like to internalize the statement “f is homotopic to g.” Exter-
nally (i.e., as a statement about .#), to say that f is homotopic to g is to say that
(f,g9) : A— B x B lifts to a path object PB for B. Equivalently, this means that
the pullback fibration (f,g)* PB — A has a section. Finally, by adjointness, to give
a section of this fibration is equivalent to giving a map 1 — I 4(f, g)*(PB). Thus,
IT4(f,g)*(PB) is a good choice for an internalization of “f is homotopic to g.” (One
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can check that, in fact, there is a map X — II4(f,¢)*(PB) if and ounly if X x f is
homotopic to X x g in 4 /X.)

Our primary interest in this section is in internalizing the statement “f is an
equivalence.” There are now many known ways to do this; we use the original one
due to Voevodsky. Let p : E — B be a fibration between fibrant objects; we begin by
internalizing the statement “p is an acyclic fibration.” By , 7.6.11(2)], p is an
acyclic fibration if and only if there is a section s : B — E (so that ps =1p) and a
fiberwise homotopy sp ~ 1g (i.e., a homotopy in .#/B).

Let PgE = (E — B)2' be the cotensor in .# /B of E — B by the standard interval
A'. Since E is fibrant in .# /B, PgFE is a valid path object for it, i.e., we have an
acyclic cofibration £ » PpFE and a fibration PpFE — E xp E factoring the diagonal
E — E xp E. Thus, given s: B — E with ps = 1p, a fiberwise homotopy sp ~ 1g
means a lift of (sp,1g): E — E xp E to PgE. Now we have a pullback square

B g B

_
T
B—r—E

where my : E X E — E denotes the second projection. Therefore, a lift of (sp,1g)
to PgE is equivalent to a lift of s: B — F to Il,,(PpF). Since s is a section of p,
to give s and the homotopy sp ~ 1g together is equivalent to giving a section of the

composite I, (PgE) — E 2 B, ie., of ¥,II,,(PgFE). This motivates us to define
isContrp(E) == X,11,,(PsE).

Note that isContrg(E) is an object of .# /B. We regard it as a B-indexed family of
spaces internalizing, for each b € B, the assertion that the fiber p~1(b) is contractible.

Lemma 4.1. For a fibration p : E — B, the following are equivalent:
(i) p is an acyclic fibration.

(i1) isContrg(E) — B has a section.

(#ii) There is a map 1 — HpisContrg(E).

(iv) isContrp(E) — B is an acyclic fibration.

Proof. We have already argued that [i)<(ii), and is immediate from the
adjunction defining IIz. And certainly [iv :>, so it will suffice to show :>.
However, if p is an acyclic fibration, then both projections F xp E — E are weak
equivalences. Thus, by the 2-out-of-3 property, so is the diagonal E — E x g E. Again
by the 2-out-of-3 property, therefore, PsE — E xg E is an acyclic fibration. But
., : #/(E xpg E) — M |E preserves acyclic fibrations, so isContrg(E) — B is the
composite of two acyclic fibrations. O

The equivalence of [Lemma 4.1f(i) and means that, informally, the “points”

of isContrg(E) are “no more than” assertions that the corresponding fiber of p is
contractible. In other words, a fibration can “be acyclic” in at most one way, up to
homotopy. We also have the following stronger property alluded to above:
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Lemma 4.2. For a fibration p: E — B and a map g: A — B, the following are
equivalent:

(i) The pullback g*(E) — A is an acyclic fibration.
(i) g: A — B lifts to isContrp(E).

Proof. First note that is equivalent to saying that g*isContrp(F) has a section.
However, the construction of isContrg(E) involves only operations that are stable (up
to isomorphism) under pullback along g (in the case of ¥ and II this is sometimes
called the “Beck—Chevalley property”). Thus, g*isContrg(E) = isContr4(¢g*E), so the
equivalence follows from [Lemma 4.1] O

Now, in order to internalize the statement “f is an equivalence,” we will use the
fact that f is an equivalence if and only if the fibration-replacement of f is an acyclic
fibration. Internally, this means we will assert that every homotopy fiber of f is
contractible.

Specifically, given a map f : E1 — Es, we define Pf as the pullback shown below:

F{ X By —— Ey x Es.
FX1Eg,

This is a version of the classical mapping path fibration. It has a universal property
saying that to give a map A — Pf is the same as to give a map z: A — E1, a
map y : A — FEs, and a simplicial homotopy fz ~ y. The induced map r : Fy — Pf
corresponds to x = 1g,, y = f, and the constant homotopy.

We denote the two composites Pf — E1 x E5 — FE1 and Pf — FEy X Es — FE5 by
q and p, respectively. Interpreted representably, they remember only the maps = and
y, respectively. By construction, we have ¢r = 1g, and pr = f.

The composite rq : Pf — Pf acts representably by taking x, y, and a homotopy
H : fz ~ y to the triple consisting of x, fx, and the constant homotopy. This map
is homotopic to the identity, so r admits a deformation retraction, and hence is a
weak equivalence. (In fact, since r admits the retraction ¢, it is monic and hence an
acyclic cofibration; this is proven in [Shulj] in a bit more generality, by mimicking
the type-theoretic proof in ])

In conclusion, f = pr factors f as a weak equivalence followed by a fibration. By
the 2-out-of-3 property, therefore, f is a weak equivalence if and only if p is an acyclic
fibration, and therefore if and only if isContrg, (Pf) — F5 has a section (in which

case it is also acyclic, by [Lemma 4.1)). Thus, if we define
isEquiv(f) := lg,isContrg, (Pf),

then there is a map 1 — isEquiv(f) if and only if f is a weak equivalence.
In fact, we need a more general version of this construction that works with a
fiberwise map between fibrations. For two fibrations p; : £y — B and py : 5 - B
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and amap f: F1 — FE5 over B, we define Pgf by the analogous pullback

E1 ;)EQ

T

-
Ppf ————— PpkEy

1E1><f lJ l

Ei xp By —— E> xXg E>.
fx1g,

The same arguments applied in .# /B show that f = pr, where r : E; — Ppf and
p: Ppf — E5 are a weak equivalence and a fibration, respectively, both over B. We
now define

isEquivg (f) = II,,isContrg, (Ps f),
where ps : F5 — B is the given fibration. Note that this is an object of .#/B.

Lemma 4.3. For a map f between fibrations p1 : E1 — B and py : E5 — B, the fol-
lowing are equivalent:

(i) f is a weak equivalence.

(ii) isEquivg(f) — B has a section.

(11i) There is a map 1 — I gisEquivg(f).

(iv) isEquivg(f) — B is an acyclic fibration.
Proof. Our previous argument, applied in .# /B, shows @, and [ii)e{iii) is
immediate by adjunction. And certainly :>, so it remains to show the con-

verse. But by [Lemma 4.1, if isContrg, (Pp f) — E» has a section, then it is an acyclic
fibration, and II,, preserves acyclic fibrations. O

Lemma 4.4. For a map f between fibrations p; : E1 — B and ps : E5 — B, and a
map g : A — B, the following are equivalent:

(i) The induced map g*E1 — g*Es is a weak equivalence.
(ii) g lifts to isEquivg(f).
Proof. Just like the proof of . O

Our final goal now is to construct the universal space of equivalences between
two objects E; and Fs, or more generally between two fibrations p; : £y — B and
po : By — B. A logical place to start is with the universal space of functions—mnamely,
the exponential fung(E, Es) in /B, which exists since .# is locally cartesian
closed. This object comes with a universal morphism funp(E1, E2) xp E; — Es over
B. By the universal property of a pullback, this universal morphism equivalently
induces a morphism

h: funB(El,Eg) XB E1 — funB(El,Eg) XB EQ

over fung(FE1, Es), which we will denote by h as shown. We think of h as the “universal
family of functions E; — E5.” If the objects of .# had “points,” then the fiber of h
over a point f € fung(E1, E2) (which itself would live over some point b € B) would
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be the map f:p;(b) — py'(b) itself. Formally, what this means is that for any
object A, the bijection between lifts of g : A — B to fung(E1, F3) and morphisms
g*E1 — g*FE5 over A is implemented by pulling back h.

We can now construct isEquive,, , (g, g,)(h), which is a fibration over funp(E1, E2).
Its fiber over a “point” f € fung(E1, F») should be contractible if f : p7 ! (b) — py ' (b)
is an equivalence, and empty otherwise. Therefore, if we define

Equivg(E1, Es) = EfunB(El7E2)isEquivfunB(E17E2)(h),

then Equivg(E1, E3) (an object of .#/B) will be the universal family of equiva-
lences from E; to E, over B. More precisely, to give a map A — Equivg(E1, Es)
over some given map ¢g: A — B is to give a map A — fung(Ey, E>) that lifts to
iSEQUIVe, (7, ) (7). But by the universal property of funp(E1, E2) combined with
, this is equivalent to giving a map g*E; — g*Es that is an equivalence.

Finally, given a putative universe p : U — U, we define the universal space of equiv-
alences as

Eq(U) == Equivy,  (7iU, w50).
This is an object of .# /(U x U), with the property that lifting a map (g1,92) : A —

U x U to Eq(U) is equivalent to giving an equivalence g;U — ¢2U. In fact, combining
with the pullback-stability of local exponentials, we have

(91,92) " Eq(U) =2 Equiv, (97U, g5U).
Now we can prove .

Restatement of Lemma EI Let D1 — B and Dy — B be fibrations classified by
maps e1,es : B== U, let v: D1 — Ds be a weak equivalence over B, leti: A »— B be

a cofibration, and suppose we have a lift of A= B — U x U to Eq(ﬁ) that classifies
i*(v). Then this lift can be extended to B so as to classify v.

Proof. By the above remarks, we have (eq, e2)*Eq(U) 2 Equivg (D1, D2), and so our
given lift is equivalently a lift of i to Equivg (D1, D). Let k: B — fung(D;, D) be
the classifying map of v; then we have the commutative square

A —— Equivg(Dy, D3)

[ ]

B T> fUnB(Dl, DQ),
and hence also, invoking pullback-stability and the definition of Equivy, the following
commutative square:

A —— isEquivg(v)

B:B_

But since v is a weak equivalence, by the right-hand fibration in this
square is acyclic. Since i is a cofibration, there exists a lift as shown, and, tracing
backwards, this gives us our desired lift B — Eq(U). O
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5. Modeling type theory

In §E, we described a general plan for obtaining a universe object and showing
that it is fibrant and univalent. We remarked that for the interpretation of type
theory, we need the small fibrations classified by our universe to be closed under the
category-theoretic operations corresponding to all the basic type-forming operations:
dependent sums, dependent products, and identity types. We now show that this is
the case for the universes we constructed in §.

The easiest case is dependent sums, which are modeled by composition of fibra-
tions. The composite of fibrations is always a fibration; for the composite of k-small
fibrations to remain s-small, we merely need k to be regular.

Dependent products are most directly modeled by right adjoints to pullback. These
exist in any locally cartesian closed category, but we require that the dependent prod-
uct of a (k-small) fibration along a (k-small) fibration is again a (x-small) fibration.
The most natural way to ensure preservation of fibrations is via the adjoint condition
that pullback along fibrations preserves acyclic cofibrations. If the cofibrations are the
monomorphisms, then they are stable under pullback, and if the model category is
right proper, then weak equivalences are also stable under pullback along fibrations;
so these two conditions together suffice.

For a dependent product to preserve k-smallness in a presheaf category Setcop7 we
need £ to be a strong limit cardinal and larger than |C|. Thus, in conjunction with
dependent sums, we need k to be inaccessible and larger than |C].

Finally, the central insight of homotopy type theory is that identity types are
modeled by path objects. That is, for a k-small fibration B — A, we factor the diag-
onal B — B X4 B into an acyclic cofibration followed by a fibration, B — P B —
B x 4 B. Since B and B x 4 B are fibrant in the slice model category over A, in a
simplicial model category we can let P4B be the simplicial cotensor by A! in this
slice category. In a category sSet®” of presheaves of simplicial sets, this preserves
k-smallness as long as  is uncountable and larger than |C|.

There is also the issue of coherence for all these structures, but fortunately this is
taken care of by the coherence theorem of [LW14]| or [Awo14]]. Thus, we can say the
following:

Theorem 5.1. If sSet®” has a right proper, cofibrantly generated simplicial model
structure whose cofibrations are the monomorphisms, then it models type theory with
dependent sums, dependent products, and intensional identity types.

Moreover, if k is inaccessible and larger than |C|, and the codomains of the gener-
ating acyclic cofibrations are representable, then sSet®” contains a universe object
classifying k-small fibrations and satisfying . If this universe is fibrant (such as
if holds), it represents a univalent universe in the internal type theory.

Of course, with multiple inaccessibles larger than |C|, we can find multiple universe
objects of this sort, each contained in the next. More precisely, if x < A, then every
k-small fibration is also A-small, so we can find a pullback square

— U’
p lp'
— U’

T—x
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where p and p’ classify k-small and A-small fibrations, respectively, along with a
classifying map 1 — U’ for U itself.

In fact, every proof of gives us a little more: there is a canonical choice
of such a pullback square in which U — U’ is a monomorphism. This is fairly obvious
from the proofs of [[KLV12d] and [Stri4]; in our new proof, we can inductively
construct monomorphisms U, < U/, that are preserved by all the colimits, as long
as we choose the sets of (i, f, p)s for U’ to contain those for U.

These canonical inclusions are important, because in order to model a cumulative
hierarchy of universes in type theory, we need to ensure furthermore that the inclu-
sions respect the “universe structure.” To explain what this means, suppose U — U
is a universe. Then the local exponential

UW = (U x U — )00

is the base of a universal pair of composable small fibrations. If the composite of these
fibrations is again small, it is classified by some map ¥ : U") — U, and in order to
model a type-theoretic universe by U we must choose such a map.

Similarly, if the dependent product of the universal composable pair of small fibra-
tions is small, we can choose for it a classifying map II: U (1) 5 U. And for 1dent1ty
types, we consider U Xy U which is the base of a universal “type with two sections.”
We have a small fibration PUU - U Xy U where PUU is the path object of U in
sSet’ /U and we can choose for it a classifying map Id : UxyU—U.

The requirement for a cumulative hierarchy of universes is then that the inclusions
U < U’ respect this chosen structure. In [Shulj], I called such a U < U’ a universe
embedding. Fortunately, if our universes all satisfy property , then any inclusion
can be made into a universe embedding as follows.

Suppose, under the hypotheses of m that we have a monomorphism
1: U »— U’ between universes with the property that i (U = U. Then there is an
induced monomorphism U®) »— v’ )(1), which pulls back the universal composable
pair of U’-small fibrations to the analogous pair of U-small ones. If in addition we
have chosen some classifying map U") — U for the universal composite of U-small
fibrations, then, composing it with 7, we obtain another classifying map UM — U’ for
the same fibration. But now since U’ satisfies , we can extend this to a compatible
classifying map (U’)") — U’ for the universal composite of U’-small fibrations.

Thus, given ¥ : UM — U, it is always possible to choose ¥’ : (U")") — U’ such
that ¢ commutes with ¥ and ¥’. The same technique applies to dependent products,
and also to path objects as long as we choose constructions of the universal path
objects relative to U and U’ which are compatible under * (up to isomorphism);
in our simplicial model category, we can again use the cotensor with Al'. We can
furthermore induct up any sequence of universe inclusions

U0>—’U1>—>U2>—>"'
to obtain a sequence of universe embeddings. Thus we have the following:
Theorem 5.2. Under all the hypotheses of [Theorem 5.1, sSet®” contains as many
nested universe objects satisfying as there are inaccessible cardinals greater than

IC|. If these universes are fibrant, they represent univalent universes in the internal
type theory.



100 MICHAEL SHULMAN

Instead of the coherence theorem of [LW14], we could also obtain coherence from
the universes themselves, as in [KLV12a]. However, this requires either the use of an
“outer” universe providing the coherence, so that there is one fewer universe in the

type theory than there are universes in the model category, or an infinite hierarchy
of universes.

6. Elegant Reedy presheaves

Finally, we will show that holds in the Reedy model structure of simplicial
presheaves on any elegant Reedy category. This completes the proof that type theory
with univalent universes can be interpreted in such model categories.

Recall that for any simplicial category C, there is an injective model structure on
the category sSet”" of simplicial presheaves that is cofibrantly generated, left and
right proper, and simplicial, and its cofibrations are the monomorphisms. Thus, it
satisfies all the conditions of Theorems @ and @ except for representability of the
codomains of the generating acyclic cofibrations. In fact, in general the generating
acyclic cofibrations are the most mysterious part of the injective model structure.

However, there is a special class of categories C for which the injective model
structure can be described much more explicitly. When C is an elegant Reedy category
as in [BR13], the injective model structure coincides with the Reedy model structure,
which is perhaps the most explicit sort of model structure that can be put on a
category of simplicial presheaves. We will show that in this case the rest of the
structure follows as well, so that sSet®” models type theory with univalence.

Recall from [Hir03, Ch. 15] or [Hov9g, Ch. 5] that C is a Reedy category if the
following hold:

e There is a well-founded relation < on the objects of C.

e There are two subcategories CT and C™ containing all the objects of C.

e Every morphism « of C can be written uniquely as ata ™, where a™ lies in C*
and a~ lies in C™.

e If a: ¢ — d lies in C* and is not an identity, then ¢ < d.

e If a: ¢ — dlies in C~ and is not an identity, then d < c.

We say C is direct if C~ contains only identities, and inverse if C* contains only
identities.

For a presheaf X € sSet®” on a Reedy category C and an object ¢ € C, the match-
ing object is defined by

MCX = lima(c+¢c)op (X|8(C+J,c)op) s

where 9(CT | ¢) denotes the full subcategory of the over-category (C* | ¢) that omits
the identity arrow of c. Similarly, the latching object is defined by

L.X = Colima(cic—)op (X|a(c‘|,c—)op).

Then the category sSet®” has a model structure, called the Reedy model structure,
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in which a morphism f: A — B is a fibration just when each map

A. — B Xp, M A (6.1)
is a fibration in sSet, a cofibration just when each map

AUy, 4 L.B— B, (6.2)

is a cofibration in sSet, and a weak equivalence just when it is a levelwise weak
equivalence in sSet. This model structure is simplicial and left and right proper. For
a categorical perspective on this construction, see [RV14].

Note that if C is direct, then each L A is initial, so the Reedy cofibrations are just
the levelwise ones, and dually. For future use, we record the following:

Lemma 6.1. If f : A — B is a Reedy cofibration, then each map L.f: L.A — L.B
is a cofibration, which is acyclic if f is. Dually, if f is a Reedy fibration, then each
M.f: M_A — M_.B is a fibration, which is acyclic if f is.

Proof. Since d(c | C7) is an inverse category, its Reedy fibrations are levelwise. In

particular, the constant diagram functor sSet — sSet? (€)™ g right Quillen, and
so the colimit functor over 9(c | C7)°P is left Quillen. Hence, it suffices to show that

the restriction functor sSet® — sSet?(“¢ )”” preserves Reedy cofibrations. But
given y: ¢ —» din d(c J C~), we have 9(y | d(c } C7)) =2 d(d | C™), so this restriction
preserves latching objects.

An alternative argument, showing that L.f is a cell complex whose cells are the
maps (p.4) at objects preceding ¢, can be found in the third paragraph of the proof
of | , Lemma 7.1]. O

Remark 6.2. remains true even if A, B, and f are only defined on the
full subcategory of objects d € C with d < ¢. Thus, we can use it during the standard
Reedy process of building up diagrams and maps inductively.

By [Hir03} 15.6.24] or [RV14, 7.7], the Reedy model structure on sSet®” is cofi-

brantly generated; the generating Reedy acyclic cofibrations are the pushout products

(A ®@Ye)Unrgr,y (A"®@LY) — A" ®Y,.

Here Y: C — sSet®" is the Yoneda embedding, and K ® X denotes the simplicial
tensor (which in this case is the levelwise cartesian product). Since the functors
A" ®Y, are exactly the representable functors in sSet¢” (when regarded as the
presheaf category SetAOPXCOp), we can apply to obtain universes for
small Reedy fibrations that satisfy .

Note that for any regular cardinal x, if f and g are composable functions such that
g has k-small fibers, then f has k-small fibers if and only if g f does. Moreover, k-small
morphisms are closed under limits of size < k. Thus, if k > |C|, a Reedy fibration is
k-small in the sense of §E if and only if each map () is a k-small fibration in sSet.

We henceforth assume C to be an elegant Reedy category. This is a combinatorial
condition due to that ensures that the Reedy cofibrations in sSet®” are
exactly the (levelwise) monomorphisms, i.e., that the Reedy model structure coincides
with the injective one. Examples of elegant Reedy categories include direct categories,
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the simplex category A, the n-fold simplex category A", and Joyal’s categories O,,.
op

Thus, to obtain a model of type theory with univalent universes in sSet®”", it remains

only to show that the universes are fibrant.

Lemma 6.3. If C is an elegant Reedy category, then the Reedy model structure on

sSet®” satisfies .

Proof. Leti: A — B beaReedy (i.e., levelwise) acyclic cofibration, and let p: P — A
be a small Reedy fibration. The small fibration @ — B we want to define will be, in
particular, a factorization of the composite pi: P — B. By a standard argument for
Reedy diagrams (e.g. as found in [[Hov99, 5.2.5], [Hir03, 15.3.16], or [RV14], 7.4]), to
give such a factorization is equivalent to giving, by well-founded induction on ¢ € C,
a factorization of the induced map

P 1y p L.Q — B: Xy, McQ

(with L.Q and M.Q being defined inductively as we go). Equivalently, we must give an
object Q. and dashed arrows that complete the following diagram to be commutative:

LP —————LQ
Pom === ==~ » Qe (6.3)

AC XM.A .2\4613—>BC XM.B MCQ

By assumption, the lower-left map P, — A, x4 M. P in (@) is a small fibration.
Thus, it has a classifying map A. X, 4 M.P — U, where U is a universe for x-small
Kan fibrations in sSet. (Recall that this universe is fibrant, by , Theorem
2.2.1].) The section L.P — P, of this fibration corresponds to a dashed lifting:

_U

—
—
—
—
—
—
—
—
—

L.P=" % A.xpa M.P —— U.

Now by induction, for all a: ¢ — d in C~, the map Py — Qg is a pullback of an
acyclic cofibration along a fibration, and hence also an acyclic cofibration. Thus, the
map P — @ is (insofar as it is defined) a levelwise acyclic cofibration, and hence (by

elegance) a Reedy acyclic cofibration. By (and Remark 6.9), therefore,

L.P — L.Q is an acyclic cofibration. Since U is fibrant, we can thus extend the above
classifying map L.P — U to L.Q.

Now I claim that the bottom horizontal map in (B.d) is an acyclic cofibration. By
induction, for all a: d — ¢ in C*, we have a pullback square

PdJ—> Qu
[

Ad — By.
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Therefore, the right-hand square below is also a pullback (while the left-hand square
is a pullback by definition):

Ae X, A M.P —— M.P —— M.Q
A, ——— s M,A— M,B.

Thus, the outer rectangle above is also a pullback. Since this is also the outer rectangle
in the next diagram, whose right-hand square is a pullback by definition, so is its left-
hand square.

Ac ><MCA McP E— Bc ><MCB McQ E— MCQ

N

A; B, M_.B.
But @ — B is (insofar as it has been defined) a Reedy fibration; hence by Lemma 6.1,
M.Q — M_.B is a fibration. Therefore, so is the middle vertical map in (p.4)). This

means that the left-hand square in (5.4) exhibits the bottom horizontal map in (.3)
as a pullback of the acyclic cofibration A. — B, along a fibration, so it is an acyclic
cofibration.

Let D be the following pushout, with induced map as shown:

L.P——L.Q

_

Ac XM.A M.P » D

Bc ><MCB MCQ'

Since every morphism in C~ is split epic in an elegant Reedy category, every mor-
phism L.X — M.X is a monomorphism. It follows that the maps L.P — A; X4
M.P and L.QQ — B. x .5 M.Q are also monomorphisms. We have already observed
that L.P — L.Q and A. x4 M.P — B. X .5 M.Q are monomorphisms (cofibra-
tions), so the above pushout is a union of subobjects, and hence the induced dotted
map is also a monomorphism.

Moreover, we have also observed that A, X, 4 M. P — B, X, M:Q is an acyclic
cofibration, and so is A, X, 4 M.P — D since it is a pushout of such. Therefore, by
the 2-out-of-3 property, the induced dotted map is also a weak equivalence, and hence
an acyclic cofibration.

Now recall that we have a classifying map A, xpy,4a M. P — U for P., and an
extension to L.Q of its restriction to L.P (by way of (7) Thus, we have an induced
map D — U, and since U is fibrant we can extend this map to B, X p.p M.Q. Let
Q¢ = Be xp.p M:Q be the fibration classified by this map. Then we have all the
dashed arrows making (@) commutative and its lower square a pullback. By pasting
this on top of the left-hand square in (@), we see that P, is the pullback of Q. along
ic, as desired. O
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Putting this together with §§E~E, we have shown the following:

Theorem 6.4. For any elegant Reedy category C, the Reedy model category sSet¢”
supports a model of intensional type theory with dependent sums and products, identity
types, and as many univalent universes as there are inaccessible cardinals greater than
IC]. O

Since direct categories are elegant Reedy categories, and presheaves on a direct
category are of course the same as covariant diagrams on its opposite (which is an
inverse category), this generalizes (the restriction to sSet of) the corresponding the-
orem proven in }

It also includes some new examples, such as the model categories sSet®” of
bisimplicial spaces and sSet® of O,,-spaces. These model categories are interesting,
among other reasons, because they have localizations that present theories of higher
categories [, ] The univalent universes we have constructed in these
model categories have “sub-universes” corresponding to these localizations, which
may be useful for applying type theory to the study of higher categories.
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