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FROM FRACTIONS TO COMPLETE SEGAL SPACES
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(communicated by Charles A. Weibel)

Abstract
We show that the Rezk classification diagram of a relative

category admitting a homotopical version of the two-sided cal-
culus of fractions is a Segal space up to Reedy-fibrant replace-
ment. This generalizes the result of Rezk and Bergner on the
classification diagram of a closed model category, as well as the
result of Barwick and Kan on the classification diagram of a
partial model category.

1. Introduction

It is now commonly understood that one has a (generalized) homotopy theory
whenever one has relative category, i.e., a category equipped with a subcategory of
distinguished morphisms to be thought of as weak equivalences. The name “relative
category” is due to [BK12], but the idea already appeared in [DK80a], in which the
authors defined the simplicial localization of a relative category. Simplicial localization
should be regarded as a homotopy-theoretic refinement of the usual procedure of freely
inverting weak equivalences in a relative category, where instead of adjoining on-the-
nose inverses for weak equivalences, one adjoins up-to-homotopy inverses. Of course,
in doing so, one ends up also adjoining homotopies to the original category, which is
one reason why we say the result of simplicial localization is a homotopy theory.

One particularly elegant reification of the concept of “homotopy theory” is the
notion of “complete Segal space” introduced by [Rez01]: these are simplicial spaces
(or more accurately, bisimplicial sets) that are Reedy-fibrant and satisfy certain con-
ditions. These should be regarded as a homotopy-theoretic version of categories—in
other words, as (∞, 1)-categories. In [Rez01], Rezk defined for any relative category
C the classification diagram N(C)•, a simplicial space whose nth level classifies the
weak equivalence classes of composable chains of morphisms in C of length n, and he
proved the following result.

Theorem. Let M be a simplicial model category. Then any Reedy-fibrant replace-

ment N̂(M)• of the classification diagram N(M)• is a complete Segal space, and,

moreover, the hom-spaces of N̂(M)• agree with the homotopy function complexes of
M up to weak homotopy equivalence.
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As it turns out, Rezk’s result holds more generally. [Ber09, §6] proved the case
whereM is a model category (i.e., not necessarily simplicial), without using functorial
factorizations. On the other hand, [BK11, §3] verified the case where M is a partial
model category. (The notion of partial model category is a generalization of the notion
of model category with functorial factorizations.) The main result of this paper is a
generalization of both results: we do not require functorial factorizations (as Barwick
and Kan do), and we do not require lifting properties or (co)completeness (as Bergner
does).

In fact, our result relies on very few assumptions. Let C be a relative category.
By thinking geometrically, one sees that if the Rezk classification diagram N(C)•
is Reedy weakly equivalent to a Segal space, then it must be the case that every
morphism in Ho C admits a factorization of the form

w−1
n ◦ fn ◦ · · · ◦ w−1

1 ◦ f1 ◦ w
−1
0 ,

where w0, . . . , wn are weak equivalences in C and f1, . . . , fn are morphisms in C, of
which at most one is not a weak equivalence. Thus one might expect that for the
Rezk classification diagram N(C)• to be a complete Segal space up to Reedy-fibrant
replacement, it suffices that C be saturated in the sense of [DHKS, §8] and admit
a suitable three-arrow calculus—namely, the homotopy calculus of fractions in the
sense of [DK80b]. This is precisely what we will show.

Aside from the Dwyer–Kan homotopy calculus of fractions, the key technical result
we use is a version of Quillen’s Theorem B for recognizing homotopy pullback dia-
grams. In this respect, our proof differs from both that of [Ber09], which uses the
classifying complex of the simplicial monoid of weak equivalences, and that of [BK11],
which uses a sophisticated generalization of Quillen’s Theorem B.

This paper is organized as follows:

• In §2, we recall how to do homotopy theory with categories à la [Qui73, §1].

• In §3, we set up notation and basic results for working with zigzags in relative
categories.

• In §4, we prove the main result.

Conventions
• By “natural number” we mean a non-negative integer: 0, 1, 2, . . .

• By “model category” we mean a closed model category in the sense of [Qui67];
i.e., we do not require functorial factorizations and we only require finite limits
and colimits.

• To avoid set-theoretic difficulties, we will focus on small categories, i.e., cate-
gories that only have a set of objects and morphisms rather than a proper class.
This is no real restriction under the assumption of a suitable universe axiom.

• We treat Cat as an ordinary category: so, for example, “pullback” refers to the
strict notion.

Acknowledgements
This collaboration would not have happened without the Homotopy Theory chat

room on MathOverflow.



FROM FRACTIONS TO COMPLETE SEGAL SPACES 323

The first-named author gratefully acknowledges financial support from the Cam-
bridge Commonwealth, European and International Trust, and the Department of
Pure Mathematics and Mathematical Statistics. The second-named author gratefully
acknowledges financial support from UC Berkeley’s Geometry and Topology RTG
grant, which is part of NSF grant DMS-0838703. The authors thank an anonymous
referee for helpful comments and suggestions.

2. Homotopy theory with categories

Every category C has an associated simplicial set N(C), called its nerve, and this
construction assembles into a functor N : Cat → sSet. This allows us to think of
a category as being a “presentation of a space.” In this section, we recall some of
the basic definitions and results concerning the manipulation of categories in this
capacity.

Definition 2.1. A weak homotopy equivalence of categories is a functor F : C →
D such that the morphism N(F ) : N(C) → N(D) of nerves is a weak homotopy equiv-
alence of simplicial sets.

Lemma 2.2. Let F : C → D and G : D → C be functors. If there exist zigzags of nat-
ural transformations between idC and GF and between FG and idD, then both F and
G are weak homotopy equivalences of categories.

Proof. As natural transformations translate to homotopies of morphisms of nerves,
the hypothesis implies that the morphisms N(F ) : N(C) → N(D) and N(G) : N(D) →
N(C) are homotopy equivalences of simplicial sets, and hence weak homotopy equiv-
alences a fortiori. �

Definition 2.3. A homotopy pullback diagram of categories is a commutative
square that N : Cat → sSet sends to a homotopy pullback diagram of simplicial sets.

Quillen’s Theorem B gives us a way of recognizing homotopy pullback diagrams.
Let us first recall the following definition:

Definition 2.4. A Grothendieck fibration is a functor P : E → B such that, for
every object E in E and every morphism f : B′ → P (E) in B, there exist an object
f∗E in E and a morphism g : f∗E → E in E such that P (g) = f and, for each object
E′′ in E , the natural map

E(E′′, f∗E) → {(h, f ′) ∈ E(E′′, E)× B(P (E′′), B′) |P (h) = f ◦ f ′}

g′ 7→ (g ◦ g′, P (g′))

is a bijection.
Dually, aGrothendieck opfibration is a functor P : E → B such that P op : Eop →

Bop is a Grothendieck fibration.

Remark 2.5. Let P : E → B be a Grothendieck fibration, and let B be an object in
B. For any morphism f : B′ → B in B, the assignment E 7→ f∗E extends to a func-
tor P−1{B} → P−1{B′}; moreover, given a morphism f ′ : B′′ → B′ in B, there is
a canonical isomorphism f ′∗f∗ ∼= (f ◦ f ′)

∗
of functors P−1{B} → P−1{B′′}. (More
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precisely, the assignment f 7→ f∗ defines a pseudofunctor.) We say a Grothendieck
fibration is split if it is possible to choose the functors f∗ so that the assignment
f 7→ f∗ defines a functor Bop → Cat.

Example 2.6. Let C be a category, and let [[1], C] be the category whose objects are
the morphisms in C and whose morphisms are the commutative squares. Then the
projection dom: [[1], C] → C is always a split Grothendieck fibration: the fiber over
an object A in C is the coslice category A/C, and for each morphism f : A′ → A in C,
we can take the functor f∗ : A/C → A′/C to be the one defined by precomposition.

Theorem 2.7. Consider a pullback square in Cat:

E F

A B.

p

v

q

u

• If q : F → B is a Grothendieck opfibration such that the induced morphism
q−1{b′} → q−1{b} is a weak homotopy equivalence of categories for every mor-
phism b′ → b in B, then the above is a homotopy pullback diagram.

• If q : F→B is a Grothendieck fibration such that the induced morphism q−1{b′}→
q−1{b} is a weak homotopy equivalence of categories for every morphism b→ b′

in B, then the above is a homotopy pullback diagram.

Proof. The two claims are formally dual; we will prove the first version.

We may construct a commutative diagram in sSet of the form

N(A) N(B) N(F)

Â B̂ F̂ ,

iA

N(u)

iB iF

N(q)

û q̂

where the vertical arrows are weak homotopy equivalences, the horizontal arrows
in the bottom row are Kan fibrations, and the objects in the bottom row are Kan
complexes. Then, form the following pullback diagram in sSet:

Ê F̂

Â B̂.

p̂

v̂

q̂

û

Since û : Â→ B̂ and q̂ : F̂ → B̂ are Kan fibrations, the above is a homotopy pull-
back diagram. We wish to show that the induced morphism iE : N(E) → Ê is a weak
homotopy equivalence.

For each object b in B, let (q ↓ b) = B/b ×B E be the comma category. Since q : F →
B is a Grothendieck opfibration, the evident inclusion q−1{b} → (q ↓ b) has a left
adjoint and hence is a weak homotopy equivalence of categories (by Lemma 2.2). We
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then have the commutative diagram

q−1{b} (q ↓ b)

q−1{b′} (q ↓ b′),

where the horizontal arrows are weak homotopy equivalences, so our hypothesis on
the functor q−1{b} → q−1{b′} implies that (q ↓ b) → (q ↓ b′) is also a weak homotopy
equivalence. Thus we may apply Quillen’s Theorem B in its usual form1 to deduce
that the pullback diagrams

p−1{a} E

{a} A

p

q−1{u(a)} F

{u(a)} B

q

are homotopy pullback diagrams. Hence iE : N(E) → Ê is a homotopy-fiberwise weak
homotopy equivalence of objects over Â, and it follows that iE : N(E) → Ê is a weak
homotopy equivalence. �

Corollary 2.8. Let A and B be categories. Then the commutative diagram

A× B B

A [0],

where the arrows are the evident projections and [0] is the terminal category, is a
homotopy pullback diagram.

Proof. The unique functor B → [0] is a Grothendieck fibration, so we may apply
Theorem 2.7. �

Let us recall Definition 9.1 from [DK80b]:

Definition 2.9. Let C be a category, and let F : Cop → Cat and G : C → Cat be
functors. The two-sided Grothendieck construction F ⊗C G is the following cat-
egory:

• The objects are triples (X,C, Y ), where C is an object in C, X is an object in
F(C), and Y is an object in G(C).

• The morphisms (X ′, C ′, Y ′) → (X,C, Y ) are triples (f, c, g), where c : C ′ → C is
a morphism in C, f : X ′ → F(c)(X) is a morphism in F(C ′), and g : G(c)(Y ′) →

1See [Qui73, §1] or [GJ99, Ch. III, §5.2].
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Y is a morphism in G(C); cf. the diagram below:

F ′ F(c)(F ) C ′ G′

F C G(c)(G′) G.

f

c G(c)F(c)

g

• Composition and identities are defined in the obvious way.

Remark 2.10. Let C be a category, and let ∗ be the constant functor C → Cat with
value 1 (the terminal category). Then, for any functor F : Cop → Cat, the evident
projection F ⊗C ∗ → C is a split Grothendieck fibration.

The two-sided Grothendieck construction F ⊗C G can be thought of as being the
homotopy colimit of G weighted by F . Indeed, we have the following homotopy-
invariance property:

Lemma 2.11. Let C be a category, let F ,F ′ : Cop → Cat and G,G′ : C → Cat be
functors, and let ϕ : F ′ ⇒ F and ψ : G′ ⇒ G be natural transformations. If each
ϕC : F ′(C) → F(C) and each ψC : G′(C) → G(C) is a weak homotopy equivalence
of categories, then the induced functor ϕ⊗C ψ : F ′ ⊗C G′ → F ⊗C G is also a weak
homotopy equivalence of categories.

Proof. This is Corollary 9.6 in [DK80b]. �

3. Zigzags in relative categories

We begin this section by introducing the main objects of study. Recall the following
pair of definitions from [BK12]:

Definition 3.1.
• A relative category is a pair C = (und C,weq C), where und C is a category and

weq C is a (generally non-full) subcategory of und C containing all the objects.

• Given a relative category C, a weak equivalence in C is a morphism in weq C.

• The homotopy category of a relative category C is the category Ho C obtained
by freely inverting the weak equivalences in C.

• A relative category C is said to be saturated when it satisfies the following
condition: a morphism in C becomes invertible in Ho C if and only if it is a weak
equivalence in C.

Definition 3.2. Given relative categories C and D:

• A relative functor C → D is a functor und C → undD that restricts to a func-
tor weq C → weqD.

• The relative functor category [C,D] is the relative category whose underlying
category is the full subcategory of the ordinary functor category [und C, undD]
spanned by the relative functors, with the weak equivalences being the natural
transformations whose components are weak equivalences in D.
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Given a relative category C, we are interested in understanding the morphisms in
its homotopy category Ho C in terms of the morphisms in C itself. This immediately
leads us to the following notions.

Definition 3.3.

• A zigzag type is a finite sequence of non-zero integers (k0, . . . , kn), where
n > 0, such that for 0 6 i < n, the sign of ki is the opposite of the sign of ki+1.

• Given a finite sequence of integers k = (k0, . . . , kn), [k] = [k0; . . . ; kn] is the rel-
ative category whose underlying category is freely generated by the graph

0 · · · |k|,

where |k| =
∑n

i=0 |ki| and (counting from the left) the first |k0| arrows point
rightward (resp. leftward) if k0 > 0 (resp. k0 < 0), the next |k1| arrows point
rightward (resp. leftward) if k1 > 0 (resp. k1 < 0), etc., with the weak equiva-
lences being generated by the leftward-pointing arrows.

• A zigzag in a relative category C of type [k] is a relative functor [k] → C; given
a zigzag, its domain is the image of the object 0 and its codomain is the image
of the object |k|.

Example 3.4. For example, [−1; 2] denotes the relative category generated by the
graph

0 1 2 3,≃

with 1 → 0 being the unique non-trivial weak equivalence.

Remark 3.5. For any [k0; . . . ; kn], there is a unique zigzag type (l0, . . . , lm) such that
[k0; . . . ; kn] = [l0; . . . ; lm]. However, it is convenient to allow unnormalized notation,
e.g., [1; 1] instead of [2], or [0] instead of [ ].

Any morphism in Ho C is represented by a zigzag in C, and hence one can describe
the hom-sets in Ho C as quotients of various sets of zigzags in C by the appropriate
equivalence relations. However, there is a more homotopically sensitive construction
we can perform, where we instead obtain a category of zigzags between two given
objects of C; we we will think of this as a space of morphisms, following the philosophy
laid out in §1.

Definition 3.6. Let X and Y be objects in a relative category C, and let k be a
finite sequence of integers. The category of zigzags in C from X to Y of type [k] is
the category C[k](X,Y ) defined below:

• The objects are the zigzags in C of type [k] whose domain is X and whose
codomain is Y .
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• The morphisms are commutative diagrams in C of the form

X • · · · • Y

X • · · · • Y,

≃ ≃

where the top row is the domain, the bottom row is the codomain, and the
vertical arrows are weak equivalences in C.

• Composition and identities are inherited from C.

In other words, the objects (resp. morphisms) in C[k](X,Y ) are certain hammocks
of width 0 (resp. 1) in the sense of [DK80b].

Remark 3.7. The following diagram is a pullback square,

C[k](X,Y ) weq [[k], C]

[0] weq C × weq C,

〈dom,codom〉

(X,Y )

where the top horizontal arrow is the evident inclusion and the bottom horizontal
arrow is the functor [0] → weq C × weq C corresponding to the object (X,Y ).

In order to prove the main result, we will need to collect some assorted facts about
these categories of zigzags, which will occupy the remainder of this section.

Proposition 3.8. Let C be a relative category, let k = (k0, . . . , kn) be a zigzag type,
and assume k0 < 0 and kn < 0.

(i) C[k](−,−) is (the object part of) a functor weq C × weq Cop → Cat and there is
a canonical isomorphism

∗ ⊗weq C C[k] ⊗weq C ∗ ∼= weq [[k], C]

of categories over weq C × weq C.

(ii) In particular, the domain projection dom: weq [[k], C] → weq C is a split Gro-
thendieck opfibration, and the codomain projection codom: weq [[k], C] → weq C
is a split Grothendieck fibration.

Proof. (i). This can be verified directly.

(ii). Apply Remark 2.10. �

Remark 3.9. The observation above will be the backbone of Proposition 4.8: the point
is that dom: weq [[−1; 1;−1], C] → weq C is a Grothendieck opfibration whose fiber
over an object X in C is a category that is itself equipped with a Grothendieck fibra-
tion to weq C whose fiber over an object Y in C is the zigzag category C[−1;1;−1](X,Y ).
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Lemma 3.10. Let C be a relative category, let X and Y be objects in C, and let
(k0, . . . , ki−1) and (ki+1, . . . , kn) be finite sequences of integers (possibly of length
zero). Then the two evident functors

s0, s1 : C
[k0;...;ki−1;−1;ki+1;...;kn](X;Y ) → C[k0;...;ki−1;−2;ki+1;...;kn](X,Y )

defined by inserting an identity morphism and the evident functor

d : C[k0;...;ki−1;−2;ki+1;...;kn](X,Y ) → C[k0;...;ki−1;−1;ki+1;...;kn](X,Y )

defined by composing the two leftward-pointing arrows are weak homotopy equivalences
of categories.

Proof. Clearly, d ◦ s0 = d ◦ s1 = id; on the other hand, the commutative diagrams

X • • • Y

X • • • Y

v

v

u

v◦u

X • • • Y

X • • • Y

v◦u

u

v u

define (respectively) natural transformations id ⇒ s0 ◦ d and s1 ◦ d⇒ id, so by Lem-
ma 2.2, all three functors are indeed weak homotopy equivalences of categories. �

Lemma 3.11. Let C be a relative category, and let k be a natural number. Then
the evident functor s2 : weq [[k], C] → weq [[−1; k;−1], C] defined by inserting (two)
identity morphisms is a weak homotopy equivalence of categories.

Proof. For every zigzag in C of type [−1; k;−1], say

X X̃ · · · Ŷ Y,
v u

there is a natural commutative diagram in C of the form

X X̃ · · · Ŷ Y

X̃ X̃ · · · Ŷ Y

X̃ X̃ · · · Ŷ Ŷ ,

v

v u

u

u

so the functor r2 : weq [[−1; k;−1], C] → weq [[k], C] defined by discarding the two
outermost arrows satisfies r2 ◦ s2 = id, and there is a zigzag of natural transforma-
tions between id and s2 ◦ r2. In particular, by Lemma 2.2, s2 is a weak homotopy
equivalence of categories. �
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4. The main result

In this section we state and prove our main result—namely, that a saturated rel-
ative category that enjoys a certain factorization condition will have the property
that its Rezk classification diagram is a complete Segal space up to Reedy-fibrant
replacement. We begin by recalling this factorization condition, which is a variation
on the “homotopy calculus of fractions” introduced in [DK80b].

Definition 4.1. A relative category C admits a homotopical three-arrow calcu-
lus if it satisfies the following condition:

• For all natural numbers k and l and all objects X and Y in C, the evident
functor

C[−1;k;l;−1](X,Y ) → C[−1;k;−1;l;−1](X,Y )

defined by inserting an identity morphism is a weak homotopy equivalence of
categories.

Remark 4.2. Let C be a relative category, and let W be weq C considered as a relative
category where all morphisms are weak equivalences. Then (recalling Lemma 3.10)
the following are equivalent:

(i) C admits a homotopy calculus of fractions in the sense of [DK80b].

(ii) Both C and W admit a homotopical three-arrow calculus in the sense of Defi-
nition 4.1.

Moreover, if the weak equivalences in C have the 2-out-of-3 property, then W admits
a homotopical three-arrow calculus if C does.

However, C may admit a homotopical three-arrow calculus even when W does not
have the 2-out-of-3 property. For example, consider the relative category C whose
underlying category is [2] and whose weak equivalences are generated by the unique
morphisms 0 → 2 and 1 → 2. Clearly, weak equivalences in C do not have the 2-out-
of-3 property. On the other hand, for any X and Y in C and any finite sequence k
(possibly of length zero), the category C[−1;k;−1](X,Y ) is a poset with a maximum
element, and so is contractible (by Lemma 2.2). Thus C indeed admits a homotopical
three-arrow calculus.

Example 4.3. Let C be a partial model category in the sense of [BK11]. Then, by
Proposition 8.2 in [DK80b] and Remark 4.2, C admits a homotopical three-arrow
calculus.

Example 4.4. Let M be a model category, and let C be a full subcategory of M.
Suppose C is homotopically replete, i.e., satisfies the following condition:

• For any weak equivalence w : X → Y in M, if either X or Y is in C, then X,
Y , and w are all in C.

Then C admits a homotopical three-arrow calculus. Essentially, one examines the
argument of paragraph 8.1 in [DK80c] and notes it goes through with C in place of
M. (Observe that the condition on C ensures that it is closed in M under pullbacks
along trivial fibrations, the construction of simplicial resolutions, etc.) In particular,
M admits a homotopical three-arrow calculus.
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We should think of a homotopical three-arrow calculus as a guarantee that we
can reduce our zigzags in C from longer to shorter: the exact condition says that up
to some suitable notion of equivalence, we can remove the middle weak equivalence
in a zigzag of type [−1; k;−1; l;−1] to obtain a zigzag of type [−1; k; l;−1], and,
moreover, that this reduction is sensitive to the homotopical information contained
in the categories of zigzags involved. In fact, the presence of a homotopical three-
arrow calculus allows us to reduce all zigzags in C in this homotopically sensitive way
to the smallest sort that we might hope. (Recall the discussion in the introduction!)
More precisely, there is the following theorem:

Theorem 4.5 (Dwyer and Kan). Let C be a relative category, and let LHC be the
hammock localization.

(i) If C admits a homotopical three-arrow calculus, then the reduction map

N
(

C[−1;1;−1](X,Y )
)

→ LHC(X,Y )

is a weak homotopy equivalence of simplicial sets.

(ii) The reduction map N
(

C[−1;1;−1](X,Y )
)

→ LHC(X,Y ) is natural in the following
sense: given weak equivalences X → X ′ and Y ′ → Y in C, the following diagram
commutes in sSet:

N
(

C[−1;1;−1](X,Y )
)

LHC(X,Y )

N
(

C[−1;1;−1](X ′, Y ′)
)

LHC(X ′, Y ′),

where the vertical arrow on the left is defined by composition and the vertical
arrow on the right is defined by concatenation.

Proof. (i). This is Proposition 6.2 in [DK80b]. Note that the second half of the
“homotopy calculus of fractions” condition is not used, so it does indeed suffice to
have a homotopical three-arrow calculus.

(ii). Immediate, from the definitions. �

Remark 4.6. Statement (ii) above does not appear explicitly in [DK80b], but we
will need it later. We also note the following corrections to the proof of (i) given in
[DK80b]:

• The functor B : II → II should instead be given by the following formula:

(S, T ) 7→ ({s+ 1 | s ∈ S}, {1} ∪ {t+ 1 | t ∈ T}).

• The formula given for A does not define a functor on the whole of II; instead,
define BA to be the functor given by the following formula:

(S, T ) 7→ ({2, . . . , |S|+ 1}, {1}).

• In the last line, “5.1 (ii)” should be “6.1 (ii).”
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Corollary 4.7. Let C be a relative category. If C admits a homotopical three-arrow
calculus, then for any weak equivalences X → X ′ and Y ′ → Y in C, the induced func-
tor

C[−1;1;−1](X,Y ) → C[−1;1;−1](X ′, Y ′)

is a weak homotopy equivalence of categories.

Proof. Use naturality (as in Theorem 4.5) and Proposition 3.3 in [DK80b]. �

We are now ready to compute (with assumptions) the homotopy fibers of the
functor 〈dom, codom〉 : weq [[1], C] → C × C, or, in other words, the hom-spaces of the
Rezk classification diagram of C.

Proposition 4.8. Let C be a relative category and let W = weq C.

(i) There is a pullback diagram in Cat of the form

weq [[−1; 1;−1], C] weq [[1], C]

[[1],W ]× [[1],W ] W ×W,

〈dom,codom〉

codom× dom

and, moreover, the horizontal arrows in the diagram are weak homotopy equiv-
alences of categories.

(ii) For each pair (X,Y ) of objects in C, we have the following pullback diagram in
Cat,

C[−1;1;−1](X,Y ) weq [[−1; 1;−1], C]

[0] W ×W,

〈dom,codom〉

(X,Y )

where (X,Y ) : [0] → W ×W is the functor corresponding to the object (X,Y )
in W ×W.

(iii) If C admits a homotopical three-arrow calculus, then we have a homotopy pull-
back diagram in Cat of the form

C[−1;1;−1](X,Y ) weq [[1], C]

W/X × Y/W W ×W,

〈dom,codom〉

where W/X (resp. Y/W) is the slice (resp. coslice) category and the bottom
horizontal arrow is defined by the evident projections.

Proof. (i). It is clear that we have a pullback diagram of the required form, the top hor-
izontal arrow is a weak homotopy equivalence by Lemma 3.11, and a similar argument
shows that the bottom horizontal arrow is a weak homotopy equivalence as well.
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(ii). This is Remark 3.7 in the case [k] = [−1; 1;−1].

(iii). Consider the following commutative diagram in Cat,

C[−1;1;−1](X,Y ) weq [[−1; 1;−1], C] weq [[1], C]

W/X × Y/W [[1],W ]× [[1],W ] W ×W

[0] W ×W,

(A) (B) 〈dom,codom〉

(C) codom× dom

dom× codom

(X,Y )

where every square is a pullback diagram. We wish to prove that rectangle (AB) is a
homotopy pullback diagram, and since (B) is a homotopy pullback diagram, it suffices
(by the homotopy pullback pasting lemma) to verify that (A) is a homotopy pullback
diagram; however (by Lemma 2.2) the vertical arrows in (C) are also weak homotopy
equivalences, so (C) is a homotopy pullback diagram, and hence it is enough to show
that the rectangle (AC) is a homotopy pullback diagram.

Let HX : Wop → Cat be the diagram C[−1;1;−1](X,−). Then by Theorem 2.7,
Lemma 2.11, Proposition 3.8, and Corollary 4.7, the pullback diagrams

HX ⊗W ∗ weq [[−1; 1;−1], C]

[0] W

dom

X

C[−1;1;−1](X,Y ) HX ⊗W ∗

[0] W
Y

are homotopy pullback diagrams. Thus, in the diagram

C[−1;1;−1](X,Y ) HX ⊗W ∗ weq [[−1; 1;−1], C]

[0] W W ×W

[0] W,

(D) (E) 〈dom,codom〉

Y X×idW

(F) pr1

X

we know that (D) and (EF) are homotopy pullback diagrams; however Corollary 2.8
says that the evident pullback diagram

W ×W W

W [0]

pr1

pr2

is a homotopy pullback diagram, so (F) and (E) are also homotopy pullback diagrams.
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In particular,

C[−1;1;−1](X,Y ) weq [[−1; 1;−1], C]

[0] W ×W

〈dom,codom〉

(X,Y )

is a homotopy pullback diagram, as required. �

We will also need a technical result concerning categories of longer zigzags in C
and their behavior with respect to replacing the domain and codomain along weak
equivalences.

Lemma 4.9. Let C be a relative category, and let n be a positive integer. If C admits a
homotopical three-arrow calculus, then for any weak equivalences X → X ′ and Y ′ →
Y in C, the induced functor

C[−1;n;−1](X,Y ) → C[−1;n;−1](X ′, Y ′)

is a weak homotopy equivalence of categories.

Proof. Since the class of weak homotopy equivalences of categories is closed under
composition, it suffices to verify the claim when either X → X ′ or Y ′ → Y is an
identity morphism; however, the two cases are formally dual, so it is enough to prove
the claim in the first case.

The special case n = 1 is Corollary 4.7. In general, we have the commutative dia-
gram

C[−1;n+1;−1](X,Y ) C[−1;1;−2;n;−1](X,Y )

C[−1;n+1;−1](X,Y ′) C[−1;1;−2;n;−1](X,Y ′),

where the horizontal arrows are the evident functors defined by inserting (two) iden-
tity morphisms. The horizontal arrows are weak homotopy equivalences of categories
by Lemma 3.10 and the hypothesis that C admits a homotopical three-arrow calcu-
lus, and the right vertical arrow is a weak homotopy equivalence of categories by
Proposition 9.4 in [DK80b] and Lemma 2.11; thus, by the 2-out-of-3 property, the
left vertical arrow is also a weak homotopy equivalence of categories, as required. �

We now prove that the Rezk classification diagram of a relative category admitting
a homotopical three-arrow calculus has the asserted Reedy homotopy type, i.e., that
any Reedy-fibrant replacement satisfies the Segal condition. This result sits at the
heart of our main theorem (4.11).

Proposition 4.10. Let C be a relative category, and let n be a positive integer. If C
admits a homotopical three-arrow calculus, then we have a homotopy pullback diagram
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in Cat of the form

weq [[n+ 1], C] weq [[n], C]

weq [[1], C] weq C,

p

d0

dom

codom

where p : weq [[n+ 1], C] → weq [[1], C] is the functor defined by sending each compos-
able sequence of morphisms in C of length n+ 1, say

X0 X1 · · · Xn+1
f1

(considered as an object in weq [[n+ 1], C]), to the morphism f1 : X0 → X1 (consid-
ered as an object in weq [[1], C]).

Proof. Let T1 = [−1; 1;−1], Tn = [−1;n;−1], and Mn = [−1; 1;−2;n;−1]. We have
a commutative cube in Cat of the form

weq [[n+ 1], C] weq [[n], C]

weq [Mn, C] weq [Tn, C]

weq [[1], C] weq C

weq [T1, C] weq C,

p

d0

dom

dom
codom

codom

where the non-trivial oblique arrows are defined by inserting identity morphisms and
both the front and back faces of the cube are pullback squares in Cat; moreover, by
Theorem 2.7, Lemma 2.11, Proposition 3.8, and Lemma 4.9, the front face is a homo-
topy pullback diagram. Since the diagonal arrows are weak homotopy equivalences (by
Lemmas 3.10 and 3.11 plus the hypothesis that C admits a homotopical three-arrow
calculus), it follows that the back face is also a homotopy pullback diagram. �

We now come to the main theorem.

Theorem 4.11. Let C be a relative category, and let N(C)• be the Rezk classification
diagram for C, i.e., the bisimplicial set defined by the formula

N(C)n = N(weq [[n], C]),

and let N̂(C)• be any Reedy-fibrant replacement for N(C)•. If C admits a homotopical
three-arrow calculus, then:

(i) N̂(C)• is a Segal space.

(ii) Assuming weak equivalences in C have the 2-out-of-3 property, N̂(C)• is a com-
plete Segal space if and only if C is a saturated relative category.
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Proof. (i). Since N̂(C)• is a Reedy-fibrant bisimplicial set, it suffices to verify that
the following diagram is a homotopy pullback diagram for every positive integer n:

N̂(C)n+1 N̂(C)n

N̂(C)1 N̂(C)0

d0

d0

where the right (resp. left) vertical arrow is the iterated face operator d1 ◦ · · · ◦ dn

(resp. d2 ◦ · · · ◦ dn+1); however we have a Reedy weak equivalence N(C)• → N̂(C)•,
so the claim is a consequence of Proposition 4.10.

(ii). For the “if” direction, we repeat the argument of the last paragraph of the proof
of Theorem 8.3 in [Rez01]: since C is saturated, a vertex of N(C)1 is an equivalence
(i.e., becomes an isomorphism in Ho C) if and only if it is a weak equivalence in C, and
so the space of homotopy equivalences in N(C)• is the nerve N([[1],weq C]). Following
Lemma 2.2, the induced morphismN(C)0 → N([[1],weq C]) is a homotopy equivalence
of simplicial sets, so N(C)• is indeed a complete Segal space if C is saturated.

For the “only if” direction, we simply observe that if f : X → Y is a morphism in C
that becomes an isomorphism in Ho C, then the corresponding vertex of N(C)1 must
be in the same connected component as the vertex corresponding to idX (because
N(C)• is a complete Segal space). Thus, by using the 2-out-of-3 property of weak
equivalences and induction, we deduce that f is a weak equivalence in C if f becomes
an isomorphism in Ho C. �

Corollary 4.12. Let M be a model category, let N(M)• be the Rezk classification

diagram for M, and let N̂(M)• be any Reedy-fibrant replacement for N(M)•. Then

N̂(M)• is a complete Segal space.

Proof. By paragraph 8.1 in [DK80c], M admits a homotopical three-arrow calculus,
and it is well known that M is a saturated relative category,2 so we may apply
Theorem 4.11. �

Remark 4.13. Let C be a relative category, let C♮ be und C considered as a relative cat-

egory where the weak equivalences are the isomorphisms, and let N̂(C)• be a fibrant

replacement for N(C)• in the model structure for complete Segal spaces. Then N̂(C)•
has the expected homotopy-theoretic universal property with respect to complete
Segal spaces, namely:

• For each complete Segal space D•, the evident morphism N
(

C♮
)

•
→ N̂(C)•

induces (by precomposition) a weak homotopy equivalence

Hom
(

N̂(C),D
)

→ Hom′
(

N
(

C♮
)

,D
)

,

where the codomain is the simplicial set of morphisms N
(

C♮
)

•
→ D• that send

morphisms in weq C to equivalences in D•.

2See, e.g., Theorem 1.2.10 in [Hov99] or Theorem 8.3.10 in [Hir03].
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This is true without further hypotheses on C: see [Sch12]. In view of Proposition 4.8
and Theorem 4.11, the above yields another proof of the correctness of the hammock
localization of C.

Remark 4.14. It is possible for N̂(C)• to be a complete Segal space without C admit-
ting a homotopical three-arrow calculus. Indeed, if every morphism in C is a weak
equivalence, then every face and degeneracy operator of N(C)• is a weak homotopy

equivalence of simplicial sets (by Lemma 2.2), and so N̂(C)• is a complete Segal space.
(In fact, up to Reedy weak equivalence, every complete Segal space in which every
morphism is invertible arises in this way.) On the other hand, C could be a relative
category in which there is no upper bound to the length of zigzags needed to represent
morphisms in Ho C, such as the relative category generated by the infinite graph of
the form

· · · • • • • • • • · · ·

with all morphisms being weak equivalences.

It is also possible for N̂(C)• to be a complete Segal space when the weak equiva-
lences in C do not have the 2-out-of-3 property. Indeed, the (counter)example consid-

ered in Remark 4.2 has the property that N(C)• is levelwise contractible, so N̂(C)•
is trivially a complete Segal space.

Other than the observation made in the introduction, we know of no necessary
conditions.
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