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COMPARING COMMUTATIVE AND ASSOCIATIVE

UNBOUNDED DIFFERENTIAL GRADED ALGEBRAS OVER Q

FROM A HOMOTOPICAL POINT OF VIEW

ILIAS AMRANI

(communicated by Brooke Shipley)

Abstract
In this paper we establish a faithfulness result, in a homotopi-

cal sense, between a subcategory of the model category of aug-
mented differential graded commutative algebras CDGA and
a subcategory of the model category of augmented differential
graded algebras DGA over the field of rational numbers Q.

1. Introduction

It is well known that the forgetful functor from the category of commutative k-
algebras to the category of associative k-algebras is fully faithful. We have an ana-
logue result between the category of unbounded differential graded commutative k-
algebras dgCAlgk and the category of unbounded differential graded associative alge-
bras dgAlgk. The question that we want to explore is the following: Suppose that
k = Q; we want to know if it is true that forgetful functor U : dgCAlgk → dgAlgk
induces a fully faithful functor at the level of homotopy categories

RU : Ho(dgCAlgk)→ Ho(dgAlgk).

The answer is no. A nice and easy counterexample was given by Lurie [10]. He
has considered k[x, y] the free commutative CDGA in two variables concentrated in
degree 0. It follows obviously that

Ho(dgCAlgk)(k[x, y], S) ≃ H0(S)⊕H0(S),

while

Ho(dgAlgk)(k[x, y], S) ≃ H0(S)⊕H0(S)⊕H−1(S).

Something nice happens if we consider the category of augmented CDGA denoted by
dgCAlg∗k and augmented DGA denoted by dgAlg∗k.

Supported by the project CZ.1.07/2.3.00/20.0003 of the Operational Programme Education for
Competitiveness of the Ministry of Education, Youth and Sports of the Czech Republic.
Received January 26, 2014, revised July 30, 2014; published on April 15, 2015.
2010 Mathematics Subject Classification: Primary 55, Secondary 14, 16, 18.
Key words and phrases: DGA, CDGA, mapping space, rational homotopy theory, derived algebraic
geometry.
Article available at http://dx.doi.org/10.4310/HHA.2015.v17.n1.a9
Copyright c© 2015, International Press. Permission to copy for private use granted.

http://intlpress.com/HHA/
http://intlpress.com/HHA/v17/
http://intlpress.com/HHA/v17/n1/


192 ILIAS AMRANI

Theorem 1.1 (Theorem 4.1). For any R and S in dgCAlg∗k, the induced map by the
forgetful functor

ΩMapdgCAlg∗
k

(R,S)→ ΩMapdgAlg∗
k

(R,S)

has a retract; in particular

πiMapdgCAlg∗
k

(R,S)→ πiMapdgAlg∗
k

(R,S)

is injective ∀ i > 0.

Definition 1.2 ([8],[7]). Let M be a model category and let a, a′ be cofibrant objects
and b, b′ be fibrant objects. The (derived) mapping space denoted by MapM is a
simplicial set having the following properties:

• π0Map(a, b) ∼= Ho(M)(a, b), where Ho(M) is the homotopy category of M.

• For any weak equivalence a→ a′, we have a weak equivalence of simplicial sets
Map(a′, b)→ Map(a, b).

• For any weak equivalence b→ b′, we have a weak equivalence of simplicial sets
Map(a, b)→ Map(a, b′).

Remark 1.3. [4, Theorem 2.12] In our work we use only the formal properties of the
derived mapping space in a model category. For any Quillen adjuction between model
categories

M
G // N
U

oo

and for any cofibrant object a ∈ M and any fibrant object c ∈ N, we have the following
(zig-zag) equivalence of simplicial sets:

MapN(Ga, c) ∼ MapM(a, Uc).

Let S be a differential graded commutative algebra which is a “loop” of another
CDGA algebra A, i.e., S = Holim(k → A← k), where the homotopy limit is taken in
the model category dgCAlgk. A direct consequence of our theorem is that the right
derived functor RU is a faithful functor, i.e., the induced map Ho(dgCAlg∗k)(R,S)→
Ho(dgAlg∗k)(R,S) is injective.

Interpretation of the result in the derived algebraic geometry
Rationally, any pointed topological X space can be viewed as an augmented (con-

nective) commutative differential graded algebra via its cochain complex C∗(X,Q). In
the case where X is a simply connected rational space, the cochain complex C∗(X,Q)
carries all the homotopical information about X, by the Sullivan theorem [6]. More-
over, the bar construction BC∗(X,Q) is identified (as E∞-DGA) to C∗(ΩX,Q) and
ΩC∗(X,Q) is identified (as E∞-DGA) to C∗(ΣX,Q); cf. [5]. This interpretation
allows us to make the following definition: A generalized rational pointed space is
an augmented commutative differential graded Q-algebra (possibly unbounded). In
the same spirit, we define a pointed generalized noncommutative rational space
as an augmented differential graded Q-algebra (possibly unbounded). Let A be any
augmented CDGA (resp. DGA); we will call a CDGA (resp. DGA) of the form ΩA
an op-suspended CDGA (resp. DGA). Our Theorem 4.1 can be interpreted as follows:
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The homotopy category of op-suspended generalized commutative ratio-
nal spaces is a subcategory of the homotopy category of op-suspended
generalized noncommutative rational spaces.

2. DGA, CDGA, and E∞-DGA

We work in the setting of unbounded differential graded k-modules dgModk. This
is a symmetric monoidal closed model category (k is a commutative ring). We denote
the category of (reduced) operads in dgModk by Opk. We follow notations and def-
initions of [2]; we say that an operad P is admissible if the category of P− dgAlgk
admits a model structure where the fibrations are degree wise surjections and weak
equivalences are quasi-isomorphisms. For any map of operads φ : P→ Q we have an
induced adjunction of the corresponding categories of algebras:

P− dgAlgk
φ! // Q− dgAlgk.
φ∗

oo

A Σ-cofibrant operad P is an operad such that P(n) is k[Σn]-cofibrant in dgModk[Σn].
Any cofibrant operad P is a Σ-cofibrant operad [2, Proposition 4.3]. We denote the
associative operad by Ass and the commutative operad by Com. The operad Ass is an
admissible operad and Σ-cofibrant, while the operad Com is not admissible in general.
In the rational case, when k = Q the operad Com is admissible and Σ-cofibrant. More
generally any cofibrant operad P is admissible [2, Proposition 4.1, Remark 4.2]. We
define a symmetric tensor product of operads by the formulae

[P⊗ Q](n) = P(n)⊗ Q(n), ∀ n ∈ N.

Lemma 2.1. Suppose that φ : Ass→ P is a cofibration of operads. The operad P is
admissible and the functor φ∗ : P− dgAlgk → dgAlgk preserves fibrations, weak equiv-
alences, and cofibrations with cofibrant domain in the underlying category dgModk.

Proof. First of all, the operad P is admissible; indeed we use the cofibrant resolution
r : E∞ → Com and consider the following pushout in Opk given by:

Ass∞
� � //

∼
����

E∞

α

��
Ass

f
// E′

∞

where Ass∞ is a cofibrant replacement of Ass in Opk and Ass∞ → E∞ is a cofibration
which factors Ass∞ → Ass→ Com. Since the category Opk is left proper in the sense
of [13, Theorem 3], we have that α : E∞ → E′

∞ is an equivalence. We denote by I the
unit interval in the category dgModk which is strictly coassociative [12, p. 503]; i.e.,
there is a map of operads Ass→ Endop(I). Moreover, there is a map of operads E∞ →

Endop(I) which endows I with the structure of E∞-coalgebra [2, Remark 4.2]. Since
I is a strict coalgebra (in particular an Ass∞-coalgebra), the operad map Ass∞ →
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Endop(I) factors through Ass; i.e., we have two compatible maps of operads:

Ass∞
� � //

∼
����

E∞

α

��

��✻
✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

Ass
� � f

//

))❙❙
❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

E′
∞

$$
Endop(I)

(1)

By the universality of the pushout, we have a map of operads E′
∞ → Endop(I). This

means that the unit interval I has a structure of E′
∞-coalgebra [2, p. 4]. Moreover,

we have a commutative diagram in Opk given by

Ass
∆ //

� _

φ

��

Ass⊗ Ass
φ⊗f

// P⊗ E′
∞

∼id⊗r

����
P

id // P⊗ Com = P

where the operad map r : E′
∞ → Com is obtained by the universal property of the

pushout (1) and the diagonal map ∆ : Ass→ Ass⊗ Ass is induced by the diagonals
Σn → Σn × Σn; therefore the commutativity of the diagram is a consequence of the
co-unit property of the diagonal map ∆ and universal choice of r. Hence, the map
P⊗ E′

∞ → P admits a section. It implies by [2, Proposition 4.1] that P is admissible
and Σ-cofibrant. Since all objects in P− dgAlgk are fibrant and φ∗ is a right Quillen
adjoint, it preserves fibrations and weak equivalences.

Since P is an admissible operad, we have a Quillen adjunction

dgAlgk
φ! // P− dgAlgk,
φ∗

oo

where the functor φ∗ is identified to the forgetful functor. Moreover, the model struc-
ture on P− dgAlgk is the transferred model structure from the cofibrantly generated
model structure dgAlgk via the adjunction φ!, φ

∗. Suppose that f : A→ B is a cofi-
bration in P− dgAlgk such that A is cofibrant in dgModk. We factor this map as a
cofibration followed by a trivial fibration

A
� � i // P

p

∼
// // B

in the category dgAlgk; therefore i is a cofibration [14, Proposition 2.3 (3)] (Toën’s ini-
tial argument is for cofibraant objects, but it works for cofibrations, i.e., the forgetful
functor dgAlgk → dgModk preserves cofibrations) and p is obviously a trivial fibra-
tion in dgModk. By [11, Lemma 4.1.16], we have an induced map of endomorphism
operads of diagrams [11, Section 4.1.1]:

End{A→P→B} → End{A→B}
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which is a trivial fibration of operads since p is a trivial fibration. Notice that Rezk’s
arguments [11] are performed in the category of simplicial k-modules and are formally
transposable in the context of differential graded k-modules. By definition of our
endomorphism operads of diagrams, we have the following commutative diagram in
Opk:

Ass� _

��

// End{A→P→B}

∼
����

P //

99

End{A→B}

where the first horizontal map of operads translates the fact that A→ P → B are
maps in dgAlgk; respectively, the second horizontal map translates the fact that A→
B is a map of P-algebra. Since Opk is a model category, it implies that we have a
lifting map of operads P→ End{A→P→B}; hence i and p are maps of P− dgAlgk.
Therefore, we consider the following commutative square in the category P− dgAlgk:

A� _

f

��

i // P

∼ p
����

B
id //

r

>>

B

The lifting map r exists since P− dgAlgk is a model category. We conclude that
p ◦ r = id and r ◦ f = i, which means that f is a retract of i; hence f is a cofibration
in dgAlgk.

Remark 2.2. With the same notation as in Lemma 2.1, if A is a cofibrant object in
P− dgAlgk then A is a cofibrant object in dgModk. Indeed k → A is a cofibration
in P− dgAlgk; by the previous lemma k → A is a cofibration in dgAlgk. Therefore,
k → A is a cofibration in dgModk.

3. Suspension in CDGA and DGA

We denote the operad E′
∞ of the previous section by E∞, and k = Q.

3.1. E∞-DGA

We have a map of operads Ass→ Com, which we factor as cofibration followed by
a trivial fibration:

Ass
� � // E∞

∼ // // Com.

As a consequence, we have the following Quillen adjunctions:

dgAlgk
Ab∞ // E∞dgAlgk
U

oo
str // dgCAlgk.
U ′

oo

These adjunctions have the following properties:

• The functors U ′ and U ◦ U ′ are the forgetful functors; they are fully faithful (cf.
Propositions 3.3 and 3.2).
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• The functors str, U ′ form a Quillen equivalence since k = Q (cf. [9, Corollary
1.5, Part II]). The functor str is the strictification functor.

• The functors Ab∞, U form a Quillen pair.

• The composition str ◦Ab∞ is the abelianization functor Ab : dgAlgk → dgCAlgk.

• The functors str and Ab are idempotent functors (cf. Propositions 3.3 and 3.2).

The model categories dgCAlg∗k, dgAlg
∗
k, and E∞dgAlg∗k are pointed model categories.

It is natural to introduce the suspension functors in these categories.

Definition 3.1. Let C be any pointed model category. We denote the point by 1,
and let A ∈ C; a suspension ΣA is defined as hocolim(1← A→ 1).

Proposition 3.2. Any map f : A→ S in E∞dgAlgk, where S is in dgCAlgk, fac-
tors in a unique way as A→ str(A)→ S and the forgetful functor U ′ : dgCAlgk →
E∞dgAlgk is fully faithful. Moreover, the unit of the adjunction νA : A→ str(A) is a
fibration.

Proof. Suppose that we have a map h : R→ S in E∞dgAlgk such that R and S are
objects in dgCAlgk. By definition of the operad E∞ the map h respects the mul-
tiplication; therefore h is a morphism in dgCAlgk since R and S are commutative
differential graded algebras. The forgetful functor U ′ : dgCAlgk → E∞dgAlgk is fully
faithful: this implies that str(S) = S for any S ∈ dgCAlgk. We have a commutative
diagram induced by the unit ν of the adjunction (U ′, str):

A
f

//

νA

��

S

νS=id

��
str(A)

str(f)
// str(S) = S

We conclude that f = str(f) ◦ νA. The surjectivity of the νA follows from the univer-
sal property of str(A). Hence, νA is a fibration in E∞dgAlgk.

Proposition 3.3. Any map f : A→ S in dgAlgk, where S is in dgCAlgk, factors in a
unique way as A→ Ab(A)→ S, and the forgetful functor U ◦ U ′ : dgCAlgk → dgAlgk
is fully faithful. Moreover, the unit of the adjunction νA : A→ Ab(A) is a fibration.

Proof. The proof is the same as in Proposition 3.2.

Proposition 3.4. Suppose that we have a trivial cofibration k → k in E∞dgAlgk.
Then the universal map π : Ab(k)→ str(k) is a trivial fibration and admits a section
in the category dgCAlgk.

Proof. We consider the following commutative diagram in E∞dgAlgk:

k
∼ //

id

��

k

��
k = str(k)

∼ // str(k)

The map k → str(k) is an equivalence since str is a left Quillen functor; the same thing
holds for the abelianization functor. More precisely, the forgetful functor E∞dgAlgk →
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dgAlgk preserves cofibration (Lemma 2.1) (P = E∞); therefore the map Ab(k)→
Ab(k) is a weak equivalence in dgCAlgk. It follows that we have a commutative dia-
gram in dgAlgk:

k
∼ //

id

��

k

��
k = Ab(k)

∼ // Ab(k)

i.e., k → Ab(k) is a trivial fibration, since k → Ab(k) is surjective by definition of the
abelianization functor. On the other hand the map k → str(k) is a trivial fibration
in E∞dgAlgk (Proposition 3.2) and hence in dgAlgk; therefore it can be factored (cf.
Proposition 3.3) as k → Ab(k)→ str(k), where Ab(k)→ str(k) is a trivial fibration
between cofibrant objects in dgCAlgk. It follows that we have a retract l : str(k)→
Ab(k).

Definition 3.5. The suspension functor in the pointed model categories dgCAlg∗k,
dgAlg∗k, and E∞dgAlg∗k are denoted by B (resp. Σ and resp. B∞).

Remark 3.6. The notation Σ is a generic notation for the suspension functor in a
pointed model category. In the case of dgCAlg∗k and dgCAlg∗k we have used the notation
B and B∞ to make a link with the Bar construction for commutative (E∞) differential
graded algebra; this coincides with the generic suspension functor.

Lemma 3.7. Suppose that A is a cofibrant object in E∞dgAlg∗k. Then str(B∞A) is
a retract of Ab(ΣA) in the category dgCAlgk.

Proof. First of all, if a map f is associative (or commutative, or an E∞ map) we
put index fa (or fc, or f∞, respectively). Notice that by definition of the operad E∞

any E∞-map is a strictly associative map. Suppose that A is a cofibrant object in
E∞dgAlgk. Consider the following commutative square:

A
� � i∞ //
� _

i∞

��

k � _

ha

��
f∞

��

k
� � ha //

f∞
**

ΣA

∃!

ua

""
B∞A

where ΣA is the (homotopy in Lemma 2.1) pushout in dgAlgk and B∞A is the (homo-
topy) pushout in E∞dgAlgk. By Proposition 3.2 and Proposition 3.3 we have the
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following commutative square in dgAlgk:

ΣA
ua //

��

B∞A

��
Ab(ΣA)

xc // str[B∞A] = B[str(A)].

By Proposition 3.4 we have an inclusion of commutative differential graded alge-
bras lc : str(k)→ Ab(k) and after strictification we obtain another homotopy pushout
(inner) square in dgCAlgk given by

str(A) �
� ic //

� _

ic

��

str(k)
� _

fc

��

lc // Ab(k)
� _

hc

��

str(k) �
� fc //

lc

��

B[str(A)]

∃!

uc

&&
Ab(k) �

� hc // Ab(Σ(A))

In order to prove that B[str(A)] is a retract of Ab(Σ(A)) it is sufficient to prove that

xc ◦ hc ◦ lc = fc.

By Proposition 3.2 and Proposition 3.3, the composition E∞-maps

k
f∞ // B∞A // str[B∞A]

can be factored in a unique way as

k // Ab(k)
π // str(k)

αc // str[B∞A] = B[str(A)].

By unicity, αc = fc. On the other hand, using the first pushout in E∞dgAlgk, the
previous composition k → str[B∞A] is factored as

k
ha // ΣA // Ab(ΣA)

xc // str[B∞A].

We summarize the previous remarks in the following commutative diagram:

k
pr

//

id

��

Ab(k)
π //

hc=Ab(ha)

��

str(k)
fc // str[B∞A]

id

��
k // Ab(ΣA)

xc // str[B∞A]

By definition of ha, the dotted map hc makes the left square commutative. Since
the whole square is commutative and the map pr is surjective, we conclude that
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xc ◦ hc = fc ◦ π. Since the map lc : Str(k)→ Ab(k) is a retract of π (cf. 3.4), i.e.,
π ◦ lc = id, we conclude that xc ◦ hc ◦ lc = fc. Finally, by unicity of the pushout, we
deduce that the following composition

B[str(A)]
uc // Ab(ΣA)

xc // B[str(A)]

is identity.

4. Main result and applications

Theorem 4.1. For any R and S in dgCAlg∗k, the induced map by the forgetful functor

ΩMapdgCAlg∗
k

(R,S)→ ΩMapdgAlg∗
k

(R,S)

has a retract; in particular

πiMapdgCAlg∗
k

(R,S)→ πiMapdgAlg∗
k

(R,S)

is injective ∀ i > 0.

Proof. Suppose that R is a cofibrant object in E∞dgAlgk and S any object in dgCAlgk.
By adjunction, we have that

ΩMapdgCAlg∗
k

(str(R), S) ∼ MapdgCAlg∗
k

(B[str(R)], S) (2)

∼ MapdgCAlg∗
k

(str[B∞R], S) (3)

∼ MapE∞dgAlg∗
k

(B∞R,S) (4)

∼ ΩMapE∞dgAlg∗
k

(R,S). (5)

By Lemma 3.7, we have a retract

MapdgCAlg∗
k

(B[str(R)], S)→ MapdgCAlg∗
k

(Ab(ΣR), S)→ MapdgCAlg∗
k

(B[str(R)], S).

Again by adjunction:

MapdgCAlg∗
k

(Ab(ΣR), S) ∼ MapdgAlg∗
k

(ΣR,S) ∼ ΩMapdgAlg∗
k

(R,S).

We conclude that

ΩMapE∞dgAlg∗
k

(R,S)
U // ΩMapdgAlg∗

k

(R,S) // ΩMapE∞dgAlg∗
k

(R,S)

is a retract. Hence, the forgetful functor U induces an injective map on homotopy
groups, i.e.,

πiMapdgCAlg∗
k

(str(R), S) ≃ πiMapE∞dgAlg∗
k

(R,S)→ πiMapdgAlg∗
k

(R,S)

is injective ∀ i > 0.

4.1. Rational homotopy theory
We give an application of our Theorem 4.1 in the context of rational homotopy

theory. LetX be a simply connected rational space such that πiX is finite dimensional
Q-vector space for each i > 0. Let C∗(X) be the differential graded Q-algebra cochain
associated to X which is a connective E∞dgAlgk. If R = C∗(X) and S = Q then by
the Sullivan theorem πiX ≃ πiMapdgCAlg

k
(C∗(X),Q). By Theorem 4.1, we have that
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πiX is a sub Q-vector space of πiMapdgAlg
k
(R,S). On the other hand [1], since C∗(X)

is connective, we have that for any i > 1

πiMapdgAlg
k
(C∗(X),Q) ≃ HH1−i(C∗(X),Q),

where HH∗ is the Hochschild cohomology. Since we have assumed finiteness condition
on X, we have that

HH1−i(C∗(X),Q) ≃ HHi−1(C
∗(X),Q).

The functor C∗(−,Q) : Topop → E∞dgAlgk commutes with finite homotopy limits,
where Top is the category of simply connected spaces. Hence,

HH−1+i(C
∗(X),Q) = Hi−1[C∗(X)⊗L

C∗(X×X) Q] ≃ Hi−1(ΩX,Q).

We conclude that πiX is a sub Q-vector space of Hi−1(ΩX,Q).
More generally by the Block-Lazarev result [3] on rational homotopy theory and

[1], we have an injective map of Q-vector spaces

AQ−i(C∗(X), C∗(Y ))→ HH−i+1(C∗(X), C∗(Y )),

where the C∗(X)-(bi)modules structure on C∗(Y ) is given by C∗(X)→ Q→ C∗(Y ),
and AQ∗ is the André-Quillen cohomology. We also assume that X and Y are simply
connected and i > 1.

More generally,

πiMapE∞dgAlg
k
(R,S) = AQ−i(R,S)→ HH−i+1(R,S) = πiMapdgAlg

k
(R,S)

is an injective map of Q-vector spaces for all i > 1 and any augmented E∞-differential
graded connective Q-algebras R and S, where the action of S on R is given by
S → Q→ R.
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