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POWER MAPS ON QUASI-p-REGULAR SU(n)

ANDREW RUSSHARD

(communicated by Nicholas J. Kuhn)

Abstract
In the paper we will show that the p3 power map on

SU(p+ t− 1) is an H-map for 2 ⩽ t ⩽ p− 1. To do this we will
consider a fibration whose base space is SU(p+ t− 1) with the
property that there is a section into the total space. We will
then use decomposition methods to identify the fibre and the
map from it to the total space. This information will be used
to deduce information about SU(p+ t− 1). In doing this we
draw together recent work of Kishimoto and Theriault with
more classical work of Cohen and Neisendorfer, and make use
of the classical theorems of Hilton and Milnor, and James and
Barrett.

1. Introduction

Lie groups play an integral role in many areas of mathematics. Despite this there
are still open problems concerning their multiplicative properties. In the 1970s,
McGibbon, Arkowitz, and others looked at the following problem.

If X is a connected, homotopy-associative H-space which is homotopy equivalent
to a finite CW-complex, when is the map x 7→ xk an H-map?

Collectively, they gave the following necessary and sufficient condition for this to
be the case [1, 7].

Let X be a connected, homotopy-associative H-space (or localization at an odd
prime thereof). Then there exists a number N (dependent on X) such that the map
x 7→ xk is an H-map iff k(k − 1) ≡ 0 mod N .

This condition, however, depends on a number N which is itself dependent upon
the spaceX. The value ofN was calculated for various rank 2 loop spaces as well as for
S1, S3 with multiplication induced by the quaternions and S7 with the multiplication
induced by the Cayley numbers. Whilst in principle their work offers a complete
solution, the value of N is known in relatively few cases. What we shall show in this
paper is that the p3 power map on the p-localization of SU(n) for p+ 1 ⩽ n ⩽ 2p− 2
is an H-map. To put this another way, we will show that that for the p-localization
of such SU(n), the value of N is a multiple of p3(p3 − 1), where p is a prime > 5.
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Theriault [9] and Kishimoto [5] have recently proved results of a similar vein. The-
riault [9] showed a similar result for p-regular Lie groups, that is, when the Lie groups
are homotopy equivalent to a product of spheres. We consider the more technically
demanding case when SU(n) is quasi-p-regular, that is, that it is homotopy equivalent
to a product of spheres and sphere bundles over spheres. To do this we will use the
recent work of Kishimoto in which he has calculated the orders of certain Samelson
products in quasi-p-regular SU(n).

We will draw these more recent results together with classical results of James,
Cohen, and Neisendorfer to achieve our results. In the second section we will state
the main results of this paper along with some preliminaries. The third section will
be given over to making explicit a fibration which plays a pivotal role in the proofs
of the main results. In the final two sections we will prove the main results.

The author would like to thank the referee and editor for their carefully considered
and positive feedback and suggestions.

2. Main results

Let p be an odd prime. A Lie group X is said to be quasi-p-regular if it is p-locally
homotopy equivalent to a product of spheres and sphere bundles over spheres. Oka
[8] showed that for 2 ⩽ t ⩽ p we have the p-local decomposition

SU(p+ t− 1) ≃ B2 ×B3 × · · · ×Bt × S2t+1 × S2t+3 × · · · × S2p−1,

where Bk is a 3-cell complex that sits in a fibration

S2k−1 → Bk → S2(k+p)−3,

and H∗(Bk,Z/pZ) ∼= Λ(x2k−1, x2(k+p)−3), where |xj | = j and the xi are linked via a
Steenrod operation P1

∗ (x2(k+p)−3) = x2k−1.

From this point on, all spaces will be localized at a prime p > 5, and homology
will have Z/pZ coefficients. Let Ak be the (4k + 2p− 5)-skeleton of Bk, and let

A = A2 ∨A3 ∨ . . . ∨At ∨ S2t+1 ∨ S2t+3 ∨ . . . ∨ S2p−1.

As the inclusion Ak ↪→ Bk induces the inclusion of the generating set in homology
for each 2 ⩽ n ⩽ p, there is an obvious inclusion i : A ↪→ SU(p+ t− 1). Taking the
adjoint of this map gives a map i : ΣA ↪→ BSU(p+ t− 1). There is then a fibration

F
ν−→ ΣA

i−→ BSU(p+ t− 1)

for each 2 ⩽ t < p, which defines the space F and the map ν. Looping this fibration
then gives us the fibration

ΩF
Ων−−→ ΩΣA

Ωi−→ SU(p+ t− 1).

We will decompose ΩF and determine the map Ων as in the following theorem.

Let X(k) be the k-fold self smash of X. For ease of notation, if we write X
(k1)
1 ∧

. . . ∧X
(kn)
n , any term with kt = 0 is omitted from the smash product. For example,

X
(k1)
1 ∧X

(0)
2 ∧X

(k3)
3 means X

(k1)
1 ∧X

(k3)
3 .



POWER MAPS ON QUASI-p-REGULAR SU(n) 237

Observe that each Ak has one or two cells and is a co-H-space. In such cases Cohen
and Neisendorfer [3] showed that there exists a fibration

ΩRk
Ωfk−−→ ΩΣAk → Bk

and a homotopy decomposition ΩΣAk ≃ Bk × ΩRk. If Ak = S2k−1 then we have that
Rk = S4k−3, and if Ak has two cells then Rk is a 5-cell complex. The map fk was
shown to factor through Whitehead products. Let fk be the composite

fk : Rk
fk−→ ΣAk ↪→ ΣA.

Theorem 2.1. The space ΩF in the fibration

ΩF
Ων−−→ ΩΣA

Ωi−→ SU(p+ t− 1)

can be decomposed as

ΩF ≃
∏
j∈J

ΩΣ
(
A

(j2)
2 ∧A

(j3)
3 ∧ . . . ∧A

(jt)
t ∧ S2t+1(jt+1)

∧ . . . ∧ S2p−1(jp)
)
×

p∏
k=2

ΩRk

for an appropriate index set J , and under this equivalence the map Ων restricted to
ΩRk is Ωfk and Ων restricted to each other factor of F is

• a looped Whitehead product if the factor is a smash of four or more spaces;

• a looped Whitehead product if the factor is a smash of three spaces and 2 ⩽ t <
p+1
2 ;

• an amended looped Whitehead product if the factor is a smash of three spaces
and p+1

2 ⩽ t ⩽ p;

• an amended looped Whitehead product if the factor is a smash of two spaces.

By the term “amended looped Whitehead product” we mean a map of the form Ω(ω −
f), where ω is a Whitehead product and f is a map depending on the stable class α1

such that Ωf induces the trivial map in homology.

Once this fibration has been constructed, we will use it to prove the main result
of this paper.

Theorem 2.2. Let p > 5 and 2 ⩽ t < p. Then the p3 power map on SU(p+ t− 1) is
an H-map.

3. Samelson products in SU(p+ t− 1)

Over the next two sections we will analyse the fibration

ΩF
Ων−−→ ΩΣA

Ωi−→ SU(p+ t− 1). (1)

To begin, we identify the map (Ωi)∗.

Recall that by the Bott–Samelson theorem there is an algebra isomorphism,
H∗(ΩΣA)∼= T (H̃∗(A)), where T (H̃∗(A)) is the free tensor algebra generated by H̃∗(A).
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It is also known that there is an algebra isomorphism

H∗(SU(p+ t− 1)) ∼= Λ(H̃∗(A)),

where Λ(H̃∗(A)) is the free exterior algebra generated by H̃∗(A). As i∗ is the adjoint
of i, we have that the composite

A
E−→ ΩΣA

Ωi−→ SU(p+ t− 1)

is homotopic to i. Since i∗ is the inclusion of the generating set, and (Ωi)∗ is a
multiplicative extension of i∗, we obtain that (Ωi)∗ is the abelianization of the tensor
algebra.

Cohen and Neisendorfer [3] offer a different way to view the fibration (1) homolog-
ically. Let L be the free Lie algebra generated by H̃∗(A). Then there is the abelianiza-
tion map, a : L → Lab, where Lab is the free abelian Lie algebra generated by H̃∗(A).
The kernel of this map is [L,L], the free Lie algebra generated by the brackets in L.
Using the work of Cohen and Neisendorfer [3], it is possible to see that the following
diagram commutes:

H∗(ΩF )
(Ων)∗ //

∼=
��

H∗(ΩΣA)
(Ωi)∗ //

∼=
��

H∗(SU(p+ t− 1))

∼=
��

U [L,L] // UL
Ua // ULab,

where U denotes the universal enveloping algebra operator and a is the abelianization.
This suggests we may use Samelson products to decompose ΩF and identify the
map Ων. To do this, we will need information about certain Samelson products in
SU(p+ t− 1).

From here on we will write

A = A2 ∨A3 ∨ . . . ∨Ap = A2 ∨ . . . ∨At ∨ S2t+1 ∨ . . . ∨ S2p−1.

In this way, Ak will denote S2k−1 if k > t.

Let ik be the composite

ik : Ak ↪→ A
i−→ SU(p+ t− 1).

It is Samelson products ⟨ik, ij⟩ and ⟨ik, ⟨ij , il⟩⟩ we shall need information about.
Kishimoto [5] has examined the length two Samelson products ⟨ik, ij⟩ in detail. We
record his results in the following proposition. Let ord(f) denote the order of the map
f , and let Yk,j be the (2(k + j + 2p− 2)− 1)-skeleton of Ak ∧Aj .

Proposition 3.1. Let t+ 1 ⩽ k, j ⩽ p. Then ord(⟨ik, ij⟩) = p if k + j ⩾ p+ 2. Fur-
thermore, if (k, j) ̸= (p, t), then we have that

• ord(⟨ik, ij⟩) = p if k + j ⩾ p+ 2, 2 ⩽ k ⩽ p and t+ 1 ⩽ j ⩽ p,

• ord(⟨ik, ij⟩|Yk,j
) = p unless (k, j) = (p, p) if k + j ⩾ p+ 2 and 2 ⩽ k, j ⩽ t,

• ord(⟨ik, ij⟩) = 1 otherwise.
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Furthermore, if k + j ̸= 2p, then ⟨ik, ij⟩ can be compressed to a map

Ak ∧Aj → S2(k+j−p)+1 ↪→ SU(p+ t− 1).

If t ̸= p, then ⟨ip, ip⟩ can be compressed to a map

S2p−1 ∧ S2p−1 → S3 ↪→ SU(p+ t− 1).

This does a large amount of work for us, but it leaves out two important cases. First
we deal with the case ⟨ik, ij⟩ where k + j ⩾ p+ 2 and 2 ⩽ k, j ⩽ t, but (k, j) ̸= (p, p).
For a co-H-space X, let p : X → X be the degree p map. Then we get the following
upper bound.

Proposition 3.2. Let (k, j) ̸= (p, p). If k + j ⩾ p+ 2 and 2 ⩽ k, j ⩽ t, then

• ord(⟨ik, ij⟩) ⩽ p2 if k + j ⩾ p+ t and

• ord(⟨ik, ij⟩) ⩽ p3 if k + j ⩽ p+ t− 1.

Proof. First we note that the inclusion Yk,j ↪→ Ak ∧Aj is a co-H-map. Then we know
by Proposition 3.1 that the composition

Yk,j ↪→ Ak ∧Aj

p
−→ Ak ∧Aj

⟨ik,ij⟩−−−−→ SU(p+ t− 1)

is trivial. Therefore, we get an extension

Yk,j

��
Ak ∧Aj

p
//

��

Ak ∧Aj

⟨ik,ij⟩ // SU(p+ t− 1)

S2(k+j+2p−3)

f

33ggggggggggggggggggg

for some map f . So if the order of f is pt, then the order of ⟨ik, ij⟩ is ⩽ pt+1. By [5] we
know that if k + j ⩽ p+ t− 1, then π2(k+j+2p−3)(SU(p+ t− 1)) ∼= Z/p2Z, and that
if k + j ⩾ p+ t then π2(k+j+2p−3)(SU(p+ t− 1)) ∼= Z/pZ. Therefore, if k + j ⩾ p+ t,
then ⟨ik, ij⟩ has order at most p2, and if k + j ⩽ p+ t− 1, then ⟨ik, ij⟩ has order at
most p3.

Now we deal with the case (k, j) = (p, t). We will obtain an upper bound for the
order of the map ⟨ip, it⟩ : S2p−1 ∧At → SU(p+ t− 1).

Lemma 3.3. The Samelson product ⟨ip, it⟩ has order ⩽ p2.

Proof. Consider the inclusion f : S2(p+t−1) ↪→ At ∧ S2p−1 of the bottom cell.

S2(p+t−1)

f

��
At ∧ S2p−1

⟨it,ip⟩ // SU(p+ t− 1)

Kishimoto [5] tells us that π2(p+t−1)(SU(p+ t− 1)) ∼= Z/pZ. Therefore, we have that
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⟨ip, it⟩ ◦ f ◦ p ≃ ∗. As f is the inclusion of the bottom cell, it is a co-H-map, and
therefore

⟨ip, it⟩ ◦ p ◦ f ≃ ∗.

So we get an extension for some map g:

S2(p+t−1)

f

��
At ∧ S2p−1

p
//

��

At ∧ S2p−1
⟨it,ip⟩ // SU(p+ t− 1)

S2(2p+t−2)

g
33gggggggggggggggggggggg

By [5] π2(2p+t−2)(SU(p+ t− 1)) ∼= Z/pZ. Thus the order of ⟨it, ip⟩ is ⩽ p2.

Kishimoto gives more information than just the order of the Samelson products.
He also calculates that they factor through certain spheres in SU(p+ t− 1), and we
will do the same now.

Lemma 3.4. Let t ̸= p. The Samelson product ⟨ip, it⟩ factors through S2t+1, and
⟨ip, ip⟩ factors through S3.

Proof. We will deal with ⟨ip, ip⟩ first. We know that

SU(p+ t− 1) ≃ B2 × . . . Bt × S2t+1 × . . . S2p−1

and so by [5] we know that π4p−2(S
2k−1) = 0 for t+ 1 ⩽ k ⩽ p and π4p−2(Bk) = 0

for 3 ⩽ k ⩽ t. We also know that π4p−2(B2) = Z/pZ. Therefore ⟨ip, ip⟩ must factor
through B2 and has order at most p. Kishimoto [5] then tells us that any mapX → B2

of order p lifts to S3. Hence ⟨ip, ip⟩ factors through S3.

The case for ⟨ip, it⟩ is slightly more involved. Let SUk denote SU(p+ t− 1) with
the kth factor omitted, and let qk : SU(p+ t− 1) → SUk be the projection. For exam-
ple,

SUt+1 = B2 × · · · ×Bt × S2t+3 × · · · × S2p−1

and SU(p+ t− 1) = SUt+1 × S2t+1. Let f : S2(p+t−1) → At ∧ S2p−1 be the inclusion
of the bottom cell, and consider the composition

S2(p+t−1)

f

��
At ∧ S2p−1 tk // SUt+1,

where tk is the composite qk ◦ ⟨it, ip⟩. By [5], π2(p+t−1)(SUt+1) ∼= 0, meaning that we
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get an extension to the top cell of At ∧ S2p−1:

S2(p+t−1)

��
At ∧ S2p−1 tk //

��

SUt+1

S2(2p+t−2).

88rrrrrrrrr

By [5], π2(2p+t−2)(SUt+1) ∼= 0. Thus

At ∧ S2p−1 ⟨ik,ij⟩−−−−→ SU(p+ t− 1) ≃ SUt+1 × S2t+1

projects trivially onto SUt+1. Therefore, ⟨ip, it⟩, must factor through S2t+1.

We deal now with length 3 Samelson products in SU(p+ t− 1). The length 3
Samelson products are somewhat easier to look at than the length 2 Samelson prod-
ucts. We first note from Kishimoto’s paper [5] that ⟨ij , ⟨ik, il⟩⟩ is non-trivial only
when j + k + l is equal to either 2p+ 1, 2p+ 2, 2p+ 3 or 3p. It is easy to see that no
length 3 Samelson product can have order greater than p2 if t ̸= p because

⟨ij , ⟨ik, il⟩⟩ ◦ pm ≃ ⟨ij , ⟨ik, il⟩ ◦ pm⟩

and ⟨ik, ij⟩ has order ⩽ p2 if t ̸= p by Propositions 3.1 and 3.2 and Lemma 3.3.
We prove the following lemma.

Lemma 3.5. Let X be a CW-complex with cells only in dimensions
2(m+ k(p− 1))− 3, where

• k ⩾ 1,

• m ∈ {3, 4, 5, 6}, and
• 2(m+ k(p− 1))− 3 ⩽ 12p− 1.

Then any map X → SU(p+ t− 1) factors through S2m−1.

Proof. As will be made clear from the proof, it is sufficient to assume that all the
cells of X are in different dimensions. We proceed by induction on the dimension of
X and as the base case take X to be S2(m+p)−5. Recall that SUm is SU(p+ t− 1)
with the mth factor omitted. As all homotopy groups of the form π2(m+p)−5(SUm)
for 2(m+ p)− 5 ⩽ 12p− 1 are zero [5] we see that any map

S2(m+p)−5 → SU(p+ t− 1)

must factor through the mth factor of SU(p+ t− 1), which is S2m−1 if t+ 1 ⩽ m ⩽ p
or Bm otherwise. If it factors through Bm, consider the composition

S2(m+p)−5 → Bm
q−→ S2(m+p)−3,

where q comes from the fibration

S2m−1 → Bm
q−→ S2m+2p−3.

Then, since π2(m+p)−5(S
2(m+p)−3) = 0, this map lifts to S2m−1. This completes the

base case.
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For the inductive step let X have dimension 2(m+ k(p− 1))− 3, where k > 1. Let
X ′ be the (2(m+ k(p− 1))− 4)-skeleton of X. Then by the induction hypothesis the
composition

X ′ ↪→ X → SUm

is null homotopic. Therefore, we get an extension

X ′

��
X //

��

SUm

S2(m+k(p−1))−3

f
77pppppppppp

for some map f . By [5] π2(m+k(p−1))−3(SUm) = 0. Therefore f is also null homotopic,
implying that any map X → SU(p+ t− 1) must factor through the mth factor of
SU(p+ t− 1), which is S2m−1 if t+ 1 ⩽ m ⩽ p or Bm otherwise. If the map factors
through Bm, we proceed as in the base case and get a lift to S2m−1. Therefore, we
get the required result.

Corollary 3.6. Let k + j + l = 2p+ 1, 2p+ 2 or 2p+ 3. Then the Samelson product
⟨ik, ⟨ij , il⟩⟩ factors through S2(k+j+l−2p)−5. If k + j + l = 3p, then Samelson product
⟨ik, ⟨ij , il⟩⟩ factors through S3.

We exclude the case where t = p. This case represents another increase in technical
difficulty and as yet cannot be resolved using this method. The increase in difficulty
lies in finding a factorization of ⟨ip, ip⟩ similar to those for the other Samelson prod-

ucts. It is probably the case that when t = p the Samelson product ⟨ip, ip⟩ : A(2)
p →

SU(2p− 1) has order ⩽ p3 and factors through A2. The first of these assertions can
be shown using the methods above. The second assertion presents some difficulty. If
this factorization can be shown, however, then it would be relatively simple to make
slight alterations to the subsequent arguments to show that the p3 power map on
SU(2p− 1) is an H-map.

4. Proof of Theorem 2.1

Recall that

A = A2 ∨ . . . ∨Ap.

Including the wedge
∨
ΣAi into the product

∏
ΣAi we obtain a homotopy fibration

Q
f−→ ΣA →

p∏
k=2

ΣAk,

which defines the space Q and the map f . Consider the homotopy fibration

ΩQ
Ωf−−→ ΩΣA →

p∏
k=2

ΩΣAk.
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Theorem 4.1 (Hilton–Milnor). There are homotopy equivalences

ΩΣA ≃

(
p∏

k=2

ΩΣAk

)
× ΩQ

and

ΩQ =
∏
j∈J

ΩΣ
(
A

(j2)
2 ∧A

(j3)
3 ∧ · · · ∧A(jp)

p

)
where J runs over an additive basis of the free Lie algebra L⟨u2, . . . , up⟩, but without
the basis elements u2, . . . , up. Further, if for 2 ⩽ r ⩽ p the map

sr : ΣAr →
∨

ΣA

is the inclusion of the rth-wedge summand, then the map Ωf restricted to

ΩΣ
(
A

(j2)
2 ∧ · · · ∧A(jp)

p

)
is the loops on the iterated Whitehead product of the maps sr corresponding to the
index j ∈ J .

For 2 ⩽ k ⩽ p, let Sk be the kth factor of SU(p+ t− 1). Note that Sk = Bk if 2 ⩽
k ⩽ t and Sk = S2k−1 if t+ 1 ⩽ k ⩽ p. Then a construction of Cohen and Neisendorfer
[3] allows us to produce a fibration over each factor of SU(p+ t− 1). Let [f, g] be
the Whitehead product of maps f and g.

Theorem 4.2 (Cohen–Neisendorfer). There exists a fibration

ΩRk
Ωfk−−→ ΩΣAk

ιk−→ Sk

such that

• Rk is a retract of A
(2)
k ∨A

(3)
k if Sk = Bk or

• Rk = S4k−1 if Sk = S2k−1.

The map fk factors through

• ΣA
(2)
k

[ik,ik]−−−−→ ΣAk if Sk = Bk or

• ΣA
(2)
k ∨A

(3)
k

[ik,ik]∨[ik,[ik,ik]]−−−−−−−−−−−→ ΣAk if Sk = S2k−1.

Furthermore, Ωfk has a left homotopy inverse and so there is a homotopy decompo-
sition

ΩΣAk ≃ Sk × ΩRk.

Combining Theorems 4.1 and 4.2, and noting that SU(p+ t− 1) ≃
∏p

k=2 Sk, we
get the following.

Lemma 4.3. There exists a homotopy equivalence

ΩΣA ≃ SU(p+ t− 1)×
p∏

k=2

ΩRk × ΩQ.

A consequence of Cohen and Neisendorfer’s work [3] is that the map Ωi has a right
homotopy inverse. Therefore, we know that there is a decomposition.
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Lemma 4.4. ΩΣA ≃ SU(p+ t− 1)× ΩF .

We then get the following corollary.

Corollary 4.5. ΩF and
∏p

k=2 ΩRk × ΩQ have the same homotopy type.

Theorems 4.1 and 4.2 also state that the factors ΩRk, 2 ⩽ k ⩽ p, and ΩQ map to
ΩΣA through looped Whitehead products. In what follows we wish to show to what
extent these factors lift through the map Ων in the fibration

ΩF
Ων−−→ ΩΣA

Ωi−→ SU(p+ t− 1)

and amend them to produce lifts when obstructions exist. This first requires some
notation and preliminary results, which we will state shortly.

First, we will state a short lemma that we will make use of later.

Lemma 4.6. Let Z be an H-space, and let fk : Xk → Z be maps from some spaces
Xk where k ⩾ 1. Let hn be the composite

hn :
n∏

k=1

Xk

∏n
k=1 fk−−−−−→

n∏
k=1

Z
m−→ Z

where m is the multiplication on Z and n ⩾ 1. Letting n tend to infinity, we get a
map

h :
∞∏
k=1

Xk

∏∞
k=1 fk−−−−−→

∞∏
k=1

Z
m−→ Z (2)

given by the homotopy colimit of the maps hn Then if the restrictions of h to each
Xk, respectively, are trivial, the map h is also trivial.

Proof. Notice that the restriction of h to each Xk is homotopic to fk. So if each fk is
null homotopic, then

∏∞
k=1 fk is null homotopic, implying that h is null homotopic.

We state Lemma 4.6 here so as to provide a guide for the reader through the
following work. Our goal is to give an explicit decomposition of the map Ων so that
the composite (Ωi) ◦ (Ων) will be of the form (2). We will now return to stating some
notation and preliminary results.

A space H is an H-group if it is an H-space whose multiplication also has a homo-
topy inverse. Let H be an H-group, and let c : H ×H → H be the commutator.
Pointwise, c is defined by c(a, b) = aba−1b−1. We can then iterate this and get for
k ⩾ 1 the “k-fold commutator map” ck : H

k+1 → H defined by

ck : c ◦ (1× c) ◦ · · · ◦ (1× 1× · · · × 1× c).

Definition 4.7. An H-groupH has homotopy nilpotence class k, denoted nil(H) = k,
if and only if ck is null homotopic and ck−1 is not.

If an H-group H has homotopy nilpotence class k, then any length k + 1 Samelson
products in H are trivial. We can now state a theorem of Kishimoto [5].

Theorem 4.8 (Kishimoto). Let p be a prime greater than 5. Then
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1. nil(SU(n)) = 3 if p = n+ 1 or n
2 < p ⩽ 2n+1

3 and

2. nil(SU(n)) = 2 if 2n+1
3 < p ⩽ n− 2.

By Theorem 4.8 we also know the following.

Lemma 4.9. Let ωk be a length k Whitehead product. Then

1. if p = n+ 1 or n
2 < p ⩽ 2n+1

3 , (Ωi) ◦ (Ωωk) is trivial for all k ⩾ 3,

2. if 2n+1
3 < p ⩽ n− 2, (Ωi) ◦ (Ωωk) is trivial for all k ⩾ 4.

Now consider lifts of certain Samelson products through the map Ων in the fibra-
tion

ΩF
Ων−−→ ΩΣA

Ωi−→ SU(p+ t− 1).

Lemma 4.10. Let j ⩾ 4 and θk : Ak ↪→ A
E−→ ΩΣA, where E is the suspension map.

Then the iterated Samelson product ⟨θk1 , ⟨θk2 , . . . ⟨θkj−1 , θkj ⟩ . . .⟩ lifts through the map
Ων.

Proof. We will show that Ωi ◦ ⟨θk1 , ⟨θk2 , . . . , ⟨θkj−1 , θkj ⟩ . . .⟩⟩ is trivial. Since Ωi is
an H-map, Ωi ◦ ⟨θk1 , ⟨θk2 , . . . , ⟨θkj−1 , θkj ⟩ . . .⟩⟩ is homotopic to ⟨Ωi ◦ θk1 , ⟨Ωi ◦ θk2 , . . . ,
⟨Ωi ◦ θkj−1 ,Ωi ◦ θkj ⟩ . . .⟩⟩. As Ωi ◦ θk is the inclusion of Ak into SU(p+ t− 1), it is
precisely the map ik of the previous section. Therefore, by Theorem 4.8 all Samelson
products of length 4 or more compose trivially into SU(p+ t− 1), and so lift to
ΩF .

We must now deal with the Samelson products of length 2 and 3.

First we deal with the length 2 case. Since Ωi is an H-map, Ωi ◦ ⟨θk, θj⟩ is homotopic
to ⟨Ωi ◦ θk,Ωi ◦ θj⟩. Therefore, if ⟨ik, ij⟩ is trivial, then ⟨θk, θj⟩ lifts to ΩF . We know
from Proposition 3.1 that if k + j ⩽ p+ 1 then ⟨ik, ij⟩ is trivial. For p+ 2 ⩽ k +
j ⩽ 2p, however, ⟨ik, ij⟩ may not be trivial. In the case that it is not trivial, by
Proposition 3.1 and Lemma 3.4 it is homotopic to a composite

αk,j : Ak ∧Aj
f−→ S2(k+j−p+1)−1 → SU(p+ t− 1)

unless t = p.

Let ak,j be the composite

ak,j : Ak ∧Aj
f−→ S2(k+j−p+1)−1 ↪→ A

E−→ ΩΣA;

then αk,j ≃ (Ωi) ◦ ak,j . Therefore, the difference ηk,j = ⟨θk, θj⟩ − ak,j composes triv-
ially with Ωi and so lifts to ΩF ,

Ak ∧Aj

ηk,j

��

µk,j

{{vvv
vv
vv
vv

ΩF
Ων // ΩΣA

Ωi // SU(p+ t− 1)

,

for some map µk,j .
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Using Lemma 3.6, we can define similar maps,

ak,j,l : Ak ∧Aj ∧Al → S2m−1 ↪→ A
E−→ ΩΣA,

for non-trivial length 3 Samelson products with the property that

⟨ij , ⟨ik, il⟩⟩ ≃ (Ωi) ◦ ak,j,l.

This gives us differences ηj,k,l = ⟨ij , ⟨ik, il⟩⟩ − ak,j,l which lift through Ων to maps

Ak ∧Aj ∧Al
µk,j,l−−−→ ΩF .

Lemma 4.11. The image in homology of the maps ηk,j and ηk,j,l is equal to the
image in homology of the maps ⟨ik, ij⟩ and ⟨ik, ⟨ij , il⟩⟩, respectively.

Proof. We will show that ak,j and ak,j,l induce the zero map in homology. Each
ak,j and ak,j,l factors through some sphere S2m−1 where 2 ⩽ m ⩽ p. So it suffices
to show that the maps Ak ∧Aj → S2m−1 and Ak ∧Aj ∧Al → S2m−1 are zero in
homology. As each Ak ∧Aj and Ak ∧Aj ∧Al has cells in dimensions ⩾ 2p+ 2 or
⩾ 4p, respectively, this is clear for dimensional reasons.

One result we will make repeated use of is a theorem of James [4]. We state it here
to aid the reader.

Theorem 4.12 (James). Let f : X → Y be some map where Y is a homotopy asso-
ciative H-space. Then f extends to an H-map g : ΩΣX → Y , where g is the unique
H-map such that g ◦ E ≃ f , where E : X → ΩΣX is the suspension functor.

Using Theorem 4.12, we get H-maps

ηk,j : ΩΣ(Ak ∧Aj) → ΩΣA,

ηk,j,l : ΩΣ(Ak ∧Aj ∧Al) → ΩΣA,

extending ηk,j and ηk,j,l, respectively. These maps are then the loops on Whitehead
products minus some correcting factor.

Lemma 4.13. The maps ηk,j, ηk,j,l lift through ΩF
Ων−−→ ΩΣA.

Proof. It is equivalent to show that the maps (Ωi) ◦ ηk,j and (Ωi) ◦ ηk,j,l are null
homotopic. Since Ωi, ηk,j and ηk,j,l are H-maps, then by Theorem 4.12 the homotopy
class of (Ωi) ◦ ηk,j and (Ωi) ◦ ηk,j,l are determined by the restrictions

Ak ∧Aj
E−→ ΩΣ(Ak ∧Aj)

ηk,j−−→ ΩΣA
Ωi−→ SU(p+ t− 1)

and

Ak ∧Aj ∧Al
E−→ ΩΣ(Ak ∧Aj ∧Al)

ηk,j,l−−−→ ΩΣA
Ωi−→ SU(p+ t− 1),

respectively. These restrictions are ηk,j and ηk,j,l. By construction we know that (Ωi) ◦
ηk,j (Ωi) ◦ ηk,j,l are trivial. Therefore, (Ωi) ◦ ηk,j and (Ωi) ◦ ηk,j,l are trivial.

We can also state the image in homology of ηk,j and ηk,j,l.

Lemma 4.14. The maps induced in homology by ηk,j and ηk,j,l are equal to those
induced by Ω[ik, ij ] and Ω[ik, [ij , il]], respectively.
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Proof. First, note that the images of Ω[ik, ij ] and Ω[ik, [ij , il]] in homology are the
multiplicative extensions of (Ω⟨ik, ij⟩)∗ and (Ω⟨ik, ⟨ij , il⟩⟩)∗. By Theorem 4.12 we
know that (ηk,j)∗ and (ηk,j,l)∗ are multiplicative extensions of (ηk,j)∗ and (ηk,j,l)∗.
The proof is completed by applying Lemma 4.11.

We can now define a map very similar to that from the Hilton–Milnor Theorem.
Let ki ∈ {2, . . . , p}. Define a map λ : ΩQ → ΩΣA by its restriction to the factors
ΩΣ(Ak1 ∧ . . . ∧Akm) of ΩQ as

• Ω[ik1 , [ik2 , . . . , [ikm−1 , ikm ]]] if m ⩾ 4,

• Ω[ik1 , [ik2 , . . . , [ikm−1 , ikm ]]] if m = 3 and 2 ⩽ t < p+1
2 ,

• ηk1,k2,k3 if m = 3 and p+1
2 ⩽ t ⩽ p and

• ηk1,k2 if m = 2.

In particular, λ = Ωf if m ⩾ 4 or if m = 3 and 2 ⩽ t ⩽ p+1
2 . In the two other

cases, by Lemma 4.14 we have (ηk,j,l)∗ = (Ω[ik, [ij , il]])∗ and (ηk,j)∗ = (Ω[ik, ij ])∗. So
collectively we obtain the following.

Lemma 4.15. λ∗ = (Ωf)∗.

Putting Theorems 4.13 4.9 together, we obtain a homotopy commutative triangle

ΩQ

λ

��

g′

{{xx
xx
xx
xx

ΩF
Ων // ΩΣA

for some lift g′.

Next, Theorem 4.2 lets us deal with the maps Ωfk : ΩRk → ΩΣAk with the infor-
mation we have about the Whitehead products. The map fk is either a sum of
maps that factor through a length 2 Whitehead product or through a wedge sum
of a length 2 and length 3 Whitehead products. If 2k ⩾ p+ 2, then we replace
a length 2 Whitehead product by the adjoint of the difference ⟨ik, ik⟩ − ak,k. If
3k = 2p+ 1, 2p+ 2, 2p+ 3 or 3p, then we replace the length 3 Whitehead product
factor of fk by the adjoint of the difference ⟨ik, ⟨ik, ik⟩⟩ − ak,k,k. Amending these as
before gives us a map fk : Rk → ΣAk ↪→ ΣA such that the composition

ΩRk
Ωfk−−−→ ΩΣAk ↪→ ΩΣA

Ωi−→ SU(p+ t− 1)

is trivial.

Following the proofs of Lemmas 4.13 and 4.14, we get the following result.

Lemma 4.16. The map fk lifts through Ων and has image in homology equal to the
image in homology of the composition

ΩRk
Ωf−−→ ΩΣAk ↪→ ΩΣA.

Proof. The proof that fk lifts through Ων follows from the fact that (Ωi) ◦ ηk is
trivial. The equality of the images in homology follows directly from Lemma 4.11.
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Collecting the maps fk together, we get a map

λ′ :

p∏
k=2

ΩRk

∏
Ωfk−−−−→

p∏
k=2

ΩΣA
µk−1

−−−→ ΩΣA,

where µ is the multiplication on ΩΣA× ΩΣA → ΩΣA. We can then define a map
ρ : ΩQ×

∏p
k=2 ΩRk → ΩΣA by the composite

ρ : ΩQ×
p∏

k=2

ΩRk
λ×λ′

−−−→ ΩΣA× ΩΣA
µ−→ ΩΣA.

Putting Lemmas 4.13 and 4.16 together, we obtain a commutative diagram

ΩQ×
∏p

k=2 ΩRk

ρ

��

g

wwppp
ppp

ppp
pp

ΩF
Ων // ΩΣA

(3)

for some lift g. Also notice that by Lemmas 4.14 and 4.16 we have that ρ∗ = (Ων)∗.

Proof of Theorem 2.1. By Lemmas 4.4 and 4.3 we know that ΩF and ΩQ×
∏p

k=2 ΩRk

have the same homotopy type. Therefore, they both have the same Euler–Poincaré
series. By construction, ρ∗ is a monomorphism, and hence so is (Ων)∗. Therefore, g∗
is a monomorphism between two Z/pZ vector spaces with the same Euler–Poincaré
series. Hence g∗ is an isomorphism, and so Whitehead’s Theorem tells us that g is a
homotopy equivalence.

5. Proof of Theorem 2.2

Before continuing, we will need a small amount of setting up. Let Y be a homotopy-
associative H-space, and suppose that there is a space X and map f : X → Y such
that H∗(Y ) ∼= Λ(H̃∗(X)), with f∗ inducing the inclusion of the generating set. By
Theorem 4.12 this extends to a map f : ΩΣX → Y . The map f is an H-map and is
the unique map such that f ◦ E ≃ i. There is then a homotopy fibration

K
h−→ ΩΣX

f−→ Y

defining the space K and map h.
With this in mind we state a result of Theriault [9].

Lemma 5.1. Suppose that f has a right homotopy inverse. Let Z be a homotopy-
associative H-space, and let e : X → Z be any map. Theorem 4.12 tells us that this
extends uniquely to an H-map e : ΩΣX → Z such that E ◦ e ≃ e. If the composite

K
h−→ ΩΣX

e−→ Z is null homotopic, then there exists a homotopy commutative dia-
gram

ΩΣX
f // Y

g

��
ΩΣX

e // Z
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for some map g which can be chosen to be an H-map.

We will use Lemma 5.1 to show the following lemma.

Lemma 5.2. If 2 ⩽ t < p, then there exists a homotopy commutative diagram

ΩΣA

Ωp3

��

Ωi // SU(p+ t− 1)

g

��
ΩΣA

Ωi // SU(p+ t− 1),

where g can be chosen to be an H-map.

Proof. By Lemma 5.1 it is enough to show that the composite

ΩF
Ων−−→ ΩΣA

Ωp3

−−→ ΩΣA
Ωi−→ SU(p+ t− 1)

is null homotopic. We prove the case when nil(SU(p+ t− 1)) = 2, the case when
nil(SU(p+ t− 1)) = 3 being similar. By Theorem 2.1 ΩF decomposes as∏

j∈J

ΩΣ
(
A

(j2)
2 ∧A

(j3)
3 ∧ . . . ∧A

(jt)
t ∧ S(jt+1(2t+1)) ∧ . . . ∧ S(jp(2p−1))

)
×

p∏
k=2

ΩRk.

Notice that by our construction the map Ων is of the form

∞∏
k=1

Fk

∏∞
k=1 fk−−−−−→

∞∏
k=1

ΩΣA
m−→ ΩΣA,

where m is the multiplication on ΩΣA and we use Fk and fk to denote the factors of
ΩF and the maps from them into ΩΣA. Therefore, the composite (Ωi) ◦ (Ωp3) ◦ (Ων)
is of the form

∞∏
k=1

Fk

∏∞
k=1 fk−−−−−→

∞∏
k=1

ΩΣA
m−→ ΩΣA

Ωp3

−−→ ΩΣA
Ωi−→ SU(p+ t− 1).

Now since both Ωp3 and Ωi are loop maps, so is their compsite. This means that

(Ωp3) ◦ (Ωi) commutes with multiplication. Using this, we can rewrite the composite

(Ωi) ◦ (Ωp3) ◦ (Ων) as
∞∏
k=1

Fk

∏∞
k=1 fk−−−−−→

∞∏
k=1

ΩΣA

∏∞
k=1 Ωp3

−−−−−−→
∞∏
k=1

ΩΣA
∏∞

k=1 Ωi
−−−−−→

∞∏
k=1

SU(n)
M−→ SU(n), (4)

where n = p+ t− 1 and M is the multiplication on SU(p+ t− 1). Notice now that
(4) has exactly the form (2). Therefore, by Lemma 4.6, if we can show that the
restriction of Ων ◦ Ωp3 ◦ Ωi to each factor of ΩF is trivial, then the entire map is
trivial.

With this in mind, consider any factor indexed by J involving the smash of three
or more spaces. By Theorem 4.1 the restriction of Ων to such a factor is a looped
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Whitehead product of length 3 or more. The composite

ΩΣ(Ak1 ∧ . . . ∧Akt)
Ω[θk1

,[θk2
,...,[θkt ]...]]−−−−−−−−−−−−−−→ ΩΣA

Ωp3

−−→ ΩΣA
Ωi−→ SU(p+ t− 1)

is of loop maps and so by Theorem 4.12 is determined by its restriction to the wedge
product Ak1 ∧Ak2 ∧ . . . ∧Akt . This restriction is the composite

(Ωi) ◦ (Ωp3) ◦ ⟨θk1 , ⟨θk2 , . . . ⟨θkt−1 , θkt⟩ . . .⟩⟩.

Then, as Ωp3 and Ωi are both H-maps this is homotopic to the Samelson product

⟨(Ωi) ◦ (Ωp3) ◦ θk1 , ⟨(Ωi) ◦ (Ωp
3) ◦ θk2 , . . . , ⟨(Ωi) ◦ (Ωp

3) ◦ θkt−1 , (Ωi) ◦ (Ωp
3) ◦ θkt⟩ . . .⟩⟩.

As this is a Samelson product of length 3 or more, it is null homotopic since nil(SU(p+
t− 1)) = 2.

Next, let ΩΣ(Ak ∧Aj) be a factor in ΩQ involving two smash factors. Then by
Theorem 2.1 Ων restricted to this factor is either a looped Whitehead product or
ηk,j . Therefore, Ων restricted to this factor is determined by the restriction to (Ak ∧
Aj), the Samelson product ⟨θk, θj⟩. Consider (Ωp3) ◦ ⟨θk, θj⟩. The naturality of the
suspension implies there is a homotopy commutative diagram

Ak
θk //

p3

��

ΩΣA

ΩΣp3

��
Ak

θk // ΩΣA.

(5)

This means we get the following string of homotopies:

(ΩΣp3) ◦ ⟨θk, θj⟩ ≃ ⟨(ΩΣp3) ◦ θk, (ΩΣp3) ◦ θj⟩ ≃ ⟨θk ◦ p3, θj ◦ p3⟩ ≃ ⟨θk, θj⟩ ◦ p6.

As ⟨θk, θj⟩ has order at most p3 by Propositions 3.1 and 3.2 and Lemma 3.3, we see
that this string of homotopies means that (Ωp3) ◦ ⟨θk, θj⟩ is trivial. Note that as Ων
restricted to ΩRk factors through a looped Whitehead product, we may deal with
the factors ΩRk in the same manner.

Now consider one of the amended looped Whitehead products. Again we look at
the restriction to Ak ∧Aj , which is ηk,j = ⟨θk, θj⟩ − ak,j . Since ΩΣp3 is a loop map,
it distributes on the left. So we obtain

(Ωp3) ◦ (⟨θk, θj⟩ − ak,j) ≃ (Ωp3) ◦ ⟨θk, θj⟩ − (ΩΣp3) ◦ ak,j ≃ ⟨θk, θj⟩ ◦ p6 − (Ωp3) ◦ ak,j .

By Proposition 3.1 and Lemma 3.4 the map ak,j compresses to S2(k+j−p+t)−1 ⊂ ΩΣA.
This means there is a homotopy commutative diagram

Ak ∧Aj

a′
k,j // S2(k+j−p+t)−1

p3

��

E′
// ΩΣA

Ωp3

��
S2(k+j−p+t)−1 E′

// ΩΣA,

where E′ is the composite S2(k+j−p+t)−1 ↪→ A → ΩΣA and the top row is homotopic
to ak,j .
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Consider the string of homotopies

(Ωp3) ◦ ak,j ≃ (Ωp3) ◦ E′ ◦ a′
k,j ≃ E′ ◦ p3 ◦ a′

k,j ≃ p3 ◦ (E′ ◦ a′
k,j) ≃ p3 ◦ ak,j ≃ ak,j ◦ p3.

By Diagram 5 we get the homotopy

(Ωp3) ◦ E′ ◦ a′k,j ≃ E′ ◦ p3 ◦ a′k,j .

Since 2(k + j − p+ t)− 1 ⩾ 3, S2(k+j−p+t)−1 is a suspension and so the two products
in [S2(k+j−p+t)−1,ΩΣA] agree, implying that we get the second homotopy

E′ ◦ p3 ◦ a′k,j ≃ p3 ◦ (E′ ◦ a′k,j) = p3 ◦ ak,j .

Now recall by Proposition 3.1 that the amended Whitehead products come from fac-
tors Ak ∧Aj , where k + j ⩾ p+ 2. Therefore, at least one of Ak or Aj is a suspension;
hence so is Ak ∧Aj . Thus the two products in [Ak ∧Aj ,ΩΣA] agree. We therefore
finally have a homotopy p3 ◦ ak,j ≃ ak,j ◦ p3.

Therefore,

(Ωp3) ◦ (⟨θk, θj⟩ − ak,j) ≃ ⟨θk, θj⟩ ◦ p6 − ak,j ◦ p3.

Since the composition of ⟨θk, θj⟩ and ak,j with Ωi has order at most p3 by Proposi-
tions 3.1 and 3.2, we see that (Ωi) ◦ (Ωp3) ◦ (⟨θk, θj⟩ − ak,j) is null homotopic also.

We have not looked at the case where the factor is ΩRk yet. However, as Theo-
rem 4.2 tells us that these factor through the loops on Whitehead products, they are
dealt with by the arguments above. This concludes the proof.

To prove Theorem 2.2 it remains to show that the map g in Lemma 5.2 is homotopic
to the p3 power map. To show this we will consider the difference Ωp3 − p3 on ΩΣA.
Barratt [2] examined this difference in some detail.

Consider the composite

ΣX
σ−→

k∨
j=1

ΣX
∇−→ ΣX,

where σ is the (k − 1)-fold diagonal map and ∇ is the (k − 1)-fold folding map. After

looping and applying the Hilton–Milnor Theorem to the space Ω
(∨k

j=1 (ΣX)
)

for

some path-connected space X and then folding, we obtain the formula

Ωk ≃ k +
∞∑
j=2

nj(Ωωj) ◦Hj ,

where ωj is a length j Whitehead product of the identity map on ΣX with itself, nj is
some integer, and Hj is the Hilton–Hopf invariant. This is known as the Distributive
Law and is due to Barratt [2]. Barratt’s construction is in terms of homotopy groups,
but it is easily rephrased in terms of spaces. If we take k = p for a prime p, Barratt
showed that the integers nj are divisible by p if j < p. In our case we require η2 and
η3 to be divisible by p3.

If we examine the detailed construction of the Hilton–Milnor theorem—for exam-
ple, in Whitehead’s book [10]—it is seen that the number of length j Whitehead
products in the Hilton–Milnor equivalence is divisible by the number of basic prod-
ucts of length j on k elements. The number of these basic products can be found
in [10].
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Lemma 5.3. The number of basic products of length j on k elements is given by

1

j

∑
d|j

µ(d)kj/d,

where µ is the Möbius inversion function, which is defined as µ(1) = 1, µ(d) = (−1)l

if d = p1p2 · · · pl for unique primes pk, and µ(d) = 0 otherwise.

Notice that if we take k = pm for some integer m, then this lemma implies that
the number of length j basic products is divisible by pm if j < p. So by taking each of
the k spaces in the Hilton–Milnor theorem to be the same space X, then we see that
the number of occurrences of the Whitehead product ωj is divisible by pm if j < p.
Hence we can state the following version of the Distributive Law.

Lemma 5.4. Let ωj be a length j Whitehead product. Then

Ωpm ≃ pm +

∞∑
j=2

nj ((Ωωj) ◦Hj) ,

where nj is divisible by pm if j < p.

Proposition 5.5. The composite ΩΣA
Ωp3−p3

−−−−−→ ΩΣA
Ωi−→ SU(p+ t− 1) is null homo-

topic if 2 ⩽ t < p.

Proof. For 2 ⩽ j ⩽ p− 1 let nj =
nj

p3 . By Lemma 5.4 ηj ∈ Z. Also, we have

(Ωi) ◦ (Ωp3 − p3) ≃ (Ωi) ◦

p−1∑
j=2

(
p3nj ◦ (Ωωj) ◦Hj

)
+

∞∑
j=p

nj ((Ωωj) ◦Hj)


≃

p−1∑
j=1

(
(Ωi) ◦ p2nj ◦ (Ωωj) ◦Hj

)
+

∞∑
j=p

((Ωi) ◦ nj(Ωωj) ◦Hj) .

For j > 3 the composite (Ωi) ◦ (Ωωj) is determined by its restriction (Ωi) ◦ (Ωωj) ◦ E
by Theorem 4.12. This restriction is a length j Samelson product in SU(p+ t− 1)
and is therefore trivial by Propositions 3.1 and 3.2 and Lemma 3.3.

When j ⩽ 3, then j < p as p > 5. The composite (Ωi) ◦ p3 ◦ (Ωωj) is again deter-
mined by its restriction (Ωi) ◦ p3 ◦ (Ωωj) ◦ E. As the pth power map commutes with
H-maps, we get that (Ωi) ◦ p3 ◦ (Ωωj) ◦ E ≃ (Ωi) ◦ (Ωωj) ◦ p3 ◦ E. This, however, is
homotopic to

(Ωi) ◦ (Ωωj) ◦ p3 ◦ E ≃ (Ωi) ◦ (Ωωj) ◦ E ◦ p2.

Since the composite (Ωi) ◦ (Ωωj) ◦ E is a Samelson product in SU(p+ t− 1) of length
less than 4, we know that it is of order at most p3 by Propositions 3.1 and 3.2
and Lemma 3.3. Therefore, (Ωi) ◦ p3 ◦ (Ωωj) ◦ E is trivial. Hence (Ωi) ◦ (Ωp3 − p3) is
trivial as required.

Corollary 5.6. The composite ΩΣA
p3

−→ ΩΣA
Ωi−→ SU(p+ t− 1) is homotopic to the

composite ΩΣA
Ωp3

−−→ ΩΣA
Ωi−→ SU(p+ t− 1).
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With all of this in mind we can finally prove our main theorem.

Proof of Theorem 2.2. Recall that by Lemma 4.4 there is a right homotopy inverse
to the map Ωi, which we will call r. Therefore, by Lemma 5.1 we get a homotopy
commutative diagram

SU(p+ t− 1)
r // ΩΣA

Ωp3

��

Ωi // SU(p+ t− 1)

g

��
ΩΣA

Ωi // SU(p+ t− 1)

,

where g is an H-map. Chasing around the diagram, we see that

(Ωi) ◦ (Ωp3) ◦ r ≃ g ◦ (Ωi) ◦ r ≃ g.

From Corollary 5.6 we see that (Ωi) ◦ (Ωp3) ◦ r ≃ (Ωi) ◦ p3 ◦ r. Since power maps
commute with H-maps, we get the following string of homotopies:

(Ωi) ◦ p3 ◦ r ≃ p3 ◦ (Ωi) ◦ r ≃ p3

Therefore,

p3 ≃ (Ωi) ◦ (Ωp3) ◦ r ≃ g ◦ (Ωi) ◦ r ≃ g.

As g is an H-map, we conclude that the p3 power map on SU(p+ t− 1) is an H-
map.

It should be clear that we could reapeat the arguments of this paper to show that
the pk power map is an H-map for any k ⩾ 3. It may be asked whether or not the p or
p2 power maps are also H-maps. McGibbon [7] proved that the following statement
is true for quasi-p-regular SU(n).

Theorem 5.7 (McGibbon). If the pk power map is an H-map, then for any pointed
CW-complex Y the commutator subgroup [G,G], where G = [Y(p), SU(p+ t− 1)(p)],

has order ⩽ pk.

Theorem 5.7 is not just true in the case of quasi-p-regular SU(n), but we will only
be concerned here with this case. Recent work by Kishimoto, Kono, and Tsutaya [6]
has shown that commutators of order p2 exist. Therefore, the p power map cannot
be an H-map. It is possible, however, that the p2 power could be an H-map, and so
far the author has found no proof that this is not the case.
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