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HOMOLOGICAL ALGEBRA FOR
DIFFEOLOGICAL VECTOR SPACES

ENXIN WU

(communicated by Nathalie Wahl)

Abstract
Diffeological spaces are natural generalizations of smooth

manifolds, introduced by J.M. Souriau and his mathematical
group in the 1980’s. As vector spaces, diffeological vector spaces
appear canonically from geometry and analysis, and they also
contain smooth information. In this paper, we first explore
the basic algebraic and categorical constructions on diffeologi-
cal vector spaces. Then we observe that not every short exact
sequence of diffeological vector spaces splits. Motivated by this,
we develop the natural analogues of basic tools of classical
homological algebra by identifying a good class of projective
objects in the category of diffeological vector spaces, together
with some applications in analysis. Finally, we prove that there
is a cofibrantly generated model structure on the category of
diffeological chain complexes.

1. Introduction

The concept of diffeological space and the terminology were formulated by
J.M. Souriau and his mathematical group in the 1980’s ([So1, So2]) as follows:

Definition 1.1. A diffeological space is a set X together with a specified set DX

of functions U → X (called plots) for every open set U in Rn and for each n ∈ N,
such that for all open subsets U ⊆ Rn and V ⊆ Rm:

1. (Covering) Every constant map U → X is a plot.

2. (Smooth compatibility) If U → X is a plot and V → U is smooth, then the
composition V → U → X is also a plot.

3. (Sheaf condition) If U = ∪iUi is an open covering and U → X is a set map such
that each restriction Ui → X is a plot, then U → X is a plot.

We usually use the underlying set X to represent the diffeological space (X,DX).

Comparing it with the concept of a smooth manifold, a diffeological space starts
with a set instead of a topological space, and it uses all open subsets of Euclidean

Received October 1, 2014, revised December 12, 2014; published on May 18, 2015.
2010 Mathematics Subject Classification: 18G25 (primary), 57P99, 26E10 (secondary).
Key words and phrases: Diffeological vector space, linear subduction, short exact sequence.
Article available at http://dx.doi.org/10.4310/HHA.2015.v17.n1.a17
Copyright c⃝ 2015, Enxin Wu. Permission to copy for private use granted.

http://intlpress.com/HHA/
http://intlpress.com/HHA/v17/
http://intlpress.com/HHA/v17/n1/


340 ENXIN WU

spaces for characterizing smoothness, subject to the above three axioms. It is a sheaf
over a certain site and has an underlying set. This makes it a concrete sheaf; see [BH].

The theory of diffeological spaces was further developed by several mathemati-
cians, especially Souriau’s students P. Donato and P. Iglesias-Zemmour. Recently,
P. Iglesias-Zemmour published the book [I3]. We refer the reader unfamiliar with
diffeological spaces to [I3] for terminology and details. For a three-page introduction
to diffeological spaces, we recommend [CSW, Section 2]. Let us mention a few basic
properties:

A smooth map between diffeological spaces is a function sending each plot of the
domain to a plot of the codomain. Diffeological spaces with smooth maps form a cat-
egory, denoted by Diff. The category Diff contains the category of smooth manifolds
and smooth maps as a full subcategory. That is, every smooth manifold is automat-
ically a diffeological space, and smooth maps between smooth manifolds in this new
sense are the same as smooth maps between smooth manifolds in the usual sense.
Moreover, the category Diff is complete, cocomplete, and (locally) cartesian closed.
Every (co)limit in Diff has the corresponding (co)limit in Set as the underlying set.
For any diffeological spaces X and Y , we write C∞(X,Y ) for the set of all smooth
maps X → Y . There is a natural diffeology (called the functional diffeology) on
C∞(X,Y ) making it a diffeological space. Also, every diffeological space has a natural
topology called the D-topology, which is the same as the usual topology for every
smooth manifold. See [I3, Chapters 1 and 2] for more details.

Vector spaces are fundamental objects in mathematics. There are corresponding
objects in diffeology called diffeological vector spaces; that is, they are both diffeo-
logical spaces and vector spaces such that addition and scalar multiplication maps
are both smooth. P. Iglesias-Zemmour focused on fine diffeological vector spaces
and used them to model some infinite dimensional spaces in [I1, I3]. K. Costello
and O. Gwilliam used a class of diffeological vector spaces called differentiable vec-
tor spaces in their work on factorization algebras in quantum field theory in their
book [CG]. Diffeological vector spaces also arise naturally in the study of tangent
spaces of diffeological spaces; see, for example, [CW2]. The first goal of this paper
is to study the basic categorical and algebraic properties of (fine) diffeological vector
spaces, which are done in Sections 2, 3, and 5.

The main part of this paper is motivated by the following example from Section 4.
Let

ϕ : C∞(R,R) →
∏
ω

R

be the map from the space of all smooth maps R → R to the product of countably
many copies of R defined by f 7→ (f(0), f ′(0), f ′′(0), . . .). It is clearly a linear map.
Borel’s lemma says that it is surjective. Let K be its kernel. Then the classical homo-
logical algebra tells us that the short exact sequence

0 // K // C∞(R,R)
ϕ

//
∏

ω R // 0

splits as vector spaces. We prove that this is a short exact sequence of diffeological
vector spaces in the sense of Definition 3.15, which does not split smoothly; see
Example 4.3 for details. As a corollary, we get a generalized version of Borel’s lemma.
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Then we discuss the question of how to characterize the (non-)splitting of short
exact sequences of diffeological vector spaces. One observes that the category DVect
of diffeological vector spaces is not an abelian category (Remark 3.18). Moreover,
although the category Diff of diffeological spaces is equivalent to the category of
concrete sheaves over a concrete site [BH], we have enough projectives (in the sense of
Definition 6.1) on the categoryDVect. We discuss the basic examples and properties of
these projective diffeological vector spaces in Section 6, and observe that they behave
slightly differently from the usual projective modules over a ring. We develop basic
tools of homological algebra for diffeological vector spaces using these projectives:
Schanuel’s lemma, the Horseshoe Lemma, the (Short) Five Lemma, etc. in Section 7,
and reach the fact that Ext1 classifies short exact sequences of diffeological vector
spaces up to equivalence.

Finally, in Section 8, we prove that there is a cofibrantly generated model structure
on the category of diffeological chain complexes. A projective resolution is then a
cofibrant replacement under this model structure, and Ext∗ can be expressed using
the hom-functor in the corresponding homotopy category, as expected.

Here is a detailed summary of the main results of this paper:

1. The category of diffeological vector spaces and smooth linear maps is complete
and cocomplete (Theorems 3.1 and 3.3).

2. For every diffeological space, there is a free diffeological vector space generated
by it, together with a universal property (Proposition 3.5). Every diffeological
vector space is a quotient vector space of a free diffeological vector space (Corol-
lary 3.13), but not every diffeological vector space is a free diffeological vector
space generated by a diffeological space (Example 3.7).

3. We define tensor products and duals for diffeological vector spaces in Section 3.

4. We define short exact sequences of diffeological vector spaces (Definition 3.15),
and we have necessary and sufficient conditions for when a short exact sequence
of diffeological vector spaces splits (Theorem 3.16). Unlike the case of vec-
tor spaces, not every short exact sequence of diffeological vector spaces splits
(Example 4.3). We also get a generalized version of Borel’s lemma (Remark 4.5)
as an application.

5. Fine diffeological vector spaces (Definition 5.2) behave like vector spaces, except
for taking infinite products and duals (Examples 5.4 and 5.5). Every fine diffe-
ological vector space is a free diffeological vector space generated by a discrete
diffeological space (Property (7)). A free diffeological vector space generated
by a diffeological space is fine if and only if this diffeological space is discrete
(Theorem 5.3).

6. Every fine diffeological vector space is Frölicher (Proposition 5.7).

7. We define projective diffeological vector spaces as projective objects in the cat-
egory of diffeological vector spaces with respect to linear subductions (Defi-
nition 6.1), and we have many equivalent characterizations (Propositions 6.11
and 6.16, Corollaries 6.15 and 7.11). Every fine diffeological vector space is pro-
jective, as is every free diffeological vector space generated by a smooth manifold
(Corollaries 6.3 and 6.4). But not every (free) diffeological vector space is pro-
jective (Example 6.9). However, there are enough projectives in the category of
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diffeological vector spaces (Theorem 6.13).

8. We have many interesting (non-)examples of (fine or projective) diffeological
vector spaces (see Examples 5.4, 5.5, 5.6, 6.7, 6.12, and 6.9, Proposition 6.2,
Corollaries 6.3 and 6.4, and Remark 6.8).

9. We establish basic tools of homological algebra for general diffeological vector
spaces in Section 7. As usual, every diffeological vector space has a diffeological
projective resolution, and any two diffeological projective resolutions are diffe-
ologically chain homotopic (see the paragraph before Lemma 7.2). Schanuel’s
lemma, the Horseshoe Lemma, and the (Short) Five Lemma still hold in this
setting (Lemmas 7.2, 7.3, 7.12, and 7.13). For any diffeological vector spaces V
and W , we can define diffeological vector spaces Extn(V,W ) (Definition 7.5).
For any short exact sequence of diffeological vector spaces in the first or sec-
ond variable, we get a long sequence of such diffeological vector spaces which
is exact in the category Vect of vector spaces and linear maps (Theorems 7.8
and 7.9). And Ext1(V,W ) classifies all short exact sequences in DVect of the
form 0 →W → A→ V → 0 up to equivalence (Theorem 7.14).

10. There is a cofibrantly generated model structure on the category of diffeolog-
ical chain complexes (Theorem 8.3). A diffeological projective resolution of
a diffeological vector space V is then a cofibrant replacement of the canon-
ical diffeological chain complex S0(V ) under this model structure (the para-
graph after the proof of Lemma 8.13), and Extn(V,W ) can be expressed as
Ho(DCh)(S0(V ), Sn(W )) (Proposition 8.15).
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Convention: Throughout this paper, unless otherwise specified,

• every vector space is over the field R of real numbers;

• every linear map is over R;
• every tensor product is over R, i.e., ⊗ = ⊗R;

• every smooth manifold is assumed to be Hausdorff, second-countable, finite
dimensional, and without boundary;

• every smooth manifold is equipped with the standard diffeology, and in partic-
ular, R has the standard diffeology when viewed as a diffeological space;

• every subset of a diffeological space is equipped with the sub-diffeology;

• every product of diffeological spaces is equipped with the product diffeology;

• every quotient set of a diffeological space is equipped with the quotient diffeol-
ogy, i.e., a plot of a quotient space is locally the quotient map composed with a
plot of the total space;
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• every function space of diffeological spaces is equipped with the functional dif-
feology;

• it is known ([I3]) that for a given set X, the set of all diffeologies on X with
inclusions forms a complete lattice; we call a diffeology D on X with certain
properties the smallest, if every diffeology on X with these properties con-
tains D;

• an induction i : X → Y between diffeological spaces is a smooth injective map
such that X is diffeomorphic (i.e., isomorphic in the category Diff) to the image
i(X) equipped with the sub-diffeology of Y .

2. Definition and basic examples

In this section, we recall the definitions of diffeological vector spaces and smooth
linear maps between them, together with some basic examples.

Definition 2.1. A diffeological vector space is a vector space V together with a
diffeology, such that the addition map V × V → V and the scalar multiplication map
R× V → V are both smooth.

Definition 2.2. A smooth linear map between two diffeological vector spaces is a
function which is both smooth and linear.

Diffeological vector spaces with smooth linear maps form a category, denoted by
DVect.

It is straightforward to verify the following examples:

Example 2.3. Every vector space with the indiscrete diffeology is a diffeological vector
space. We write Rind for the diffeological vector space with the underlying set R and
the indiscrete diffeology. It will be used to construct many (counter)examples in the
following sections.

Example 2.4. Every linear subspace of a diffeological vector space is a diffeological
vector space.

Example 2.5. Every product of diffeological vector spaces is a diffeological vector
space. In particular,

∏
ω R, the product of countably many copies of R, is a diffeolog-

ical vector space. It will be one of the most important diffeological vector spaces in
this paper.

Example 2.6. Every quotient vector space of a diffeological vector space is a diffeo-
logical vector space.

Example 2.7. Let X be a diffeological space, and let V be a diffeological vector space.
Then C∞(X,V ) with pointwise addition and pointwise scalar multiplication is a
diffeological vector space. Moreover, the map

m : C∞(X,R)× C∞(X,V ) → C∞(X,V ) with m(f, g)(x) = f(x)g(x)

is a well-defined smooth map.
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Example 2.8. The D-topology on diffeological spaces induces a functor D : Diff →
Top, which has a right adjoint C : Top → Diff sending a topological space to the
space with the same underlying set and plots all continuous maps; see [CSW, Propo-
sition 3.3]. It is straightforward to check that every topological vector space with the
continuous diffeology is a diffeological vector space. Moreover, if we write TVect for
the category of topological vector spaces and continuous linear maps, then the adjoint
pair

D : Diff ⇌ Top : C

induces an adjoint pair

D : DVect ⇌ TVect : C.

Now we introduce one of the most important concepts in this paper. Recall that
a smooth map f : X → Y between diffeological spaces is a subduction if Y is dif-
feomorphic to the quotient space X/∼, where x ∼ x′ if f(x) = f(x′). We call a map
g : V →W between diffeological vector spaces a linear subduction if it is both
linear and a subduction.

We will show the most important property for linear subduction in Corollary 6.5
that every plot of the codomain of a linear subduction globally lifts to a plot of the
domain, which is clearly not true for a general subduction. This is one of the key
ingredients for developing homological algebra of diffeological vector spaces.

3. Categorical properties

In this section, we study the categorical properties of the category DVect of diffeo-
logical vector spaces and smooth linear maps. All categorical terminology is from [M].
We begin by showing that DVect is complete and cocomplete. Then we focus on the
algebraic aspects of diffeological vector spaces. We construct the free diffeological
vector space generated by an arbitrary diffeological space, and define tensor prod-
ucts, duals, and short exact sequences of diffeological vector spaces. We also discuss
some isomorphism theorems and necessary and sufficient conditions for when a short
exact sequence of diffeological vector spaces splits in DVect. Unlike the case of vec-
tor spaces, we will see in the next section that not every short exact sequence of
diffeological vector spaces splits in DVect.

Theorem 3.1. The category DVect is complete.

Proof. Every limit can be constructed via equalizers and products, so Examples 2.4
and 2.5 show that we have every limit.

The underlying set of a coproduct in Diff is the disjoint union of the underlying
sets, so a coproduct in Diff cannot be the coproduct in DVect. On the other hand, the
forgetful functor DVect → Vect is a left adjoint; see Theorem 5.1. So if a coproduct
exists in DVect, the underlying set must be the direct sum of the underlying vector
spaces. The proof of the following proposition tells us how to put a suitable diffeology
on this set to make it a coproduct in DVect.

Proposition 3.2. The category DVect has arbitrary coproducts.
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Proof. Let {Vi}i∈I be a set of diffeological vector spaces. We claim that the set
V = ⊕i∈IVi with the final diffeology for all canonical maps

∏
j∈J Vj → V and for

all finite subsets J of the index set I is the colimit in DVect. Here is the proof.
For any diffeological vector space W and any smooth linear maps Vi →W , by the
universal property of colimit in Vect, there is a unique linear map V →W making
the required diagrams commutative. It is then straightforward to check that each
composite

∏
j∈J Vj → V →W is smooth by definition of diffeological vector space.

Therefore, V is the colimit of {Vi}i∈I in DVect.

From now on, ⊕i∈IVi is always equipped with the coproduct diffeology in DVect
as introduced in the proof of the above proposition for a set {Vi}i∈I of diffeological
vector spaces.

Theorem 3.3. The category DVect is cocomplete.

Proof. Every colimit can be constructed via coequalizers and coproducts, so Exam-
ple 2.6 and Proposition 3.2 show that we have every colimit.

Now we discuss how to define hom-objects in DVect:

Given two diffeological vector spaces V and W , we write L∞(V,W ) for the set of
all smooth linear maps V →W . Since L∞(V,W ) is a linear subspace of C∞(V,W ), by
Examples 2.4 and 2.7, L∞(V,W ) with the sub-diffeology of C∞(V,W ) is a diffeological
vector space. From now on, L∞(V,W ) is always equipped with this diffeology (called
the functional diffeology) when viewed as a diffeological (vector) space. As an easy
consequence, the evaluation map V × L∞(V,W ) →W is smooth.

Example 3.4. Let V be a diffeological vector space. Then the map L∞(R, V ) → V
defined by f 7→ f(1) is an isomorphism in DVect.

In order to define tensor products for diffeological vector spaces, we need the
following proposition, which will be very useful throughout this paper.

Proposition 3.5. The forgetful functor DVect → Diff has a left adjoint.

Proof. Given a diffeological space X, write F (X) for the free vector space generated
by the underlying set of X. For p1 : U1 → X, · · · , pn : Un → X plots of X, write

(R× U1)× · · · × (R× Un) → F (X)

for the map defined by ((r1, u1), . . . , (rn, un)) 7→ r1[p1(u1)] + · · ·+ rn[pn(un)]. Equip
F (X) with the diffeology generated by all such maps for all n ∈ Z+. It is clear that
this is the smallest diffeology on F (X) such that F (X) is a diffeological vector space
and the canonical map iX : X → F (X) is smooth. We call F (X) with this diffeology
the free diffeological vector space generated by the diffeological space X.
Moreover, we have the universal property that for any diffeological vector space V and
any smooth map f : X → V , there exists a unique smooth linear map g : F (X) → V
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making the following triangle commutative:

X

f
��
00
00
00

iX // F (X)

g
����
��
��

V.

Therefore, we can define F : Diff → DVect by sending X → Y to the unique smooth
linear map F (X) → F (Y ) defined by the universal property. Then F is a functor
which is left adjoint to the forgetful functor DVect → Diff.

In particular, if f :X→ Y is a subduction of diffeological spaces, then F (f) : F (X)→
F (Y ) is a linear subduction of (free) diffeological vector spaces.

Remark 3.6. The universal property of free diffeological vector spaces says that if X
is a diffeological space and V is a diffeological vector space, then there is a natural
bijection between C∞(X,V ) and L∞(F (X), V ). Indeed, this is an isomorphism in
DVect.

Similarly, if {Xi}i∈I is a set of diffeological spaces and {Vj}j∈J ∪ {V } is a set of
diffeological vector spaces, then we have natural isomorphisms in DVect:

C∞(
⨿
i∈I

Xi, V ) ∼=
∏
i∈I

C∞(Xi, V ),

L∞(V,
∏
j∈J

Vj) ∼=
∏
j∈J

L∞(V, Vj),

and

L∞(⊕j∈JVj , V ) ∼=
∏
j∈J

L∞(Vj , V ).

Example 3.7. Not every diffeological vector space is a free diffeological vector space
generated by a diffeological space. Rind is such an example.

Now we discuss tensor products in DVect:
Let V and W be two diffeological vector spaces. Since the vector space V ⊗W is

a quotient vector space of the free diffeological vector space F (V ×W ) generated by
the product space V ×W , by Example 2.6, V ⊗W is a diffeological vector space with
the quotient diffeology. From now on, we always equip V ⊗W with this diffeology.

As usual, we have the following adjoint pair:

Theorem 3.8. For any diffeological vector space V , there is an adjoint pair

−⊗ V : DVect ⇌ DVect : L∞(V,−).

Proof. Let W and A be diffeological vector spaces. By definition of functional diffe-
ology, one shows directly that a map W → L∞(V,A) is smooth linear if and only if
the adjoint set map W × V → A is smooth bilinear. By the universal property of free
diffeological vector space generated by a diffeological space in the proof of Proposi-
tion 3.5, one then shows that a map W × V → A is smooth bilinear if and only if the
induced map W ⊗ V → A is smooth linear.
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Here are some basic properties of tensor products of diffeological vector spaces.

Remark 3.9.

1. Given diffeological vector spaces V1, V2, and V3, V1 ⊗ V2 is naturally isomorphic
to V2 ⊗ V1 in DVect, and (V1 ⊗ V2)⊗ V3 is naturally isomorphic to V1 ⊗ (V2 ⊗
V3) inDVect. The second isomorphism is indicated by the fact that the canonical
projection map from F (V1 × V2 × V3) to either (V1 ⊗ V2)⊗ V3 or V1 ⊗ (V2 ⊗ V3)
is a (linear) subduction.

2. Given a set of diffeological vector spaces {Vi}i∈I ∪ {W}, (⊕i∈IVi)⊗W is iso-
morphic to ⊕i∈I(Vi ⊗W ) in DVect.

3. For any diffeological vector space V , the map V → V ⊗ R defined by v 7→ v ⊗ 1
is an isomorphism in DVect.

Proposition 3.10. Let X and Y be diffeological spaces. Then F (X × Y ) is isomor-
phic to F (X)⊗ F (Y ) in DVect.

Proof. Since iX : X → F (X) and iY : Y → F (Y ) are smooth, so is iX × iY : X × Y →
F (X)× F (Y ) and hence the composite iF (X)×F (Y ) ◦ (iX × iY ) : X × Y → F (F (X)×
F (Y )). The last map induces a smooth linear map F (X × Y ) → F (F (X)× F (Y )).
So we get a smooth linear map F (X × Y ) → F (X)⊗ F (Y ) given by

∑
cj [xj , yj ] 7→∑

cj [xj ]⊗ [yj ]. It is known from general algebra that this map is an isomorphism
in Vect. Therefore, we are left to show that the inverse map is smooth. By defini-
tion of the diffeology on F (X)⊗ F (Y ), it is enough to show that the canonical pro-
jection map F (F (X)× F (Y )) → F (X × Y ) given by

∑
i ai[

∑
j bij [xj ],

∑
k cik[yk]] 7→∑

i,j,k aibijcik[xj , yk] is smooth. This follows directly from the description of the dif-
feology on the free diffeological vector space generated by a diffeological space in the
proof of Proposition 3.5.

Now we discuss the dual to a diffeological vector space:
Let V be a diffeological vector space. Write D̃(V ) for the dual diffeological vec-

tor space L∞(V,R). Then D̃ is a functor DVect → DVectop, and we have a natural
transformation 1 → D̃2 : DVect → DVect.

Example 3.11. It is not true that for every finite dimensional diffeological vector
space V , the canonical map V → D̃2(V ) is a diffeomorphism. And it is not true that
for every diffeological vector space V , the canonical map V → D̃2(V ) is injective.
For example, D̃(Rind) = R0 = D̃2(Rind). On the other hand, the canonical map V →
D̃2(V ) is injective if and only if D̃(V ) separates points; that is, for any v ̸= v′ ∈ V ,
there exists l ∈ D̃(V ) such that l(v) ̸= l(v′).

Here are some isomorphism theorems:

Proposition 3.12.

1. Let f : V →W be a linear subduction between diffeological vector spaces. Then
f̃ : V/ ker(f) →W defined by f̃(v + ker(f)) = f(v) is an isomorphism in DVect.

2. If A is a diffeological vector space, B is a linear subspace of A, and C is a linear
subspace of B, then (A/C)/(B/C) is isomorphic to A/B in DVect.

Proof. This is easy.
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Now the following result is clear:

Corollary 3.13. Every diffeological vector space is isomorphic to a quotient vector
space of a free diffeological vector space in DVect.

Proof. Let V be a diffeological vector space. Then the smooth map 1V : V → V
induces a smooth linear map η : F (V ) → V such that η ◦ iV = 1V , where iV : V →
F (V ) is the canonical map. This equality implies that η is a subduction. Therefore,
V is isomorphic to F (V )/ ker(η) in DVect.

Remark 3.14. If V is a diffeological vector space, then the canonical map iV : V →
F (V ) is smooth but not linear. Therefore, the short exact sequence 0 → ker(η) →
F (V ) → V → 0 of diffeological vector spaces in the proof of the above corollary does
not split smoothly in general; see Theorem 3.16 and Example 6.9(2). When V is
projective (see Definition 6.1), the above short exact sequence splits smoothly.

Definition 3.15. Let A, V , and B be diffeological vector spaces. Let i : A→ V and
p : V → B be smooth linear maps. We say that

0 // A
i // V

p
// B // 0

is a short exact sequence in DVect, if

1. it is a short exact sequence in Vect;

2. i is an induction and p is a subduction.

We call i a linear induction.

One can show easily that if f : V →W is a linear subduction between diffeological
vector spaces, then f∗ : L∞(W,A) → L∞(V,A) is a linear induction for any diffeolog-
ical vector space A.

Theorem 3.16. Let

0 // A
i // V

p
// B // 0

be a short exact sequence in DVect. The following are equivalent.

1. There exists a smooth linear map r : V → A such that r ◦ i = 1A.

2. There exists a smooth linear map q : B → V such that p ◦ q = 1B.

3. The short exact sequence is isomorphic to

0 // A
i1 // A×B

p2 // B // 0

in DVect, with identity maps on A and B. In particular, V is isomorphic to
A×B in DVect.

In this case, we say that the short exact sequence

0 // A
i // V

p
// B // 0

in DVect splits smoothly, and we call A (and B) a smooth direct summand of
V . We will show in Example 4.3 that not every short exact sequence in DVect splits
smoothly.
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Proof. If we only consider the statements in Vect instead of DVect, then this is a
standard result from algebra; see [Hu, Theorem IV.1.18] for instance. We are left to
prove the smoothness of certain maps.

(3) ⇒ (1) and (3) ⇒ (2) are clear.

(1) ⇒ (3): By [Hu, the Short Five Lemma 1.17], (r, p) : V → A×B is an iso-
morphism in Vect. Its inverse can be written as i+ q : A×B → V for some linear
map q : B → V . It is straightforward to check that q ◦ p = 1V − i ◦ r. Hence, q ◦ p is
smooth. Then p being a subduction implies that q is smooth. So i+ q is smooth.
Therefore, (r, p) is an isomorphism in DVect, which implies the isomorphism of the
two short exact sequences in DVect.

(2) ⇒ (3) can be proved dually as (1) ⇒ (3).

Now the following result is straightforward:

Corollary 3.17. Let V and W be diffeological vector spaces.

1. Let i : V →W and r : W → V be smooth linear maps such that r ◦ i = 1V . Then
there exists a diffeological vector space X such that W is isomorphic to V ×X
in DVect.

2. Let p : W → V and q : V →W be smooth linear maps such that p ◦ q = 1V . Then
there exists a diffeological vector space X such that W is isomorphic to V ×X
in DVect.

Remark 3.18. It is easy to see that the category DVect is additive with kernels and
cokernels. However, it is not abelian, since a morphism inDVect is monic if and only if
the underlying set map is injective, but not necessarily an induction. Indeed, DVect is
a quasi-abelian category in the sense of [Sc, Definition 1.1.3] with strict epimorphisms
the linear subductions and strict monomorphisms the linear inductions.

Remark 3.19. M. Vincent discussed tensor products and duals of diffeological vector
spaces in his masters thesis [V, Chapter 2]. He also showed that a vector space with
a pre-diffeology (that is, a set of functions from open subsets of Euclidean spaces
to this vector space) has a smallest diffeology containing the original pre-diffeology
which makes it a diffeological vector space. This is more general than the construction
of free diffeological vector space generated by a diffeological space in this section.

4. More examples

In this section, we present two more examples of diffeological vector spaces from
analysis. These examples were introduced in the framework of Frölicher spaces
in [KM], and we adapt the proofs to the diffeological setting. The second example
is the main motivation for developing (relative) homological algebra for diffeological
vector spaces. At the end, we also get a generalized version of Borel’s lemma.

Example 4.1 (Seeley’s extension [Se]). Let D+ be the set of all smooth functions

f : Rn × R>0 → R such that ∂|m|f
∂(x,t)m has continuous limits as t→ 0, for every m ∈

Nn+1. ThenD+ is a linear subspace of C∞(Rn × R>0,R). Moreover, there is a smooth
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linear map

E : D+ → C∞(Rn × R,R)

such that E(f)(x, t) = f(x, t) when t > 0.

Remark 4.2.

1. It is shown in [Se] that the map E in the above example is continuous if both
D+ and C∞(Rn × R,R) are equipped with several topologies. However, it is
straightforward to see that E is actually smooth in the diffeological sense. In
particular, E is continuous if both D+ and C∞(Rn × R,R) are equipped with
the D-topology.

2. The inclusion map i : Rn × R>0 ↪→ Rn × R induces a smooth linear map

i∗ : C∞(Rn × R,R) → C∞(Rn × R>0,R).

It is clear that Im(i∗) ⊆ D+. By abuse of notation, we write i∗ : C∞(Rn ×
R,R) → D+. Then i∗ ◦ E = 1D+ . Therefore, E is an induction. In particular,
if we equip C∞(Rn × R,R) with the D-topology, then the D-topology on D+

is the initial topology with respect to the map E. Moreover, the D-topology on
C∞(Rn × R,R) is the weak topology [CSW, Corollary 4.10], which is the same
as “the topology of uniform convergence of each derivative on compact subsets
of Rn+1” [Se].

3. Let

F = {f ∈ C∞(Rn × R,R) | i∗(f) = 0 ∈ C∞(Rn × R>0,R)}.

Then F is a linear subspace of C∞(Rn × R,R). Moreover, C∞(Rn × R,R) is
isomorphic to D+ × F in DVect guaranteed by Corollary 3.17(1), with the iso-
morphism given by

C∞(Rn × R,R) → D+ × F, h 7→ (i∗(h), h− E ◦ i∗(h))

and

D+ × F → C∞(Rn × R,R), (g, f) 7→ E(g) + f.

Example 4.3. Let

ϕ : C∞(R,R) →
∏
ω

R be defined by (ϕ(f))n = f (n)(0).

Then ϕ is a smooth linear map with kernel

K = {f ∈ C∞(R,R) | f (n)(0) = 0 for all n ∈ N}.

By Borel’s lemma (a more general version will be proved in Claim 1 below), ϕ is
surjective. Therefore, there is a smooth linear bijection

ϕ̄ : C∞(R,R)/K →
∏
ω

R.

We will show through the following three claims that

0 // K // C∞(R,R)
ϕ

//
∏

ω R // 0

is a short exact sequence in DVect, which does not split smoothly.
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Remark 4.4. On the contrary, for any n ∈ N, let Kn = {f ∈ C∞(R,R) | f (i)(0) =
0 for all i ⩽ n}. Then the short exact sequence

0 // Kn
// C∞(R,R)

ϕn //
∏

n R // 0

in DVect does split smoothly, where ϕn(f) = (f(0), f ′(0), . . . , f (n)(0)).

Claim 1 (Generalized Borel’s lemma, the local version): The map ϕ̄ is an isomor-
phism in DVect.

We are left to show that ϕ is a subduction. Let F : U →
∏

ω R be a plot. For any
x ∈ U , fix two open neighborhoods V and V ′ of x in U , such that V ⊂ V̄ ⊂ V ′ with
V̄ compact. Fix h ∈ C∞(R,R) such that h has compact support and h(t) = t in an
open neighborhood of 0. Let

µ0 = 2max{1 + ∥F0(x)∥ | x ∈ V },

and let

µn = 2max{1 + µn−1} ∪ {1 + ∥D
αFn(x)

n!
(hn)(j)(t)∥ | x ∈ V, |α|+ j ⩽ n, t ∈ R}.

Then (µn) is an increasing sequence with µn ⩾ 2n+ 2 for all n ∈ N. Now we define

G̃ : V × R → R by G̃(x, t) =

∞∑
m=0

Fm(x)

m!
(
h(tµm)

µm
)m.

For any t ̸= 0, this is a finite sum of smooth functions, so G̃ is smooth there. For t
near 0, one can show by Weierstrass M-test that

∞∑
m=0

DαFm(x)

m!
(
(h(tµm)m)(j)

µm
m

)

is uniformly convergent for all x ∈ V , α ∈ Ndim(U), and j ∈ N. So G̃ is also smooth
at t = 0, and hence G̃ is smooth on V × R. In other words, the adjoint map

G : V → C∞(R,R)

is smooth. Note that

G̃(x, t) ∼
∞∑

m=0

Fm(x)

m!
tm as t→ 0.

So

(ϕ ◦G)n(x) =
∂nG̃

∂tn
(x, 0) = Fn(x)

for all x ∈ V and n ∈ N. Therefore, ϕ is a subduction.

Claim 2: The D-topology on
∏

ω R is the product topology.

Observe that the D-topology contains the product topology by definition of prod-
uct diffeology. Let A be a subset of

∏
ω R such that it is not in the product topology.

In other words, there exists a = (a0, a1, . . .) ∈ A such that no open neighborhood of
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a in the product topology is contained in A. Let ϵi ∈ R>0 for i ∈ N, and let

Ui =
i∏

j=0

(aj − ϵi, aj + ϵi)×
∏

k∈N\{0,1,...,i}

R.

Clearly, Ui is an open neighborhood of a in the product topology, so there exists
bi = (bi0, bi1, . . .) ∈ Ui \A. We can choose ϵi’s so that bin → an fast as i→ ∞ for
each n ∈ N; for definition of fast convergence, see [KM, page 17]. By the Special
Curve Lemma [KM, page 18], there exists a smooth map c : R →

∏
ω R such that

c(1/n) = bn and c(0) = a. Therefore, A is not D-open.

Claim 3: There is no smooth linear map q :
∏

ω R → C∞(R,R) such that
ϕ ◦ q = 1∏

ω R.

To prove this, it is enough to show that for every smooth linear map

q :
∏
ω

R → C∞(R,R),

ϕ ◦ q is not injective. By [CSW, Corollary 4.10], the D-topology on C∞(R,R) coin-
cides with the weak topology, or by [CSW, Proposition 4.2], the D-topology on
C∞(R,R) contains the compact-open topology. Hence,

A = {f ∈ C∞(R,R) | |f(t)| < 1 for all t with |t| ⩽ 1}

is D-open in C∞(R,R), which implies that q−1(A) is D-open in
∏

ω R by the smooth-

ness of q. It is clear that 0⃗ = (0, 0, . . .) ∈ q−1(A) since the zero function is in A and
q is linear. In Claim 2 we proved that the D-topology on

∏
ω R coincides with the

product topology, so there exists N ∈ Z+ such that

0⃗ ∈ B = {x ∈
∏
ω

R | xn < 1/N for all n ⩽ N} ⊆ q−1(A).

Therefore, for any x ∈
∏

ω R with xn = 0 for all n ⩽ N , kx ∈ B for every k ∈ N. So,
by the linearity of q,

k(q(x)) = q(kx) ∈ q(B) ⊆ A,

which implies that q(x)(t) = 0 for all t with |t| ⩽ 1 by definition of A. Therefore,

(ϕ ◦ q(x))n =
∂nq(x)

∂tn
(0) = 0 for all n ∈ N;

that is, ϕ ◦ q is not injective.

Conclusion: Combining Claims 1 and 3 with Theorem 3.16, we know that

0 // K // C∞(R,R)
ϕ

//
∏

ω R // 0

is a short exact sequence in DVect, but it does not split smoothly.

Remark 4.5 (Generalized Borel’s lemma, the global version). Combining Claim 1
of the above example with Corollary 6.5, we can restate the generalized Borel’s
lemma as follows: For any open subset U of a Euclidean space and any set of
smooth functions {fi : U → R}i∈N, there exists a smooth map F : U × R → R such
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that ∂kF
∂yk (x, 0) = fk(x) for all k ∈ N and x ∈ U . And this analytic statement is equiv-

alent to the geometric statement that the map ϕ introduced in Example 4.3 is a linear
subduction.

5. Fine diffeological vector spaces

In this section, we recall the definition and some basic properties of fine diffeological
vector spaces. They behave like vector spaces, except for infinite products and duals.
We also present some examples and non-examples of fine diffeological vector spaces.
The analytic proof of Example 5.6 relates to an interesting problem in analysis. We
prove that the free diffeological vector space generated by a diffeological space X
is fine if and only if X is discrete, and that every fine diffeological vector space is
Frölicher.

Theorem 5.1. The forgetful functor DVect → Vect has both left and right adjoints.

Proof. The right adjoint is given by sending a vector space to the same space with
the indiscrete diffeology, and the left adjoint is given by sending a vector space to the
same space with the fine diffeology, which is the smallest diffeology on the vector
space making it a diffeological vector space ([I3, 3.7]).

Definition 5.2 ([I3, 3.7]). A vector space with the fine diffeology is called a fine
diffeological vector space.

Here are some basic properties of fine diffeological vector spaces.

1. Fine diffeology on a vector space V is generated by all (injective) linear maps
Rn → V for all n ∈ N; see [I3, 3.8]. (In particular, this implies that the diffe-
ological dimension of any diffeological vector space is always greater than or
equal to its vector space dimension. (See [I3, Chapters 1 and 2] and [Wu, Sec-
tion 1.8] for the definition and basic properties of the diffeological dimension
of a diffeological space.) The equality does not always hold. For example, the
diffeological dimension of Rind is ∞, while its vector space dimension is 1.)

2. The fine diffeology on Rn is the standard diffeology; see [I3, Exercise 66 on
page 71].

3. There is an equivalence between the category of fine diffeological vector spaces
with smooth linear maps and the category Vect of vector spaces with linear
maps; see [I3, 3.10].

4. Every linear subspace of a fine diffeological vector space is again a fine diffeo-
logical vector space.

5. Finite product of fine diffeological vector spaces is again a fine diffeological vector
space. But in general this is not true for infinite product; see Example 5.4.

6. Every quotient vector space of a fine diffeological vector space is again a fine
diffeological vector space. Any coproduct of fine diffeological vector spaces in
DVect is again a fine diffeological vector space, which follows from the descrip-
tion of the coproduct diffeology in DVect (see the proof of Proposition 3.2) and
(5). Therefore, every colimit of fine diffeological vector spaces in DVect is again
a fine diffeological vector space.
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7. If V is a fine diffeological vector space andW is a diffeological vector space, then
L∞(V,W ) = L(V,W ) by Theorem 5.1; that is, a smooth linear map V →W is
the same as a linear map V →W . It follows that every fine diffeological vector
space is a free diffeological vector space generated by any basis with the discrete
diffeology. The converse is also true; see Theorem 5.3.

8. Let V be a fine diffeological vector space, and let A be a basis of V . Then V is
isomorphic to the coproduct of |A|-copies of R in DVect.
Let W be an arbitrary diffeological vector space. Then L∞(V,W ) is isomor-

phic in DVect to the product of |A|-copies of W . In particular, if V = Rn and
W is fine, then L∞(V,W ) is also fine.

9. Tensor product of finitely many fine diffeological vector spaces is again a fine
diffeological vector space. This follows from (7), Proposition 3.10, and the fact
that finite product of discrete diffeological spaces is again a discrete diffeological
space.

10. Let V be a fine diffeological vector space. Then the canonical map V → D̃2(V )
is injective. Furthermore, if V is also finite dimensional, then D̃(V ) is fine and
this canonical map is an isomorphism in DVect. But in general, D̃(V ) may not
be fine; see Example 5.5.

11. Let 0 → V1 → V2 → V3 → 0 be a short exact sequence of diffeological vector
spaces. If V3 is fine, then this short exact sequence splits smoothly by (7) and
Theorem 3.16. If V2 is fine, then this short exact sequence splits smoothly as
well by (7) and Theorem 3.16, and in particular, we conclude that both V1 and
V3 are fine by (4) and (6).
As an immediate consequence, it is not true that for every diffeological vector

space V , there is a linear subduction from a fine diffeological vector space to V .

Theorem 5.3. Let X be a diffeological space such that F (X) is a fine diffeological
vector space. Then X is discrete.

Proof. Assume that there exist a plot p : U → X and a point u0 ∈ U such that for
every open neighborhood V of u0 in U , there exists v ∈ V such that p(v) ̸= p(u0).
Consider the plot q : R× U → F (X) given by (t, u) 7→ t[p(u)]. Since F (X) is fine,
q|A×B = l ◦ f for some n ∈ N, some open neighborhoods A of t0 ̸= 0 in R and B
of u0 in U , a smooth function f : A×B → Rn, and a linear map l : Rn → F (X).
Without loss of generality, we may assume that l sends the canonical basis of Rn to
the canonical basis of F (X); that is, for every i ∈ {1, 2. . . . , n}, l(ei) = [xi] for some
xi ∈ X. Then the equality q|A×B = l ◦ f simply implies that f cannot be smooth.
Therefore, X is a discrete diffeological space.

Example 5.4. The countable product
∏

ω R of fine diffeological vector spaces is not
fine. The reason is, if

∏
ω R were fine, then by Property (11), the short exact sequence

of diffeological vector spaces in Example 4.3 would split smoothly.
Here is another way to see this fact. Let λ be a fixed smooth bump function; that

is, λ ∈ C∞(R,R) such that supp(λ) ⊂ (0, 1) and Im(λ) = [0, 1]. Let Φ: R →
∏

ω R be
defined by

(Φ(t))n = λ[n(n+ 1)(t− 1

n+ 1
)].

Then Φ is smooth, and the image of any neighborhood of 0 ∈ R under Φ does not
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live in any finite dimensional linear subspace of
∏

ω R. Therefore,
∏

ω R is not fine.
Furthermore, ⊕ωR is a linear subspace of

∏
ω R. But by using the function Φ, it

is easy to see that the sub-diffeology from
∏

ω R is different from the fine diffeology
on ⊕ωR.

Let i : R →
∏

ω R be defined by x 7→ (x, 0, 0, . . .). One can check easily that i is a
linear induction such that p0 ◦ i = 1R. In other words, although

∏
ω R is not a fine

diffeological vector space, it has a smooth direct summand of a fine diffeological vector
space.

Example 5.5. The dual of a fine diffeological vector space may not be fine. For
example, if V = ⊕ωR, the coproduct of countably many copies of R in DVect, then
D̃(V ) =

∏
ω R, the product of countably many copies of R in DVect. By Example 5.4,

we know that D̃(V ) is not fine.

Example 5.6. The diffeological vector space C∞(R,R) is not fine.
Here is an analytic proof. Assume that the diffeological vector space C∞(R,R) is

fine. Let f : R → C∞(R,R) be the plot with f(x)(y) = exy. Then there exist an open
neighborhood U of 0 in R, an integer n ∈ N, a smooth map g : U → Rn, and a linear
map h : Rn → C∞(R,R) such that f |U = h ◦ g. In other words, for any (x, y) ∈ U × R,
exy =

∑n
k=1 gk(x)hk(y) for some smooth functions g1, . . . , gn, h1, . . . , hn ∈ C∞(R,R).

Now fix δ ∈ R>0 such that δ, 2δ, . . . , nδ ∈ U . The (n+ 1)× (n+ 1) matrix A :=

[eijδ
2

]ni,j=0 is equal to

n∑
k=1

[gk(0), gk(δ), . . . , gk(nδ)]
T [hk(0), hk(δ), . . . , hk(nδ)],

i.e., the sum of n rank-1 matrices, hence singular. On the other hand, A is a Vander-
monde matrix, so its determinant is∏

i,j=0,...,n
i>j

(eiδ
2

− ejδ
2

) ̸= 0.

The contradiction implies that the diffeological vector space C∞(R,R) is not fine.

Here is an algebraic proof. In Claim 1 of Example 4.3, we have shown that

0 // K // C∞(R,R)
ϕ

//
∏

ω R // 0

is a short exact sequence of diffeological vector spaces. Now we have two ways to
argue that C∞(R,R) is not fine. The first way is, if C∞(R,R) is fine, then so is

∏
ω R

by Property (11), but it is not by Example 5.4. The second way is, if C∞(R,R) is
fine, then the above short exact sequence splits smoothly by Property (11), which
contradicts the conclusion of Example 4.3.

Frölicher spaces are another well-studied generalization of smooth manifolds. We
refer the reader to [St] for definition of the category Fr of Frölicher spaces and smooth
maps. There is an adjoint pair F : Diff ⇌ Fr : G; see [St]. We say that a diffeological
space X is Frölicher if there exists a Frölicher space Y such that G(Y ) = X.

Proposition 5.7. Every fine diffeological vector space is Frölicher.
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Proof. Let V be a fine diffeological vector space. Write F = C∞(V,R) and write
C = {c : R → V | l ◦ c ∈ C∞(R,R) for all l ∈ F}. Then (C, V,F) is a Frölicher space.
We are left to show that for any open subset U of Rn, for any set map f : U → V , if
l ◦ f ∈ C∞(U,R) for every l ∈ F , then f is a plot of V .

Note that if A is a basis of V , then V is isomorphic to ⊕a∈AR in DVect. Hence, a
linear projection of V to any 1-dimensional linear subspace is in F . Therefore, it is
enough to show that for any u ∈ U , there exists an open neighborhood U ′ of u, such
that Im(f |U ′) is in a finite dimensional linear subspace of V .

Now assume that for every open neighborhood U ′ of u in U , Im(f |U ′) is not in a
finite dimensional linear subspace of V . Then there exists a sequence un → u in U
such that

{f(un)}n∈N is a linearly independent subset of V, if f(u) = 0;

or {f(un)}n∈N ∪ {f(u)} is a linearly independent subset of V, if f(u) ̸= 0.

We can extend this linearly independent subset to a basis B of V . Then by the
universal property of coproduct in DVect, g : V → R defined by the linear extension
of the map {

f(un) 7→ 1 for every n ∈ N
other elements in B 7→ 0

is in F . But clearly g ◦ f is not continuous, hence not smooth, contracting the assump-
tion that l ◦ f ∈ C∞(U,R) for every l ∈ F .

6. Projective diffeological vector spaces

In this section, we introduce a large class of diffeological vector spaces called pro-
jective diffeological vector spaces. They have the lifting property with respect to all
linear subductions. Fine diffeological vector spaces and the free diffeological vector
spaces generated by smooth manifolds are such examples. We give several equiv-
alent characterizations of projective diffeological vector spaces in this section and
next. However, not every (free) diffeological vector space is projective. But there are
enough projectives in the category DVect of diffeological vector spaces.

Definition 6.1. We call a diffeological vector space V projective, if for every linear
subduction f : W1 →W2 and every smooth linear map g : V →W2, there exists a
smooth linear map h : V →W1 such that g = f ◦ h.

Proposition 6.2. Let X be a diffeological space. Then the free diffeological vector
space F (X) generated by X is projective if and only if for any linear subduction
f : W1 →W2 and any smooth map g : X →W2, there exists a smooth map h : X →
W1 making the following diagram commutative:

X

g

��

h

||zz
zz
zz
zz

W1
f

// W2.
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Proof. This follows directly from definition of projective diffeological vector space and
the universal property of free diffeological vector space generated by a diffeological
space.

Corollary 6.3. Every fine diffeological vector space is projective.

Proof. This follows directly from Proposition 6.2 together with Property (7) that
every fine diffeological vector space is a free diffeological vector space generated by a
discrete diffeological space.

Corollary 6.4. The free diffeological vector space generated by a smooth manifold is
projective.

Proof. LetM be a smooth manifold. For any linear subduction f : W1 →W2 and any
smooth map g : M →W2, by Proposition 6.2, we only need to construct a smooth
map h : M →W1 such that g = f ◦ h.

Since f : W1 →W2 is a subduction and M is a smooth manifold, we can find an
atlas {Ui}i∈I of M such that for each i, there exists a smooth map hi : Ui →W1

making the following diagram commutative:

Ui

hi
((QQ

QQQ
QQQ

QQQ
QQQ

Q
� � // M

g
// W2

W1.

f

OO

Let {ρi}i∈I be a smooth partition of unity subordinate to this covering {Ui}i∈I

of M . Since W1 is a diffeological vector space, the map h : M →W1 defined by
h(m) =

∑
i∈I ρi(m)hi(m) is smooth. It is easy to check that f(h(m)) = g(m) for all

m ∈M .

By Theorem 5.3, it is clear that Corollary 6.4 provides a lot of projective but
not fine diffeological vector spaces. Moreover, we have the following immediate conse-
quence from the proof of Corollary 6.4, which will be essential for homological algebra
of diffeological vector spaces:

Corollary 6.5 (Global Lifting). For any linear subduction W1 →W2, every plot of
W2 globally lifts to a plot of W1.

Remark 6.6. By [I3, 8.15], we know that every linear subduction π : W1 →W2 is
a diffeological principal bundle; see [I3, Chapter 8]. By Corollary 6.5, the pullback
in Diff along any plot p : U →W2 is globally trivial. So for any (u,w) ∈ U ×W1

with p(u) = π(w), there exists a smooth map f : U →W1 such that p = π ◦ f and
f(u) = w.

Example 6.7.

1. Let

R0 0 //

0

��

R

i2
��

R
i1

// X

be a pushout diagram in Diff. Then F (X) is projective.
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Here is the proof. Let f : W1 →W2 be a linear subduction, and let g : X →W2

be a smooth map. By Corollary 6.4, there exist smooth maps α, β̄ : R →W1 such
that f ◦ α = g ◦ i1 and f ◦ β̄ = g ◦ i2. Since W1 is a diffeological vector space,
we can define β : R →W1 by β(y) = β̄(y)− β̄(0) + α(0). Then the map β is
smooth, and the linearity of f implies that f ◦ β = g ◦ i2. Now α(0) = β(0). So
we have a smooth map h : X →W1 such that f ◦ h = g. The result then follows
from Proposition 6.2.

2. Let X be the union of the coordinate axes in R2 with the sub-diffeology. Then
F (X) is projective.
Here is the proof. Write i1, i2 : R → X for the smooth maps defined by i1(x) =

(x, 0) and i2(y) = (0, y), and write i : X → R2 for the inclusion. Let f : W1 →W2

be a linear subduction, and let g : X →W2 be a smooth map. Since W2 is a
diffeological vector space, we can define G : R2 →W2 by G(x, y) = g(i1(x)) +
g(i2(y))− g(i1(0)). Then G is a smooth map, and G ◦ i = g. By Corollary 6.4,
there exists a smooth map H : R2 →W1 such that f ◦H = G. Hence, h :=
H ◦ i : X →W1 is a smooth map such that f ◦ h = g.

Remark 6.8. More generally, using the terminology in [CW1], we have the following:
Let X and Y be diffeological spaces. If either X is cofibrant, or F (Y ) is a projective
diffeological vector space and there is a cofibration X → Y , then F (X) is a projective
diffeological vector space. This follows from the fact that every linear subduction is
a trivial fibration.

However, not every (free) diffeological vector space is projective:

Example 6.9.

1. Not every diffeological vector space is projective. From Example 4.3, we know
that

∏
ω R is such an example.

2. More surprisingly, not every free diffeological vector space is projective.
Let α be an irrational number, and let Tα be the quotient group R/(Z+ αZ)

with the quotient diffeology. We call Tα the 1-dimensional irrational torus
of slope α. Write π : R → Tα for the quotient map. Then F (π) : F (R) → F (Tα)
is a linear subduction. We claim that F (Tα) is not projective.
By Proposition 6.2, we only need to show that there exists no smooth map

h : Tα →F (R) such that iTα = F (π)◦h, where iTα : Tα →F (Tα) is the canonical
smooth map. Otherwise, f := h◦π ∈C∞(R, F (R)) and F (π)(f(x)) = iTα(π(x))
for all x ∈ R. On the one hand, f ∈ C∞(R, F (R)) implies that there exists a con-
nected open neighborhood A of 0 in R together with smooth maps βi : A→ R
(viewed as scalars) and γi : A→ R (viewed as base) with 1 ⩽ i ⩽ n for some
minimum n ∈ Z+, such that f(x) =

∑n
i=1 βi(x)[γi(x)] for all x ∈ A. Since

(Z+ αZ) ∩A is dense in A, the map γi must be constant for each i. On the other
hand, since π|A : A→ Tα is surjective, F (π)(f(x)) = iTα(π(x)) for all x ∈ A
implies that not every γi is constant. So we reach a contradiction.
Here are some immediate consequences of this example:

• Together with Remark 6.8, we get an independent proof that every 1-
dimensional irrational torus Tα is non-cofibrant (see [CW1, Example 4.27]
for an alternative proof).
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• The diffeological vector space F (Tα) is not fine.

By a similar argument, one can show that F 2(Tα) := F (F (Tα)), the free diffeo-
logical vector space generated by F (Tα), is also not projective. More generally,
none of Fn(Tα) := F (Fn−1(Tα)) is projective for n ∈ Z+.

3. Rind is not projective, since there is no smooth linear map h : Rind → F (Rind)
such that η ◦ h = 1Rind

, where η : F (Rind) → Rind is the canonical smooth linear
map induced by 1Rind

: Rind → Rind.

Here is another consequence of Example 6.9(2):

Lemma 6.10. Projective diffeological vector spaces are not preserved under arbitrary
colimits in DVect.

Proof. By [CSW, Proposition 2.7], every diffeological space X is a colimit of open
subsets U of Euclidean spaces, i.e.,X = colimU . The free functor F : Diff → DVect is
a left adjoint (Proposition 3.5), so it commutes with colimits, i.e., F (X) = colimF (U).
By Corollary 6.4, the right-hand side is a colimit of projective diffeological vector
spaces, while by Example 6.9(2), we know that the left-hand side can fail to be a
projective diffeological vector space.

Here are some basic properties for projective diffeological vector spaces:

Proposition 6.11.

1. A diffeological vector space V is projective if and only if every linear subduction
W → V splits smoothly.

2. Let {Vi}i∈I be a set of diffeological vector spaces. Then each Vi is projective if
and only if the coproduct ⊕i∈IVi in DVect is projective.

3. Projective diffeological vector spaces are closed under retracts in DVect. That
is, if f : V →W and g : W → V are smooth linear maps between diffeological
vector spaces such that g ◦ f = 1V and W is projective, then V is also projective.

4. Let 0 → V1 → V2 → V3 → 0 be a short exact sequence of diffeological vector
spaces. If V3 is projective, then this short exact sequence splits smoothly. In par-
ticular, every projective diffeological vector space is a smooth direct summand
of a free diffeological vector space, but the converse is not true in general.

Proof. (1) follows from the definition of projective diffeological vector space and
the fact that linear subductions are closed under pullbacks in DVect. The rest are
formal.

Example 6.12.

1. Let Cn be the cyclic subgroup of order n of the multiplicative group S1. Let
Cn act on R2 by rotation, and write X for the quotient diffeological space with
the quotient map π : R2 → X. Then F (X) is a projective diffeological vector
space. Here is the proof. Define f : X → F (R2) by x 7→

∑
1
n [x̄], where the sum

is over all x̄ ∈ π−1(x). Clearly f is a smooth map such that F (X) is a retract
in DVect of the projective diffeological vector space F (R2). Hence, F (X) is also
projective by Proposition 6.11(3).
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2. Similarly, if Xn is the quotient diffeological space Rn/{±1}, then F (Xn) is a
projective diffeological vector space.

Recall from Example 6.9(2) that the domain of the canonical linear subduction
F 2(Tα) → F (Tα) is not projective. So the proof of Corollary 3.13 does not provide us
a functorial way to find a projective diffeological vector space V together with a linear
subduction V → F (Tα). However, there is a linear subduction F (π) : F (R) → F (Tα)
whose domain is a projective diffeological vector space.

Theorem 6.13. The category DVect has enough projectives. That is, for any diffeo-
logical vector space V , there exists a projective diffeological vector space P (V ) together
with a linear subduction P (V ) → V .

Proof. Let V be an arbitrary diffeological vector space. We construct P (V ) as the
coproduct inDVect of all F (U) indexed by all plots U → V . By the universal property
of free diffeological vector space generated by a diffeological space, there is a canonical
smooth linear map F (U) → V . Therefore, by the universal property of coproduct in
DVect, there is a smooth linear map P (V ) → V . By construction, it is easy to see
that this map is a subduction. By Corollary 6.4 and Proposition 6.11(2), we know
that P (V ) is a projective diffeological vector space.

Note that since the free functor F : Diff → DVect is a left adjoint (Proposition 3.5),
P (V ) constructed in the proof of the above theorem is actually a free diffeological
vector space.

Of course, given a diffeological vector space V , the projective diffeological vector
space P (V ) constructed in the proof of the above theorem is functorial but huge.
There is a natural transformation P → 1, and f : V →W is a linear subduction
if and only if P (f) : P (V ) → P (W ) is. Here is a non-functorial but much smaller
construction, whose proof is similar to the proof of the above theorem:

Proposition 6.14. Let V be a diffeological vector space, and let {fi : Ui → V } be a
generating set of the diffeology on V . Then

∑
ηi : ⊕ F (Ui) → V is a linear subduction

with the domain a projective diffeological vector space. Here ηi is the smooth linear
map induced by fi for each i.

Here is an immediate consequence:

Corollary 6.15. Every projective diffeological vector space is a smooth direct sum-
mand of a coproduct of free diffeological vector spaces generated by Euclidean spaces.

Proposition 6.16. A diffeological vector space V is projective if and only if the func-
tor L∞(V,−) : DVect → DVect preserves short exact sequences.

Proof. (⇐) This is clear.
(⇒) Since DVect has enough projectives, V is a retract in DVect of P (V ), where

P (V ) was introduced in the proof of Theorem 6.13. Since the functor L∞(W,−) is a
right adjoint for any diffeological vector space W (Theorem 3.8) and subductions are
closed under retracts, we are left to show that L∞(P (V ),−) preserves subductions.
By Remark 3.6 and Corollary 6.5, we are left to show that for any open subset U of
a Euclidean space, the functor C∞(U,−) : DVect → DVect preserves linear subduc-
tions. This then follows from Corollary 6.4.
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As an easy corollary, we have:

Corollary 6.17. If V and W are projective diffeological vector spaces, then so is
V ⊗W .

7. Homological algebra for diffeological vector spaces

In this section, we develop (relative) homological algebra for diffeological vector
spaces based on the results we get in previous sections about linear subductions and
projective diffeological vector spaces. We show that every diffeological vector space
has a diffeological projective resolution, which is unique up to diffeological chain
homotopy equivalence. Shanuel’s lemma, the Horseshoe Lemma, and the (Short) Five
Lemma still hold in this setting. From a short exact sequence of diffeological (co)chain
complexes, we get a long sequence in DVect which is exact in Vect. Then we define
diffeological vector spaces Extn(V,W ) for any diffeological vector spaces V,W and
any n ∈ N. For any short exact sequence of diffeological vector spaces in the first or
second variable, we get a long sequence of such diffeological vector spaces which is
exact in Vect. Finally, we show that Ext1(V,W ) classifies all short exact sequences
in DVect of the form 0 →W → A→ V → 0 up to equivalence.

As usual, we define the category DCh of diffeological chain complexes to be the
full subcategory of the functor category DVectZ consisting of objects in which the
composition of every two consecutive arrows is 0, where Z is viewed as a poset of
integers with the opposite ordering. The morphisms in DCh are called diffeological
chain maps. For any n ∈ Z, there exists a functor Hn : DCh → DVect defined by
Hn(V ) = ker(dn)/ Im(dn+1), where

Vn+1

dn+1
// Vn

dn // Vn−1

is a piece in the diffeological chain complex V, both ker(dn) and Im(dn+1) are
equipped with the sub-diffeologies of Vn, and Hn(V) is equipped with the quotient
diffeology. We call Hn(V) the nth homology of V. Two diffeological chain maps
f , g : V → W are called diffeologically chain homotopic if there are smooth lin-
ear maps hn : Vn →Wn+1 for all n ∈ Z such that fn − gn = hn−1 ◦ dVn + dWn+1 ◦ hn
for each n ∈ Z. This gives an equivalence relation on DCh(V ,W ), called the diffe-
ological chain homotopy equivalence, which is compatible with compositions in
DCh. Write hDCh for the quotient category. Then the homology functors Hn fac-
tor through the projection DCh → hDCh. A diffeological chain map f : V → W is
called a diffeological homology isomorphism if for each n ∈ Z, Hn(f) is an iso-
morphism in DVect. A diffeological chain complex V is called diffeologically exact
at the nth spot if the induced map 0 → Vn+1/ ker(dn+1) → Vn → Im(dn) → 0 with
Vn+1/ ker(dn+1) equipped with the quotient diffeology of Vn+1 and Im(dn) equipped
with the sub-diffeology of Vn−1 is a short exact sequence in DVect. A diffeological
chain complex is called diffeologically exact if it is diffeologically exact at every
spot. A diffeological projective resolution of a diffeological vector space V is
a diffeologically exact diffeological chain complex V such that V−1 = V , Vn = 0 for
every n < −1, and Vn is projective for every n ⩾ 0. In this case, we write P (V ) for the
diffeological chain complex with P (V )n = Vn for each n ⩾ 0 and P (V )n = 0 for each
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n < 0. Then the diffeological chain map from P (V ) to the diffeological chain com-
plex with V concentrated at the 0th spot is a diffeological homology isomorphism. By
abuse of notation, we also call this diffeological chain map a diffeological projective
resolution, and denote it by P (V ) → V .

Remark 7.1. Note that if a diffeological chain complex V is diffeologically exact at
the nth spot, then Hn(V ) = 0. But the converse is not true. For example, let O(n)
naturally act on Rn, and let Xn be the quotient space, for n ∈ Z+. Then Rn → Rn+1

defined by x→ (x, 0) induces a smooth map in : Xn → Xn+1, and hence a smooth
linear map F (in) : F (Xn) → F (Xn+1). It is known in [I2] that in is a bijection, but
not a diffeomorphism. So F (in) is a bijection, but not an isomorphism in DVect. Let
V be the diffeological chain complex with the only non-trivial diffeological vector
spaces F (Xn) and F (Xn+1) at the nth and (n− 1)th spots, and dn = F (in). Then
Hi(V ) = 0 for every i ∈ Z, but V is not diffeologically exact at both the nth and
(n− 1)th spots.

Similarly, one can define the category DCho of diffeological cochain complexes and
cohomology functors Hn : DCho → DVect.

As the proof of [We, Lemma 2.2.5], one can show by inductively applying The-
orem 6.13 that there is a diffeological projective resolution for every diffeological
vector space. As the proof of [We, Comparison Theorem 2.2.6], for any diffeologi-
cal projective resolution V of V (or write as P (V ) → V ), any diffeologically exact
diffeological chain complex W with Wi = 0 for all i ⩽ −2, and any smooth linear
map f : V →W−1, there exists a diffeological chain map V → W extending f , and
the corresponding diffeological chain map P (V ) → W̄ is unique up to diffeological
chain homotopy equivalence, where W̄ is derived from W by replacing W−1 by 0. In
particular, for any two diffeological projective resolutions V and V ′ of V , there is an
isomorphism between P (V ) and P ′(V ) in hDCh from the corresponding diffeological
chain maps between V and V ′ extending 1V : V → V .

Lemma 7.2 (Schanuel). Given short exact sequences of diffeological vector spaces

0 // K
i // P

π // M // 0

and

0 // K ′ i′ // P ′ π′
// M // 0

with both P and P ′ projective, there is an isomorphism K ⊕ P ′ ∼= K ′ ⊕ P in DVect.

Proof. By assumption, we have the following commutative diagrams in DVect:

0 // K
i //

α

��

P
π //

β

��

M //

1M
��

0

0 // K ′ i′ //

ρ

��

P ′ π′
//

γ

��

M //

1M
��

0

0 // K
i // P

π // M // 0.



HOMOLOGICAL ALGEBRA FOR DIFFEOLOGICAL VECTOR SPACES 363

It is shown in the proof of [R, Proposition 3.12] that

0 // K
(i,α)

// P ⊕K ′ β−i′
// P ′ // 0

is a short exact sequence in Vect, so we are left to show that this is actually a short
exact sequence in DVect. (i, α) is an induction since i is. To show that (β − i′) is
a subduction, note that there exists a smooth linear map δ′ : P ′ → K ′ such that
β ◦ γ − 1P ′ = i′δ′. For any plot p : U → P ′, the map (γ ◦ p, δ′ ◦ p) : U → P ⊕K ′ is
smooth, and we have p = (β − i′) ◦ (γ ◦ p, δ′ ◦ p). The conclusion then follows from
Proposition 6.11(4).

Lemma 7.3 (Horseshoe). Let

0

��

· · · // P ′
1

d′
1 // P ′

0
ϵ′ // A′

iA

��

// 0

A

πA

��

· · · // P ′′
1

d′′
1 // P ′′

0
ϵ′′ // A′′ //

��

0

0

be a diagram in DVect with the two horizontal lines diffeological projective resolutions
of A′ and A′′ respectively, and the vertical line a short exact sequence of diffeological
vector spaces. Then there exists a diffeological projective resolution of A in the middle
horizontal line making the following diagram commutative and all vertical lines short
exact sequences in DVect:

0

��

0

��

0

��

· · · // P ′
1

i1

��

d′
1 // P ′

0

i0

��

ϵ′ // A′

iA

��

// 0

· · · // P ′
1 ⊕ P ′′

1

π1

��

d1 // P ′
0 ⊕ P ′′

0

π0

��

ϵ // A

πA

��

// 0

· · · // P ′′
1

d′′
1 //

��

P ′′
0

��

ϵ′′ // A′′ //

��

0

0 0 0

Proof. Since πA is a linear subduction and P ′′
0 is projective, there exists a smooth
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linear map f : P ′′
0 → A such that πA ◦ f = ϵ′′. Define ϵ := iA ◦ ϵ′ + f . The inductive

proof of [We, Horseshoe Lemma 2.2.8] showed that

0

��

0

��

0

��

0 // ker(ϵ′) //

��

P ′
0

ϵ′ //

��

A′ //

iA

��

0

0 // ker(ϵ) //

��

P ′
0 ⊕ P ′′

0
ϵ //

��

A //

πA

��

0

0 // ker(ϵ′′) //

��

P ′′
0

ϵ′′ //

��

A′′ //

��

0

0 0 0

is a commutative diagram with all vertical and horizontal lines short exact sequences
in Vect, so we are left to show that ϵ : P0 := P ′

0 ⊕ P ′′
0 → A is a subduction and 0 →

ker(ϵ′) → ker(ϵ) → ker(ϵ′′) → 0 is a short exact sequence of diffeological vector spaces.
Both of these follow from the fact that given plots p : U → P ′′

0 and q : U → A such
that ϵ′′ ◦ p = πA ◦ q, locally there exists a plot r : U → P0 such that ϵ ◦ r = q and
π0 ◦ r = p. Since finite products and coproducts coincide in DVect, this fact follows
from the assumptions that P ′

0 is a diffeological vector space, ϵ′ is a subduction, and
0 → A′ → A→ A′′ → 0 is a short exact sequence in DVect.

Theorem 7.4. Let f : A → B and g : B → C be diffeological chain maps between
diffeological chain complexes, such that for each n,

0 // An
fn // Bn

gn // Cn
// 0

is a short exact sequence in DVect. Then we have the following sequence in DVect
which is exact in Vect:

· · · // Hn(A)
f∗ // Hn(B)

g∗ // Hn(C) =<BCF δn�������// Hn−1(A)
f∗ // Hn−1(B)

g∗ // · · ·

Proof. Since every short exact sequence in DVect is also a short exact sequence in
Vect, we have this long exact sequence inVect. By functoriality of homology functors,
we know that all f∗’s and g∗’s are smooth. So we are left to show that all connecting
linear maps δ are smooth. Recall that δn : Hn(C) → Hn−1(A) is defined as follows:

0 // An
fn //

dA
n

��

Bn
gn //

dB
n

��

Cn
//

dC
n

��

0

0 // An−1
fn−1

// Bn−1 gn−1

// Cn−1
// 0
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Pick a representative c for [c] ∈ ker(dCn )/ Im(dCn+1) = Hn(C). Since gn is surjective,
we can pick b ∈ Bn such that gn(b) = c. Then there exists a ∈ ker(dAn−1) ⊆ An−1 such
that fn−1(a) = dBn (b). The map δn is defined by δn([c]) = [a], which is independent
of the choice of any representative c of [c] and any lift b ∈ Bn. Any plot p : U →
Hn(C) globally lifts to a plot q : U → ker(dCn ) by Corollary 6.5, since the quotient
map ker(dCn ) → Hn(C) is a linear subduction. If we write i : ker(dCn ) → Cn for the
inclusion map, then the plot i ◦ q : U → Cn globally lifts to a plot r : U → Bn by
Corollary 6.5, since gn is a linear subduction. So by diagram chasing, the plot dBn ◦
r : U → Bn−1 globally lifts to a plot s : U → ker(dAn−1). This proves the smoothness
of δn.

Definition 7.5. Given diffeological vector spaces V and W , we define

Extn(V,W ) := Hn(L∞(P (V ),W )),

where P (V ) → V is a diffeological projective resolution of V .

Here are some basic properties for Extn(V,W ):

Proposition 7.6.

1. Extn(V,W ) does not depend on the choice of any diffeological projective resolu-
tion of V .

2. Ext0(V,W ) is always isomorphic to L∞(V,W ) in DVect.

3. If V is projective, then Extn(V,W ) = 0 for any diffeological vector space W and
any n ⩾ 1.

4. (Dimension shift) Let

W
dn // Pn−1

dn−1
// · · · // P1

d1 // P0
d0 // V

be a finite diffeological chain complex such that it is diffeologically exact at every
middle spot, each Pi is projective, d0 is a linear subduction, and dn is a linear
induction. Then Extm+n(V,A) is isomorphic to Extm(W,A) in DVect for any
m ∈ Z+ and any diffeological vector space A.

5. Let {Vi}i∈I ∪ {W} be a set of diffeological vector spaces. Then we have natural
isomorphisms between Extn(⊕i∈IVi,W ) and

∏
i∈I Ext

n(Vi,W ) in DVect for all
n ∈ N.

6. Let {V } ∪ {Wj}j∈J be a set of diffeological vector spaces. Then we have natural
isomorphisms between Extn(V,

∏
j∈J Wj) and

∏
j∈J Extn(V,Wj) in DVect for

all n ∈ N.

Proof. (1)–(4) are straightforward from definition.
To prove (5), besides the usual diagram chasing in homological algebra, we also

need the following facts in DVect (and Diff):

• Every (co)product of linear subductions is again a linear subduction. For the
case of coproduct, it can be proved by the description of coproduct diffeology
from the proof of Proposition 3.2.

• Let Xj be a subset of a diffeological space Yj for each j ∈ J . Then the sub-
diffeology on

∏
j∈J Xj from

∏
j∈J Yj coincides with the product diffeology with

each Xj equipped with the sub-diffeology from Yj .
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• Let Ai be a linear subspace of Vi for each i ∈ I. Then we have a natural iso-
morphism between (

∏
i∈I Vi)/(

∏
i∈I Ai) and

∏
i∈I(Vi/Ai) in DVect.

(6) can be proved similarly.

Remark 7.7. We can define injective diffeological vector space as dual of projective
diffeological vector space. That is, a diffeological vector space V is injective if and only
if for every linear induction f : W1 →W2 and every smooth linear map g : W1 → V ,
there exists a smooth linear map h : W2 → V such that g = h ◦ f . It is straightforward
to show that if V is injective, then Extn(W,V ) = 0 for any diffeological vector space
W and any n ⩾ 1. In particular, Extn(W,Rind) = 0 for any diffeological vector space
W and any n ⩾ 1. But I don’t know any example of injective diffeological vector
spaces other than indiscrete diffeological vector spaces.

Theorem 7.8. Let 0 // W1
i // W2

π // W3
// 0 be a short exact sequence

in DVect. Then for any diffeological vector space V , we have the following sequence
in DVect which is exact in Vect:

0 // L∞(V,W1)
i∗ // L∞(V,W2)

π∗ // L∞(V,W3) =<BCF δ0��������// Ext1(V,W1)
i∗ // Ext1(V,W2)

π∗ // Ext1(V,W3) =<BCF δ1��������// Ext2(V,W1)
i∗ // Ext2(V,W2)

π∗ // · · ·

Proof. Take a diffeological projective resolution P (V ) → V of V . Since

0 // W1
i // W2

π // W3
// 0

is a short exact sequence in DVect and each Pj is projective, by Proposition 6.16, we
get diffeological cochain maps

i∗ : L
∞(P (V ),W1) → L∞(P (V ),W2)

and

π∗ : L
∞(P (V ),W2) → L∞(P (V ),W3)

between diffeological cochain complexes such that for each n

0 // L∞(Pn,W1)
i∗ // L∞(Pn,W2)

π∗ // L∞(Pn,W3) // 0

is a short exact sequence in DVect. The result then follows from the cohomological
version of Theorem 7.4.

Dually, we have

Theorem 7.9. Let 0 // V1
i // V2

π // V3 // 0 be a short exact sequence
in DVect. Then for any diffeological vector space W , we have the following sequence



HOMOLOGICAL ALGEBRA FOR DIFFEOLOGICAL VECTOR SPACES 367

in DVect which is exact in Vect:

0 // L∞(V3,W )
π∗

// L∞(V2,W )
i∗ // L∞(V1,W ) =<BCF δ0��������// Ext1(V3,W )

π∗
// Ext1(V2,W )

i∗ // Ext1(V1,W ) =<BCF δ1��������// Ext2(V3,W )
π∗

// Ext2(V2,W )
i∗ // · · ·

Proof. This follows directly from the Horseshoe Lemma and Theorem 7.4.

Corollary 7.10. Let V and W be diffeological vector spaces. If Ext1(W,V ) = 0, then
every short exact sequence 0 → V → A→W → 0 in DVect splits smoothly.

Proof. By Theorem 7.8, we know that L∞(W,A) → L∞(W,W ) is surjective. The
result then follows from Theorem 3.16.

Hence, with the notations in Example 4.3, Ext1(
∏

ω R,K) ̸= 0.

Corollary 7.11. A diffeological vector space V is projective if and only if

Ext1(V,W ) = 0

for every diffeological vector space W .

Proof. (⇒) This follows from Proposition 7.6(3).
(⇐) This follows from Corollary 7.10 and Proposition 6.11(1).

As an easy corollary, we know that if V →W is a linear subduction between
projective diffeological vector spaces, then its kernel is also projective. In particular,
if f : M → N is a smooth fiber bundle between smooth manifolds, then the kernel of
F (f) : F (M) → F (N) is a projective diffeological vector space.

Finally, we are going to prove the converse of Corollary 7.10. We first show the
diffeological version of the (Short) Five Lemma:

Lemma 7.12 (Short Five Lemma). Given a commutative diagram in DVect

0 // V
i //

g

��

A
π //

f

��

W //

h
��

0

0 // V ′
i′

// A′
π′

// W ′ // 0

with both rows short exact sequences in DVect, and both g and h isomorphisms in
DVect, then f is also an isomorphism in DVect.

Proof. From [Hu, the Short Five Lemma 1.17], we know that f is an isomorphism
in Vect. We are left to show that f−1 is smooth. For any plot p : U → A′, since
h−1 ◦ π′ ◦ p : U →W is smooth and π is a linear subduction, by Corollary 6.5 we have
a smooth map q : U → A such that π ◦ q = h−1 ◦ π′ ◦ p. Then π ◦ (f−1 ◦ p− q) = 0
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implies that π′ ◦ (p− f ◦ q) = 0. Since the bottom row of the above diagram is a short
exact sequence in DVect, there exists a smooth map r : U → V ′ such that p− f ◦ q =
i′ ◦ r. So f−1 ◦ p = q + f−1 ◦ i′ ◦ r = q + i ◦ g−1 ◦ r is smooth, which implies that f−1

is smooth.

Slightly more generally, we can prove the following in a similar way:

Lemma 7.13 (Five Lemma). Let

V1 //

f1

��

V2 //

f2

��

V3
d3 //

f3

��

V4 //

f4

��

V5

f5

��

W1
// W2

∂2

// W3
// W4

// W5

be a commutative diagram in DVect, such that both rows are exact in Vect, f1 is
surjective, f5 is injective, and both f2 and f4 are isomorphisms in DVect. If the
induced map V3 → Im(d3) is a subduction and W2/ ker(∂2) →W3 is an induction,
then f3 is an isomorphism in DVect.

For V,W diffeological vector spaces, we define two short exact sequences 0 →
V → A→W → 0 and 0 → V → A′ →W → 0 in DVect to be equivalent if there is a
commutative diagram in DVect:

0 // V //

1V
��

A //

f

��

W //

1W
��

0

0 // V // A′ // W // 0.

By the Short Five Lemma (Lemma 7.12), f is an isomorphism in DVect. So this
defines an equivalence relation on the set of all short exact sequences in DVect of the
form 0 → V → A→W → 0, and we write the quotient set as e(W,V ).

Theorem 7.14. There is a bijection between e(W,V ) and Ext1(W,V ) which sends
the class of smoothly split short exact sequences in e(W,V ) to 0 in Ext1(W,V ).

Proof. As explained in [R, pp. 422-423], the map ψ : e(W,V ) → Ext1(W,V ) is defined
as follows: For any short exact sequence 0 → V → A→W → 0 in DVect and any
diffeological projective resolution P (W ) →W ofW , we have a commutative diagram
(not necessarily unique) in DVect

· · · // P2
//

��

P1
//

f

��

P0
//

��

W //

1W
��

0

0 // V // A // W // 0.

Then ψ takes the class of 0 → V → A→W → 0 in e(W,V ) to [f ] ∈ Ext1(W,V ). As
shown in [R], this map depends neither on the representing short exact sequence in
e(W,V ) nor on the diffeological projective resolution of W nor on the choice of f .
The second statement of the theorem can then be proved as [R, Lemma 7.27].

The inverse map θ : Ext1(W,V ) → e(W,V ) can be constructed as follows: For any
diffeological projective resolution P (W ) →W of W and any f ∈ L∞(P1, V ) with
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d∗2(f) = 0, let A be the pushout of V P1
d1 //

f
oo P0 in DVect. As proved in [R,

Lemma 7.28], we have a short exact sequence

0 // V
i // A

π // W // 0

in Vect. It is easy to check that π is a subduction since P0 →W is, and i is an
induction since A is a pushout, ker(d0) → P0 is an induction, and P1 → ker(d0) is
a subduction. As shown in [R, Theorem 7.30], θ is independent of the choice of
representative of [f ] ∈ Ext1(W,V ), and θ is the inverse of ψ.

As an immediate corollary to Theorem 7.14 and Corollary 7.10, we know that for
any fixed diffeological vector spaces V and W , Ext1(W,V ) = 0 if and only if every
short exact sequence 0 → V → A→W → 0 in DVect splits smoothly.

8. A model structure on diffeological chain complexes

Following ideas from [CH], we establish a cofibrantly generated model structure
on the category DCh of diffeological chain complexes, which resembles the projective
model structure on the category Ch(R) of chain complexes of modules over a ring R
(see [Ho, Section 2.3]). Moreover, a diffeological projective resolution of a diffeological
vector space is a cofibrant replacement of a canonical diffeological chain complex
under this model structure, and Ext∗ can be expressed using the hom-functor in the
corresponding homotopy category. Throughout this section, we follow the notations
of [Ho, Chapter 2].

Let V be a diffeological vector space. We write Sn(V ) for the diffeological chain
complex with the only non-trivial diffeological vector space V at the nth spot. We also
write Dn(V ) for the diffeological chain complex with the only non-trivial diffeological
vector spaces V at the nth and (n− 1)th spots, and differential dn = 1V . There is a
diffeological chain map iVn : Sn(V ) → Dn+1(V ) with (iVn )n = 1V .

Let I be the set of all diffeological chain maps i
F (U)
n : Sn(F (U)) → Dn+1(F (U))

for all n ∈ Z and all open subsets U of Rm for all m ∈ N, let J be the set of all
diffeological chain maps 0 → Dn(F (U)) for all n ∈ Z and all open subsets U of Rm

for all m ∈ N, and let W be the family of morphisms f : V → W in DCh such that
L∞(F (U),f) : L∞(F (U),V ) → L∞(F (U),W ) is a homology isomorphism in Ch(R)
for all open subsets U of Rm for all m ∈ N.

The following two lemmas tell us more about W:

Lemma 8.1. Every V → W in W induces a diffeological homology isomorphism.

However, the converse is not true, i.e., not every diffeological homology isomor-
phism is in W; see Remark 7.1 for such an example.

Proof. Taking U = R0 in the definition of W, we know that f : V → W in W
induces a smooth linear map (fn)∗ : Hn(V ) → Hn(W ) for every n. So we are left
to show that the inverse map is smooth. Write Zn(W ) for ker(dWn ) equipped with
the sub-diffeology of Wn. Since π

W
n : Zn(W ) → Hn(W ) is a linear subduction, any

plot α : U → Hn(W ) is of the form πW
n ◦ p for some plot p : U → Zn(W ). Since

(fn)∗ : Hn(C
∞(U,V )) → Hn(C

∞(U,W )) is an isomorphism inVect, there exist plots
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q : U → Zn(V ) and r : U →Wn+1 such that fn ◦ q = p+ dWn+1 ◦ r := β. So we have a
commutative diagram in DVect

Zn(V )
πV
n //

(fn)∗

��

Hn(V )

(fn)∗

��

U
β

//

q
<<xxxxxxxxx
Zn(W )

πW
n

// Hn(W ).

Note that πW
n ◦ β = α, so (fn)

−1
∗ : Hn(W ) → Hn(V ) is smooth.

Lemma 8.2. Let A be a diffeological chain complex. Then the following are equiva-
lent:

1. 0 → A is in W;

2. dn+1 : An+1 → Zn(A) is a linear subduction for each n ∈ Z, where Zn(A) has
the sub-diffeology of An;

3. A is diffeologically exact.

Proof. This is straightforward.

We are going to prove the following theorem in this section:

Theorem 8.3. The category DCh of diffeological chain complexes and diffeological
chain maps has a model structure with I as its generating set of cofibrations, J as its
generating set of trivial cofibrations, and W as the family of its weak equivalences.

We will use the recognition theorem of cofibrantly generated model category (see,
for example, [Ho, Theorem 2.1.19]) to prove this theorem.

Lemma 8.4. The category DCh is complete and cocomplete.

Proof. Since the category DVect is complete (Theorem 3.1) and cocomplete (Theo-
rem 3.3), so is DCh, with limits and colimits calculated degreewise.

SinceDVect is an additive category with both kernels and cokernels (Remark 3.18),
so is DCh.

Corollary 8.5. Every diffeological chain complex is small in DCh.

Proof. Using the fact that the category Diff is locally presentable (see the proof
of [CW1, Proposition 4.17]), one can show as [Ho, Example 2.1.6] that every diffeo-
logical vector space is small in DVect. The result then follows from a similar argument
to [Ho, Lemma 2.3.2], together with Lemma 8.4.

Lemma 8.6. W has the two out of three property and is closed under retracts.

Proof. This is straightforward.

Lemma 8.7. Let f : V → W be a morphism in DCh. Then
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1. a square

0 //

��

V

f

��

Dn(F (U))
g

// W

is in DCh if and only if gn ◦ iU : U →Wn is smooth; a lift h : Dn(F (U)) → V
of the above square exists in DCh if and only if we have a commutative triangle
in Diff

Vn

fn

��

U

hn◦iU
==||||||||

gn◦iU
// Wn;

2. a square

Sn(F (U))

iF (U)
n

��

α // V

f

��

Dn+1(F (U))
β

// W

is commutative in DCh if and only if the maps αn ◦ iU : U → Vn and βn+1 ◦
iU : U →Wn+1 are smooth, αn ◦ iU has image in Zn(V ), and dWn+1 ◦ βn+1 ◦
iU = fn ◦ αn ◦ iU ; a lift γ : Dn+1(F (U)) → V of the above commutative square
exists in DCh if and only if the dotted arrow exists so that the following two
triangles commute in Diff:

U
βn+1◦iU

zzvv
vv
vv
vv
v

γn+1◦iU
��

αn◦iU

""F
FF

FF
FF

FF

Wn+1 Vn+1
fn+1

oo

dV
n+1

// Vn.

Proof. This follows directly from diagram chasing and the universal property of free
diffeological vector space generated by a diffeological space.

Lemma 8.8. A morphism f : V → W in DCh is in J-inj if and only if fn : Vn →Wn

is a subduction for every n ∈ Z.

Proof. This follows from Lemma 8.7(1) and the universal property of free diffeological
vector space generated by a diffeological space.

Proposition 8.9. A morphism f : V → W in DCh is in I-inj if and only if it is in
both J-inj and W.

Proof. (⇒) We first show that f is in J-inj, i.e., fn : Vn →Wn is a subduction for
every n ∈ Z by Lemma 8.8. Here is the proof. For any plot p : U →Wn, we have a
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commutative square in Diff:

U
0 //

dW
n ◦p

��

Zn−2(V )

fn−2|Zn−2(V )

��

Wn−1
dW
n−1

// Wn−2.

By Lemma 8.7(2), there exists a plot q : U → Vn−1 making the following diagram
commutative in Diff:

U
dW
n ◦p

{{vv
vv
vv
vv
v

q

��

0

%%K
KK

KK
KK

KK
K

Wn−1 Vn−1
fn−1

oo

dV
n−1

// Zn−2(V ).

Hence, the image of q is in Zn−1(V ). Again by Lemma 8.7(2), there exists a plot
r : U → Vn making the following diagram commutative in Diff:

U
p

}}||
||
||
||

r

��

q

$$I
III

III
III

Wn Vn
fn

oo

dV
n

// Zn−1(V ).

Therefore, fn : Vn →Wn is a subduction for every n ∈ Z.
Now we show that f is in W. Here is the proof. By functoriality, there is a natural

mapHn(U,f) : Hn(C
∞(U,V )) → Hn(C

∞(U,W )) for each n ∈ Z. We are left to show
that they are bijections.

For surjectivity, note that a representative of an element in Hn(C
∞(U,W )) is a

plot a : U →Wn such that dWn ◦ a = 0. So we have a commutative square in Diff

U
0 //

a

��

Vn−1

fn−1

��

Wn
dW
n

// Wn−1.

By Lemma 8.7(2), there exists a plot b : U → Vn making the following diagram com-
mutative in Diff:

U

a

}}{{
{{
{{
{{

b

��

0

""F
FF

FF
FF

FF

Wn Vn
fn

oo

dV
n

// Vn−1.

Therefore, the map Hn(U,f) is surjective.

For injectivity, note that if a representative c of an element in Hn(C
∞(U,V )) is

mapped to [0] in Hn(C
∞(U,W )) by Hn(U,f), then c : U → Vn is smooth with image



HOMOLOGICAL ALGEBRA FOR DIFFEOLOGICAL VECTOR SPACES 373

in Zn(V ), and there exists a plot d : U →Wn+1 such that the following square is
commutative in Diff:

U
c //

d

��

Vn

fn

��

Wn+1
dW
n+1

// Wn.

By Lemma 8.7(2), there exists a plot e : U → Vn+1 making the following diagram
commutative in Diff:

U

d

zzvv
vv
vv
vv
v

e

��

c

""F
FF

FF
FF

FF

Wn+1 Vn+1
fn+1

oo

dV
n+1

// Vn.

Therefore, [c] = [0] ∈ Hn(C
∞(U,V )), and the map Hn(U,f) is injective.

(⇐) By Lemma 8.7(2), we are left to show that for any commutative square in
Diff

U
α //

β

��

Zn(V )

fn|Zn(V )

��

Wn+1
dW
n+1

// Wn,

we can find a plot γ : U → Vn+1 making the following diagram commutative in Diff:

U
β

zzvv
vv
vv
vv
v

γ

��

α

""F
FF

FF
FF

FF

Wn+1 Vn+1
fn+1

oo

dV
n+1

// Vn.

Since fn+1 : Vn+1 →Wn+1 is a linear subduction, by Corollary 6.5 there exists a
plot γ′ : U → Vn+1 such that β = fn+1 ◦ γ′. One checks that fn ◦ (α− dVn+1 ◦ γ′) = 0
and dVn ◦ (α− dVn+1 ◦ γ′) = 0. Hence, [α− dVn+1 ◦ γ′] ∈ Hn(C

∞(U,V )) and Hn(U,f)
sends this class to [0] ∈ Hn(C

∞(U,W )). By the assumption that Hn(U,f) is a
bijection, there exists a plot γ′′ : U → Vn+1 such that dVn+1 ◦ γ′′ = α− dVn+1 ◦ γ′. So
dWn+1 ◦ fn+1 ◦ γ′′ = 0, i.e., [fn+1 ◦ γ′′] ∈ Hn+1(C

∞(U,W )). By the assumption that
Hn+1(U,f) is a bijection, there exist plots γ′′′ : U → Vn+1 and θ : U →Wn+2 such
that fn+1 ◦ γ′′′ = fn+1 ◦ γ′′ + dWn+2 ◦ θ and dVn+1 ◦ γ′′′ = 0. By the assumption that
fn+2 : Vn+2 →Wn+2 is a linear subduction, there exists a plot ρ : U → Vn+2 such
that θ = fn+2 ◦ ρ. Then γ := γ′ + γ′′ − γ′′′ + dVn+2 ◦ ρ has the desired property.

Lemma 8.10. If 0 → A is in J-cof, then it is in W.

Proof. Write C(A) for the mapping cone of the identity map 1A : A→ A. That is,

(C(A))n = An ⊕An+1, and d
C(A)
n (x, y) = (dAn (x), x− dAn+1(y)). Then π : C(A) → A

defined by πn(x, y) = x is a diffeological chain map, and hence each πn is a subduction,
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i.e., π is in J-inj by Lemma 8.8. Since 0 → A is in J-cof, we have a commutative
diagram in DCh

0 //

��

C(A)

π

��

A
1A

//

f
<<yyyyyyyy
A.

So 0 → A is a retract of 0 → C(A). By Lemma 8.6, it is enough to show that 0 →
C(A) is in W. For any open subset U of a Euclidean space, one can easily check

that if (p, q) : U → An ⊕An+1 is a plot such that d
C(A)
n ◦ (p, q) = 0, then (q, 0) : U →

An+1 ⊕An+2 is a plot such that d
C(A)
n+1 ◦ (q, 0) = (p, q), which is desired.

Proposition 8.11. If f : A → B is in J-cof, then it is in W.

Proof. Note that A → 0 is in J-inj by Lemma 8.8, so we have a commutative diagram
in DCh

A
1A //

f

��

A

��

B

g
>>}}}}}}}}
// 0.

Therefore, each fn : An → Bn is a linear induction. Let C be the cokernel of f in
DCh. Then 0 → C is in J-cof, and for each n ∈ Z,

0 // An
fn // Bn

// Cn
// 0

is a short exact sequence in DVect. By Proposition 6.16,

0 // C∞(U,An)
(fn)∗

// C∞(U,Bn) // C∞(U,Cn) // 0

is also a short exact sequence in DVect for any open subset U of a Euclidean space
and any n. Theorem 7.4 and Lemma 8.10 then imply that f is in W.

Proof of Theorem 8.3. By the recognition theorem of cofibrantly generated model
category (see [Ho, Theorem 2.1.19] for instance), Theorem 8.3 then follows from
Lemmas 8.4 and 8.6, Corollary 8.5, and Propositions 8.9 and 8.11.

Now we establish several lemmas to understand elements in I-cof.

Lemma 8.12. Let f : V → W be in I-inj, and let K be its kernel in DCh. Then K
is diffeologically exact.

Proof. By Proposition 8.9 and Lemma 8.8, we know that each fn is a linear subduc-
tion and f is in W. So by Lemma 8.4,

0 // Kn
� � // Vn

fn // Wn
// 0

is a short exact sequence in DVect for each n. By Proposition 6.16,

0 // C∞(U,Kn) // C∞(U, Vn)
(fn)∗

// C∞(U,Wn) // 0

is also a short exact sequence in DVect for any open subset U of a Euclidean space.
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Since f is in W, by Theorem 7.4, C∞(U,K) is exact, i.e., 0 → K is in W. The result
then follows from Lemma 8.2.

Lemma 8.13. If 0 → A is in I-cof, then each An is a projective diffeological vector
space. Conversely, if A is a bounded below diffeological chain complex such that each
An is a projective diffeological vector space, then 0 → A is in I-cof.

Proof. This follows from a similar proof as for [Ho, Lemma 2.3.6] together with
Lemma 8.12.

Therefore, a diffeological projective resolution of a diffeological vector space V is a
cofibrant replacement of the diffeological chain complex S0(V ) in this model structure
on DCh.

Proposition 8.14.

1. Let C and K be diffeological chain complexes such that 0 → C is in I-cof and
K is diffeologically exact. Then every diffeological chain map C → K is diffe-
ologically chain homotopic to the zero map.

2. Let f : V → W be a diffeological chain map with cokernel C. Then f is in I-cof
if and only if it is a degreewise linear induction and 0 → C is in I-cof.

Proof. Together with Lemmas 8.2, 8.12, and 8.13, and Proposition 8.9, (1) can be
proved as [Ho, Lemma 2.3.8], and (2) can be proved as [Ho, Proposition 2.3.9].

Write Ho(DCh) for the homotopy category of DCh, i.e., the localization of DCh
with respect to the weak equivalences W. By a similar proof as for [DS, Proposi-
tion 7.3], we have:

Proposition 8.15. Let V and W be diffeological vector spaces, and let m and n be
natural numbers. Then Ho(DCh)(Sm(V ), Sn(W )) = Extn−m(V,W ).
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