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Abstract
Using ideas from algebraic topology and statistical mechan-

ics, we generalize Kirchhoff’s network and matrix-tree theorems
to finite CW complexes of arbitrary dimension. As an applica-
tion, we give a formula expressing Reidemeister torsion as an
enumeration of higher dimensional spanning trees.

1. Introduction

Gustav Kirchhoff’s results on electrical networks, which predate Maxwell’s the-
ory of electromagnetism, are a product of the mid-nineteenth century [Ki1, Ki2].
Kirchhoff’s network theorem states that in any resistive network there is a unique
current satisfying Ohm’s law and Kirchhoff’s current and voltage laws, and further-
more this current can be explicitly computed. The first complete treatment of the
network theorem is attributed to Hermann Weyl [W] in 1923. By the mid-twentieth
century, algebraic topology provided key ideas leading to a simple and elegant proof
[E, R, NS]. A companion result is Kirchhoff’s matrix-tree theorem, which gives a
formula for the number of spanning trees in a finite connected graph (see [Mo] for a
history of this result). This paper is an outgrowth of our investigations on the inter-
play between algebraic topology and statistical mechanics [CKS1, CKS2, CKS3].
Our aim is to generalize Kirchhoff’s results to higher dimensions, as well as to connect
these results to the theory of Reidemeister torsion.

A high-dimensional network theorem

Suppose X is a finite connected CW complex of dimension d. Let Cj(X;R) denote
the cellular chain complex of X with real coefficients and the standard inner product
〈 , 〉 for which the set of j-cells, denoted Xj , is an orthonormal basis. In what follows
we fix a function r : Xd → R+; the value of r at a d-cell b is considered to be the
resistance of b. Define a linear transformation R : Cd(X;R) → Cd(X;R) by mapping
a d-cell b to rbb and extending linearly. Let Bd−1(X;R) ⊂ Cd−1(X;R) be the vector
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subspace of (d− 1)-boundaries, and let Zd(X;R) ⊂ Cd(X;R) be the vector subspace
of d-cycles.

Definition 1.1. A network problem for X consists of a choice of p ∈ Bd−1(X;R)
and q ∈ Zd(X;R), called (d−1)-boundary current and d-cycle voltage respectively.1

A solution consists of V,J ∈ Cd(X;R) such that

V = RJ , (Ohm’s law) (1)

∂J = p , (current law) (2)

〈V, z〉 = 〈q, z〉 , for all z ∈ Zd(X) . (voltage law) (3)

To see why a solution exists, define a modified inner product 〈 , 〉R on Cd(X;R) by

〈b, b′〉R = 〈Rb, b′〉
for b, b′ ∈ Xd. Let

∂∗
R : Cd−1(X;R) → Cd(X;R)

denote the formal adjoint to ∂ using the standard inner product on Cd−1(X;R) and
the modified inner product on Cd(X;R). Let Zd(Z;R)⊥R be the image of ∂∗

R, and note
that Zd(Z;R)⊥R is the orthogonal complement to Zd(X;R) in Cd(X;R) with respect
to the modified inner product. Elementary linear algebra implies ∂ : Zd(Z;R)⊥R →
Bd−1(X;R) is an isomorphism. Consequently, there is a unique J0 ∈ Zd(X;R)⊥R such
that ∂J0 = p. SetV0 = RJ0. Then 〈V0, z〉 = 〈J0, z〉R = 0 for all z ∈ Zd(X;R). Let J1

be the orthogonal projection of R−1q onto Zd(X;R) in the modified inner product,
and set x = J1 −R−1q. Then 〈RJ1 − q, z〉 = 〈x, z〉R = 0 for all z ∈ Zd(X;R). Set
V1 = RJ1. Then J := J0 + J1 and V := V0 +V1 solve the network problem. It is
straightforward to show that this solution is unique.

The above solution to the network problem uses the orthogonal projection of
Cd(X;R) onto Zd(X;R) in the modified inner product. In the classical case d = 1,
Kirchhoff gave a formula expressing the orthogonal projection as a weighted sum
indexed over the set of spanning trees of X. To get an explicit formula in higher
dimensions, we will need a notion of spanning tree.

Definition 1.2. Assume, as above, that X is a connected finite CW complex of
dimension d. A spanning tree for X is a subcomplex T such that

• Hd(T ;Z) = 0,

• βd−1(T ) = βd−1(X), where βk(X) denotes the k-th Betti number,

• X(d−1) ⊂ T , where X(k) is the k-skeletion of X.

Remark 1.3. We will show in the next section such spanning trees exist. Note that
when d = 1, our definition reduces to the classical notion of spanning tree.

The reader should be aware that the literature contains sundry notions of “high-
dimensional spanning tree” (see [P] for a detailed discussion). Our definition is equiv-
alent to the one in [DKM3, 2.2].

1When d = 1, in the terminology of Roth [R], p is a node current and q is a mesh voltage, each
arising from an external source. Bollobás [B, p. 41] only considers the case when q = 0 and p is of
the form pii+ pjj for a pair of distinct vertices i and j.
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Definition 1.4. For a spanning tree T of X, define a linear transformation

T̄ : Cd(X;R) → Zd(X;R)

as follows: Let b be a d-cell. If b is contained in T , then we set T̄ (b) = 0. Otherwise,
note that Hd(T ∪ b;Z) = Zd(T ∪ b;Z) is infinite cyclic. Let c be a generator. Set
tb = 〈c, b〉 (this is always non-zero). Then T̄ (b) := c/tb, is a real d-cycle of X. It is
easy to see that T̄ (b) is independent of the choice of c.

Let θT denote the order of the torsion subgroup of Hd−1(T ;Z), and define the
weight of T to be the positive real number

wT := θ2T
∏

b∈Td

r−1
b .

Theorem A (Higher Projection Formula). With respect to the modified inner product
〈 , 〉R, the orthogonal projection Cd(X;R) → Zd(X;R) is given by

1
∆

∑

T

wT T̄ ,

where the sum is over all spanning trees, and ∆ =
∑

T wT .

Let ∂∗ : Cd−1(X;R) → Cd(X;R) be the formal adjoint to the boundary operator
with respect to the standard inner product. Define Bd(X,R) to be the image of ∂∗.
Then we have the following.

Addendum B (Higher Network Theorem). Given a vector V ∈ Cd(X;R), there is
only one vector z ∈ Zd(X;R) such that V −Rz ∈ Bd(X,R). Furthermore, for each
d-cell b, we have

〈z, b〉 = 1
∆

∑

T

wT

rb
〈V, T̄ (b)〉 .

Remark 1.5. In classical network terminology (d = 1), 〈V, b〉 is the voltage source on
branch b and 〈z, b〉 is the current resulting in branch b (see [R, NS]).

A high-dimensional matrix-tree theorem
The classical matrix-tree theorem enumerates the number of spanning trees of a

graph. In higher dimensions, the best we can achieve is an expression for
∑

T θ2T .
Observe that Bd−1(X;R) is an invariant subspace of the operator

∂∂∗
R : Cd−1(X;R) → Cd−1(X;R).

Let

LR : Bd−1(X;R)
∼=−→ Bd−1(X;R)

denote the associated restriction.

Theorem C (Higher Weighted Matrix-Tree Theorem). We have

detLR = γX
∑

T

wT ,

where the sum is indexed over all spanning trees of X, and the normalizing factor is
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given by

γX =
µX

θ2X
,

where µX ∈ N is the square of the covolume of the lattice Bd−1(X;Z) ⊂ Bd−1(X;R)
with respect to the restriction of the standard inner product of Cd−1(X;R) and θX is
the order of the torsion subgroup of Hd−1(X;Z).

Theorem C is actually a special case of a more general result, Theorem 6.7, below.
The unweighted case when r : Xd → R+ is constant with value 1 is worth singling

out, as it gives rise to the operator

L = ∂∂∗ : Bd−1(X;R)
∼=−→ Bd−1(X;R) .

In this case, wT = θ2X and Theorem C becomes the following.

Corollary D (Higher Matrix-Tree Theorem). For L as above, we have

detL = γX
∑

T

θ2T .

Remarks on the literature
Note that when d = 1, we have θT = 1 = θX and µX is the number of vertices of

X, so we obtain the classical Kirchhoff matrix-tree theorem.
A referee to an earlier draft of this paper had the impression that Theorem C and

Corollary D are our main results. We do not feel this to be the case. In fact, we think
of these as an application of our Higher Projection Formula (Theorem A). We now
proceed to explain why our enumeration results are new.

Variants of Corollary D have appeared in [Ka, P, DKM1, DKM2, DKM3],
and [L]. The most general set-up appears to be that of [L].2

The formula in Corollary D is similar, but not identical, to [DKM3, Prop. 3.5]
and [DKM2, Th. 2.8] (as well as [L, Cor. 6.2]). However, these last results give a
calculation of detL as a product of terms. One of these terms is a sum over spanning
trees for X in degree d, and another term is a sum over spanning trees for the (d− 1)-
skeleton X(d−1). If we compare our formula with that of [DKM3], we are led to the
following non-trivial identity:

µX =
θ2X,d−1

θ2X,d−2

∑

T∈Td−1

θ2T,d−2 ,

where

• Td−1 denotes the set of spanning trees of X(d−1), and

• θX,k refers to the order of the torsion subgroup of Hk(X;Z).

The proofs of such enumeration results typically rely on combinatorial methods.
Our method differs from other proofs in that we deduce our result from Theorem A
and the “low temperature limit” method arising in statistical mechanics. Indeed, the
form of the formula appearing Corollary D was influenced by the physics papers

2The notion of spanning tree appearing in [L] is more general than the one appearing here.
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[CKS1, CKS2], and the corresponding mathematics paper [CKS3], which the last
two authors wrote with Sinitsyn.

Finally, we wish to note that Corollary D admits the following simpler reformula-
tion (cf. Corollary 6.12 below).

Addendum E.

detL =
∑

T

detLT =
∑

T

µT ,

where LT = ∂∂∗
T : Bd−1(T ;R)

∼=−→ Bd−1(T ;R).

Reidemeister torsion enumerates spanning trees

In the mid-twentieth century, Franz, Reidemeister and De Rham classified lens
spaces in dimension 3 using a combinatorial invariant of triangulated spaces that was
subsequently called Reidemeister torsion. In order to define the invariant, one has
to choose a representation of the fundamental group and take the simplicial chain
complex twisted by the representation. The most important and well-known case of
this occurs when the chain complex is acyclic.

Milnor [M] extended the notion of Reidemeister torsion to a not necessarily acyclic
finite chain complex C∗ over a field in which a preferred basis is chosen for C∗ as well as
its homology. Milnor’s invariant is not preserved under chain homotopy equivalence.
In this set-up the torsion a priori depends not only on the chain complex but also
the equivalence class of the preferred bases.

In this paper, we will be interested in the case when C∗ is the real chain complex of
a finite CW complex X. We will establish a connection between the torsion and the
enumeration of spanning trees on the skeleta of X. After the first draft of this paper
was written, it was pointed out to us that the paper [DKM1, rem. 4.4] suggests there
should be such a connection.

Suppose X is a finite, connected CW complex. We give C∗(X;R) the preferred
basis given by its set of cells. We also choose a basis for H∗(X;R) by selecting a
basis for the torsion free part of each integral homology group H∗(X;Z). Such a basis
is called a combinatorial basis for the homology, and we will denote it by h. The
definition of Reidemeister torsion τ(X; h) is given in §7 below.

For k > 0, we define the following quantities:

• Tk = the set of spanning trees of X(k) (for this we require k > 0).

• µk = the square of the covolume of the latticeBk(X;Z) ⊂ Bk(X;R) with respect
to the inner product given by restricting the standard inner product on Ck(X;R).

• Hk(X;Z)0 = the image of the evident homomorphism Hk(X;Z) → Hk(X;R).

• ηk = the square of the covolume of the lattice Hk(X;Z)0 ⊂ Hk(X;R), where
we give Hk(X;R) the inner product defined by identifying the latter with the
orthogonal complement of Bk(X;R) ⊂ Zk(X;R) using the inner product arising
from the standard one on Ck(X;R).

• θk = the order of the torsion subgroup of Hk(X;Z).
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With respect to the above, we set

δk :=
ηkµk

θ2k
.

Then δk is defined entirely in terms of X.

The following result appears to be new.

Theorem F (Torsion-Tree Theorem). For a finite, connected CW complex X, we
have

τ2(X; h) =
∏

k>0

(δk
∑

T∈Tk+1

θ2T )
(−1)k ,

where θ2T denotes the order of the torsion subgroup of Hk(T ;Z) for T ∈ Tk+1.

Conventions. The topological spaces of this paper are equipped with preferred CW
structure, and when we write H∗(X;A), we mean cellular homology with coefficients
in an abelian group A (in practice, A is either Z or R). If X is a CW complex, we
write X(k) for its k-skeleton and Xk for its collection of k cells. Thus,

X(k) = X(k−1) ∪ (Xk ×Dk) ,

where the union is amalgamated along the attaching map X × Sk−1 → X(k−1). The
kth Betti number βk(X) is defined to be the rank of the vector space Hk(X;R). If
A is a commutative ring, then the kth real chain group Ck(X;A) is by definition the
relative homology group Hk(X

(k), X(k−1);A), which is just the free A-module having
basis Xk.

Outline. In §2 we develop basic results about higher dimensional spanning trees. In §3
we prove Theorem A and Addendum B. In §4 we prove Theorem C up to identification
of the normalizing constant γX . In §5 we introduce the low temperature limit and
use it to show that for sufficiently well-behaved W , the determinant of L tends in
the low temperature limit to the determinant of LT , where the latter is defined
using a spanning tree T in place of X. This result is employed in §6 to identify γX ,
thereby completing the proof of Theorem C; in so doing, we generalize Theorem C
to Theorem 6.7. Lastly, in §7, we outline Milnor’s definition of Reidemeister torsion
and prove Theorem F. Also, in Theorem 7.11, we obtain a different expression for the
Reidemeister torsion that is expressed in terms of both spanning tree and homology
truncation data for X.
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2. Spanning trees in higher dimensions

Definition 2.1. Let X be a finite, connected CW complex. A k-cell b ∈ Xk is said
to be essential if there exists a k-cycle z ∈ Zk(X;R) such that 〈z, b〉 6= 0.

Lemma 2.2. Assume in addition X has dimension d. Then adding or removing an
essential d-cell from X increases or decreases βd(X) by one, respectively, and fixes
βd−1(X).

Proof. Let Y ⊂ X be the result of removing a d-cell from X. Then we have an exact
sequence in homology

0 → Hd(Y ) → Hd(X)
p−→ Z → Hd−1(Y ) → Hd−1(X) → 0.

The above factors into two short exact sequences

0 → Hd(Y ) → Hd(X) → im p → 0

0 → Z/ im p → Hd−1(Y ) → Hd−1(X) → 0 ,

where im p is the image of p. If the attached cell is essential, then im p is a non-trivial
subgroup of Z. Therefore, the first sequence implies βd(X) = βd(Y ) + 1, while the
second implies βd−1(Y ) = βd−1(X).

Lemma 2.3. X has a spanning tree.

Proof. If Hd(X;R) = 0, then X is a spanning tree. If Hd(X;R) 6= 0, then we can pick
an essential d-cell and remove it, decreasing βd(X) by 1. Repeat this process until βd

is zero. Evidently, the resulting subcomplex T contains Xd−1, and, by Lemma 2.2,
we have βd−1(T ) = βd−1(X). Hence, T is a spanning tree.

The following is straightforward, and its proof is left to the reader.

Lemma 2.4. Any spanning tree for X may be obtained by removing essential d-
cells. Furthermore, if T is a spanning tree of X, then the number of essential d-cells
withdrawn to construct T is equal to βd(X).

Lemma 2.5. Let T be a spanning tree of X, and let T̃ = T ∪ b, where b is an essential
cell in T̃ . If b′ is an essential d-cell of T̃ different from b, then U := T̃ \ b′ is a spanning
tree.

Proof. Since b′ is essential, Lemma 2.2 implies Hd(U) has rank zero. This lemma

also implies βd−1(U) = βd−1(T̃ ) = βd−1(T ). Since our construction leaves the d− 1
skeleton fixed, U is a spanning tree.

Lemma 2.6. Let T be a spanning tree of X, and let b ∈ Xd \ Td. Then [∂b] generates
a torsion element of Hd−1(T ;Z).

Proof. Since b is a d-cell not in T , the attaching map for b factors through T .
Hence, the homology class [∂b] lies in Hd−1(T ;Z). The isomorphism Hd−1(T ;R) ∼=
Hd−1(X;R), along with the fact that ∂b bounds the cellular chain b in X, implies ∂b
is torsion in Hd−1(T ;Z).
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Recall the linear transformation T̄ : Cd(X;R) → Zd(X;R) defined in the introduc-
tion, which was defined on cells not belonging to T as

T̄ (b) = c/tb ,

where c is a generator of Hd(T ∪ b;Z) and

tb = 〈c, b〉 ,
where the inner product is taken in Cd(X;R) (here we are using the inclusion Hd(T ∪
b;R) ⊂ Cd(X;R) to make sense of the inner product).

Lemma 2.7. For an essential d-cell b, the class [∂b] ∈ Hd−1(T ;Z) is a torsion ele-
ment of order |tb|. In particular, there is a short exact sequence

0 → Z/tbZ → Hd−1(T ;Z) → Hd−1(T ∪ b;Z) → 0 .

Proof. By Lemma 2.6, [∂b] is a torsion class. Let t be its order.
By slight abuse of notation, we let ∂b denote the cycle representing [∂b]. Then t∂b

is also a cycle, which is also the boundary of a unique integral d-chain w ∈ Cd(T ;Z). It
is straightforward to check that tb− w is a generator of Hd(T ∪ b;Z) = Zd(T ∪ b;Z).
Then 〈tb− w, b〉 = t. It follows that t = ±tb. The short exact sequence is a direct
consequence.

Lemma 2.8. Let T be a spanning tree, and let bi and bj be essential d-cells such that
bi ∈ Xd \ Td and bj ∈ Td. Let U := T ∪ bi \ bj. Then

〈T̄ (bi), bj〉〈bi, Ū(bj)〉 = 1 .

Proof. We have T ∪ bi = U ∪ bj , so we may choose a common generator c for Hd(T ∪
bi) ∼= Hd(U ∪ bj). Let ti = 〈c, bi〉 and tj = 〈c, bj〉, so that

〈T̄ bi, bj〉〈bi, Ū bj〉 =
1

ti
〈c, bj〉

1

tj
〈bi, c〉 = 1.

For a finite CW complex Y of dimension d, let θY denote the order of the torsion
subgroup of Hd−1(Y ;Z).

Corollary 2.9. For T,U, bi, and bj as above,

θ2T 〈T̄ (bi), bj〉 = θ2U 〈bi, Ū(bj)〉.
Proof. Set ti := tbi , and let Y = T ∪ bi = U ∪ bj . Then the exact sequence

0 → Z/tiZ → Hd−1(T ;Z) → Hd−1(Y ;Z) → 0

gives |ti|θY = θT and similarly |tj |θY = θU . Consequently,

θ2T 〈T̄ (bi), bj〉 = θ2Y titj = θ2U 〈bi, Ū(bj)〉 .

3. Proof of Theorem A and Addendum B

The proof will proceed along the lines given in [NS] in the classical setting. Given
a spanning tree T , let {b1, . . . , bk} be elements of Xd \ Td.

Lemma 3.1. The collection T̄ (b1), . . . , T̄ (bk) is a basis for Zd(X;R).
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Proof. Recall that Zd(X;R) = Hd(X;R). Let q : X → X/T be the quotient map.
Then the homomorphism q∗ : Hd(X;R) → Hd(X/T ;R) is an isomorphism, and
Hd(X/T ;R) is the vector space with basis b1, . . . , bk. It’s straightforward to check
that q∗ ◦ T̄ : Cd(X;R) → Hd(X/T ;R) maps a d-cell b to itself when b ∈ Xd \ Td and
is zero otherwise.

Corollary 3.2. For any z ∈ Zd(X;R), we have T̄ (z) = z.

Proof. Use Lemma 3.1 to write z =
∑

i siT̄ (bi). Then

T̄ (z) =
∑

i

siT̄ (T̄ (bi)) =
∑

i

siT̄ (bi) = z .

Lemma 3.3. For distinct d-cells bi, bj ∈ X, recall that Tij is the set of all spanning
trees such that 〈T̄ (bi), bj〉 6= 0. The operation that sends a tree T ∈ Tij to U := T ∪
bi \ bj ∈ Tji is a bijection. Furthermore,

∑

T∈Tij

wT 〈T̄ (bi), bj〉R =
∑

U∈Tji

wU 〈bi, Ū(bj)〉R .

Proof. The bijection claim is evident from Lemma 2.5. From the definition of the

weights, we have rjwT = riwU
θ2
T

θ2
U

. Note that 〈T̄ (bi), bj〉R = rj〈T̄ (bi), bj〉. Using Corol-

lary 2.9, we infer

wT 〈T̄ (bi), bj〉R = wU 〈bi, Ū(bj)〉R .

Now sum up over all T ∈ Tij .

Proof of Theorem A. Consider the operator F :=
∑

T wT T̄ , where the sum is over all
spanning trees of X. For any pair of d-cells bi and bj of X we have

〈
∑

T

wT T̄ (bi), bj〉R =
∑

T∈Tij

wT 〈T̄ (bi), bj〉R

=
∑

U∈Tji

wU 〈bi, Ū(bj)〉R by Lemma 3.3 ,

= 〈bi,
∑

U

wU Ū(bj)〉R

= 〈bi,
∑

T

wT T̄ (bj)〉R,

where we have used the fact that 〈T̄ (bi), bj〉R 6= 0 iff 〈T̄ (bi), bj〉 6= 0. Hence F is self-
adjoint in the modified inner product.

Recall the following fact: if G : V → V is self-adjoint, G|U = idU , and imG ⊂ U ,
then G is the orthogonal projection onto U . If z is a cycle, then F (z) = (

∑
T wT )z =:

∆z. Consequently, (1/∆)F restricts to the identity on Zd(X;R) and Lemma 3.1
implies the image of F lies in Zd(X;R). As (1/∆)F is self-adjoint, it is the orthogonal
projection in the modified inner product.
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Proof of Addendum B. Let z be the orthogonal projection of R−1V onto Zd(X;R)
in the modified inner product. Then R−1V − z ∈ Zd(X;R)⊥R, i.e.,

0 = 〈R−1V − z, z′〉R = 〈V −Rz, z′〉
for all z′ ∈ Zd(X;R). Hence, V −Rz ∈ Zd(X;R)⊥. The uniqueness of z is a conse-
quence of the fact that Zd(X;R)⊥ is the orthogonal complement to Zd(X;R) in the
standard inner product.

The proof of the last part is given by direct calculation using the self-adjointness
of the operator

∑
T wT T̄ :

〈z, b〉 = 1
rb
〈z, b〉R ,

= 1
rb
〈 1
∆

∑
TwT T̄R

−1V, b〉R ,

= 1
∆

∑

T

wT

rb
〈R−1V, T̄ (b)〉R ,

= 1
∆

∑

T

wT

rb
〈V, T̄ (b)〉 .

4. A weak form of Theorem C

The goal of this section is to show how Theorem A implies Theorem C up to
the identification of the prefactor γ. The prefactor will be computed in §6, where in
addition we prove an enhanced version of Theorem C.

Recall the given function r : Xd → R+ of §1. It is convenient to set

W := ln r : Xd → R .

Then rb = eWb , and we may also write R = eW : Cd(X;R) → Cd(X;R). Conversely,
given any function W : Xd → R, we set r := eW : Xd → R+. It is convenient to think
of W as lying in Cd(X;R) by representing it as

∑
b∈Xd

Wbb.
Recall that to each spanning tree T we associated the weight

wT = θ2T
∏

b∈Td

r−1
b ,

where θT is the order of the torsion subgroup of Hd−1(T ;Z).

Remark 4.1. Let M be a smooth manifold, and let V be a finite-dimensional real
vector space. Suppose f : M → V is a smooth map. Then the directional derivative
defines a V -valued, smooth, differential 1-form df ∈ Ω1(M ;V ). In the special case
whenM = U is a finite-dimensional real vector space, then Ω1(M ;V ) can be identified
with the space of smooth maps U → hom(U, V ).

Consider the linear operator

∂∂∗
R = ∂e−W∂∗ : Cd−1(X;R) → Cd−1(X;R) .

Since the image of ∂∂∗
R is contained in Bd−1(X;R), restriction of this operator to

Bd−1(X;R) gives an isomorphism

LX(W ) : Bd−1(X;R)
∼=−→ Bd−1(X;R) . (4)

Later, we’ll use LT (W ), where T is a spanning tree of X. For R = eW , LX(W ) is the



KIRCHHOFF’S THEOREMS IN HIGHER DIMENSIONS 175

operator LR defined in §1.
We can regard W 7→ LX(W ) as defining a smooth map

LX : Cd(X;R) → end(Bd−1(X;R)) , (5)

which is a family of linear operators parametrized by Cd(X;R). To avoid notational
clutter, when W is understood, we will often write LX(W ) without referring to either
argument. Therefore, L can refer to either (5) or (4).

Proposition 4.2. Theorem A implies the identity

d ln detL = d ln
∑

T

wT .

Remark 4.3. In keeping with our notational ambiguity, the left side of the display in
Proposition 4.2 is to be interpreted as the value at W of d ln detL ∈ Ω1(Cd(X;R);R).

Proposition 4.2 is equivalent to the statement

detL = γ
∑

T

wT ,

where detL and
∑

T wT are regarded as functions of W and γ is a constant indepen-
dent of W , as yet to be determined. This gives Theorem C modulo the determination
of the prefactor γ.

Proof of Proposition 4.2. First, note that L is diagonalizable with positive eigenval-
ues, so lnL is defined. We take the differential of the natural logarithm of detL:

d ln detL = d tr lnL
= tr d(lnL)
= tr(L−1dL),

(6)

where dL = ∂de−W∂∗ = −∂dWe−W∂∗.

The cyclic property of the trace implies

tr(L−1dL) = − tr(∂dWe−W∂∗L−1). (7)

If we set A := e−W∂∗L−1 : Bd−1(X;R)→Bd
R(X;R), then tr(L−1dL) =− tr(∂dWA) =

− tr(dWA∂). Consequently,

d tr lnL = − tr(dWA∂)

= −
∑

b∈Xd

〈b|dWA∂|b〉

= −
∑

b∈Xd

〈b|dWA|∂b〉

= −
∑

b∈Xd

dWb〈b|A|∂b〉 ,

(8)

where dWb denotes the b-coordinate function of dW , i.e., dWb(x) = dW (x)(b) = xb,
and 〈i|H|j〉 stands for the inner product 〈i,H(j)〉.
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By definition, A is a left inverse to ∂ : Zd(X;R)⊥R → Bd−1(X;R), so the expression
〈b|A|∂b〉 is the same as 〈b, P b〉, where P : Cd(X;R) → Zd(X;R)⊥R is the orthogonal
projection in the modified inner product 〈 , 〉R. By Theorem A, we have

P = I − 1
∆

∑

T

wT T̄ , (9)

where I is the identity operator. By inserting this expression into 〈b, P b〉, we obtain

〈b|A|∂b〉 = 1− 1

∆
〈b,

∑

T

wT T̄ (b)〉

= 1− 1

∆

∑

T,b/∈T

wT

=
1

∆

∑

T,b∈T

wT , (10)

where ∆ =
∑

T wT and the displayed sums run over trees T for which b does not, and
does, lie in T , respectively. This allows us to rewrite the expression appearing in the
last line of Eq. (8) as

∑

b∈Xd

dWb〈b|A|∂b〉 =
1

∆

∑

T

∑

b∈Td

wT dWb . (11)

On the other hand, we have

d ln
∑

T

wT =
1

∆

∑

T

dwT , (12)

where dwT is given by

dwT = θ2T d
∏

b∈Td

e−Wb = −
∑

b∈Td

dWbwT . (13)

Inserting Eq. (13) into Eq. (12) gives

d ln
∑

T

wT =
−1

∆

∑

T

∑

b∈Td

wT dWb. (14)

Assembling equations (6), (8), (11), and (14), we conclude

d ln detL = − 1

∆

∑

T

∑

b∈Td

wT dWb = d ln
∑

T

wT .

5. The low temperature limit

In this section, we introduce a perturbation parameter β ∈ R+ and compute detL
perturbatively. The parameter β is thought of as inverse temperature, since it plays
the role of inverse temperature in the Laplacian. Thus, β → ∞ is known as the low
temperature limit. The perturbation allows us freedom in our choice of W , and in the
low temperature limit, this choice will show that detL tends to detLT , where LT is
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L restricted to a spanning tree T , i.e.,

LT = ∂e−βW∂∗
T : Bd−1(T ;R) → Bd−1(T ;R)

where W : Xd → R.

Definition 5.1. Fix a spanning tree T of X. A function W : Xd → R is good if W is
one-to-one and

Wγ >
∑

α∈Td

Wα − (n−Mβd(X)− 1) min
α∈Td

Wα for any γ ∈ Xd \ Td,

where n is the dimension of Bd−1(X;R) and M > 0 is an integer chosen so that
Mβd(X) > n.

A good W : Xd → R guarantees that detL tends to detLT in the low temperature
limit, which we now show.

Proposition 5.2. For good W : Xd → R, we have

lim
β→∞

detLT

detL = 1 .

Before commencing with the proof, recall the boundary of a d-cell α ∈ Xd is given
by

∂α =
∑

j∈Xd−1

〈∂α,j〉6=0

bαjj,

where bαj := 〈∂α, j〉 is the incidence number of α and j. With respect to the standard
inner product, the adjoint operator ∂∗ on a (d− 1)-cell j is given by

∂∗j =
∑

α∈Xd

〈∂α,j〉6=0

b∗jαα,

where b∗jα := bαj . A straightforward computation of the matrix elements of L yields

Lij =
∑

α∈Xd

e−βWαbαibαj .

Proof of Proposition 5.2. Define ∂∗
T to be the adjoint of ∂ : Cd(T ;R) → Cd−1(T ;R),

(just as for ∂∗ = ∂∗
X). Let ∂̃∗ = ∂∗ − ∂∗

T and similarly δL = L − LT . An analysis sim-
ilar to the one for L above yields

LT
ij =

∑

α∈Td

e−βWαbαibαj .

The matrix elements for δL can be written as a similar sum; the only difference is we
instead sum over α ∈ Xd \ Td.

Our choice of good W implies any e−βWγ appearing in the expansion of δL must
be less than any e−βWα appearing in LT and conversely.
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To simplify taking the limit, we compute the quotient of detL by detLT and let
β → ∞. Since detLT 6= 0, we may write

det(LT + δL)
detLT

=
det(I + (LT )−1δL) detLT

detLT
.

It suffices to prove that (LT )−1δL tends to the zero operator as β → ∞. Equivalently,
it is enough to show that the matrix elements of (LT )−1δL converge to zero. The first
bound is of LT

ij :

|LT
ij | 6

∑

α∈Td

e−βWα |bαibαj |

6 e−βminα Wα

∑

α∈Td

|bαibαj |.

This can be further bounded by defining BT = maxij
∑

α∈Td
|bαibαj |. Hence we have

|LT
ij | 6 e−β(minα∈Td

Wα)BT . (15)

The standard formula for the inverse of a matrix gives

(
(LT )−1

)
ij
=

det L̄T
ij

detLT
, (16)

where Āij is the (i, j)th cofactor of A. Using the exact expression for the determinant
of LT appearing in Eq. (21), below, Eq. (20), below,3 and the bound Eq. (15) in the
case of the cofactor L̄T

ij , we obtain the estimate

(
(LT )−1

)
ij
6

e−β(minα∈Td
Wα)(n−1)(n− 1)!(BT )n−1

e
−β

∑
α∈Td

WαgT
,

where gT = det(∂∗
T∂T ) depends only on T and n is the dimension of Bd−1(X;R).

We bound the elements δL similarly by

|δLjk| 6 e−β(minγ∈Xd\Td
Wγ)BT̃ ,

where BT̃ is defined in the obvious fashion.
Finally, the matrix elements of (LT )−1∂L then satisfy the following inequality:

(
(LT )−1∂L

)
ik

6
(n− 1)!e−β(minα Wα)(n−1)(BT )n−1ne−βminγ WγBT̃

e
−β

∑
α∈Td

WαgT
.

Collecting terms independent of β into N , we see
(
(LT )−1∂L

)
ik

6 e−β((n−1)minα Wα−
∑

α Wα+minγ Wγ)N,

where α ∈ Td and γ ∈ Xd \ Td. Our choice of W forces the matrix elements to zero
as β → ∞. Therefore,

lim
β→∞

detL
detLT

= det I = 1,

completing the proof.

3There is no circularity here; Eqs. (20) and (21) do not depend on the material in this section.
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6. A generalized form of Theorem C

In this section, we will identify the prefactor γ appearing in Theorem 6.7. We will
also generalize Theorem C in a significant way.

Covolume
If A is a finitely generated abelian group, we let

AR := A⊗Z R

denote its realification, and we let β(A) = dimR AR denote the rank of A. Let t(A) be
the order of the torsion subgroup of A.

For a homomorphism α : A → B of abelian groups, we denote the induced homo-
morphism of real vector spaces by αR : AR → BR.

Definition 6.1. A homomorphism α : A → B of finitely generated abelian groups is
called a real isomorphism if the induced homomorphism αR : AR → BR of real vector
spaces is an isomorphism.

Clearly, α is a real isomorphism if and only if its kernel and its cokernel are finite.
If α is a real isomorphism, then β(A) = β(B), where we recall that β(A) is the rank
of A. We will henceforth assume that A and B are free abelian. In this case, α is a
real isomorphism if and only if α is a monomorphism with finite cokernel.

Definition 6.2. For α : A → B a real isomorphism with A and B free abelian, we let

t(α) ∈ N

denote the order of the cokernel, i.e., t(α) := t(B/α(A)).

An ordered basis for A determines an ordered basis for AR, and given any pair of
ordered bases for A, the associated change of basis matrix for AR has determinant ±1.
This defines an equivalence relation on ordered bases for A with exactly two distinct
equivalence classes. A choice of equivalence class is referred to as an orientation of
A. Consequently, when orientations for A and B are chosen, and α : A → B is a real
isomorphism, then the determinant detα ∈ R is defined and depends only on the
choice of orientations. Furthermore, its absolute value | detα| is well defined and does
not depend on the choice of orientations. The latter has the following interpretation:
choose an ordered basis for B. This defines an inner product on BR making the
ordered basis for B into an orthonormal basis for BR. Then α(A) ⊂ BR is a lattice
and | detα| is its covolume, i.e., the volume of the torus BR/α(A) with respect to the
induced Riemannian metric, or equivalently, the volume of a fundamental domain of
the universal covering BR → BR/α(A).

Proposition 6.3. For a real isomorphism α : A → B of finitely generated free abelian
groups, we have | detα| = t(α).

Proof. By an appropriate choice of bases for A and B, α can be represented by a
diagonal matrix. In this case, the claim is evident.

We state the following fact from linear algebra without proof to simplify our proof
of Theorem 6.7.
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Lemma 6.4. Let V and W be free abelian groups with inner products and a choice
of basis {ei} and {fj}, respectively. Write gV for the matrix 〈ei, ej〉 of inner products
and similarly for gW . If f : V → W is a map of groups and A is the matrix for f with
respect to the bases {ei} and {fj}, then the matrix for f∗ has the form (gV )−1AT gW .

Generalization of Theorem 6.7
Recall that for W : Xd → R, we have the operator

L(W ) = ∂e−W∂∗ : Bd−1(X;R)
∼=−→ Bd−1(X;R),

which is just LR = ∂∂∗
R, as defined in the introduction, with R = eW . Again, we

suppress the argument W from the notation and refer to L(W ) as L.
As we showed earlier in Proposition 4.2, we have the following representation:

detL = γ
∑

T

wT , (17)

where the constant γ is still to be determined.
The main case of interest in the following definition is A = Bd−1(X;Z). As pointed

out in Remark 6.9, different choices of A give other versions of the higher matrix-tree
theorem (Corollary D) found in the literature.

Definition 6.5. Let A ⊂ Cd−1(X;Z) be a subgroup. Define a natural number

µ(A) ∈ N

as follows: Let {ei} be a basis for A. Consider the matrix g whose (i, j)-entry is given
by gij = 〈ei, ej〉, where the inner product is taken in Cd−1(X;R). Set µ(A) := det g.

Since ei expressed in the standard basis for Cd−1(X;R) has integer components,
we infer that gij ∈ Z, so µ(A) is an integer. Alternatively, one can define µ(A) as
the square of the covolume of the lattice A ⊂ AR given by restricting the standard
inner product of Cd−1(X;R) to AR. The equivalence of the two definitions can be
seen as follows: Let B be the matrix whose rows are the vectors ei expressed in an
orthonormal basis for Cd−1. Then | detB| is the covolume of A ⊂ AR. Furthermore,
g = BB∗, so µ(A) = det g = (detB)2 ∈ N.

For any abelian group U , we set

BU
d−1 := Bd−1(X;U) ,

i.e., the image of the boundary operator ∂ : Cd(X;U) → Cd−1(X;U) of the cellular
chain complex of X with U coefficients. The following hypothesis will be assumed
from now on, and holds for the main case of interest A = Bd−1(X;Z).

Hypothesis 6.6. The inclusion A⊂Cd−1(X;R) is such that the orthogonal projection
PA : BR

d−1 → AR is induced by a real isomorphism pA : BZ

d−1 → A, i.e., PA = (pA)R.

Consider the composite operator

LA : AR

∼=−→ AR

defined by LA = PA∂e
−W∂∗|AR

.
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Theorem 6.7 (Generalized Higher Weighted Matrix-Tree Theorem). We have

detLA = γA
∑

T

wT , (18)

where the prefactor is given by

γA =
µ(A)t(pA)

2

θ2X
. (19)

Remark 6.8. The choice A = Bd−1(X;Z) gives Theorem C.

Remark 6.9. If A = AS is the free abelian group generated by a judiciously chosen
subset S ⊂ Xd−1, we will obtain µ(AS) = 1. Using this choice of A as well as W = 0,
Theorem 6.7 gives a generalization of the main result of [P] to CW complexes.

Before proving Theorem 6.7, we state a useful lemma about spanning trees in the
low temperature limit.

Lemma 6.10. Let T be a spanning tree, and suppose W is good for T . Then in the
low temperature limit, wT > wU for any other spanning tree U .

Proof. By Lemma 2.5, we can reduce to the case U = T ∪ e \ f , with e ∈ Xd \ Td and
f ∈ Td, both essential. The good hypothesis means

We >
∑

α∈Td

Wα − (n−Mβd(X)− 1) min
α∈Td

Wα ,

where the sum is over all α ∈ Td and M is chosen so Mβd(X) > n. By definition,

wU = θ2U
∏

α∈Ud

e−βWα .

Using Lemma 2.8 to re-write the torsion factor, and the fact that T and U only differ
by e and f , we have

wU =
θ2T 〈T̄ e, f〉
〈e, Ūf〉

∏

α∈Td

e−βWαeβWf .

Collecting the factors of wT together, we find

wU

wT
=

〈T̄ e, f〉
〈e, Ūf〉e

−β(We−Wf ) .

The incidence numbers in the quotient are temperature independent, so we focus on
the exponential factor.

Let Wj = minα∈Td
Wα. Using the good condition, we have

We −Wf >
∑

α∈Td

α6=f

Wα − (n−Mβd(X)− 1) min
α∈Td

Wα

> (βd(X)− 1)Wj − (n−Mβd(X)− 1)Wj

= (βd(X)(M + 1)− n)Wj

> 0 ,

by Lemma 2.4 and the requirement on M . Therefore, in the low temperature limit,
wU/wT < 1.
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Proof of Theorem 6.7. As above, we have

L := ∂∂∗
R = ∂e−W∂∗ : Bd−1(X;R)

∼=−→ Bd−1(X;R) .

Then

LA = PALP ∗
A ,

which implies

detLA = det(L) det(PAP
∗
A) . (20)

If we apply this to Eq. (17), we reproduce Eq. (18) with γA = γ det(PAP
∗
A). It suffices

to identify the prefactor γA.
Consider the operator LT for some spanning tree T . We have

detLT = det(∂T e
−W∂∗

T ) = det(∂T∂
∗
T e

−W ) = wT

θ2
T

det(∂T∂
∗
T ). (21)

In the case of good W and in the low temperature limit, the left-hand side of
Eq. (18) tends to the determinant of the operator LT

A for the spanning tree T ⊂ X of
maximal weight, whereas the right-hand side is dominated by the single contribution
associated with the same spanning tree T by Lemma 6.10. Consequently, Eq. (21)
implies

det (∂T∂
∗
T ) det

(
PT
A (PT

A )∗
)
= γAθ

2
T . (22)

Since PT
A = (pTA)R, where the real isomorphism pTA : Bd−1(T ;Z) → A is obtained by

composing the real isomorphism pA :Bd−1(X;Z)→A with the inclusion Bd−1(T ;Z)⊂
Bd−1(X;Z), by Lemma 6.4, we have

det
(
PT
A (PT

A )∗
)
= µ(A)(µ(Bd−1(T ;Z)))

−1(det pTA)
2 .

We further note that, since T is a spanning tree, the free abelian group Bd−1(T ;Z) has
basis {∂e1, . . . , ∂es}, where e1, . . . , es are the d-cells of T , so that we have a matrix g
of inner products with the matrix elements gij = 〈∂T ei, ∂T ej〉 = 〈∂∗

T∂T ei, ej〉, which
implies µ(Bd−1(T ;Z)) = det(∂∗

T∂T ). Then Eq. (22) assumes the form

µ(A)(det pTA)
2 = γAθ

2
T .

Combining this with Proposition 6.3 results in

γA =
µ(A)t(pTA)

2

θ2T
. (23)

The right side of Eq. (23) is written in terms of a particular spanning tree T , but
it does not actually depend on this choice. An invariant expression that does not
contain T is obtained by using the following relations:

t(pTA)

t(pA)
= t(Bd−1(X;Z)/Bd−1(T ;Z)) =

θT
θX

. (24)

Substituting Eq. (24) into Eq. (23) results in an invariant expression for γA, given by
Eq. (19).

Alternative forms of Theorem C
In this subsection we deduce Addendum E as well as a generalization of it to the

weighted case. Let us now return to the more general situation of Theorem 6.7.
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Theorem 6.11. With A ⊂ Cd−1(X;Z) as above, we have

detLA =
∑

T

detLT
A .

Proof. Using Eq. (24), we infer that

γA =
µ(A)t(PA)

2

θ2X
=

µ(A)t(PT
A )2

θ2T

for any spanning tree T . Combining this with Theorem 6.7 in the case of a spanning
tree T , we obtain

detLT
A = γAwT .

The conclusion now follows by summing over all T .

In the special case when A = Bd−1(X;Z), Theorem 6.11 reduces to the following.

Corollary 6.12. detL =
∑

T detLT =
∑

T µT .

7. Reidemeister torsion and Theorem F

Reidemeister torsion
Milnor [M] defined the Reidemeister torsion of a not necessarily acyclic finite chain

complex over a field equipped with the auxiliary structure of an ordered basis of its
chains as well as a choice of ordered basis of its homology groups. In this section
we restrict ourselves to the case of torsion for chain complexes defined over the real
numbers.

Consider the case of a chain complex C∗ of finite-dimensional vector spaces over
R having non-trivial terms in degrees 0 6 ∗ 6 d. Let ∂ : Ck → Ck−1 be the boundary
operator. Let Zk ⊂ Ck be the subspace of k-cycles, and let Bk ⊂ Zk the subspace of
k-boundaries. We also set Hk = Zk/Bk.

We then have short exact sequences

0 → Zk → Ck → Bk−1 → 0 and 0 → Bk → Zk → Hk → 0 .

If we choose splittings sk−1 : Bk−1 → Ck and tk : Hk → Zk, we are entitled to write
Ck

∼= Zk ⊕Bk−1
∼= Bk ⊕Hk ⊕Bk−1.

Pick bases bk := {bik}, ck := {cik}, hk := {hi
k} for Bk, Ck, and Hk, respectively. It

follows that {bik, tk(hi
k), sk−1(b

i
k−1)} forms another basis for Ck. Let {bkhkbk−1}

denote this basis, and let

[bkhkbk−1/ck]

denote the change of basis matrix that expresses the basis bkhkbk−1 in terms of the
basis ck. Let c = {ck} and h = {hk}.
Definition 7.1 (Milnor [M, p. 365]). The torsion of the pair (C∗, h) is defined by

τ(C∗) =
∏

k>0

det[bkhkbk−1/ck]
(−1)k ,

which is consistent with Milnor’s definition with respect to the identification of
K1(R) ∼= R× given by the determinant function.
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Milnor shows that the definition is independent of the choice of b as well as the
splittings. Thus, the torsion is really an invariant of the triple (C∗, c, h).

In what follows, C∗ = C∗(X;R) is the cellular chain complex of a finite, connected
CW complex X that has a preferred basis consisting of the set of cells. In this case,
we think of the torsion as an invariant of the pair (X, h) and set

τ(X; h) := τ(C∗(X;R)) ,

where we have indicated in the notation the dependence on the choice of homol-
ogy basis. It will be useful to single out a specific kind of homology basis. Let
H∗(X;Z)0 ⊂ H∗(X,R) be the lattice given by taking the image of the evident homo-
morphism H∗(X;Z) → H∗(X;R). Note that H∗(X;Z)0 has a preferred isomorphism
to the torsion free part of H∗(X;Z).

Definition 7.2. A combinatorial basis for H∗(X;R) consists of a basis for Hk(X;Z)0
for k > 0.

Henceforth we fix a combinatorial basis h. Let r : ∐k Xk → R+ be a positive-valued
function on the set of cells of X. As in previous sections, we write R : C∗(X;R) →
C∗(X;R) for the linear transformation determined by b 7→ rbb, and R = eW . We have
a modified inner product 〈b, b′〉R = 〈rbb, b′〉. We also have an operator

Lk(W ) = ∂∂∗
R := ∂e−Wk+1∂∗eWk : Bk(X;R) → Bk(X;R) ,

where ∂∗
R is the formal adjoint to ∂ : Ck+1(X;R) → Ck(X;R) in the modified inner

product on both source and target. We define HR
k (X;R) to be the orthogonal compli-

ment of Bk(X;R) in Zk(X;R) with respect to modified inner product on Ck(X;R),
and we then have a preferred identification HR

k (X;R) ∼= Hk(X;R) given by sending
a cycle to its homology class. As in the introduction, we let ηk be the square of the
covolume of Hk(X;Z)0 ⊂ HR

k (X;R), with respect to the basis hk for Hk(X;Z)0 and
the inner product on HR

k (X;R) obtained by restricting the modified inner product
on Ck(X;R).4

Theorem 7.3. Let X be a finite, connected CW complex. Then

τ2(X; h) =

∏
k even detLk(W )∏
k odd detLk(W )

·
∏

k odd,b∈Xk
eWkb

∏
k even,b∈Xk

eWkb
·
∏

k even ηk∏
k odd ηk

.

Remark 7.4. If we take W = 0, then Theorem 7.3 immediately implies that τ2(X; h)
is an invariant of the lattice H∗(X;Z)0 ⊂ H∗(X;R) rather than just an invariant of
the specific choice of combinatorial basis h. Since this lattice doesn’t depend on any
choices, we infer that τ2(X; h) depends only on the CW structure of X. In fact, the
method of proof of [M, Th. 7.2] shows that τ2(X; h) is invariant under subdivision.

Proof of Theorem 7.3. For the purpose of this proof we suppress W and write L =
L(W ). We also set C∗ := C∗(X;R). Define the splitting maps sk−1 : Bk−1 → Ck by

sk−1(b
i
k−1) = e−Wk∂∗eWk−1L−1

k−1(b
i) = ∂∗

RL−1
k−1(b

i
k−1) .

Let Bk
R(X;R) denote the image of sk−1, and similarly we define Bk

R(X;Z) to be

4In the introduction, ηk was defined only in the case when W = 0; the current notation applies to
an arbitrary W .
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sk−1(Bk(X;Z)). Note that Bk
R(X;R) is the orthogonal compliment to Zk in the

modified inner product on Ck.
Let γk denote the square of the covolume of Bk

R(X;Z) ⊂ Bk
R(X;R), using the inner

product on Bk
R(X;R) induced by the modified inner product on Ck. Similarly, let γk−1

denote the square of the covolume of Bk−1(X;Z) ⊂ Bk−1(X;R), where Bk−1(X;R)
is given the inner product by restricting the modified inner product on Ck−1. Using

the isomorphism Bk ⊕Hk ⊕Bk−1

∼=→ Ck determined by the splitting, we infer

det[bkhkbk−1/ck]
2 =

γkηkγ
k

∏
b∈Xk

eWkb
, (25)

so the square of the Reidemeister torsion is

τ2(X; h) =

∏
k even γkηkγ

k

∏
k odd γkηkγ

k

∏
k odd,b∈Xk

eWkb

∏
k even,b∈Xk

eWkb
. (26)

Since sk = ∂∗
WL−1

k , we have s∗k = L−1
k ∂ (since L is self-adjoint). Therefore, s∗ksk =

L−1
k ∂∂∗

WL−1
k = L−1

k . We use this fact to compute the quotient of γk/γk−1. Recalling
that γk is given as the determinant of the inner product matrix, we compute

〈sk−1(b
i
k−1), sk−1(b

j
k−1)〉R = 〈s∗k−1sk−1(b

i
k−1), (b

j
k−1)〉R

= 〈L−1
k−1(b

i
k−1), (b

j
k−1)〉R.

The determinant of the matrix with these latter entries is, by definition, (detU)2

detLk−1, where U is the change of basis matrix expressing bk−1 in terms of an
orthornormal basis for Bk−1(X;R) in the modified inner product. A similar obser-
vation shows that the determinant of the matrix whose entries are 〈bik−1, b

j
k−1〉R is

(detU)2, and this is just γk−1.
Consequently, the quotient of these determinants is

γk

γk−1
=

1

detLk−1
. (27)

Inserting Eqn. (27) into Eqn. (26) and performing the evident cancellations, we con-
clude

τ2(X; h) =

∏
k even detLk(W )∏
k odd detLk(W )

·
∏

k odd,b∈Xk
eWkb

∏
k even,b∈Xk

eWkb
·
∏

k even ηk∏
k odd ηk

.

In the special case when W = 0, we can combine Theorem 7.3 with Corollary D.
This immediately gives Theorem F:

Corollary 7.5 (Torsion-Tree Theorem). For a finite, connected CW complex X, we
have

τ2(X; h) =
∏

k>0

(δk
∑

T∈Tk+1

θ2T )
(−1)k ,

where Tk denotes the spanning trees of X(k).

An alternative formula
In this part, we shall derive a different formula for the torsion in terms of a sin-

gle spanning tree in each degree as well as a choice of auxiliary structure—namely,
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homology truncation data for X.

Hypothesis 7.6. For each k > 1, we fix a spanning tree T k for X(k). Our convention
is to set T 0 = ∅.

Definition 7.7. A homology truncation of X in degree k > 0, subordinate to T k, is
a subcomplex i : V k ⊂ X(k) such that T k ⊂ V k and i∗ : H∗(V

k;R) → H∗(X;R) are
isomorphisms for ∗ 6 k.

An induction argument similar to the proof of Lemma 2.3 shows that homology
truncations exist. Note that V 0 consists of a single vertex of X. We have a filtration

T 0 ⊂ V 0 ⊂ · · · ⊂ X(k−1) ⊂ T k ⊂ V k ⊂ X(k) ⊂ · · · .

Lemma 7.8. The choice of spanning tree T k determines a splitting Bk−1(X;R) →
Ck(X;R). The choice of homology truncation V k subordinate to T k determines a
splitting Hk(X;R) → Zk(X;R).

Proof. The first splitting is the composition

Bk−1(X;R) = Bk−1(T
k;R)

∂−1

−−→
∼=

Ck(T
k;R) −→ Ck(X;R),

and the second is given by

Hk(X;R)
i−1
∗−−→
∼=

Hk(V
k;R) = Zk(V

k;R)
i∗−→ Zk(X;R) .

Define a basis for Bk(X;Z), bk = {bki }, as given by the k-cells of T k, denoted
T k
k . Here we are using the preferred isomorphism Bk(X;Z) ∼= Ck(T

k;Z). For a basis
bk−1 of Bk−1(X;R), we take the image of the standard basis for Ck(T

k;R) under the
composition

Ck(T
k;R)

∂→ Bk−1(T
k;R) → Bk−1(X;R).

The basis for homology in degree k is the combinatorial basis hk given as an input to
the torsion. As always, the basis for Ck(X;R) is given by the set of k-cells.

Before explicitly identifying the torsion, note that in each dimension k there are
essentially three types of cells:

Xk = (T k
k ) ∪ (V k

k \ T k
k ) ∪ (Xk \ V k

k ) .

Roughly speaking, the first set of cells contributes to Bk, the second set contributes to
Hk, and the last set contributes to Bk. This gives us a decomposition of the k-chains

Ck(X;R) = Ck(T
k;R)⊕ Ck(V

k/T k;R)⊕ Ck(X/V k;R) (28)

(when k = 0, we replace C0(V
0/T 0;R) with C0(V

0, T 0;R) = R, etc.). Furthermore,
the cell decomposition above implies the change-of-basis matrix [bkhkbk−1/c] has the
following form: 


∗ ∗ ∗
∗ ∗ 0
∗ 0 0




Therefore, the determinant decomposes as the product of three sub-determinants.
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We first identify the contribution of hk to the torsion. With respect to the splitting
Eq. (28), the combinatorial basis hk has image contained in the direct sum

Ck(T
k;R)⊕ Ck(V

k/T k;R) = Ck(V
k;R) .

Hence its contribution to the torsion is left invariant if we project these elements onto
Ck(V

k/T k;R) = Hk(Vk/Tk;R) = Hk(X;R) (since the other summand Ck(T
k;R) =

Bk(T k;R) maps to Bk(X;R) and the relevant determinant remains unchanged if
we project away from Bk(X;R)). Consequently, the homological contribution to the
torsion in degree k is given by the determinant of the composite

Hk(X;R)
i−1
∗−−→
∼=

Hk(V
k;R)

p∗−→
∼=

Hk(V
k/T k;R) ,

where p : V k → V k/T k is the quotient map. So we wish to identify det p∗/det i∗.

Definition 7.9. Let

χk ∈ N

denote the square of the determinant of i∗ : Hk(V
k;R) → Hk(X;R), i.e., the square

of the covolume of the lattice i∗(Hk(V
k;Z)) ⊂ Hk(X;R).

Applying Proposition 6.3 to the real isomorphism Hk(V
k;Z) → Hk(V

k/T k;Z), we
infer the following.

Lemma 7.10. The determinant of p∗ is the ratio ±θTk/θV k .

Consequently, up to sign, the contribution of hk to the determinant defining the
Reidemeister torsion is

θTk

θV k

√
χk

. (29)

We next identify the contribution in degree k to the torsion provided by the basis
bk. As defined above, this basis is given by the boundaries of the cells of Tk+1. This
leads us to consider the composite

Ck+1(T
k+1;Z)

∂−→ Bk(T
k+1;Z)

qk−→ Ck(X/V k;Z) , (30)

where qk is induced by the quotient map T k+1 → X/V k. The homomorphism ∂ is
an isomorphism, and so it has determinant ±1. The second homomorphism qk is a
real isomorphism, and therefore the determinant of its realification, det((qk)R), has
value ±t(qk) by Proposition 6.3. Note that (qk)R is the restriction of the orthogonal
projection Ck(X;R) → Ck(X/V k;R) to the subspace Bk(Tk+1;R) ⊂ Ck(X;R) and
the projection of bk onto this summand gives its contribution to the torsion. Hence,
the determinant of the composition (qk)R ◦ ∂ is ±t(qk). So the contribution in degree
k of bk to the torsion is ±t(qk).

Lastly, the contribution to the torsion in degree k provided by the basis bk−1 is
given by the standard basis of Ck(Tk;R) via the splitting Eq. (28). It is then evident
that the contribution in degree k of bk−1 to the torsion is 1.

Assembling, we obtain

det[bkhkbk−1/c] = ±t(qk) ·
θTk

θV k

√
χk

· 1 . (31)

Forming the square of the Reidemeister torsion, we conclude the following.
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Theorem 7.11. For a connected, finite CW complex X with combinatorial homology
basis h, spanning tree data {T k} and homology truncation data {V k}, we have

τ2(X; h) =
∏

k>0

(
θ2Tkt(qk)

2

θ2
V kχk

)(−1)k

,

where qk : Bk(T
k+1;Z) → Ck(X/V k;Z) and χk ∈ N are as above.

Example 7.12. If X has dimension 1, then all terms appearing in Theorem 7.11 are
equal to 1. Hence, τ2(X; h) = 1 whenever X is a connected finite graph.

Example 7.13. Let A be a finitely generated torsion abelian group, and let n be a
positive integer. Up to isomorphism, A can be expressed as the cokernel of a real
isomorphism h : Zk → Zk. Choose a self-map of a k-fold wedge of n-spheres f : ∨k

Sn → ∨kS
n that induces h on homology in degree n. There is only one such map up

to homotopy. Let M(A,n) be the the mapping cone of f . Then M(A,n) is a Moore
space of type (A,n).

Set T i = ∗ = V i for 0 < i < n and Tn = M(A,n) = V n. Then T i is a spanning
tree for the i-skeleton of M(A,n) and V i is the homology truncation of M(A,n) in
degree i with respect to T i. In this instance, the only non-trivial term appearing in
Theorem 7.11 is t(qn), and in this case qn = h. Consequently,

τ2(M(A,n); h) = (t(h))2(−1)n = |A|2(−1)n .

For example, if A = Z/2 and n = 1, then M(A,n) = RP 2. We conclude that
τ2(RP 2; h) = 1

4 .
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