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MOTIVIC LANDWEBER EXACT THEORIES
AND THEIR EFFECTIVE COVERS

MARC LEVINE

(communicated by Charles A. Weibel)

Abstract
Let k be a field of characteristic 0, and let (F,R) be a

Landweber exact formal group law. We consider a Landweber
exact T -spectrum E := R⊗L MGL and its effective cover f0E →
E with respect to Voevodsky’s slice tower. The coefficient ring
R0 of f0E is the subring of R consisting of elements of R of non-
positive degree; the power series F ∈ R[[u, v]] has coefficients in
R0, although (F,R0) is not necessarily Landweber exact. We
show that the geometric part X 7→ f0E∗(X) := (f0E)2∗,∗(X) of
f0E is canonically isomorphic to the oriented cohomology theory
X 7→ R0 ⊗L Ω∗(X), where Ω∗ is the theory of algebraic cobor-
dism as defined in [12]. This recovers results of Dai–Levine [2]
as the special case of algebraic K-theory and its effective cover,
connective algebraic K-theory.

Introduction

Let S be a fixed base-scheme, Sm/S the category of smooth quasi-projective S-
schemes, and SH(S) the motivic stable homotopy category of T -spectra. In this
paper we consider two types of cohomology theories, which carry the designation
“oriented.” The first type are those bi-graded theories on Sm/S, X 7→ E∗,∗(X) rep-
resented by a (weak) commutative ring T -spectrum E ∈ SH(S) with an orientation
c in the reduced cohomology Ẽ2,1(P∞). The second are the oriented theories in the
sense of [12, Definition 1.1.1], that is, contravariant functors X 7→ A∗(X) from Sm/S
to commutative graded rings, together with push-forward maps f∗ for projective mor-
phisms f : Y → X, satisfying a number of functorialities and compatibilities. We will
refer to the first type as “motivic” theories, the second as “geometric.” Assigning to
a motivic theory E∗,∗ its geometric part X 7→ E2∗,∗(X) gives the link between these
two notions.

Among the oriented motivic theories, the theory represented by Voevodsky’s alge-
braic cobordism spectrum MGL is the universal one (see [28] for the construction of
MGL, [21] for its universality). For S = Spec k, k a field of characteristic 0, algebraic
cobordism Ω∗ as defined in [12] is the universal geometric theory.
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For S = Spec k as above, the universal property of Ω∗ gives a canonical natural
transformation Ω∗ → MGL2∗,∗ of geometric theories. Relying on results of Hopkins,
Morel, and Hoyois [5, 6], this was shown to be an isomorphism in [11]. The main
purpose of this paper is to extend this isomorphism property to other motivic theories
and their geometric parts.

For a formal group law (F,R), F (u, v) ∈ R[[u, v]], one can form the oriented geo-
metric theory X 7→ R⊗L Ω∗(X), where L is the Lazard ring and L → R the clas-
sifying homomorphism for F . In the motivic setting, the situation is more delicate,
however, just as in the classical case, if (F,R) is a Landweber exact formal group law,
there is a corresponding oriented weak commutative ring spectrum MGL(R) with
MGL(R)∗,∗(X) ∼= R⊗L MGL∗,∗(X) (see [19]).

One can go a bit farther by considering the effective cover f0E → E of a T -spectrum
E ∈ SH(S). Here, f0 is the truncation functor with respect to Voevodsky’s slice tower.
f0E is an analog of the classical −1 connective cover of a spectrum, and inherits
many properties from E . In particular, for E an oriented weak commutative ring T -
spectrum, the effective cover f0E inherits from E a canonical structure of an oriented
weak commutative ring T -spectrum; the coefficient ring R0 := (f0E)2∗,∗(S) is just the
degree ⩽ 0 part of the coefficient ring R := E∗,∗(S) of E (at least for S the spectrum
of a characteristic 0 field; see Theorem 3.9). The coefficients of the group law FE
associated to E actually lie in R0, but even if (FE , R) is Landweber exact, it is usually
the case that (FE , R0) is not.

For E the oriented spectrum MGL(R) associated to a Landweber exact formal
group law, with effective cover E0, our main result is the following: For k a charac-
teristic 0 field, S = Spec k, the canonical natural transformations

E2∗,∗(k)⊗L∗ Ω∗ → E2∗,∗, E2∗,∗
0 (k)⊗L∗ Ω∗ → (f0E)2∗,∗

are isomorphisms of geometric oriented cohomology theories on Sm/k. We actu-
ally prove a stronger result (see Corollary 6.3) concerning the oriented Borel–Moore
homology theories on Sch/k defined by E and f0E .

The case of the Landweber exact theory E∗,∗ follows immediately from the case
E = MGL, proved in [11], so our efforts are directed at the effective cover E0. The
main idea for these results already appears in our treatment (with S. Dai) of the case
of algebraic K-theory and its effective cover [2]. We axiomatize the situation via the
notion of a geometrically Landweber exact motivic oriented theory (see Definition 3.7)
and show that for such a theory E , the canonical map

E2∗,∗(k)⊗L∗ Ω∗(X) → E2∗,∗(X)

is an isomorphism for all X ∈ Sm/k (Theorem 6.2). Our result on a Landweber
exact theory and its effective cover then follow once we show that these are both
geometrically Landweber exact (Theorem 3.9).

The paper is organized as follows: We begin by recalling some of the basic notions
concerning oriented (weak) commutative ring spectra in the motivic stable homotopy
category in §1, where we also recall the main results on the universality of MGL. In §2
we recall basic facts about the slice tower in the motivic stable homotopy category;
we discuss as well some issues of convergence of the slice spectral sequence. In §3
we introduce the effective cover of an oriented weak ring T -spectrum and show that
it too defines an oriented weak commutative ring spectrum. We discuss Landweber
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exact theories and introduce the notion of a geometrically Landweber exact theory.
We discuss oriented duality theories on the category of smooth pairs over k in §4.
This theory provides the link between geometric theories and motivic theories via the
operation of taking the geometric part of a motivic oriented theory. We describe the
relation of oriented duality theories with algebraic cobordism in §5 and put everything
together and prove our main results in the final section, §6.

I would like to thank the referee for a number of helpful comments and suggestions.

Notation and conventions. We let Spc and Spc• denote the categories of simplicial
sets and pointed simplicial sets, respectively, with homotopy categories H and H•.
Spt is the category of spectra (for the usual suspension operator Σ := (−) ∧ S1) and
SH is the stable homotopy category.

We denote by Gm the pointed S-scheme (A1
S − 0S , 1S). Pn∗ will denote the pointed

S-scheme PnS , with base-point [1, 0, . . . , 0]; we similarly give the limit P∞ the base-
point [1, 0, . . .].

We use a base-scheme S that is separated, regular, noetherian and of finite Krull
dimension; we will at a certain point specialize to the case S = Spec k, k a field of
characteristic 0. Sch/S will denote the category of quasi-projective schemes over S
and Sm/S the full subcategory of smooth, quasi-projective schemes over S. Spc(S)
and Spc•(S) are, respectively, the categories of presheaves on Sm/S with values in
Spc and Spc•. SptS1(S) will denote the category of S1-spectra over S, this being
the category of presheaves of spectra on Sm/S. We let SptT (S) denote the category
of T -spectra in Spc•(S), with T := A1/A1 \ {0}.

The categories Spc(S), Spc•(S), SptS1(S) and SptT (S) all have motivic model
structures (the original source for the unstable theory is [15]; see also [3, 4] for a
compact description. For the stable theory, we refer the reader to [7]), with homotopy
categories denoted H(S), H•(S), SHS1(S) and SH(S), respectively. The categories
SHS1(S) and SH(S) are triangulated tensor categories with translation given by S1-
suspension; the tensor structure is constructed using symmetric spectrum versions of
SptS1(S) and SptT (S), with appropriate model structures, also discussed in [7]. The
unit for the tensor structure in SH(S) is the motivic sphere spectrum SS := Σ∞T S+.

We have suspension functors Σa,b : SH(S) → SH(S) defined for a ⩾ b ⩾ 0 by
Σa,b(E) = E ∧ Sa−b ∧G∧bm , and extending to a, b ∈ Z using the invertibility of Σ1,0

and Σ1,1. We have as well the T -suspension ΣT (E) := E ∧ T , canonically isomor-
phic to Σ2,1. In addition, we have infinite suspension functors Σ∞T : H•(S) → SH(S),
Σ∞s : H•(S) → SHS1(S) and Σ∞Gm

: SHS1(S) → SH(S) with respective right adjoints
Ω∞T : SH(S) → H•(S), Ω∞S1 : SHS1(S) → H•(S) and Ω∞Gm

: SH(S) → SHS1(S).
We let L denote the Lazard ring, that is, the coefficient ring of the universal

rank 1 commutative formal group law FL ∈ L[[u, v]]. We let L∗ denote L with the
grading determined by deg aij = 1− i− j if FL(u, v) = u+ v +

∑
i,j⩾1 aiju

ivj and

let L∗ denote L with the opposite grading Ln := L−n.

1. Oriented ring T -spectra

We recall that a morphism f : E → F in a compactly generated triangulated cat-
egory T is a phantom map if for each compact object A in T , the induced map
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f∗ : HomT (A, E) → HomT (A,F) is zero; it is enough to check on compact objects
of the form X [n], where X is an element in a given set of compact generators and
n ∈ Z. The subset of phantom maps HomT (E ,F)ph ⊂ HomT (E ,F) is clearly a two-
sided ideal, so we may form the category T /ph with the same objects as T and
morphisms HomT /ph(E ,F) := HomT (E ,F)/HomT (E ,F)ph.

We will be mainly interested in the case T = SH(S), in which the shifted suspen-
sion spectra ΣnTΣ

∞
T X+, X ∈ Sm/S, n ∈ Z, form a set of compact generators. Thus,

two maps f, g : E → F are equal modulo phantom maps if and only if f∗ = g∗ as maps
of the associated bi-graded cohomology theories f∗, g∗ : E∗,∗ → F∗,∗ on Sm/S.

Definition 1.1. A commutative ring T -spectrum is a T -spectrum E ∈ SptT (S) to-
gether with maps µ : E ∧ E → E , 1 : SS → E in SH(S) such that (E , µ, 1) is a commu-
tative monoid in SH(S). A weak commutative ring T -spectrum is a T -spectrum E ∈
SptT (S) together with maps µ : E ∧ E → E , 1 : SS → E in SH(S) such that (E , µ, 1)
is a commutative monoid in SH(S)/ph.

For E ,F (weak) commutative ring T -spectra, a morphism f : E → F in SH(S) is
a monoid map (resp. weak monoid map) if f is a map of monoid objects in SH(S)
(resp. in SH(S)/ph).

Definition 1.2. An orientation on a weak commutative ring T -spectrum (E , µ, 1)
is an element c ∈ E2,1(P∞∗ ) such that the restriction c|P1 ∈ E2,1(P1

∗) corresponds to
1 ∈ E0,0(S) under the suspension isomorphism E0,0(S) ∼= E2,1(T ) ∼= E2,1(P1

∗).

A pair (E , c) consisting of a weak commutative ring T -spectrum (E , µ, 1) and an
orientation c is an oriented weak commutative ring T -spectrum. We say that a weak
commutative ring T -spectrum (E , µ, 1) is orientable if there is an orientation c on E .
We sometimes omit the explicit mention of the orientation c.

A morphism f : (E , c) → (E ′, c′) of oriented weak commutative ring T -spectra is a
morphism f : E → E ′ in SH(S) such that f is a weak monoid map and f∗(c) = c′.

Example 1.3. The algebraic cobordism spectrum MGL has been studied in [21]. MGL
is the T -spectrum (MGL0,MGL1, . . .) with MGLn the Thom space Th(En), with
En → BGLn the universal n-plane bundle. MGLS is a commutative ring T -spectrum
in SH(S) with an orientation cMGL ∈ MGL2,1(P∞∗ ) given by noting that the diagram

P∞ E1
oo // Th(E1) = MGL1

induces an isomorphism P∞∗ ∼= MGL1 in H•(S) and thereby a morphism cMGL :
Σ∞T P∞∗ → Σ2,1MGL in SH(S).

We recall the following result of Panin, Pimenov, and Röndigs.

Theorem 1.4 ([21, Theorem 1.1]). For E a commutative ring T -spectrum in SH(S),
sending a monoid morphism φ : MGL → E to φ(cMGL) gives a bijection of the set of
monoid maps φ with the set of orientations cE ∈ E2,1(P∞∗ ).

Given an oriented commutative ring T -spectrum (E , c) in SH(S), we let

φE,c : MGL → E

denote the corresponding morphism of commutative ring T -spectra.
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In fact, this result extends directly to the setting of oriented weak commutative ring
spectra, replacing “monoid map” with “weak monoid map.” Indeed, the proof in [21]
reduces to proving certain identities in E∗,∗(MGL(n)) or E∗,∗(MGL(n) ∧MGL(n)).
It is shown in [21] that the canonical map

E∗,∗(MGL(n)) → lim
←

E∗,∗(Th(T (n,m)))

is an isomorphism, where T (n,m) → Grass(n, n+m) is the universal bundle and
Th(−) is the Thom space. Similarly,

E∗,∗(MGL(n) ∧MGL(n)) ∼= lim
←

E∗,∗(Th(T (n,m)) ∧ Th(T (n,m))).

Their proof relies on showing that the maps on E-cohomology in the inverse system are
surjective, hence the proofs only require the knowledge of E-cohomology on objects
in Sm/S, and therefore the proofs work for oriented weak commutative ring spectra
without change.

In case S = Spec k, k a field, Vezzosi’s proof of the universality of MGL [25, The-
orem 4.3] is also based on obtaining identities in E∗∗(MGL(n)) or E∗∗(MGL(n) ∧
MGL(n)) and thus can also be adapted to the setting of oriented weak commutative
ring T -spectra.

Remark 1.5. Let E ∈ SH(S) be a weak commutative ring T -spectrum. Let tE ∈
E1,1(Gm) be the element corresponding to the unit 1 ∈ E0,0(S) under the suspen-
sion isomorphism. By functoriality, tE gives a map of pointed sets

tE(X) : O×X(X) → E1,1(X).

If E admits an orientation cE ∈ E2,1(P∞∗ ), then tE(X) is a group homomorphism.1

Using the E∗,∗(S)-module structure on E∗,∗(X), tE(X) extends to a map of E∗,∗(S)-
modules

tE(X) : E2∗,∗(S)⊗Z O×X(X) → E2∗+1,∗+1(X).

2. The slice spectral sequence

Voevodsky introduced in [26] his slice tower as a motivic analog to the classical
Postnikov tower for spectra. In addition to [26], we refer the reader to [27] and [8, 9]
for the basic facts concerning the slice tower, some of which we briefly recall here for
the reader’s convenience.

We consider the localizing subcategory ΣpTSH
eff(S) of SH(S) generated by objects

ΣnTX+, with X ∈ Sm/S and n ⩾ p, with inclusion ip : Σ
p
TSH

eff(S) → SH(S). The

objects ΣnTX+ are compact, hence each of the categories ΣpTSH
eff(S) is compactly

generated; the set of all ΣnTX+, n ∈ Z, X ∈ Sm/S similarly forms a set of compact
generators for SH(S).

Thanks to results of Neeman [17] on compactly generated triangulated categories,
the functor ip admits a right adjoint rp : SH(S) → ΣpTSH

eff(S). Defining fp := ip ◦

1Letting S denote the sphere spectrum and writing [a] := tS(a), this follows from the identity
[ab] = [a] + [b] + η[a][b] (η : S ∧Gm → S the stable Hopf map) and the fact that η goes to zero in
any oriented theory E . Both these facts are proven by Morel in [14, §6].
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rp : SH(S) → SH(S), one has canonical natural transformations fp → id, fp+1 → fp.
Applying these to a T -spectrum E ∈ SH(S) yields the the slice tower

. . .→ fp+1E → fpE → . . .→ E .

The slice functor sp : SH(S) → SH(S) is characterized up to unique isomorphism
by natural transformations fp → sp → fp+1[1] so that for each E ∈ SH(S), the
triangle

fp+1E → fpE → spE → fp+1E [1]

is distinguished.
There are canonical isomorphisms for all a, b, p,

Σa,b ◦ fp ∼= fp+b ◦ Σa,b; Σa,b ◦ sp ∼= sp+b ◦ Σa,b,

compatible with the defining distinguished triangles for the sp. The canonical map
fnE → E induces an isomorphism Ω∞Gm

fnE ∼= Ω∞Gm
E in SHS1(S) for all n ⩽ 0.

For Y ∈ Sm/S, we have the associated slice spectral sequence

Ep,q2 (Y ;n) = (s−qE)p+q,n(Y ) =⇒ Ep+q,n(Y ). (2.1)

We conclude this section with a convergence criterion for the spectral sequence
(2.1).

Lemma 2.1. Suppose that S = Spec k, k a perfect field. Take E ∈ SH(S). Suppose
that there is a non-decreasing function f : Z → Z with limn→∞ f(n) = ∞, such that
πa+b,bE = 0 for a ⩽ f(b). Then the for all Y , the spectral sequence (2.1) is strongly
convergent.2

Proof. We may rewrite the E2-term in (2.1) as

Ep,q2 (Y ;n) = HomSH(S)(Σ
∞
T Y+,Σ

p+q,ns−qE).

The spectral sequence will be strongly convergent (for fixed n) if for each m0 ∈ Z,
there is an integer q(m0) such that

HomSH(S)(Σ
∞
T Y+,Σ

m,nfqE) = 0

for all q ⩾ q(m0) and all m ⩾ −m0. Indeed, we have

HomSH(S)(Σ
∞
T Y+,Σ

m,nfqE) = HomSHS1 (S)(Σ
−m
S1 Σ∞S1Y+,Ω

∞
Gm

Σ0,nfqE)
= π−m(Ω∞Gm

Σ0,nfqE(Y )).

Thus, the above condition is just saying that, given an integer m0, the spectrum
Ω∞Gm

Σ0,nfqE(Y ) is m0-connected for all q ⩾ q(m0), this being a standard criterion for
the strong convergence of the spectral sequence associated to the tower of spectra

. . .→ Ω∞Gm
Σ0,nfqE(Y ) → . . .→ Ω∞Gm

Σ0,nf−nE(Y ) ∼= Ω∞Gm
Σ0,nE(Y ).

We proceed to exhibit the existence of such an integer q(m0).

2As spectral sequence {Epq
r } ⇒ Gp+q converges strongly to G∗ if for each n, the spectral sequence

filtration F ∗Gn on Gn is finite and exhaustive, there is an r(n) such that for all p and all r ⩾ r(n),
all differentials entering and leaving Ep,n−p

r are zero and the resulting maps Ep,n−p
r → Ep,n−p

∞ =
GrpFG

n are all isomorphisms.
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We recall the 2-variable Postnikov tower fa,b defined in [8, §3], with fb = f−∞,b.
We also recall that

i) πm+r,rfa,bF = 0 for m < a, b, r ∈ Z [8, Lemma 4.4],

ii) the canonical map ρa,b : fa,bF → fbF induces an isomorphism on πm+r,r for all
m ⩾ a, r ⩾ b, and

iii) ρa,b : fa,bF → fbF is an isomorphism if ρ induces an isomorphism on πm+r,r for
all m ∈ Z and r ⩾ b [8, Lemma 4.6].

The universal property of fq+n gives the isomorphism for all r ⩾ q + n

πm+r,rfq+nΣ
0,nE ∼= πm+r,rΣ

0,nE ∼= πm+r,r−nE .

By assumption on E , πm+n+r−n,r−nE = 0 for m+ n ⩽ f(r − n), and thus

πm+r,rfq+n(Σ
0,nE) = 0

for m ⩽ f(r − n)− n as well (assuming r ⩾ q + n).
Now take q(m0) to be an integer such that f(q(m0)) ⩾ m0 + dimY + n, and take

q ⩾ q(m0). As f is non-decreasing, we have f(r − n)− n ⩾ f(q(m0))− n ⩾ m0 +
dimY for all r ⩾ q + n, and hence

πm+r,rfq+n(Σ
0,nE) = 0

for m ⩽ m0 + dimY , r ⩾ q + n. But by (i)–(iii), this implies that the map

fm0+dimY+1,q+n(Σ
0,nE) → fq+n(Σ

0,nE)

is an isomorphism, and thus by (i), πa+b,bfq+n(Σ
0,nE) = 0 for all a ⩽ m0 + dimY ,

b ∈ Z. Translating back to Ω∞Gm
Σ0,nfqE via the isomorphisms

πa+b,bfq+n(Σ
0,nE) ∼= πa+b,bΣ

0,nfqE ∼= πa+b,bΩ
∞
Gm

Σ0,nfqE

for b ⩾ 0, a ∈ Z, we have

πa+b,bΩ
∞
Gm

Σ0,nfqE = 0

for all a ⩽ m0 + dimY , b ⩾ 0, q ⩾ q(m0). In particular, taking b = 0,

πaΩ
∞
Gm

Σ0,nfqE = 0

for all a ⩽ m0 + dimY , q ⩾ q(m0).
We now apply the local–global spectral sequence (with q ⩾ q(m0))

Ea,b2 = Ha(YNis, π−bΩ
∞
Gm

Σ0,nfqE) =⇒ π−a−b(Ω
∞
Gm

Σ0,nfqE(Y )).

This sequence is convergent by [1, Theorem 8] since Y has finite Nisnevich cohomolog-
ical dimension ⩽ dimY and is strongly convergent since π−bΩ

∞
Gm

Σ0,nfqE = 0 for −b ⩽
m0 + dimY . In particular, Ea,b2 = 0 for a+ b ⩾ −m0, and hence Ω∞Gm

Σ0,nfqE(Y ) is
m0-connected for q ⩾ q(m0).

3. Oriented theories and their T -effective covers

3.1. The T -effective cover
Proposition 3.1. 1. Let (E , µ, 1) be a weak commutative ring T -spectrum. Then f0E
has a unique structure of a weak commutative ring T -spectrum such that the canonical
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map ρ : f0E → E is a weak monoid morphism.
2. If (E , c) is an oriented weak commutative ring T -spectrum, then there is a unique
element c0 ∈ (f0E)2,1(P∞∗ ) with ρ∗(c0) = c, and c0 defines an orientation on the weak
commutative ring T -spectrum f0E.
3. We have tE = ρ∗(tf0E) in E1,1(Gm).

Proof. Write E0 for f0E . We first lift the multiplication. We note that SHeff(S) is
closed under smash product, as the generators are, so E0 ∧ E0 is in SHeff(S). Thus,
the composition

E0 ∧ E0
ρ∧ρ−−→ E ∧ E µ−→ E

admits a unique lifting µ0 : E0 ∧ E0 → E0 making

E0 ∧ E0
µ0 //

ρ∧ρ
��

E0
ρ

��

E ∧ E
µ

// E

commute.
We claim that µ0 is associative modulo phantom maps. For this, let

φ : E0 ∧ E0 ∧ E0 → E0
denote the difference µ0 ◦ (µ0 ∧ id)− µ0 ◦ (id ∧ µ0). Let A be a compact object of
SH(S) and let h : A→ E0 ∧ E0 ∧ E0 be a morphism in SH(S). We apply [17, theorem
4.3.3] for the subcategory SHeff(S) of SH(S), generated as a localizing subcategory
of SH(S) by the set of compact objects S := {Σ∞T X+, X ∈ Sm/S}, with cardinal β =
ℵ0. This tells us that there is a compact object B in SHeff(S), and morphisms f : A→
B, g : B → E0 ∧ E0 ∧ E0, such that h = g ◦ f . But as B is compact, the composition
ρ ◦ φ ◦ g in SH(S) is zero, and since B is in SHeff(S), the universal property of
ρ : E0 → E implies that φ ◦ g = 0 in SHeff(S). Thus, φ ◦ h = φ ◦ g ◦ f = 0, and hence
µ0 is associative modulo phantom maps.

The unit map 1: SS → E factors uniquely through ρ, since SS is in SHeff(S), giving
the unit map 10 : SS → E0; the identities

µ0 ◦ (idE0 ∧ 10) = idE0 = µ0 ◦ (10 ∧ idE0)

in SH(S)/ph and the commutativity of µ0 modulo phantom maps follow as for the
proof of associativity.

For (2), recall that ∗ = [1, 0, . . . , 0] in Pn. Let An(∗) ⊂ Pn be the open subscheme
X0 ̸= 0. Then the quotient map Pn∗ → Pn/An(∗) is an isomorphism in H•(S), giv-
ing the isomorphism P∞∗ ∼= lim−→n

Pn/An(∗). In particular, both Pn∗ and P∞∗ are in

Σ1
TSH

eff(S).
We have the isomorphism ΣT f0 E ∼= f1ΣT E , and under this isomorphism

ΣT ρ : ΣT f0E → ΣTE goes over to the universal map ρ1 : f1ΣTE → ΣTE . Thus,
c : P∞∗ → ΣTE factors uniquely through ΣT ρ via a map c0 : P∞∗ → ΣT f0E . The restric-
tion of c0 to P1

∗ is similarly the unique lifting of c|P1
∗
, which shows that c0|P1

∗
∈

(f0E)2,1(P1
∗) corresponds to 10 ∈ (f0E)0,0(S) under the suspension isomorphism. Thus,

c0 ∈ (f0E)2,1(P∞∗ ) is an orientation for f0E .
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For (3), this follows directly from (1) and the naturality of the map tE with respect
to weak monoid morphisms.

3.2. Landweber exact theories
We recall the Landweber exactness conditions for a formal group law (F,R): Let

φ : L∗ → R be the classifying map for (F,R). Choose homogeneous polynomial gen-
erators for L∗ over Z, L∗ = Z[x1, x2, . . .], with deg xi = −i. Then for each prime p,
the sequence p, xp−1, . . . , xpi−1, . . . is a regular sequence on R.

For an oriented theory (E , c), E ∈ SH(S), let R∗E be the coefficient ring, that is,
R∗E := E2∗,∗(S). Let FE,c(u, v) ∈ R∗E [[u, v]] be the formal group law of the oriented
theory (E , c).

We let SH(S)T ⊂ SH(S) be the full subcategory of Tate spectra, that is, the
localizing subcategory generated by the spheres Σa,bSS , a, b ∈ Z. We recall from [19,
§4] some basic facts concerning Tate spectra: There is an exact projection functor
pT : SH(S) → SH(S)T right adjoint to the inclusion. For a morphism f : S → S′,
the functor Lf∗ : SH(S′) → SH(S) maps SH(S′)T to SH(S)T and the restriction
Lf∗T : SH(S′)T → SH(S) has right adjoint pT ◦Rf∗. Finally, pT is a SH(S)T -module
map, that is, for E ∈ SH(S)T and F ∈ SH(S), there is a natural isomorphism

pT (E ∧ F) ∼= E ∧ pT (F). (3.1)

We let SH(S)fin ⊂ SH(S) denote the thick subcategory of finite spectra, namely, the
thick subcategory generated by the spectra ΣnTΣ

∞
T X+, X ∈ Sm/S, n ∈ Z. Similarly,

we let SH(S)T ,fin ⊂ SH(S)T be the thick subcategory generated by spheres Σa,bSS ,
a, b ∈ Z.

Definition 3.2. An oriented weak commutative ring T -spectrum (E , c) with classi-
fying map φE,c : MGL → E is said to be Landweber exact if
1. The classifying map L∗ → R∗E for the formal group law FE,c satisfies the Landweber
exactness conditions.
2. For all finite spectra F ∈ SH(S)fin, the map R∗E ⊗R∗

MGL
MGL∗,∗(F) → E∗,∗(F)

induced by φE,c and the product map E2n,n(S)⊗ Ea,b(F) → Ea+2n,b+n(F) is an iso-
morphism.
3. E is in the Tate subcategory SH(S)T of SH(S).

Remark 3.3. Let k be a field of characteristic 0. Naumann, Spitzweck, and Østvær
[19, theorem 8.7] show that, for each Landweber exact L∗-algebra R∗, the bi-graded
functor from finite spectra to bi-graded algebras, F 7→ R∗ ⊗L∗ MGL∗,∗(F), is repre-
sented by an object MGL(R∗) in SH(k)T with morphisms µ : MGL(R∗)∧MGL(R∗)→
MGL(R∗), 1 : Sk→MGL(R∗) defining a (oriented) weak commutative ring T -spec-
trum. It does not seem to be known if one can give MGL(R∗) the structure of an
oriented commutative ring T -spectrum.

In fact, Naumann, Spitzweck, and Østvær work in the setting of homology theories
on SH(S) rather than cohomology theories on finite spectra, and they prove their
results for S a regular, noetherian separated scheme of finite Krull dimension. In case
the base-scheme is Spec k, k a field of characteristic 0, all finite spectra in SH(k) are
strongly dualizable [23, Theorem 1.4], so one may easily pass from homology theories
on SH(k) to cohomology theories on finite spectra in SH(k).
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Naumann, Spitzweck, and Østvær simply define a Landweber exact spectrum to
be one of the form MGL(R∗), rather than giving an intrinsic characterization. In case
S = Spec k, k a field of characteristic 0, the construction of Naumann, Spitzweck, and
Østvær in fact gives us all Landweber exact oriented weak commutative ring spectra,
as the next two lemmas show.

Lemma 3.4. Suppose that S = Spec k, k a field of characteristic 0. Suppose that
(E , c) is Landweber exact (in the sense of definition 3.2). Then the classifying map
φE,c : MGL → E and the product maps for F ∈ SH(k), RE∗ ⊗Z E∗,∗(F) → E∗,∗(F),
induce an isomorphism of homology theories on SH(k)

RE∗ ⊗RMGL
∗

MGL∗,∗(−) → E∗,∗(−).

Proof. Both functors RE∗ ⊗RMGL
∗

MGL∗,∗(−) and E∗,∗(−) are homological functors on
SH(k), compatible with coproducts, hence the full subcategory C of objects F for
which the lemma holds is a localizing subcategory of SH(k). As SH(k) is generated
as a localizing category by SH(k)fin, this reduces us to the case F ∈ SH(k)fin.

Take F in SH(k)fin. Then F is strongly dualizable with FD ∈ SH(k)fin [23, The-
orem 1.4], and we have G∗,∗(F) ∼= G−∗,−∗(FD) for all G ∈ SH(k). The fact that φE,c
induces an isomorphism

R∗E ⊗R∗
MGL

MGL∗,∗(FD) ∼= E∗,∗(FD).

shows that SH(k)fin ⊂ C.

Lemma 3.5. Suppose S = Spec k, k a field of characteristic 0. Let (E , c) be a Landwe-
ber exact oriented weak commutative ring T -spectrum (in the sense of definition 3.2).
Then there is an isomorphism of oriented weak commutative ring T -spectra
ψ : MGL(R∗E) → E.

Proof. Since k has characteristic 0, the results of Hopkins, Morel, and Hoyois [5, 6]
show that the classifying map L∗ → RMGL

∗ is an isomorphism. We may therefore
replace RMGL

∗ with L∗ in our definition of Landweber exactness and in Lemma 3.4.

Let f : Spec k → SpecQ be the canonical morphism of schemes, giving the adjoint
functors Lf∗ : SH(Q)

//
oo SH(k) : Rf∗. Consider the object Rf∗E ∈ SH(Z) and

take F ∈ SH(Z)T . We have a canonical isomorphism Rf∗(E ∧ Lf∗F) ∼= Rf∗E ∧ F
(see, e.g., [19, p. 578, eq. (26)]) and therefore by Lemma 3.4 we have

(Rf∗E)∗,∗(F) = E∗,∗(Lf∗F) ∼= RE∗ ⊗L∗ MGLk∗,∗(Lf
∗F)

for all F in SH(Q)T . That is, Rf∗E represents the homology theory F 7→ RE∗ ⊗L∗

MGLk∗,∗(Lf
∗F) on SH(Q)T ; using the isomorphism (3.1), the same holds for the

Tate projection pT Rf∗E . The spectrum MGLQ(R
∗
E) ∈ SH(Q) similarly represents

the homology theory F 7→ RE∗ ⊗L∗ MGLQ∗,∗(F).

We have a canonical isomorphism MGLk ∼= Lf∗MGLQ; we consider this as an
identity. The spectrum MGLk(R

∗
E) is similary by construction canonically isomor-

phic to the pull-back Lf∗MGLQ(R
∗
E). Applying Rf∗ and the Tate projection to pair

of canonical maps φMGL(R∗
E)
: MGLk → MGLk(R

∗
E), φE : MGLk → E and using the
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appropriate adjoint properties gives us the commutative diagram in SH(Q)

MGLQ

φMGLQ(R∗
E )

��

// pT Rf∗MGLk

pT Rf∗φMGL(R∗
E )

��

//

pT Rf∗φE

((QQ
QQQ

QQQ
QQQ

QQ
Rf∗MGLk

Rf∗φE

%%LL
LLL

LLL
LL

MGLQ(R
∗
E)

// pT Rf∗MGLk(R
∗
E) pT Rf∗E // Rf∗E .

(3.2)

This induces the commutative diagram of homology theories on SH(Q)T

MGLQ,∗∗(−)

φMGLQ(R∗
E )

��

// MGLk,∗∗(Lf
∗(−))

pT Rf∗φMGLk(R∗
E )

��

pT Rf∗φE

))SSS
SSSS

SSSS
SSS

MGLQ(R
∗
E)∗∗(−) // MGLk(R

∗
E)∗∗(Lf

∗(−))
α∗∗

// E∗∗(Lf∗(−)).

Here, α∗∗ is the isomorphism given by Lemma 3.4, and we use the identities

π∗∗(pT (Rf∗F) ∧ G)(Q) = π∗∗(Rf∗F ∧ G)(Q) = π∗∗(F ∧ Lf∗G)(k)

for F ∈ SH(k), G ∈ SH(Q)T .
As SH(Q)T satisfies Brown representability, in the sense of [16, Definition 3.1] (see

[18, Theorem 1] and [16, Proposition 4.11 and Theorem 5.1]), the isomorphism α∗∗
arises from an isomorphism α : pT Rf∗MGLk(R

∗
E) → pT Rf∗E that fills in the diagram

(3.2) to a commutative (up to phantoms) diagram. This gives us the diagram in
SH(Q)

MGLQ

φMGLQ(R∗
E )

��

θ // Rf∗MGLk

Rf∗φE

��

MGLQ(R
∗
E)

ψ̃

// Rf∗E ,

commutative after composition with a map F → MGLQ, F ∈ SH(Q)T ,fin, where θ

is the unit of the adjunction and ψ̃ is the evident composition. Applying adjunction
gives the diagram in SH(k)

MGLk

φMGL(R∗
E )

��

MGLk

φE

��

MGLk(R
∗
E) ψ

// E ,

which we claim commutes up to a phantom map. Indeed, MGLQ is a filtered col-
imit of finite Tate spectra F0MGLQ → F1MGLQ → . . .→ MGLQ, with each of the
maps FnMGLQ → Fn+1MGLQ a cofibration of cofibrant objects in SptT (Q)T ,fin. This
writes MGLk = Lf∗MGLQ as the filtered colimit of finite Tate spectra F0MGLk →
F1MGLk → . . .→ MGLk, by taking FnMGLk ∼= Lf∗FnMGLQ. This gives us an iso-
morphism in SH(k)

MGLk ∼= hocolim
n

FnMGLk.

Let iQn : FnMGLQ → MGLQ be the canonical map and let in : FnMGLk → MGLk
be the induced map. As FnMGLQ is in SH(Q)T ,fin, we have ψ̃ ◦ φMGLQ(R∗

E)
◦ iQn =
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Rf∗φE ◦ iQn . Using adjointness again, we see that ψ ◦ φMGLk(R∗
E)

◦ in = φE ◦ in for
all n. For F ∈ SH(k) a compact object and g : F → MGLk a morphism, g factors
through some in and hence ψ ◦ φMGLk(R∗

E)
◦ g = φE ◦ g, which verifes our claim.

As the maps

∪ ◦ (id⊗ φMGLk(R∗
E)
) : R∗E ⊗L∗ MGL∗∗k (X) → MGL∗∗k (R∗E)(X)

∪ ◦ (id⊗ φE) : R
∗
E ⊗L∗ MGL∗∗k (X) → E∗∗(X)

are isomorphisms for all X ∈ Sm/k, the map ψ induces an isomorphism of cohomol-
ogy theories on SH(k)fin. As above, this shows that ψ is an isomorphism of oriented
weak commutative ring spectra in SH(k).

3.3. Geometrically Landweber exact theories
We specialize to the setting S = Spec k, k a field of characteristic 0. As above, let

(E , c) be a oriented weak commutative ring T -spectrum in SH(k).
As we have noted in Remark 1.5, we have the element tE ∈ E1,1(Gm) correspond-

ing to the unit 1 ∈ E0,0(k) under the suspension isomorphism, inducing the group
homomorphism

t1E(X) : O×X(X) → E1,1(X).

In addition, the E∗,∗(k)-module structure on E∗,∗(X) extends t1E(X) to a map of
E∗,∗(k)-modules

tE(X) : E2∗,∗(k)⊗Z O×X(X) → E2∗+1,∗+1(X).

Furthermore, the classifying map φE,c : MGL → E combined with the product in E-
cohomology gives rise to the homomorphism

φE,X : R∗E ⊗R∗
MGL

MGL2∗−ϵ,∗(X) → E2∗−ϵ,∗(X)

for X ∈ Sm/k, natural with respect to morphisms in Sm/k. If η is a generic point
of X, we may pass to the limit over Zariski open neighborhoods of η, giving the
homomorphism

φE,η : R
∗
E ⊗R∗

MGL
MGL2∗−ϵ,∗(η) → E2∗−ϵ,∗(η).

Remark 3.6. By the Hopkins–Morel–Hoyois theorem [6], the map ρMGL : L∗ →
MGL2∗,∗(k) classifying the formal group law FMGL is an isomorphism; in particu-
lar, MGL2n,n(k) = 0 for n > 0. We henceforth identify L∗ and MGL2∗,∗(k) = R∗MGL

via ρMGL and use L∗ and R∗MGL interchangeably.

Definition 3.7. We say that an oriented weak commutative ring T -spectrum (E , c)
in SH(k) is geometrically Landweber exact if for all generic points η ∈ X ∈ Sm/k,
the map

φE,η : R
∗
E ⊗R∗

MGL
MGL2∗−ϵ,∗(η) → E2∗−ϵ,∗(η)

is an isomorphism for ϵ = 0 and a surjection for ϵ = 1.

As we are assuming the k has characteristic 0, and hence is perfect, this definition
would be equivalent to one requiring the above maps to be isomorphisms for all
points η ∈ Y ∈ Sch/k, as the closure of η in Y will contain a dense open subscheme
X, smooth and quasi-projective over k.
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Proposition 3.8. 1. For η ∈ X ∈ Sm/k, let pη : η → Spec k be the structure mor-
phism. Then p∗η : MGL2∗,∗(k) → MGL2∗,∗(η) is an isomorphism.

2. For η ∈ X ∈ Sm/k, the map tMGL(η) : MGL2∗,∗(k)⊗Z k(η)
× → MGL2∗+1,∗+1(η)

is an isomorphism.
3. For Y ∈ Sm/k, n ∈ Z, MGL2n+a,n(Y ) = 0 for all a > 0.

Proof. We use the (strongly convergent) Hopkins–Morel spectral sequence [6]

Ep,q2 (n) := Lq ⊗Hp−q(Y,Z(n− q)) =⇒ MGLp+q,n(Y ). (3.3)

Recall that for Y ∈ Sm/k, Ha(Y,Z(b)) = 0 for a > 2b. Thus, Ep,q2 (n) = 0 for p+ q >
2n, and hence MGLm,n(Y ) = 0 for m > 2n, Y ∈ Sm/k, proving (3).

For η ∈ X ∈ Sm/k, we have Ha(η,Z(b)) = 0 for a > b ⩾ 0 or b = 0 and a ̸= 0 or
b < 0. Thus,

E2n−q,q
2 (n) = Lq ⊗H2(n−q)(k,Z(n− q)) = 0

if q ̸= n. Similarly,

E2n−q−1,q
2 (n) = Lq ⊗H2(n−q)−1(k,Z(n− q)) = 0

if q ̸= n− 1. Since H0(η,Z(0)) = Z, and H1(η,Z(1)) = k(η)×, the surviving non-zero
terms contributing to MGL2n,n(η) and MGL2n−1,n(η) are

En,n2 (n) = Ln; n ⩽ 0, En,n−12 (n) = Ln−1 ⊗ k(η)×; n ⩽ 1.

Similarly, the terms

En+r,n−r+1
2 = Ln−r+1 ⊗H2r−1(η,Z(r − 1)), En+r,n−r2 = Ln−r ⊗H2r(η,Z(r)),

En−r,n+r−22 = Ln+r−2 ⊗H−2r+2(η,Z(2− r)),

En−r,n+r−12 = Ln+r−1 ⊗H−2r+1(η,Z(1− r))

are all zero for r ⩾ 2. The part of the spectral sequence computing MGL2n,n(η) and
MGL2n−1,n(η) thus degenerates at E2, giving isomorphisms Ln ∼= MGL2n,n(η) and
Ln−1 ⊗ k(η)× ∼= MGL2n−1,n(η) for all n.

As the spectral sequence is natural in Y and the the pull-back p∗η : H
0(k,Z(0)) →

H0(η,Z(0)) is an isomorphism, p∗η : MGL2∗,∗(k) → MGL2∗,∗(η) is an isomorphism,
proving (1).

To complete the proof, we must check that the isomorphisms Lq → MGL2q,q(k)
given above arise from the classifying map L∗ → MGL2∗,∗(k), and also that the iso-
morphisms Lq ⊗ k(η)× → MGL2q+1,q+1(η) are induced by t1MGL(η) and the isomor-
phism Lq → MGL2q,q(k).

The fact that the isomorphisms Lq → MGL2q,q(k) are the maps coming from the
homomorphism L∗ → MGL2∗,∗(k) classifying the formal group law for MGL∗,∗ follows
directly from construction of the spectral sequence in [6]: the spectral sequence arises
from a choice of polynomial generators x1, x2, . . . for L∗, which are then considered
as maps xn : Sk → Σ2n,nMGL via the classifying map, and these maps are in turn
used to construct the tower which gives rise to the spectral sequence (which is then
identified with the slice tower for MGL).

Let us now check that the map t1MGL(η) : k(η)
× → MGL1,1(η) is the isomorphism

given by the spectral sequence. Since f0MGL = MGL, we have the distinguished
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triangle f1MGL → MGL
p0−→ s0MGL → f1MGL[1]. Via the isomorphism s0MGL ∼=

MZ, the unit for MGL goes to the unit in MZ, and thus MGL →MZ induces a
commutative diagram

Gm
tMGL //

tMZ
$$J

JJ
JJ

JJ
JJ

ΣGmMGL

ΣGmp0

��

ΣGmMZ

.

But the spectral sequence E∗∗∗ (1) arises by taking the slice tower for MGL and apply-
ing ΣGm . The spectral sequence computation we have just made shows that the
isomorphism MGL1,1(η) → H1(η,Z(1)) arises from the edge homomorphism associ-
ated to the map ΣGmp0, which is split by composing the inverse of the isomorphism
t1MZ : k(η)

× → H1(η,Z(1)) with t1MGL. This verifies our assertion for t1MGL(η).
The assertion (2) follows from this and the product structure on the slice spectral

sequence (see [22]).

Our next result shows that passing from a Landweber exact theory (E , c) to its
effective cover (f0E , c0) results in a geometrically Landweber exact theory with coeffi-
cient ring the evident truncation of the coefficient ring R∗E . In fact, it follows directly
from the universal property of the slice truncation that Rnf0E = RnE for n ⩽ 0; the
vanishing of Rnf0E for n > 0 is less evident and our proof requires the Hopkins–Morel–
Hoyois spectral sequence.

Theorem 3.9. Let (E , c) be an oriented weak commutative ring T -spectrum. Suppose
that (E , c) is Landweber exact. Then:
1. Both (E , c) and the effective cover (f0E , c0) are geometrically Landweber exact.
2. The coefficient ring of f0E is the graded subring of R∗E given by truncation:

Rnf0E =

{
RnE if n ⩽ 0

0 if n > 0.

3. The slice spectral sequences for E∗,∗(Y ) and for f0E∗,∗(Y ) are strongly convergent
for all Y ∈ Sm/k.

Proof. We first show (3). As fq(f0E) = fq(E) for q ⩾ 0, it suffices to show that slice
spectral sequences for E∗,∗(Y ) is strongly convergent for all Y ∈ Sm/k.

We have already seen that MGL2n+a,n(Y ) = 0 for all Y ∈ Sm/k, a > 0, n ∈ Z.
Since E is Landweber exact, this shows that E2n+a,n(Y ) = 0 for all Y ∈ Sm/k, a > 0,
n ∈ Z, and thus πm+r,r(E) = 0 for all m ⩽ r − 1, r ∈ Z. We may therefore apply
lemma 2.1 with f the function f(r) = r − 1, giving the convergence.

We now prove (1) and (2) by comparing the slice spectral sequences for E and f0E .
For F a T -spectrum and Y ∈ Sm/k, the E2-term is given by

Ep,q2 (n)(F , Y ) = [Σ∞T Y+,Σ
p+q,ns−qF ]SH(k).

Since s−qf0E = s−qE for q ⩽ 0 and s−qf0E is zero for q > 0, we have

Ep,q2 (n)(f0E , Y ) =

{
Ep,q2 (n)(E , Y ) for q ⩽ 0

0 for q > 0.
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Since E ∼= MGL(R∗E) by Lemma 3.5, it follows from [24, Theorem 6.1]3 that

Ep,q2 (n)(E , Y ) = Hp−q(Y,RqE(n− q)).

The computation is now essentially the same as for E = MGL, given in Proposi-
tion 3.8: Let η be the generic point of some X ∈ Sm/k. Then in the spectral sequence
E∗∗∗ (n) converging to E∗,n(η), we have

En,n2 (n) = RnE , En,n−12 (n) = Rn−1E ⊗Z k(η)
×

as the only E2 terms contributing to E2n,n(η) and E2n−1,n(η), and all differentials
entering and leaving these terms are zero. Thus, we have isomorphisms E2n,n(η) = RnE
andRn−1 ⊗ k(η)× ∼= E2n−1,n(η). As the E2 terms for the spectral sequence converging
to (f0E)2n,n(η) and (f0E)2n−1,n(η) are just a truncation of these E2 terms, we have

(f0E)2n,n(η) =

{
E2n,n(η) for n ⩽ 0

0 for n > 0;
(f0E)2n−1,n(η) =

{
E2n−1,n(η) for n ⩽ 1

0 for n > 1.

Arguing as in the proof of Proposition 3.8, the result follows.

4. Oriented duality theories

For the remainder of the paper, we will take S = Spec k, k a field of characteristic 0.
Recall from [10, §1] the category SP/k of smooth pairs over k, with objects

(M,X),M ∈ Sm/k andX ⊂M a closed subset (not necessarily smooth); a morphism
f : (M,X) → (N,Y ) is a morphism f : M → N in Sm/k such that f−1(Y ) ⊂ X. For
a full subcategory V of Sch/k, let V ′ be the subcategory of V with the same objects
as V, but with morphisms the projective morphisms in Sch/k.

Building on work of Mocanasu [13] and Panin [20], we have defined in [10, Defini-
tion 3.1] the notion of a bi-graded oriented duality theory (H,A) on Sch/k. Here A is a
bi-graded oriented cohomology theory on SP/k, (M,X) 7→ A∗,∗X (M), and H is a func-
tor from Sch/k′ to bi-graded abelian groups. The oriented cohomology theory A sat-
isfies the axioms listed in [10, Definitions 1.2, 1.5]. In particular, (M,X) 7→ A∗,∗X (M)
admits a long exact sequence

. . .→ A∗,∗X (M) → A∗,∗(M) → A∗,∗(M \X)
∂−→ A∗+1,∗

X (M) → . . . ,

where for instance A∗,∗(M) := A∗,∗M (M), and the boundary map ∂ is part of the
data. In addition, there is an excision property and a homotopy invariance property.
The ring structure is given by external products and pull-back by the diagonal. The
orientation is given by a collection of isomorphisms ThEX : AX(M) → AX(E), for
(M,X) ∈ SP/k and E →M a vector bundle, satisfying the axioms of [20, Definition
3.1.1]. We extend some of the results of [20] in [10, Theorem 1.12, Corollary 1.13]
to show that the data of an orientation is equivalent to giving well-behaved push-
forward maps f∗ : AX(M) → AY (N) for (M,X), (N,Y ) ∈ SP/k, with the meaning
of “well-behaved” detailed in [10, §1].

The homology theoryH comes with push-forward maps f∗ : H∗,∗(X)→H∗,∗(Y ) for
f : X→Y projective, restriction maps j∗ : H∗,∗(X)→H∗,∗(U) for each open immer-
sion j : U→X in Sch/k, external products × : H∗,∗(X)⊗H∗,∗(Y )→H∗,∗(X×Y ),

3The assumption (SlMGL) in the statement of this result is fulfilled, by the work of Hoyois [6].
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boundary maps ∂X,Y : H∗,∗(X \ Y ) → H∗−1,∗(Y ) for each closed subset Y ⊂ X, iso-

morphisms αM,X : H∗,∗(X)→A2m−∗,m−∗
X (M) for each (M,X) ∈ SP/k,m = dimkM ,

and cap product maps

f∗(−)∩ : Aa,bX (M)⊗H∗,∗(Y ) → H∗−a,∗−b(Y ∩ f−1(X))

for (M,X) ∈ SP/k, f : Y → X a morphism in Sch/k. These satisfy a number of
axioms and compatibilities (see [10, §3] for details), which essentially say that a
structure for A∗,∗X (M) is compatible with the corresponding structure for H∗,∗(X) via
the isomorphism αM,X . Roughly speaking, this is saying that a particular structure
for A∗,∗X (M) depends only on X and not the choice of embedding X ↪→M .

Remark 4.1. Let L→ Y be a line bundle on some Y ∈ Sm/k with 0-section 0: Y →
L. For an oriented cohomology theory A, one has the element

cA1 (L) := 0∗(0∗(1
A
Y )),

where 1AY ∈ A0(Y ) is the unit element. As pointed out in [20, corollary 3.3.8], or
as noted in [10, remark 1.17], for line bundles L, M on some Y ∈ Sm/k, the ele-
ments c1(L), c1(M) ∈ A1(Y ) are nilpotent and commute with one another, and hence
for each power series F (u, v) ∈ A∗(k)[[u, v]] the evaluation F (c1(L), c1(M)) gives a
well-defined element of A∗(Y ). In addition, the cohomology theory A has a unique
associated formal group law FA(u, v) ∈ A∗(k)[[u, v]] with

FA(c
A
1 (L), c

A
1 (M)) = cA1 (L⊗M)

for all line bundles L, M on Y ∈ Sm/k.

The main example of oriented duality theory (H,A) is given by an oriented weak
commutative ring T -spectrum E in SH(k), assuming k is a field admitting resolution
of singularities (e.g., characteristic 0), defined by taking

Ea,bX (M) := HomSH(k)(Σ
∞
T (M/M \X),Σa,bE),

that is, the usual bi-graded cohomology with supports. For each X ∈ Sch/k, choose

a closed immersion of X into a smooth M and set E ′a,b(X) := E2m−a,m−b
X (M), where

m = dimkM . The fact that (M,X) 7→ E∗,∗X (M) defines an oriented bi-graded ring
cohomology theory is proved just as in the case of E = MGL, which was discussed in
[10, §4]; the main point is Panin’s theorem [20, Theorem 3.7.4], which says that an
orientation for E (in the sense of Definition 1.2) defines an orientation in the sense
of ring cohomology theories for the bi-graded E-cohomology with supports. The fact
that the formula given above for the homology theory E ′∗,∗ is well-defined and extends
to make (E ′∗,∗(−), E∗,∗− (−)) a bi-graded oriented duality theory is [10, Theorem 3.4].

Remark 4.2. The results of [10] were proven in the setting of an oriented commuta-
tive ring T -spectrum E , not that of a oriented weak commutative ring T -spectrum.
However, the constructions and proofs only use values of E-cohomology on finite dia-
grams of smooth k-schemes, and thus only rely on identities modulo phantom maps.
The arguments thus remain valid in the larger context of oriented weak commutative
ring T -spectra. We will henceforth make use of the results of [10] in this wider context
without further comment.
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It follows directly from the construction of E ′ that the assignment (E , cE) 7→ (E ′, E)
is functorial in the oriented cohomology theory (E , cE); that is, let ch: (MGL, cMGL) →
(E , cE) be a morphism of oriented weak commutative ring T -spectra. Then ch extends
canonically to a natural transformation of oriented duality theories

(ch′, ch) : (MGL′,MGL) → (E ′, E).

5. Algebraic cobordism and oriented duality theories

We recall the theory of algebraic cobordism X 7→ Ω∗(X), X ∈ Sch/k [12]. For each
X ∈ Sch/k, Ωn(X) is an abelian group with generators (f : Y → X), Y ∈ Sm/k irre-
ducible of dimension n over k and f : Y → X a projective morphism [12, Lemma
2.5.11]. Ω∗ is the universal oriented Borel–Moore homology theory on Sch/k [12,
Theorem 7.1.1], where an oriented Borel–Moore homology theory on Sch/k consists
of the data of a functor from Sch/k′ to graded abelian groups, external products,
first Chern class operators c̃1(L) : Ω∗(X) → Ω∗−1(X) for L→ X a line bundle, and
pull-back maps g∗ : Ω∗(X) → Ω∗+d(Y ) for each l. c. i.morphism g : Y → X of rela-
tive dimension d. These of course satisfy a number of compatibilities and additional
axioms; see [12, §5.1] for details.

For an oriented duality theory (H,A) on Sch/k and Y in Sm/k of dimension d over
k, the fundamental class [Y ]H,A ∈ Hd(Y ) is the image of the unit 1Y ∈ A0(Y ) under
the inverse of the isomorphism αY : Hd(Y ) → A0(Y ). For an oriented Borel–Moore
homology theory B on Sch/k, we similarly have the fundamental class [Y ]B ∈ Bd(Y )
defined by [Y ]B := p∗(1), where 1 ∈ B0(Spec k) is the unit and p : Y → Spec k the
structure morphism.

We recall the following result from [10].

Proposition 5.1 ([10, Propositions 4.2, 4.4, 4.5]). Let k be a field admitting resolu-
tion of singularities and let (H,A) be a Z-graded oriented duality theory on Sch/k.
1. There is a unique natural transformation ϑH : Ω∗ → H∗ of functors Sch/k′ →
GrAb, such that ϑH(Y ) is compatible with fundamental classes for Y ∈ Sm/k. In
addition, ϑH is compatible with pull-back maps for open immersions in Sch/k, with
1st Chern class operators, with external products, and with cap products.
2. For Y ∈ Sm/k, the map ϑA(Y ) : Ω∗(Y ) → A∗(Y ) induced by ϑH , the identity
Ω∗(Y ) = ΩdimY−∗(Y ) and the isomorphism αY : HdimY−∗(Y ) → A∗(Y ) is a ring
homomorphism and is compatible with pull-back maps for arbitrary morphisms in
Sm/k. Finally, one has

ϑA(Y )(cΩ1 (L)) = cA1 (L)

for each line bundle L→ Y .

Remark 5.2. We have already noted that one has a formal group law FA(u, v) ∈
A∗(k)[[u, v]] associated to the oriented cohomology theory A. Similarly, for each ori-
ented Borel–Moore homology theory B on Sch/k, there is an associated formal group
law FB(u, v) ∈ B∗(k)[[u, v]], determined by the identity

FB(c1(L), c1(M)) = c1(L⊗M)
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for each pair of line bundles L,M on some Y ∈ Sm/k (this follows from [12, Corol-
lary 4.1.8, Proposition 5.2.1, Proposition 5.2.6]). This gives us the graded ring homo-
morphism φB : L∗ → B∗(k) classifying the formal group law FB .

Finally, we recall that the classifying map φΩ : L∗ → Ω∗(k) is an isomorphism [12,
Theorem 1.2.7].

The following is a direct consequence of proposition 5.1.

Corollary 5.3. Let (E , cE) be pair consisting of a weak commutative ring T -spectrum
E ∈ SH(k) with orientation c, and let (E ′∗,∗, E∗,∗) be the corresponding bi-graded ori-
ented duality theory. There is a unique natural transformation

ϑ(E,c) : Ω∗ → E ′2∗,∗
of functors Sch/k′ → GrAb, such that ϑ(E,c)(Y ) is compatible with fundamental
classes for Y ∈ Sm/k. In addition, ϑ(E,cE) is compatible with pull-back maps for open
immersions in Sch/k, 1st Chern class operators, external products and cap products.
For Y ∈ Sm/k, the map ϑE(Y ) : Ω∗(Y ) → E2∗,∗(Y ) induced by ϑ(E,cE) is a ring homo-
morphism and is compatible with pull-back maps for arbitrary morphisms in Sm/k,
and satisfies

ϑ(E,c)(Y )(cΩ1 (L)) = cE1 (L)

for each line bundle L→ Y .

Remark 5.4. By [12, Lemma 2.5.11], Ω∗(X) is generated as an abelian group by
the cobordism cycles (f : Y → X), Y ∈ Sm/k irreducible, f : Y → X a projective
morphism. Furthermore, the identity (f : Y → X) = f∗([Y ]Ω) holds in ΩdimY (X).
Thus, ϑ(E,cE) is characterized by the formula

ϑ(E,cE)(f : Y → X) := fE
′

∗ ([Y ]E′,E).

We may apply Corollary 5.3 in the universal case: E = MGL with its canonical
orientation. This gives us the natural transformation

ϑMGL : Ω∗ → MGL′2∗,∗. (5.1)

Theorem 5.5 ([11, Theorem 3.1]). If k is a field of characteristic 0, then the natural
transformation (5.1) is an isomorphism.

This result relies on the Hopkins–Morel spectral sequence; see [5, 6].

In the course of the proof of theorem 5.5, we proved another result which we will
be using here.

Let X be in Sch/k and let d = dX := maxX′ dimkX
′, as X ′ runs over the irre-

ducible components of X. We define MGL
′(1)
2∗,∗(X) by

MGL
′(1)
2∗,∗(X) := lim−→

W

MGL′2∗,∗(W )

as W runs over all (reduced) closed subschemes of X that contain no dimension d

generic point of X; Ω
(1)
∗ (X) is defined similarly. The natural transformation ϑMGL
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gives rise to the commutative diagram

Ω
(1)
∗ (X)

ϑ(1)

��

i∗ // Ω∗(X)

ϑ(X)

��

j∗
// ⊕η∈X(d)

Ω∗(k(η)) //

ϑ

��

0

MGL
′(1)
2∗,∗(X)

i∗
// MGL′2∗,∗(X)

j∗
// ⊕η∈X(d)

MGL′2∗,∗(k(η)) // 0

(5.2)

with exact rows and with all vertical arrows isomorphisms. As (MGL′,MGL) is an
oriented duality theory, the bottom line extends to the long exact sequence

· · · → ⊕η∈X(d)
MGL′2∗+1,∗(k(η))

∂−→ MGL
′(1)
2∗,∗(X)

i∗−→ MGL′2∗,∗(X)
j∗−→ ⊕η∈X(d)

MGL′2∗,∗(k(η)) → 0.

By Proposition 3.8(2), the map

tMGL(η) : L∗−d+1 ⊗ k(η)× → MGL′2∗+1,∗(k(η))

an isomorphism for each η ∈ X(d). We have constructed in [11, §6] a group homo-
morphism

Div : L∗−d+1 ⊗⊕η∈X(d)
Z[k(η)×] → Ω

′(1)
∗ (X)

with ϑ(1) ◦Div = ∂ ◦ ⊕ηtMGL(η). Since the maps ϑ(1) and ϑ(X) are isomorphisms,
the map Div factors through the surjection

L∗−d+1 ⊗⊕η∈X(d)
Z[k(η)×] → L∗−d+1 ⊗⊕η∈X(d)

k(η)×,

and we have the exact sequence

⊕η∈X(d)
L∗−d+1 ⊗ k(η)×

Div−−→ Ω
′(1)
∗ (X)

i∗−→ Ω∗(X)
j∗−→ ⊕η∈X(d)

Ω∗(k(η)) → 0 (5.3)

and the extension of diagram (5.2) to the commutative diagram

⊕ηL∗−d+1 ⊗ k(η)×
Div // Ω

(1)
∗ (X)

ϑ(1)

��

i∗ // Ω∗(X)

ϑ(X)

��

j∗
// ⊕ηΩ∗(k(η)) //

ϑ

��

0

⊕ηL∗−d+1 ⊗ k(η)×
divMGL

// MGL
′(1)
2∗,∗(X)

i∗
// MGL′2∗,∗(X)

j∗
// ⊕ηMGL′2∗,∗(k(η)) // 0

(5.4)
with exact rows and vertical arrows isomorphisms. Here, divMGL := ∂ ◦ ⊕ηtMGL(η).

6. The comparison map

Let (E , c) be a weak commutative ring T -spectrum in SH(k) with orientation c,
and let (E ′∗,∗, E∗,∗) be the corresponding bi-graded oriented duality theory. We have
the natural transformation

ϑ(E,c) : Ω∗ → E ′2∗,∗
given by Corollary 5.3. The map ϑ(E,c)(k) makes RE∗ an Ω∗(k)-algebra; we let ΩE∗ be
the oriented Borel–Moore homology theory ΩE∗ (X) := RE∗ ⊗Ω∗(k) Ω∗(X).
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As the external products make E ′2∗,∗(X) an RE∗ -module and the maps f∗, c̃1(L) are

RE∗ -module maps, we see that ϑ(E,c) descends to a natural transformation

ϑ̄(E,c) : Ω
E
∗ → E ′2∗,∗.

Lemma 6.1. Suppose that the oriented weak commutative ring T -spectrum (E , c) is
geometrically Landweber exact. Then:
1. For X ∈ Sch/k and η ∈ X a point, the map ϑ̄E : Ω

E
∗ (η) → E ′2∗,∗(η) is an isomor-

phism.
2. Take X in Sch/k and let ji : ηi → X, i = 1, . . . , r be all the generic points of X.
Then the restriction map j∗ : E ′2∗,∗(X) → ⊕ri=1E ′2∗,∗(ηi) is surjective.
3. For each generic point η of X, the map tE(η) : E2∗,∗(k)⊗Z k(η)

× → E2∗+1,∗+1(η)
is surjective.

Proof. For (1), we may replace X with the closure of η in X, so we may assume that η
is the generic point of X. We note that ϑE = φE ◦ ϑMGL. In addition, ϑMGL is an iso-
morphism, so ϑ̄E(X) is up to this isomorphism the same as the map MGL′2∗,∗(X)⊗L∗

RE∗ → E ′2∗,∗(X). (1) then follows from the hypothesis on E .
For (2), we have the commutative diagram

Ω∗(X)

ϑ(X)

��

j∗Ω // ⊕η∈X(d)
Ω∗(η)

⊕ηϑ

��

E ′2∗,∗(X)
j∗E

// ⊕η∈X(d)
E ′2∗,∗(η).

By (1), ϑ(η) : ΩE∗ (η) → E ′2∗,∗(η) is surjective. The map j∗Ω is also surjective, using the
right exact localization sequence for Ω∗. Thus, the map j∗E is also surjective.

For (3), we can rewrite the map tE(η) as the composition

R∗E ⊗L∗ MGL2∗,∗(η)⊗MGL1,1(η)
∪−→ R∗E ⊗L∗ MGL2∗+1,∗+1(η)

φE,η−−−→ E2∗+1,∗+1(η).

As the map MGL2∗,∗(η)⊗MGL1,1(η) → MGL2∗+1,∗+1(η) is surjective, and the map
φE,η is surjective by hypothesis, it follows that tE(η) is also surjective.

Theorem 6.2. Suppose that a oriented weak commutative ring T -spectrum (E , c) is
geometrically Landweber exact. Then the natural transformation ϑ̄(E,c) : Ω

E
∗ → E ′2∗,∗

is an isomorphism.

Proof. We write ϑ̄ for ϑ̄(E,c). For η a point of X, the map ϑ̄(η) : ΩE∗ (η) → E ′2∗,∗(η) is
an isomorphism by Lemma 6.1(1). In particular, if X has dimension zero over k, then
ϑ̄(X) is an isomorphism.

We proceed by induction on the maximum d of the dimensions of the components
of X; we may assume that X is reduced. We use the constructions and notations

from Theorem 5.5 and the discussion following that theorem. We let E ′(1)2∗,∗(X) be the
inductive limit

E ′(1)2∗,∗(X) := lim−→
W

E ′2∗,∗(W )

as W runs over all (reduced) closed subschemes of X that contain no dimension d
generic point of X. This, together with the map Div defined following theorem 5.5
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and the exact localization sequence for E ′∗,∗, gives us the commutative diagram with
exact rows

⊕η∈X(d)
L∗−d+1 ⊗ k(η)×

Div// Ω
(1)
∗ (X)

ϑ(1)

��

i∗ // Ω∗(X)

ϑ(X)

��

j∗
// ⊕η∈X(d)

Ω∗(η) //

ϑ

��

0

⊕η∈X(d)
E ′2∗+1,∗(k(η)) ∂

// E ′(1)2∗,∗(X)
i∗
// E ′2∗,∗(X)

j∗
// ⊕η∈X(d)

E ′2∗,∗(η) // 0;

(6.1)

the surjectivity in the bottom row comes from lemma 6.1(2).

We apply RE∗ ⊗Ω∗(k) (−) to the top row in (6.1). As noted at the beginning of this
section, the vertical maps in (6.1) descend to give the commutative diagram

⊕η∈X(d)
RE∗−d+1 ⊗ k(η)×

DivE// Ω
E(1)
∗ (X)

ϑ̄(1)

��

i∗ // ΩE∗ (X)

ϑ̄(X)

��

j∗
// ⊕η∈X(d)

ΩE∗ (η) //

ϑ̄

��

0

⊕η∈X(d)
E ′2∗+1,∗(k(η)) ∂

// E ′(1)2∗,∗(X)
i∗

// E ′2∗,∗(X)
j∗

// ⊕η∈X(d)
E ′2∗,∗(η) // 0.

(6.2)

By induction on d, the map ϑ̄(1) is an isomorphism; we have already seen that ϑ̄ is
an isomorphism. We note that the bottom row is a sequence of RE∗ -modules via the
the E ′2∗,∗(k)-module structure given by external products.

The universal property of MGL gives the canonical morphism of oriented weak
commutative ring T -spectra

φE : (MGL, cMGL) → (E , c),

which extends to the map of bi-graded oriented duality theories

φE : (MGL′∗,∗,MGL∗,∗) → (E ′∗,∗, E∗,∗).

As discussed in Remark 1.5, we have for each orientable E and each Y ∈ Sm/k
the R∗E -module map

tE(Y ) : O×Y (Y )⊗R∗E → E2∗+1,∗+1(Y ),

natural in E and Y . This gives us the commutative diagram

⊕η∈X(d)
L∗−d+1 ⊗ k(η)×

tMGL //

π

��

⊕η∈X(d)
MGL′2∗+1,∗(k(η))

∂ //

φE

��

MGL
′(1)
2∗,∗(X)

φE(X)(1)

��

⊕η∈X(d)
RE∗−d+1 ⊗ k(η)×

tE
// ⊕η∈X(d)

E ′2∗+1,∗(k(η)) ∂
// E ′(1)2∗,∗(X),

(6.3)

where π is induced by the classifying map L∗ → RE∗ .

Take η ∈ X(d). By Lemma 6.1(3), the map

tE(η) : R
E
∗−d+1 ⊗ k(η)× → E ′2∗+1,∗(η)

is surjective for each η. Defining divE = ∂ ◦
∑
η tE(η) and putting this into the diagram
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(6.2) gives us the commutative diagram

⊕η∈X(d)
RE∗−d+1 ⊗ k(η)×

DivE // Ω
E(1)
∗ (X)

ϑ̄(1)

��

i∗ // ΩE∗ (X)

ϑ̄(X)

��

j∗
// ⊕η∈X(d)

ΩE∗ (η) //

ϑ̄

��

0

⊕η∈X(d)
RE∗−d+1 ⊗ k(η)×

divE

// E ′(1)2∗,∗(X)
i∗

// E ′2∗,∗(X)
j∗

// ⊕η∈X(d)
E ′2∗,∗(η) // 0,

(6.4)

with the bottom row exact and the top row a complex. Recalling that divMGL = ∂ ◦∑
η tMGL(η), the commutativity of diagram (6.3) gives us the commutative diagram

⊕η∈X(d)
L∗−d+1 ⊗ k(η)×

divMGL//

π

��

MGL
′(1)
2∗,∗(X)

φE(X)(1)

��

⊕η∈X(d)
RE∗−d+1 ⊗ k(η)×

divE

// E ′(1)2∗,∗(X).

(6.5)

We claim the identity map on ⊕ηRE∗−d+1 ⊗ k(η)× fills in the diagram (6.4) to a
commutative diagram. Assuming this claim, it follows by a diagram chase that the
top row is exact and the map ϑ̄(X) is an isomorphism.

To prove the claim, it follows from the characterization of ϑMGL and ϑE given in
Remark 5.4 that ϑE = φE ◦ ϑMGL. Thus, patching diagram (6.5) into the left-hand
square in the commutative diagram (5.4) yields the commutative diagram

⊕η∈X(d)
L∗−d+1 ⊗ k(η)×

Div // Ω
(1)
∗ (X)

ϑ
(1)
MGL

��

ϑ
(1)
E

{{

⊕η∈X(d)
L∗−d+1 ⊗ k(η)×

divMGL//

π

��

MGL
′(1)
2∗,∗(X)

φE(X)(1)

��

⊕η∈X(d)
RE∗−d+1 ⊗ k(η)×

divE

// E ′(1)2∗,∗(X).

(6.6)

As DivE : R
E
∗ ⊗ k(η)× → Ω

E(1)
∗ (X) is just the map formed by applying the functor

RE∗ ⊗L (−) to Div : L⊗ k(η)× → Ω
(1)
∗ (X), the desired commutativity follows from

the commutativity of the outer square in (6.6).

Corollary 6.3. Let (E , c) be a Landweber exact oriented weak ring T -spectrum in
SH(k), k a field of characteristic 0, and let (f0E , c0) be the effective cover of (E , c).
Then the canonical natural transformations of oriented Borel–Moore homology theo-
ries on Schk

ϑE,c : RE ⊗L Ω∗ → E ′2∗,∗
ϑf0E,c0 : Rf0E ⊗L Ω∗ → f0E ′2∗,∗
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are isomorphisms. Moreover, the canonical natural transformations of oriented coho-
mology theories on Sm/k

ϑE,c : RE ⊗L Ω∗ → E2∗,∗

ϑf0E,c0 : Rf0E ⊗L Ω∗ → f0E2∗,∗

are isomorphisms.

Proof. By Theorem 3.9, both (E , c) and (f0E , c0) are geometrically Landweber exact.
We then apply theorem 6.2 to yield the desired isomorphisms of oriented Borel–Moore
homology theories.

The statement about the oriented cohomology theories on Sm/k follows by restric-
tion from Sch/k to Sm/k, using the equivalence of oriented Borel–Moore homology
theories and oriented cohomology theories on Sm/k [12, Proposition 5.2.1].
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