COMPARING COMMUTATIVE AND ASSOCIATIVE UNBOUNDED DIFFERENTIAL GRADED ALGEBRAS OVER $\mathbb Q$ FROM A HOMOTOPICAL POINT OF VIEW

ILIAS AMRANI

(communicated by Brooke Shipley)

Abstract

In this paper we establish a faithfulness result, in a homotopical sense, between a subcategory of the model category of augmented differential graded commutative algebras CDGA and a subcategory of the model category of augmented differential graded algebras DGA over the field of rational numbers \mathbb{Q} .

1. Introduction

It is well known that the forgetful functor from the category of commutative k-algebras to the category of associative k-algebras is fully faithful. We have an analogue result between the category of unbounded differential graded commutative k-algebras dgCAlg_k and the category of unbounded differential graded associative algebras dgAlg_k . The question that we want to explore is the following: Suppose that $k = \mathbb{Q}$; we want to know if it is true that forgetful functor $U : \mathsf{dgCAlg}_k \to \mathsf{dgAlg}_k$ induces a fully faithful functor at the level of homotopy categories

$$\mathbf{R}U : \mathrm{Ho}(\mathsf{dgCAlg}_k) \to \mathrm{Ho}(\mathsf{dgAlg}_k).$$

The answer is **no**. A nice and easy counterexample was given by Lurie [10]. He has considered k[x, y] the free commutative CDGA in two variables concentrated in degree 0. It follows obviously that

$$\operatorname{Ho}(\operatorname{\mathsf{dgCAlg}}_k)(k[x,y],S) \simeq \operatorname{H}^0(S) \oplus \operatorname{H}^0(S),$$

while

$$\operatorname{Ho}(\operatorname{\mathsf{dgAlg}}_k)(k[x,y],S) \simeq \operatorname{H}^0(S) \oplus \operatorname{H}^0(S) \oplus \operatorname{H}^{-1}(S).$$

Something nice happens if we consider the category of augmented CDGA denoted by dgCAlg_k^* and augmented DGA denoted by dgAlg_k^* .

Supported by the project CZ.1.07/2.3.00/20.0003 of the Operational Programme Education for Competitiveness of the Ministry of Education, Youth and Sports of the Czech Republic.

Received January 26, 2014, revised July 30, 2014; published on April 15, 2015.

2010 Mathematics Subject Classification: Primary 55, Secondary 14, 16, 18.

Key words and phrases: DGA, CDGA, mapping space, rational homotopy theory, derived algebraic geometry.

Article available at http://dx.doi.org/10.4310/HHA.2015.v17.n1.a9

Copyright © 2015, International Press. Permission to copy for private use granted.

Theorem 1.1 (Theorem 4.1). For any R and S in $dgCAlg_k^*$, the induced map by the forgetful functor

$$\Omega \operatorname{Map}_{\mathsf{dgCAlg}_{L}^{*}}(R,S) \to \Omega \operatorname{Map}_{\mathsf{dgAlg}_{L}^{*}}(R,S)$$

has a retract; in particular

$$\pi_i \operatorname{Map}_{\mathsf{dgCAlg}_{h}^*}(R,S) \to \pi_i \operatorname{Map}_{\mathsf{dgAlg}_{h}^*}(R,S)$$

is injective $\forall i > 0$.

Definition 1.2 ([8],[7]). Let M be a model category and let a, a' be cofibrant objects and b, b' be fibrant objects. The (derived) mapping space denoted by Map_M is a simplicial set having the following properties:

- $\pi_0 \operatorname{Map}(a,b) \cong \operatorname{Ho}(\mathsf{M})(a,b)$, where $\operatorname{Ho}(\mathsf{M})$ is the homotopy category of M .
- For any weak equivalence $a \to a'$, we have a weak equivalence of simplicial sets $\operatorname{Map}(a',b) \to \operatorname{Map}(a,b)$.
- For any weak equivalence $b \to b'$, we have a weak equivalence of simplicial sets $\operatorname{Map}(a,b) \to \operatorname{Map}(a,b')$.

Remark 1.3. [4, Theorem 2.12] In our work we use only the formal properties of the derived mapping space in a model category. For any Quillen adjuction between model categories

$$M \stackrel{G}{\rightleftharpoons} N$$

and for any cofibrant object $a \in M$ and any fibrant object $c \in N$, we have the following (zig-zag) equivalence of simplicial sets:

$$\operatorname{Map}_{\mathsf{N}}(Ga,c) \sim \operatorname{Map}_{\mathsf{M}}(a,Uc).$$

Let S be a differential graded commutative algebra which is a "loop" of another CDGA algebra A, i.e., $S = \mathsf{Holim}(k \to A \leftarrow k)$, where the homotopy limit is taken in the model category dgCAlg_k . A direct consequence of our theorem is that the right derived functor $\mathbf{R}U$ is a faithful functor, i.e., the induced map $\mathsf{Ho}(\mathsf{dgCAlg}_k^*)(R,S) \to \mathsf{Ho}(\mathsf{dgAlg}_k^*)(R,S)$ is injective.

Interpretation of the result in the derived algebraic geometry

Rationally, any pointed topological X space can be viewed as an augmented (connective) commutative differential graded algebra via its cochain complex $C^*(X,\mathbb{Q})$. In the case where X is a simply connected rational space, the cochain complex $C^*(X,\mathbb{Q})$ carries all the homotopical information about X, by the Sullivan theorem [6]. Moreover, the bar construction $BC^*(X,\mathbb{Q})$ is identified (as E_{∞} -DGA) to $C^*(\Omega X,\mathbb{Q})$ and $\Omega C^*(X,\mathbb{Q})$ is identified (as E_{∞} -DGA) to $C^*(\Sigma X,\mathbb{Q})$; cf. [5]. This interpretation allows us to make the following definition: A generalized rational pointed space is an augmented commutative differential graded \mathbb{Q} -algebra (possibly unbounded). In the same spirit, we define a pointed generalized **noncommutative rational space** as an augmented differential graded \mathbb{Q} -algebra (possibly unbounded). Let A be any augmented CDGA (resp. DGA); we will call a CDGA (resp. DGA) of the form ΩA an op-suspended CDGA (resp. DGA). Our Theorem 4.1 can be interpreted as follows:

The homotopy category of op-suspended generalized commutative rational spaces is a subcategory of the homotopy category of op-suspended generalized noncommutative rational spaces.

2. DGA, CDGA, and E_{∞} -DGA

We work in the setting of unbounded differential graded k-modules dgMod_k . This is a symmetric monoidal closed model category (k is a commutative ring). We denote the category of (reduced) operads in dgMod_k by Op_k . We follow notations and definitions of [2]; we say that an operad P is admissible if the category of $\mathsf{P} - \mathsf{dgAlg}_k$ admits a model structure where the fibrations are degree wise surjections and weak equivalences are quasi-isomorphisms. For any map of operads $\phi:\mathsf{P}\to\mathsf{Q}$ we have an induced adjunction of the corresponding categories of algebras:

$$P - dgAlg_k \xrightarrow{\phi_!} Q - dgAlg_k$$
.

A Σ -cofibrant operad P is an operad such that P(n) is $k[\Sigma_n]$ -cofibrant in $\mathsf{dgMod}_{k[\Sigma_n]}$. Any cofibrant operad P is a Σ -cofibrant operad [2, Proposition 4.3]. We denote the associative operad by Ass and the commutative operad by Com. The operad Ass is an admissible operad and Σ -cofibrant, while the operad Com is not admissible in general. In the rational case, when $k = \mathbb{Q}$ the operad Com is admissible and Σ -cofibrant. More generally any cofibrant operad P is admissible [2, Proposition 4.1, Remark 4.2]. We define a symmetric tensor product of operads by the formulae

$$[P \otimes Q](n) = P(n) \otimes Q(n), \quad \forall n \in \mathbb{N}.$$

Lemma 2.1. Suppose that $\phi: \mathsf{Ass} \to \mathsf{P}$ is a cofibration of operads. The operad P is admissible and the functor $\phi^*: \mathsf{P} - \mathsf{dgAlg}_k \to \mathsf{dgAlg}_k$ preserves fibrations, weak equivalences, and cofibrations with cofibrant domain in the underlying category dgMod_k .

Proof. First of all, the operad P is admissible; indeed we use the cofibrant resolution $r: \mathsf{E}_{\infty} \to \mathsf{Com}$ and consider the following pushout in Op_k given by:

$$Ass_{\infty} \longrightarrow E_{\infty}$$

$$\downarrow^{\sim} \qquad \downarrow^{\alpha}$$

$$Ass \longrightarrow E'_{\infty}$$

where Ass_{∞} is a cofibrant replacement of Ass in Op_k and $\mathsf{Ass}_{\infty} \to \mathsf{E}_{\infty}$ is a cofibration which factors $\mathsf{Ass}_{\infty} \to \mathsf{Ass} \to \mathsf{Com}$. Since the category Op_k is left proper in the sense of [13, Theorem 3], we have that $\alpha : \mathsf{E}_{\infty} \to \mathsf{E}'_{\infty}$ is an equivalence. We denote by I the unit interval in the category dgMod_k which is strictly coassociative [12, p. 503]; i.e., there is a map of operads $\mathsf{Ass} \to \mathsf{End}^{op}(I)$. Moreover, there is a map of operads $\mathsf{E}_{\infty} \to \mathsf{End}^{op}(I)$ which endows I with the structure of E_{∞} -coalgebra [2, Remark 4.2]. Since I is a strict coalgebra (in particular an Ass_{∞} -coalgebra), the operad map $\mathsf{Ass}_{\infty} \to \mathsf{End}^{op}(I)$

 $End^{op}(I)$ factors through Ass; i.e., we have two compatible maps of operads:

$$Ass_{\infty} \xrightarrow{} E_{\infty} \qquad (1)$$

$$Ass \xrightarrow{f} E'_{\infty} \qquad End^{op}(I)$$

By the universality of the pushout, we have a map of operads $\mathsf{E}'_{\infty} \to \mathsf{End}^{op}(I)$. This means that the unit interval I has a structure of E'_{∞} -coalgebra [2, p. 4]. Moreover, we have a commutative diagram in Op_k given by

where the operad map $r: \mathsf{E}'_{\infty} \to \mathsf{Com}$ is obtained by the universal property of the pushout (1) and the diagonal map $\Delta: \mathsf{Ass} \to \mathsf{Ass} \otimes \mathsf{Ass}$ is induced by the diagonals $\Sigma_n \to \Sigma_n \times \Sigma_n$; therefore the commutativity of the diagram is a consequence of the co-unit property of the diagonal map Δ and universal choice of r. Hence, the map $\mathsf{P} \otimes \mathsf{E}'_{\infty} \to \mathsf{P}$ admits a section. It implies by [2, Proposition 4.1] that P is admissible and Σ -cofibrant. Since all objects in $\mathsf{P} - \mathsf{dgAlg}_k$ are fibrant and ϕ^* is a right Quillen adjoint, it preserves fibrations and weak equivalences.

Since P is an admissible operad, we have a Quillen adjunction

$$dgAlg_k \xrightarrow{\phi_!} P - dgAlg_k$$

where the functor ϕ^* is identified to the forgetful functor. Moreover, the model structure on $\mathsf{P} - \mathsf{dgAlg}_k$ is the transferred model structure from the cofibrantly generated model structure dgAlg_k via the adjunction $\phi_!, \phi^*$. Suppose that $f: A \to B$ is a cofibration in $\mathsf{P} - \mathsf{dgAlg}_k$ such that A is cofibrant in dgMod_k . We factor this map as a cofibration followed by a trivial fibration

$$A \xrightarrow{i} P \xrightarrow{p} B$$

in the category dgAlg_k ; therefore i is a cofibration [14, Proposition 2.3 (3)] (Toën's initial argument is for cofibraant objects, but it works for cofibrations, i.e., the forgetful functor $\mathsf{dgAlg}_k \to \mathsf{dgMod}_k$ preserves cofibrations) and p is obviously a trivial fibration in dgMod_k . By [11, Lemma 4.1.16], we have an induced map of endomorphism operads of diagrams [11, Section 4.1.1]:

$$\operatorname{End}_{\{A \to P \to B\}} \to \operatorname{End}_{\{A \to B\}}$$

which is a trivial fibration of operads since p is a trivial fibration. Notice that Rezk's arguments [11] are performed in the category of simplicial k-modules and are formally transposable in the context of differential graded k-modules. By definition of our endomorphism operads of diagrams, we have the following commutative diagram in Op_k :

where the first horizontal map of operads translates the fact that $A \to P \to B$ are maps in dgAlg_k ; respectively, the second horizontal map translates the fact that $A \to B$ is a map of P-algebra. Since Op_k is a model category, it implies that we have a lifting map of operads $\mathsf{P} \to \mathsf{End}_{\{A \to P \to B\}}$; hence i and p are maps of $\mathsf{P} - \mathsf{dgAlg}_k$. Therefore, we consider the following commutative square in the category $\mathsf{P} - \mathsf{dgAlg}_k$:

$$\begin{array}{ccc}
A & \xrightarrow{i} & P \\
f & & \uparrow \\
r & \sim \downarrow p \\
R & \xrightarrow{id} & R
\end{array}$$

The lifting map r exists since $\mathsf{P} - \mathsf{dgAlg}_k$ is a model category. We conclude that $p \circ r = id$ and $r \circ f = i$, which means that f is a retract of i; hence f is a cofibration in dgAlg_k .

Remark 2.2. With the same notation as in Lemma 2.1, if A is a cofibrant object in $\mathsf{P}-\mathsf{dgAlg}_k$ then A is a cofibrant object in dgMod_k . Indeed $k\to A$ is a cofibration in $\mathsf{P}-\mathsf{dgAlg}_k$; by the previous lemma $k\to A$ is a cofibration in dgAlg_k . Therefore, $k\to A$ is a cofibration in dgMod_k .

3. Suspension in CDGA and DGA

We denote the operad E'_∞ of the previous section by E_∞ , and $k=\mathbb{Q}$.

3.1. E_{∞} -DGA

We have a map of operads $Ass \rightarrow Com$, which we factor as cofibration followed by a trivial fibration:

Ass
$$\longrightarrow$$
 E_{\infty} \longrightarrow Com.

As a consequence, we have the following Quillen adjunctions:

$$\mathsf{dgAlg}_k \xrightarrow[U]{Ab_\infty} \mathsf{E}_\infty \mathsf{dgAlg}_k \xrightarrow[U']{str} \mathsf{dgCAlg}_k.$$

These adjunctions have the following properties:

• The functors U' and $U \circ U'$ are the forgetful functors; they are fully faithful (cf. Propositions 3.3 and 3.2).

- The functors str, U' form a Quillen equivalence since $k = \mathbb{Q}$ (cf. [9, Corollary 1.5, Part II]). The functor str is the strictification functor.
- The functors Ab_{∞} , U form a Quillen pair.
- The composition $str \circ Ab_{\infty}$ is the abelianization functor $Ab : \mathsf{dgAlg}_k \to \mathsf{dgCAlg}_k$.
- The functors str and Ab are idempotent functors (cf. Propositions 3.3 and 3.2).

The model categories $dgCAlg_k^*$, $dgAlg_k^*$, and $E_{\infty}dgAlg_k^*$ are pointed model categories. It is natural to introduce the suspension functors in these categories.

Definition 3.1. Let C be any pointed model category. We denote the point by 1, and let $A \in C$; a suspension ΣA is defined as $\mathsf{hocolim}(1 \leftarrow A \to 1)$.

Proposition 3.2. Any map $f: A \to S$ in $\mathsf{E}_\infty \mathsf{dgAlg}_k$, where S is in dgCAlg_k , factors in a unique way as $A \to str(A) \to S$ and the forgetful functor $U': \mathsf{dgCAlg}_k \to \mathsf{E}_\infty \mathsf{dgAlg}_k$ is fully faithful. Moreover, the unit of the adjunction $\nu_A: A \to str(A)$ is a fibration.

Proof. Suppose that we have a map $h:R\to S$ in $\mathsf{E}_\infty\mathsf{dgAlg}_k$ such that R and S are objects in dgCAlg_k . By definition of the operad E_∞ the map h respects the multiplication; therefore h is a morphism in dgCAlg_k since R and S are commutative differential graded algebras. The forgetful functor $U':\mathsf{dgCAlg}_k\to \mathsf{E}_\infty\mathsf{dgAlg}_k$ is fully faithful: this implies that str(S)=S for any $S\in\mathsf{dgCAlg}_k$. We have a commutative diagram induced by the unit ν of the adjunction (U',str):

$$A \xrightarrow{f} S$$

$$\downarrow_{\nu_A} \downarrow \qquad \downarrow_{\nu_S = id}$$

$$str(A) \xrightarrow{str(f)} str(S) = S$$

We conclude that $f = str(f) \circ \nu_A$. The surjectivity of the ν_A follows from the universal property of str(A). Hence, ν_A is a fibration in $\mathsf{E}_{\infty}\mathsf{dgAlg}_k$.

Proposition 3.3. Any map $f: A \to S$ in dgAlg_k , where S is in dgCAlg_k , factors in a unique way as $A \to Ab(A) \to S$, and the forgetful functor $U \circ U' : \mathsf{dgCAlg}_k \to \mathsf{dgAlg}_k$ is fully faithful. Moreover, the unit of the adjunction $\nu_A: A \to Ab(A)$ is a fibration.

Proof. The proof is the same as in Proposition 3.2. \Box

Proposition 3.4. Suppose that we have a trivial cofibration $k \to \underline{k}$ in $\mathsf{E}_\infty \mathsf{dgAlg}_k$. Then the universal map $\pi \colon Ab(\underline{k}) \to str(\underline{k})$ is a trivial fibration and admits a section in the category dgCAlg_k .

Proof. We consider the following commutative diagram in $\mathsf{E}_{\infty}\mathsf{dgAlg}_k$:

$$k \xrightarrow{id} k \xrightarrow{k} k$$

$$k = str(k) \xrightarrow{\sim} str(\underline{k})$$

The map $\underline{k} \to str(\underline{k})$ is an equivalence since str is a left Quillen functor; the same thing holds for the abelianization functor. More precisely, the forgetful functor $\mathsf{E}_{\infty}\mathsf{dgAlg}_k \to$

 dgAlg_k preserves cofibration (Lemma 2.1) ($\mathsf{P} = \mathsf{E}_{\infty}$); therefore the map $Ab(k) \to Ab(\underline{k})$ is a weak equivalence in dgCAlg_k . It follows that we have a commutative diagram in dgAlg_k :

$$k \xrightarrow{\sim} k \downarrow \\ \downarrow \downarrow \\ k = Ab(k) \xrightarrow{\sim} Ab(\underline{k})$$

i.e., $\underline{k} \to Ab(\underline{k})$ is a trivial fibration, since $\underline{k} \to Ab(\underline{k})$ is surjective by definition of the abelianization functor. On the other hand the map $\underline{k} \to str(\underline{k})$ is a trivial fibration in $\mathsf{E}_\infty \mathsf{dgAlg}_k$ (Proposition 3.2) and hence in dgAlg_k ; therefore it can be factored (cf. Proposition 3.3) as $\underline{k} \to Ab(\underline{k}) \to str(\underline{k})$, where $Ab(\underline{k}) \to str(\underline{k})$ is a trivial fibration between cofibrant objects in dgCAlg_k . It follows that we have a retract $l: str(\underline{k}) \to Ab(\underline{k})$.

Definition 3.5. The suspension functor in the pointed model categories dgCAlg_k^* , dgAlg_k^* , and $\mathsf{E}_\infty \mathsf{dgAlg}_k^*$ are denoted by B (resp. Σ and resp. B_∞).

Remark 3.6. The notation Σ is a generic notation for the suspension functor in a pointed model category. In the case of dgCAlg_k^* and dgCAlg_k^* we have used the notation B and B_∞ to make a link with the Bar construction for commutative (E_∞) differential graded algebra; this coincides with the generic suspension functor.

Lemma 3.7. Suppose that A is a cofibrant object in $\mathsf{E}_\infty \mathsf{dgAlg}_k^*$. Then $str(\mathsf{B}_\infty A)$ is a retract of $Ab(\Sigma A)$ in the category dgCAlg_k .

Proof. First of all, if a map f is associative (or commutative, or an E_{∞} map) we put index f_a (or f_c , or f_{∞} , respectively). Notice that by definition of the operad E_{∞} any E_{∞} -map is a strictly associative map. Suppose that A is a cofibrant object in $\mathsf{E}_{\infty} \mathsf{dgAlg}_k$. Consider the following commutative square:

where ΣA is the (homotopy in Lemma 2.1) pushout in dgAlg_k and $\mathsf{B}_\infty A$ is the (homotopy) pushout in $\mathsf{E}_\infty \mathsf{dgAlg}_k$. By Proposition 3.2 and Proposition 3.3 we have the

following commutative square in $dgAlg_k$:

By Proposition 3.4 we have an inclusion of commutative differential graded algebras $l_c: str(\underline{k}) \to Ab(\underline{k})$ and after strictification we obtain another homotopy pushout (inner) square in dgCAlg_k given by

In order to prove that B[str(A)] is a retract of $Ab(\Sigma(A))$ it is sufficient to prove that $x_c \circ h_c \circ l_c = f_c$.

By Proposition 3.2 and Proposition 3.3, the composition E_{∞} -maps

$$k \xrightarrow{f_{\infty}} B_{\infty} A \longrightarrow str[B_{\infty} A]$$

can be factored in a unique way as

$$\underline{k} \longrightarrow Ab(\underline{k}) \xrightarrow{\quad \pi \quad} str(\underline{k}) \xrightarrow{\quad \alpha_c \quad} str[\mathbf{B}_{\infty}A] = \mathbf{B}[str(A)].$$

By unicity, $\alpha_c = f_c$. On the other hand, using the first pushout in $\mathsf{E}_{\infty} \mathsf{dgAlg}_k$, the previous composition $\underline{k} \to str[\mathsf{B}_{\infty}A]$ is factored as

$$\underline{k} \xrightarrow{h_a} \Sigma A \longrightarrow Ab(\Sigma A) \xrightarrow{x_c} str[B_{\infty}A].$$

We summarize the previous remarks in the following commutative diagram:

$$\frac{k}{\downarrow id} \xrightarrow{pr} Ab(\underline{k}) \xrightarrow{\pi} str(\underline{k}) \xrightarrow{f_c} str[B_{\infty}A]$$

$$\downarrow id \qquad \qquad \downarrow id$$

$$k \longrightarrow Ab(\Sigma A) \xrightarrow{x_c} str[B_{\infty}A]$$

By definition of h_a , the dotted map h_c makes the left square commutative. Since the whole square is commutative and the map pr is surjective, we conclude that $x_c \circ h_c = f_c \circ \pi$. Since the map $l_c : Str(\underline{k}) \to Ab(\underline{k})$ is a retract of π (cf. 3.4), i.e., $\pi \circ l_c = id$, we conclude that $x_c \circ h_c \circ l_c = f_c$. Finally, by unicity of the pushout, we deduce that the following composition

$$B[str(A)] \xrightarrow{u_c} Ab(\Sigma A) \xrightarrow{x_c} B[str(A)]$$

is identity. \Box

4. Main result and applications

Theorem 4.1. For any R and S in $dgCAlg_k^*$, the induced map by the forgetful functor

$$\Omega \operatorname{Map}_{\mathsf{dgCAlg}_{k}^{*}}(R,S) \to \Omega \operatorname{Map}_{\mathsf{dgAlg}_{k}^{*}}(R,S)$$

has a retract; in particular

$$\pi_i \operatorname{Map}_{\mathsf{dgCAlg}_{\iota}^*}(R, S) \to \pi_i \operatorname{Map}_{\mathsf{dgAlg}_{\iota}^*}(R, S)$$

is injective $\forall i > 0$.

Proof. Suppose that R is a cofibrant object in $\mathsf{E}_{\infty}\mathsf{dgAlg}_k$ and S any object in dgCAlg_k . By adjunction, we have that

$$\Omega \operatorname{Map}_{\mathsf{dgCAlg}_{L}^{*}}(str(R), S) \sim \operatorname{Map}_{\mathsf{dgCAlg}_{L}^{*}}(B[str(R)], S)$$
 (2)

$$\sim \operatorname{Map}_{\mathsf{dgCAlg}_{k}^{*}}(str[B_{\infty}R], S)$$
 (3)

$$\sim \operatorname{Map}_{\mathsf{E}_{\infty}\mathsf{dgAlg}_{\cdot}^{*}}(\mathsf{B}_{\infty}R,S)$$
 (4)

$$\sim \Omega \operatorname{Map}_{\mathsf{E}_{\infty}\mathsf{dgAlg}_{*}^{*}}(R,S).$$
 (5)

By Lemma 3.7, we have a retract

$$\operatorname{Map}_{\mathsf{dgCAlg}_{h}^{*}}(\operatorname{B}[str(R)], S) \to \operatorname{Map}_{\mathsf{dgCAlg}_{h}^{*}}(Ab(\Sigma R), S) \to \operatorname{Map}_{\mathsf{dgCAlg}_{h}^{*}}(\operatorname{B}[str(R)], S).$$

Again by adjunction:

$$\operatorname{Map}_{\mathsf{dgCAlg}_k^*}(Ab(\Sigma R),S) \sim \operatorname{Map}_{\mathsf{dgAlg}_k^*}(\Sigma R,S) \sim \Omega \operatorname{Map}_{\mathsf{dgAlg}_k^*}(R,S).$$

We conclude that

$$\Omega \operatorname{Map}_{\mathsf{E}_{\infty}\mathsf{dgAlg}_{h}^{*}}(R,S) \xrightarrow{U} \Omega \operatorname{Map}_{\mathsf{dgAlg}_{h}^{*}}(R,S) \longrightarrow \Omega \operatorname{Map}_{\mathsf{E}_{\infty}\mathsf{dgAlg}_{h}^{*}}(R,S)$$

is a retract. Hence, the forgetful functor U induces an injective map on homotopy groups, i.e.,

$$\pi_i \mathrm{Map}_{\mathsf{dgCAlg}_k^*}(str(R), S) \simeq \pi_i \mathrm{Map}_{\mathsf{E}_\infty \mathsf{dgAlg}_k^*}(R, S) \to \pi_i \mathrm{Map}_{\mathsf{dgAlg}_k^*}(R, S)$$
 is injective $\forall \ i > 0.$

4.1. Rational homotopy theory

We give an application of our Theorem 4.1 in the context of rational homotopy theory. Let X be a simply connected rational space such that $\pi_i X$ is finite dimensional \mathbb{Q} -vector space for each i>0. Let $C^*(X)$ be the differential graded \mathbb{Q} -algebra cochain associated to X which is a connective $\mathsf{E}_{\infty}\mathsf{dgAlg}_k$. If $R=C^*(X)$ and $S=\mathbb{Q}$ then by the Sullivan theorem $\pi_i X \simeq \pi_i \mathrm{Map}_{\mathsf{dgCAlg}_k}(C^*(X),\mathbb{Q})$. By Theorem 4.1, we have that

 $\pi_i X$ is a sub \mathbb{Q} -vector space of $\pi_i \operatorname{Map}_{\mathsf{dgAlg}_k}(R, S)$. On the other hand [1], since $C^*(X)$ is connective, we have that for any i > 1

$$\pi_i \operatorname{Map}_{\mathsf{dgAlg}_k}(C^*(X), \mathbb{Q}) \simeq \operatorname{HH}^{1-i}(C^*(X), \mathbb{Q}),$$

where HH^* is the Hochschild cohomology. Since we have assumed finiteness condition on X, we have that

$$\mathrm{HH}^{1-i}(C^*(X),\mathbb{Q}) \simeq \mathrm{HH}_{i-1}(C^*(X),\mathbb{Q}).$$

The functor $C^*(-,\mathbb{Q}): \mathsf{Top}^{op} \to \mathsf{E}_{\infty} \mathsf{dgAlg}_k$ commutes with finite homotopy limits, where Top is the category of simply connected spaces. Hence,

$$\mathrm{HH}_{-1+i}(C^*(X),\mathbb{Q})=\mathrm{H}^{i-1}[C^*(X)\otimes^{\mathbf{L}}_{C^*(X\times X)}\mathbb{Q}]\simeq \mathrm{H}^{i-1}(\Omega X,\mathbb{Q}).$$

We conclude that $\pi_i X$ is a sub \mathbb{Q} -vector space of $H^{i-1}(\Omega X, \mathbb{Q})$.

More generally by the Block-Lazarev result [3] on rational homotopy theory and [1], we have an injective map of Q-vector spaces

$$AQ^{-i}(C^*(X), C^*(Y)) \to HH^{-i+1}(C^*(X), C^*(Y)),$$

where the $C^*(X)$ -(bi)modules structure on $C^*(Y)$ is given by $C^*(X) \to \mathbb{Q} \to C^*(Y)$, and $A\mathbb{Q}^*$ is the André-Quillen cohomology. We also assume that X and Y are simply connected and i > 1.

More generally,

$$\pi_i \operatorname{Map}_{\mathsf{E}_{\infty} \mathsf{dgAlg}_k}(R, S) = \operatorname{AQ}^{-i}(R, S) \to \operatorname{HH}^{-i+1}(R, S) = \pi_i \operatorname{Map}_{\mathsf{dgAlg}_k}(R, S)$$

is an injective map of \mathbb{Q} -vector spaces for all i > 1 and any augmented E_{∞} -differential graded connective \mathbb{Q} -algebras R and S, where the action of S on R is given by $S \to \mathbb{Q} \to R$.

Acknowledgments

I'm grateful to Benoît Fresse for his nice explanation of Lemma 2.1; the key point of the proof is due to him. I would like to thank the referee for many useful suggestions.

References

- [1] I. Amrani, The mapping space of unbounded differential graded algebras, arXiv preprint arXiv:1303.6895, 2013.
- [2] C. Berger and I. Moerdijk, Axiomatic homotopy theory for operads, *Commentarii Mathematici Helvetici*, **78**(4):805–831, 2003.
- [3] J. Block and A. Lazarev, André–Quillen cohomology and rational homotopy of function spaces, *Advances in Mathematics*, **193**(1):18–39, 2005.
- [4] W. Dwyer and K. Hess, Long knots and maps between operads, Geometry & Topology, 16:919–955, 2012.
- [5] B. Fresse, The bar complex of an E-infinity algebra, *Advances in Mathematics*, **223**(6):2049–2096, 2010.
- [6] K. Hess, Rational homotopy theory: a brief introduction, Contemporary Mathematics, 436:175, 2007.

- [7] P. Hirschhorn, Model categories and their localizations, *Mathematical Surveys* and *Monographs*, **99**, 2002.
- [8] M. Hovey, Model categories, Mathematical Surveys and Monographs, 63, 1999.
- [9] I. Kriz and J.P. May, Operads, algebras, modules and motives, Société mathématique de France, 1995.
- [10] J. Lurie, Model structure of commutative dg-algebras inside all dg-algebras. http://mathoverflow.net/questions/5031/
- [11] C.W. Rezk, Spaces of algebra structures and cohomology of operads, *PhD thesis, Massachusetts Institute of Technology*, 1996.
- [12] S. Schwede and B. Shipley, Algebras and modules in monoidal model categories, *Proceedings of the London Mathematical Society*, **80**(2):491–511, 2000.
- [13] M. Spitzweck, Operads, algebras and modules in general model categories, arXiv preprint math/0101102, 2001.
- [14] B. Toën, The homotopy theory of dg-categories and derived Morita theory, *Inventiones mathematicae*, **167**(3):615–667, 2007.

Ilias Amrani ilias.amranifedotov@gmail.com

Department of Mathematics, Masaryk University, Kotlarska 2, Brno, Czech Republic