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ALGEBRAIC PROOFS OF SOME FUNDAMENTAL THEOREMS

IN ALGEBRAIC K-THEORY

TOM HARRIS

(communicated by Ulf Rehmann)

Abstract
We present new proofs of the additivity, resolution, and cofi-

nality theorems for the algebraic K-theory of exact categories.
These proofs are entirely algebraic, based on Grayson’s presen-
tation of higher algebraic K-groups via binary complexes.

1. Introduction

The beautiful and relatively young discipline of algebraicK-theory has seen tremen-
dous development and far-reaching applications in many other mathematical disci-
plines over the last decades. This paper makes a contribution to a project (begun
in [Gra12] and [Gra13]) reformulating its foundations.

The algebraic K-theory of an exact category was first described by Segal and
Waldhausen, obtained by modifying Segal’s construction of the K-theory of a sym-
metric monoidal category. Quillen’s alternative Q-construction gives a very powerful
tool for proving fundamental theorems in algebraic K-theory, which he exploited to
prove the additivity, resolution, dévissage, and localisation theorems [Qui73]. Wald-
hausen’s later work on the S·-construction, in particular his version of the additivity
theorem, made simpler proofs of the theorems cited above and the cofinality theorem
possible [Sta89]. Common in all of these approaches is the use of some non-trivial
content from homotopy theory.

Grayson [Gra12] recently gave the first presentation of the higher algebraic K-
groups of an exact category by generators and relations; we take this presentation as
our definition of KnN . The object of this paper is to present new completely algebraic
proofs of the additivity, resolution, and cofinality theorems in higher algebraic K-
theory of exact categories.

We assume throughout that the reader is familiar with exact categories. They are
first systematically defined in [Qui73]; a very nice exposition is [Büh10]. In section 2
we review the necessary details of Grayson’s presentation and present a new proof of
the additivity theorem, in its form concerning so-called extension categories.

Theorem 1.1 (Additivity). Let B be an exact category, with exact subcategories A
and C closed under extensions in B. Let E(A,B, C) denote the associated extension
category. Then KnE(A,B, C) ∼= KnA×KnC, for every n > 0.

Received November 28, 2013, revised June 10, 2014; published on April 29, 2015.

2010 Mathematics Subject Classification: 19D99.

Key words and phrases: higher algebraic K-group, acyclic binary complex, additivity theorem, res-

olution theorem, cofinality theorem.

Article available at http://dx.doi.org/10.4310/HHA.2015.v17.n1.a13

Copyright c© 2015, Tom Harris. Permission to copy for private use granted.

http://intlpress.com/HHA/
http://intlpress.com/HHA/v17/
http://intlpress.com/HHA/v17/n1/


268 TOM HARRIS

Using Grayson’s presentation, the proof of the additivity theorem is rather simple.
In sections 3 and 4 we present more involved proofs of the resolution and cofinality
theorems.

Theorem 1.2 (Resolution). Let M be an exact category and let P be a full, additive
subcategory that is closed under extensions. Suppose also that:

1. If 0 → M ′ → M → M ′′ → 0 is an exact sequence in M with M and M ′′ in P,
then M ′ is in P as well.

2. Given j : M ։ P in M with P in P, there exists j′ : P ′ ։ P and f : P ′ → M
in M with P ′ in P such that jf = j′.

3. Every object of M has a finite resolution by objects of P.

Then the inclusion functor P →֒ M induces an isomorphism Kn(P) ∼= Kn(M) for
every n > 0.

Theorem 1.3 (Cofinality). Let M be a cofinal exact subcategory of an exact category
N . Then the inclusion functor M →֒ N induces an injection K0M →֒ K0N and
isomorphisms KnM ∼= KnN for n > 0.

Grayson defines the nth algebraicK-group of an exact category, denotedKnN , as a
quotient group of the Grothendieck group of a certain related exact category (Bq)nN ,
whose objects are so-called acyclic binary multicomplexes (see Definition2.5). Each
of the theorems above establishes isomorphisms between the K-groups of exact cat-
egories. These theorems have well-known algebraic folk proofs for the Grothendieck
group K0, so the general schema for our proofs is then as follows. First we verify
that the hypotheses on our exact categories of interest also hold for their associated
categories of acyclic binary multicomplexes. Then we apply the algebraic K0 proof to
obtain an isomorphism between their Grothendieck groups. Finally we verify that the
required isomorphism still holds when we pass to the quotients defining the higher
algebraic K-groups.

The remaining theorems regarded as fundamental in the algebraic K-theory of
exact categories are the dévissage and localisation theorems. These theorems concern
abelian categories, say A and B. While the associated categories (Bq)nA and (Bq)nB
are still exact, they will no longer be abelian, so a strategy more sophisticated than
the approach of this paper will be necessary to prove these theorems in the context
of Grayson’s new definition of the higher algebraic K-groups.
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2. Grayson’s binary complex algebraic K-theory

In this section we recall the definitions and main result of [Gra12]. As a first
application we give a simple new proof of the additivity theorem, as previously
proven in [Qui73], as well as [McC93] and [Gra11], and whose version for the
S·-construction is commonly considered to be the fundamental theorem in the alge-
braic K-theory of spaces. We shall work throughout with exact categories in the sense
of Quillen [Qui73], that is, additive categories with a distinguished collection of short
exact sequences that satisfies a certain set of axioms.

Definition 2.1. A bounded acyclic complex, or long exact sequence, in an exact cat-
egory N is a bounded chain complex N whose differentials factor through short exact
sequences of N . That is, the differentials dk : Nk → Nk−1 factor as Nk → Zk−1 →
Nk−1 such that each 0 → Zk → Nk → Zk−1 → 0 is a short exact sequence of N .

In an abelian category the long exact sequences defined above agree with the usual
long exact sequences. Care must be taken in the case of a general exact category, as
the following example shows.

Example 2.2. LetR be a ring with a finitely-generated, stably-free, non-free projective
module P (so P ⊕Rm ∼= Rn for some m and n). We have short exact sequences of

R-modules 0 → P
i
→ Rn

p
→ Rm → 0 and 0 → Rm

j
→ Rn

q
→ P → 0, where i, j, p, and

q are the obvious inclusions and projections. The sequence

0 // Rm
j

// Rn
iq

// Rn
p

// Rn // 0

is a chain complex in the exact category of finitely-generated free modules, Free(R),
and it is exact as a sequence of R modules, but, in the sense of the definition above,
it is not long exact in Free(R).

The category CqN of bounded acyclic1 complexes in an exact category N is itself

an exact category ([Gra12], §6); a sequence of chain maps 0 → N ′ φ
→ N

ψ
→ N ′′ → 0

is said to be a short exact sequence if and only if 0 → N ′
k

φk→ Nk
ψk→ N ′′

k → 0 is short

exact for all k. A word of warning here: a morphism of acyclic complexes N
ψ
→ N ′′

such that every Nk
ψk→ N ′′

k is an admissible epimorphism of N is not necessarily an
admissible epimorphism in CqN .

Example 2.3. Let i, j, p, and q be the morphisms in Example 2.2, and note that iq +
jp = 1. The diagram below has exact rows, and is in fact a morphism of CqFree(R).

0 // Rm //

[

j
1

]

//

��
��

Rn ⊕Rm

[

1 −j
−p 1

]

//

[−p 1 ]
��
��

Rn ⊕Rm
[ p 1 ]

// //

[ 0 1 ]
��
��

Rm

��
��

// 0

0 // // Rm
1

// Rm // // 0

Each vertical arrow is an admissible epimorphism of Free(R), but the diagram is

1
The q in C

q
N stands for “quasi-isomorphic to the zero complex.” We will not make use of the

notion of a quasi-isomorphism—the q is a reminder that we are dealing only with the acyclic
complexes in N .
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not an admissible epimorphism of CqFree(R)—its kernel is the complex discussed in
Example 2.2, which is not acyclic in Free(R).

Definition 2.4. A binary complex in N is a chain complex with two independent
differentials. More precisely, a binary complex is a triple (N, d, d̃) such that (N, d)
and (N, d̃) are chain complexes in N . We call a binary chain complex acyclic if each
of the complexes (N, d) and (N, d̃) is acyclic in N . A morphism between binary
complexes is a morphism between the underlying graded objects that commutes with
both differentials. A short exact sequence is a composable pair of such morphisms
that is short exact in every degree.

Since CqN is an exact category, the reader may easily check that the category
BqN of bounded acyclic binary complexes in N is also an exact category. There is a
diagonal functor ∆: CqN → BqN , sending (N, d) to (N, d, d). A binary complex that
is in the image of ∆ is also called diagonal. The diagonal functor is split by the top
and bottom functors ⊤,⊥ : BqN → CqN ; it is clear that ∆,⊤, and ⊥ are all exact.

Taking the category of acyclic binary complexes behaves well with respect to sub-
categories closed under extensions. If M is a full subcategory closed under extension
in N (later just called an exact subcategory), then BqM is a subcategory closed
under extensions in BqN . It is important here that the binary complexes in BqN
are bounded. Starting at the final non-zero term, one argues by induction that the
objects that the extension factors through are actually in M, using the hypothesis
on M and N , and the 3× 3 Lemma ([Büh10], Corollary 3.6).

Since BqN is an exact category, we can iteratively define for each n > 0 an exact
category (Bq)nN = BqBq · · ·BqN . The objects of this category are bounded acyclic
binary complexes of bounded acyclic binary complexes . . . of objects of N . Happily,
this may be neatly unwrapped: the following is an equivalent definition of (Bq)nN .

Definition 2.5. The exact category BqN of bounded acyclic binary multicomplexes
of dimension n in N is defined as follows. A bounded acyclic binary multicomplex of
dimension n is a Z

n-graded collection of objects of N , only finitely many of which
are non-zero, together with a pair of acyclic differentials di and d̃i in each direction
1 6 i 6 n such that, for i 6= j,

didj = djdi

did̃j = d̃jdi

d̃idj = dj d̃i

d̃id̃j = d̃j d̃i.

In other words, any pair of differentials in different directions commutes. A mor-
phism φ : N → N ′ between such binary multicomplexes is a Z

n-graded collection of
morphisms of N that commutes with all of the differentials of N and N ′. A short
exact sequence in (Bq)nN is a composable pair of such morphisms that is short exact
in every degree.

In addition to (Bq)nN , for n > 1 we have exact categories (Bq)i−1Cq(Bq)n−iN for
i = 1, . . . n, each of which is equivalent to Cq(Bq)n−1N , the category of acyclic com-
plexes of objects of (Bq)n−1N . For each i with 1 6 i 6 n there is a diagonal functor
∆i : (B

q)i−1Cq(Bq)n−iN → (Bq)nN that consists of “doubling up” the differential
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of the (non-binary) acyclic complex and regarding it as providing both differentials
in the direction i in the resulting acyclic binary multicomplex. Any object of (Bq)nN
that is in the image of one of these ∆i is called diagonal. The diagonal binary multi-
complexes are those that have di = d̃i for at least one i.

We can now formulate Grayson’s presentation of the algebraic K-theory groups
of N , which we shall take to be their definition for the remainder of this paper.

Theorem / Definition 2.6 ([Gra12], Corollary 7.4). For N an exact category and
n > 0, the abelian group KnN is presented as follows. There is one generator for each
bounded acyclic binary multicomplex of dimension n, and there are relations [N ′] +
[N ′′] = [N ] if there is a short exact sequence 0 → N ′ → N → N ′′ → 0 in (Bq)nN ,
and [T ] = 0 if T is a diagonal acyclic binary multicomplex.

Observe that if we disregard the second relation that diagonal binary multicom-
plexes vanish, then we obtain the Grothendieck group K0(B

q)nN . Another way
to say this is that KnN is a quotient group of the Grothendieck group of the
exact category (Bq)nN . Denote by TnN the subgroup of K0(B

q)nN generated by
the classes of the diagonal binary multicomplexes in (Bq)nN . Then we may write
KnN ∼= (K0(B

q)nN )/TnN .
Using the inductive viewpoint explained before Definition 2.5, we also obtain the

following description of KnN .

Lemma 2.7. For each n > 1 we have a split short exact sequence:

0 −→ Kn−1C
qN

∆
−→ Kn−1B

qN −→ KnN −→ 0,

which is functorial in N .

Proof. This is proven already in [Gra12], but a direct proof from Theorem / Defini-
tion 2.6 is instructive, so we include it here. We have defined KnN to be K0(B

q)nN
modulo the sum of the images of the various diagonal maps

∆i : K0(B
q)i−1Cq(Bq)n−iN −→ K0(B

q)nN (i = 1, . . . , n).

Similarly, Kn−1B
qN is defined as the factor group of K0(B

q)n−1Bq = K0(B
q)nN

modulo the sum of the images of ∆i for i = 1, . . . , n− 1. Therefore, the canonical
epimorphism K0(B

q)nN naturally factorises as

K0(B
q)nN −→ Kn−1B

qN −→ KnN ,

and KnN is the factor group of Kn−1B
qN modulo the image of the composition

K0(B
q)n−1CqN

∆n
// K0(B

q)nN // Kn−1B
qN .

Furthermore, the epimorphism K0(B
q)n−1 → Kn−1 is a natural transformation of

functors from the category of exact categories to abelian groups. Summarising, we
obtain the following commutative diagram, whose bottom row is exact:

K0(B
q)n−1CqN

∆n
//

��
��

K0(B
q)nN

��
��

Kn−1C
qN

Kn−1(∆)
// Kn−1B

qN // // KnN // 0.
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The top and bottom functors (⊤ and ⊥) each split ∆, so Kn−1(∆) is split by either
of Kn−1(⊤) or Kn−1(⊥), so the bottom row of the diagram is our required split short
exact sequence.

We now present a new, elementary proof of the additivity theorem. Let A and C
be exact subcategories of an exact category B.

Definition 2.8. The extension category E(A,B, C) is the exact category whose
objects are short exact sequences 0 → A → B → C → 0 in B, with A in A and C
in C, and whose morphisms are commuting rectangles.

Theorem 2.9 (Additivity). KnE(A,B, C) ∼= KnA×KnC, for every n > 0.

Proof. The exact functors

E(A,B, C) // A× C

(0 → A → B → C → 0) ✤ // (A,C)

and

A× C // E(A,B, C)

(A,C) ✤ // (0 → A → A⊕ C → C → 0)

induce mutually inverse isomorphisms between K0E(A,B, C) and K0A×K0C (see,
e.g., [Wei13], II.9.3). Fix an n > 0. The categories (Bq)nA and (Bq)nC are exact
subcategories of (Bq)nB, so we can define the extension category

En(A,B, C) := E((Bq)nA, (Bq)nB, (Bq)nC).

From the above, the induced map

K0E
n(A,B, C) → K0(B

q)nA×K0(B
q)nC

is an isomorphism. But a short exact sequence of binary multicomplexes is exactly
the same thing as a binary multicomplex of short exact sequences, so the categories
En(A,B, C) and (Bq)nE(A,B, C) are isomorphic, so we therefore have an isomorphism

K0(B
q)nE(A,B, C) ∼= K0(B

q)nA×K0(B
q)nC.

Identifying the categories En(A,B, C) and (Bq)nE(A,B, C), a binary multicomplex in
(Bq)nE(A,B, C) is diagonal in direction i if and only if its constituent binary multi-
complexes in (Bq)nA, (Bq)nB, and (Bq)nC are also diagonal in direction i. Similarly,
if A in (Bq)nA and C in (Bq)nC are diagonal, then the binary multicomplexes corre-
sponding to (0 → A → A → 0 → 0) and (0 → 0 → C → C → 0) are diagonal as well,
so the isomorphism K0(B

q)nE(A,B, C) ∼= K0(B
q)nA×K0(B

q)nC restricts to an iso-
morphism Tn

E(A,B,C)
∼= TnA × TnB . Passing to the quotients yields the result.

3. The resolution theorem

The resolution theorem relates the K-theory of an exact category, to that of a
larger exact category, all of whose objects have a finite resolution by objects of the
first category. Its most well-known application states that the K-theory of a regular
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ring is isomorphic to its G-theory (the K-theory of the exact category of all finitely-
generated R-modules). As in the proof of the additivity theorem, we adapt a simple
proof for K0 to work for all Kn. The main difficulty in this proof is verifying that the
hypotheses of the theorem pass to exact categories of acyclic binary multicomplexes.

The general resolution theorem for exact categories ([Qui73], §4 Corollary 2) is a
formal consequence of the following theorem, which is Theorem 3 of [Qui73].

Theorem 3.1. Let P be a full, additive subcategory of an exact category M that is
closed under extensions and satisfies:

1. For any exact sequence 0 → P ′ → P → M → 0 in M, if P is in P, then P ′ is
in P.

2. For any M in M there exists a P in P and an admissible epimorphism P ։ M .

Then the inclusion functor P →֒ M induces an isomorphism KnP ∼= KnM for all
n > 0.

Proof. For K0 the inverse to the induced homomorphism K0P → K0M is given by
the map

φ : K0M K0P
✤

// K0P

[M ] [P ]− [P ′]
✤

//

where 0 → P ′ → P → M → 0 is a short exact sequence of M. The proof of Theo-
rem 3.1 for n = 0 is the simple exercise of checking that φ is well-defined. We noted
earlier that if P is closed under extensions in M, then (Bq)nP is closed under exten-
sions in (Bq)nM for each n, and by the same reasoning, one easily sees that if P and
M satisfy hypothesis (1) of the theorem, then so do (Bq)nP and (Bq)nM for each
n. The following proposition is about hypothesis (2).

Proposition 3.2. Let P and M satisfy the hypotheses of 3.1. For every object M of
(Bq)nM there exists a short exact sequence 0 → P ′ → P → M → 0 of (Bq)nM with
P ′ and P in (Bq)nP. Furthermore, if M is a diagonal binary multicomplex, then we
may choose P and P ′ to be diagonal as well.

We shall prove Proposition 3.2 shortly. We now continue with the proof of Theo-
rem 3.1. Together with the known isomorphism forK0, the first part of the proposition
implies that the induced map K0(B

q)nP → K0(B
q)nM is an isomorphism for each

n. Clearly this isomorphism sends elements of TnP to elements of TnM. Since the value
of φ is independent of the choice of resolution, the second part of the proposition
implies that φ maps elements of TnM to elements of TnP . The isomorphism therefore
descends to an isomorphism KnP → KnM.

It remains then to prove Proposition 3.2, so for the rest of this section we assume
the hypotheses of Theorem 3.1. The idea of the proof is to construct, for each M in
(Bq)nM, a morphism of acyclic binary chain complexes P → M that is an admissible
epimorphism in every degree, i.e., Pj ։ Mj is admissible for each j. By the assump-
tion on P and M each of these admissible epimorphisms is part of a short exact
sequence 0 → P ′

j → Pj → Mj → 0 with the Pj in P. The P ′
j form a binary complex

with the induced maps, and we show that this binary complex is in fact acyclic.
The result will then follow from an induction on the dimension. We shall rely on the
following facts.
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Lemma 3.3. Let fi : Qi → N , i = 1, . . . ,m be a family of morphisms in an exact
category, at least one of which is an admissible epimorphism. Then the induced mor-
phism

[ f1 ... fm ] :

m
⊕

i=1

Qi → N

is an admissible epimorphism as well.

Proof. The general case follows from the case m = 2. In this case, the morphism
[ f1 f2 ] factors as the composition

Q1 ⊕Q2

[

f1 0
0 1

]

// N ⊕Q2

[

1 f2
0 1

]

// N ⊕Q2

[ 1 0 ]
// N,

all of which are admissible epimorphisms.

Lemma 3.4. Let 0 → A → B → C → 0 be a short exact sequence of bounded chain
complexes in an exact category N such that B and C are acyclic. Suppose that the
differentials of B and C factor through short exact sequences 0 → Yj → Bj → Yj−1 →
0 and 0 → Zj → Cj → Zj−1 → 0 of N . Then A is acyclic if and only if each of the
induced morphisms Yj → Zj is an admissible epimorphism in N . In this case the
differentials of A factor through the kernels Xj of Yj ։ Zj.

Proof. Without loss of generality, assume that A, B, and C are all 0 in negative
degrees, so that Y0 = B0 and Z0 = C0. Define X0 to be A0, the kernel of Y0 ։ Z0.
Since Y1 ։ Z1 is an admissible epimorphism of N , it has a kernel, which we shall
denote byX1. There are induced maps of kernelsX1 → A1 → X0, and since 0 → Y1 →
B1 → Y0 → 0 and 0 → Z1 → C1 → Z0 → 0 are short exact, then so is 0 → X1 →
A1 → X0 → 0 by the 3× 3 Lemma for exact categories. Defining Xj to be the kernel
of the admissible epimorphism Yj ։ Zj for each j, this argument is repeated to show
that 0 → Xj → Aj → Xj−1 → 0 is short exact for every j. Uniqueness of induced
maps between kernels shows that the differentials of A factor through these short
exact sequences, so A is acyclic.

We begin resolving binary complexes in the less involved case, in which we assume
M to be diagonal.

Lemma 3.5. Given a diagonal bounded acyclic binary complex M in BqM, there
exists a short exact sequence 0 → P ′ → P → M → 0 where P ′ and P are diagonal
objects of BqP.

Proof. We may consider M as an object of CqN , as ∆: CqN → BqN is a full embed-
ding for any exact category N . Represent M in CqN as below. Without loss of
generality we assume that M ends at place 0.

0 // Mn
d

// · · ·
d

// Mk
d

// Mk−1
d

// · · ·
d

// M0
// 0.

Since P and M satisfy the hypotheses of Theorem 3.1, there exists an object Qk of P
and an admissible epimorphism ǫk : Qk ։ Mk in M for each 0 6 k 6 n. The diagram
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below is a morphism in BqM with target M , and its upper row, the source of the
morphism, is an object of CqP.

0 //

��

0

��

// · · · // Qk

ǫk

��
��

Qk
//

dǫk

��

· · · // Q //

��

Q

��

0 // Mn
d

// · · ·
d

// Mk
d

// Mk−1
d

// · · ·
d

// M0
// 0

We denote the top row by P k and the morphism of complexes by ζk : P k → M . We
do this for each k ∈ {0, . . . , n} and form the sum

ζ := [ ζn ... ζ0 ] :
⊕

P k → M.

Call the direct sum P . Each of the complexes P k is acyclic, so P is as well. Consider
the morphism ζj : Pj → Mj , the part of ζ from the jth term of Pj to the jth term
of M . By construction and Lemma 3.3, it is an admissible epimorphism of M. We
now have a morphism ζ : P → M that is an admissible epimorphism in every degree.
The kernels of these admissible epimorphisms are all in P by the hypotheses on P
and M. These kernels form a (as we have seen in Example 2.3, not a priori acyclic)
bounded chain complex P ′ in P under the induced maps between them.

It remains to show that this chain complex is acyclic (i.e., that P ′ is in BqP),
for then 0 → P ′ → P → M → 0 will be a short exact sequence of acyclic complexes.
Suppose that the differential on M factors through objects Zj of M, and that P
factors through objects Yj of P. By Lemma 3.4, to show that P ′ is acyclic in M it
is enough to show that each Yj → Zj is an admissible epimorphism of M. Since each
P k is concentrated in degrees k and k − 1, we have Yj = Qj and the induced map
Qj → Zj is the composition Qj ։ Mj ։ Zj , which is an admissible epimorphism
of M, so P ′ is acyclic in M and its differentials factor through the kernels of the
admissible epimorphisms Qj ։ Zj (call them Xj). But each Qj is an object of P,
and so each Xj is an object of P as well, by the hypotheses on P and M, so P ′ is
acyclic in P.

Finally we consider P ′, P , and M as diagonal binary complexes (by applying ∆).
Then 0 → P ′ → P → M → 0 is the required short exact sequence of acyclic diagonal
binary complexes.

A little more work is required if the binary complex M is not diagonal. The idea
in this case is due to Grayson, and relies on the acyclicity of the chain complexes

0 // Q
[ 10 ]

// Q⊕Q
[ 0 1
0 0 ]

// Q⊕Q
[ 0 1
0 0 ]

// · · ·
[ 0 1
0 0 ]

// Q⊕Q
[ 0 1 ]

// Q // 0

and

0 // Q
[ 01 ]

// Q⊕Q
[ 0 0
1 0 ]

// Q⊕Q
[ 0 0
1 0 ]

// · · ·
[ 0 0
1 0 ]

// Q⊕Q
[ 1 0 ]

// Q // 0

of arbitrary length, where Q is an object of any exact category.

Lemma 3.6. Given an arbitrary bounded acyclic binary complex M in BqM there
exists a short exact sequence 0 → P ′ → P → M → 0, where P ′ and P are objects of
BqP.
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Proof. Let M denote the element of BqM given by the binary complex below:

0 //
// Mn

d
//

d′
// · · ·

d
//

d′
// Mk

d
//

d′
// Mk−1

d
//

d′
// · · ·

d
//

d′
// M0

//
// 0

and as before, for 0 6 k 6 n, let ǫk : Qk ։ Mk be admissible epimorphisms in M with
Qk in P. For 0 6 k 6 n and 1 6 l 6 k, inductively define two collections of morphisms
δk,l, δ

′
k,l : Qk → Mk−l by

{

δk,1 = d ◦ ǫk

δ′k,1 = d′ ◦ ǫk

and
{

δk,l+1 = d ◦ δ′k,l
δ′k,l+1 = d′ ◦ δk,l.

Since each of its differentials is acyclic, the top row of the diagram below is an object
of BqP for each k ∈ {0, . . . , n}.

//
// Qk

ǫk

��
��

[ 10 ]
//

[ 01 ]
// Qk ⊕Qk

[ δk,1 δ
′

k,1 ]

��

[ 0 1
0 0 ]

//

[ 0 0
1 0 ]

// Qk ⊕Qk

[ δk,2 δ
′

k,2 ]

��

[ 0 1
0 0 ]

//

[ 0 0
1 0 ]

// · · ·
[ 0 1
0 0 ]

//

[ 0 0
1 0 ]

// Qk ⊕Qk

[ δk,k δ
′

k,k ]

��

[ 1 0 ]
//

[ 0 1 ]
// Qk

��
//
// Mk

d
//

d′
// Mk−1

d
//

d′
// Mk−2

d
//

d′
// · · ·

d
//

d′
// M0

//
// 0.

The morphisms δk,l and δ′k,l have been constructed so that the vertical morphisms
commute with the top and bottom differentials, so the diagram represents a morphism
in BqM, which we shall again denote by ζk : P k → M . Following the same method
of proof as of the previous lemma, each P k is acyclic so their direct sum is acyclic as
well and so

ζ := [ ζn ... ζ0 ] :
⊕

P k → M

is a morphism in BqM. By construction and Lemma 3.3 again, each morphism
ζj : Pj → Mj is an admissible epimorphism in M. Each of these morphisms therefore
has a kernel in P and these kernels form a binary complex with the induced maps.

We wish to show that both differentials of this binary complex are acyclic in P.
Consider the top differential first. Denote the objects that the top differentials of
M , P and each P k factor through by Zj , Yj , and Y k

j (so Yj is the sum of all the

factors Y k
j ). As in the proof of Lemma 3.5, it is enough to show that each induced

morphism Yj → Zj is an admissible epimorphism of M. But since Yj → Zj is equal
to the product of induced maps

⊕

Y k
j → Zj , it suffices, by Lemma 3.3, to show that,

for each j, one of the morphisms Y k
j → Zj is an admissible epimorphism of M. Since
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Y j
j = Qj , taking k = j yields the result, as shown by the diagram below.

Qj

��
��

Qj
//

[ 10 ]
//

��

Qj ⊕Qj

��

Mj
// // Zj // // Mj−1.

The bottom differential is dealt with entirely analogously.

Proof of Proposition 3.2. We proceed by induction on n. In the base case n = 0, there
is nothing to show. For the inductive step, we view an acyclic binary multicomplex
M in (Bq)n+1M as an acyclic binary multicomplex of objects of (Bq)nM, i.e., as
an object of Bq(Bq)nM. By the inductive hypothesis, the inclusion of (Bq)nP into
(Bq)nM satisfies the hypotheses of Theorem 3.1, so by Lemma 3.6 there exists a short
exact sequence 0 → P ′ → P → M → 0 in Bq(Bq)nM with P ′ and P in Bq(Bq)nP =
(Bq)n+1P, and so the first part follows. For the second part, suppose that M is
diagonal in some direction i. We consider M as a diagonal acyclic binary complex of
(not necessarily diagonal) objects of (Bq)nM, that is, we “expand” M along the i
direction. Then by Lemma 3.5 there exist diagonal acyclic binary complexes P ′ and
P in (Bq)n+1P that are diagonal in direction i, and an exact sequence 0 → P ′ →
P → M → 0, so the proof is complete.

4. The cofinality theorem

Unlike the additivity and resolution theorems, the cofinality theorem was not
proved by Quillen in [Qui73]. A proof for exact categories based on work by Gersten
was given in [Gra79]. More general versions can be found in [Sta89] and [TT90].
It is proven in [Gra12] that the hypotheses of the cofinality theorem are satisfied by
the appropriate exact categories of acyclic binary complexes, the main work in our
proof is in ensuring that the results pass to the quotients defining Kn.

Definition 4.1. An exact subcategory M of an exact category N is said to be cofinal
inN if for every objectN1 ofN there exists another objectN2 ofN such thatN1 ⊕N2

is isomorphic to an object of M.

An obvious example of a cofinal exact subcategory is the category of free R-modules
inside the category of projective R-modules, for any ring R. More generally, every
exact category is cofinal in its idempotent completion ([TT90], Appendix A). The
cofinality theorem relates the K-theory of the cofinal subcategory to the K-theory of
the exact category containing it. Throughout this section M →֒ N is the inclusion of
a cofinal exact subcategory of an exact category N .

Define an equivalence relation on the objects of N by declaring N1 ∼ N2 if there
exist objects M1 and M2 of M such that

N1 ⊕M1
∼= N2 ⊕M2.

Since 〈M〉 = 0 for every M in M, the cofinality of M in N ensures that equivalence
classes of ∼ form a group under the natural operation 〈N1〉+ 〈N2〉 = 〈N1 ⊕N2〉; we
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denote this group by K0(N rel. M). The following lemma and its corollary were first
observed in the proof of Theorem 1.1 in [Gra79].

Lemma 4.2. The sequence:

0 // K0M // K0N //K0(N rel. M) // 0

[N ] ✤ // 〈N〉

is well-defined and exact.

Corollary 4.3. For any pair of objects N1, N2 of N with the same class in
coker(K0M → K0N ) there exists a (single) object N ′ in N such that each Ni ⊕N ′

is in M.

Proof. By the lemma, if N1 and N2 have the same class in coker(K0M → K0N ),
then 〈N1〉 = 〈N2〉. From cofinality there exists a P in N such that N1 ⊕ P is in M,
so 〈0〉 = 〈N1 ⊕ P 〉 = 〈N2 ⊕ P 〉. Hence there exist objects P1 and P2 of M such that
each (Ni ⊕ P )⊕ Pi is an object of M. Setting N ′ = P ⊕ P1 ⊕ P2, each Ni ⊕N ′ is an
object of M.

We show now that cofinality of M in N passes to the associated categories of
acyclic binary multicomplexes.

Lemma 4.4. For every object N of BqN there exists a diagonal object T in BqN
such that N ⊕ T is in BqM.

Proof. This is Lemma 6.2 of [Gra12].

Corollary 4.5. For each n > 1, the category (Bq)nM is cofinal in (Bq)nN .

Proof. This follows by straightforward induction on the previous lemma (the hypoth-
esis that T is diagonal is not actually needed).

We can also conclude that (Cq)nM is cofinal in (Cq)nN . This can be proved
independently, but it also follows trivially from Corollary 4.5.

These facts in hand, we now proceed to the proof of the cofinality theorem.

Theorem 4.6 (Cofinality). The inclusion functor M →֒ N induces an injection
K0M →֒ K0N and isomorphisms KnM ∼= KnN for n > 0.

Proof. The case n = 0 is part of Lemma 4.2, so we proceed directly to n > 0. We con-
sider n = 1 first. The inclusion M →֒ N induces a morphism of short exact sequences:

0 // K0C
qM

∆
//

��

K0B
qM //

��

K1M //

��

0

0 // K0C
qN

∆
// K0B

qN // K1N // 0.

By Lemma 2.7, these short exact sequences are split. Furthermore, the downwards
maps commute with the splittings of ∆ (⊤ : K0B

qM → K0C
qM and ⊤ : K0B

qN →
K0C

qN ), so the morphism is a morphism of split exact sequences. The induced map
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K0B
qM → K0B

qN is a monomorphism, as K0B
qM is cofinal in K0B

qN , by Corol-
lary 4.5. The map K1M → K1N is therefore a direct summand of a monomorphism
and must be a monomorphism itself.

The induced map K1M → K1N sends the class x+K0C
qM ∈ K1M to the class

x+K0C
qN ∈ K1N , where x ∈ K0B

qM. Let x = [N1]− [N2] be a generic element
of K0B

qN , where N1 and N2 are acyclic binary complexes with objects in N . By
Lemma 4.4, there exist diagonal acyclic binary complexes T1 and T2 in BqN such
that Ni ⊕ Ti ∈ BqM for i = 1, 2. Then

[Ni] +K0C
qN = [Ni ⊕ Ti] +K0C

qN

and therefore

x+K0C
qN = [N1]− [N2] +K0C

qN = [N1 ⊕ T1]− [N2 ⊕ T2] +K0C
qN

is in the image of K1M → K1N . Thus K1M → K1N is surjective and the case n = 1
of the theorem is proven.

The remaining cases now follow by an induction on n. By Lemma 2.7 again, the
inclusion M →֒ N induces a morphism of split short exact sequences:

0 // KnC
qM

∆
//

��

KnB
qM //

��

Kn+1M //

��

0

0 // KnC
qN

∆
// KnB

qN // Kn+1N // 0.

If n > 1, the induced map KnB
qM → KnB

qN is an isomorphism by the induc-
tive hypothesis, since BqM is cofinal in KnB

qN , by Lemma 4.4 again. Therefore
Kn+1M → Kn+1N is a direct summand of an isomorphism, so it is itself an isomor-
phism.

Remark 4.7. It is possible to give a proof of the cofinality theorem that does not use
Lemma 2.7, although it is less natural than the above. The intermediate steps may
be of independent interest, so we outline this alternative argument below. Details will
be included in the author’s PhD thesis [Har15].

Alternative proof of cofinality theorem (outline). By modifying the proof of Lemma
6.2 in [Gra12], one can prove the following (stronger) variant of our Lemma 4.4:

For all n > 1, if N is in (Bq)nN and i ∈ {1, . . . , n} is any direction, then there exists
an object T in (Bq)nN that is diagonal in direction i such that N ⊕ T is in (Bq)nM.
Moreover, if N is diagonal in direction j ∈ {1, . . . , n}, j 6= i, then T may be chosen
to be diagonal in both direction i and direction j.

This can then be used to prove the following statement:

Let x+ TnM be a class in TnN /TnM, for n > 1. Then x+ TnM = [t] + TnM, where [t] is
the class in K0(B

q)nN of a single diagonal acyclic binary multicomplex t in (Bq)nN .

From this one can deduce that the canonical map

TnN /TnM −→ K0(B
q)nN/K0(B

q)nM

is injective. The surjectivity of this map is an evident application of the above-
mentioned variant of Lemma 4.4. Finally, a straightforward argument using the snake
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lemma shows that induced homomorphism KnM → KnN is bijective for n > 1.
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