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OPERATIONS ON THE SECONDARY HOCHSCHILD
COHOMOLOGY

MIHAI D. STAIC and ALIN STANCU

(communicated by Nathalie Wahl)

Abstract
We show that the secondary Hochschild cohomology associ-

ated to a triple (A,B, ε) has several of the properties of the
usual Hochschild cohomology. Among others, we prove that
the total secondary Hochschild complex is a multiplicative non-
symmetric operad, discuss the connection with extensions of
B-algebras, and give a Hodge-type decomposition of the sec-
ondary Hochschild cohomology.

In memory of our advisor, Dr. Samuel D. Schack

1. Introduction

Hochschild cohomology was introduced by Hochschild in [8] in order to study
extensions of associative algebras over a field and to characterize the separability of
this class of algebras. In the same paper (written while he was a draftee serving in
the army) he defined for any associative algebra A the cup product of cochains with
coefficients in A. From Hochschild’s definition it follows easily that the cup product on
the cochains descends to one on the Hochschild cohomology H•(A,A). Almost twenty
years later Gerstenhaber proved in [3] that at the cohomology level the cup product is
graded commutative. He also defined a Lie product whose properties, when combined
with those of the cup product, determine onH•(A,A) a rich algebraic structure which
is now called a Gerstenhaber algebra (or G-algebra). G-algebra structures appear in
other contexts of which we mention here the exterior algebra of a Lie algebra, the
differential forms on a Poisson manifold, and the Hochschild cohomology of presheaves
of algebras. Part of this paper is to show that the secondary Hochschild cohomology
can be added to this list.

Consider a B-algebra A determined by the k-algebra homomorphism ε : B → A.
The secondary Hochschild cohomology of the triple (A,B, ε) with coefficients in A,
denoted H•((A,B, ε);A), arises naturally in the study of the algebra deformations
A[[t]] which admit a B-algebra structure. It was introduced in [12] where it was
proved that a B-algebra structure on A[[t]] is determined by a family of products
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mα : A[[t]]⊗A[[t]] → A[[t]] that must satisfy the following generalized associativity
condition: mαβ(id⊗mγ) = mβγ(mα ⊗ id) for all α, β and γ ∈ B. For a, b ∈ A and
α ∈ B we have mα(a⊗ b) = ε(α)ab+ c1(a⊗ b⊗ α)t+ · · · . Just like in the case of
deformations of algebras, c1 is a 2-cocycle that gives the deformation mod t2. Its
class c1 ∈ H2((A,B, ε);A) is determined by the isomorphism class of the B-algebra
A[[t]]. Moreover, if we assume that mα is associative mod tn+1 then the obstruction
to extend it to an associative product mod tn+2 is the vanishing of the element c1 ◦
cn + c2 ◦ cn−1 + · · ·+ cn ◦ c1 in H3((A,B, ε);A).

The paper is organized as follows. In the first section we recall the definition of
the secondary Hochschild cohomology and some results about operads. In the second
we show that the secondary Hochschild complex is a multiplicative non-symmetric
operad and that the secondary Hochschild cohomology has a G-algebra structure. In
the third section we show that there is bijection between extensions of B-algebras
0 → M → X → A → 0 with M2 = 0 and H2((A,B, ε);M). In the fourth we give a
Hodge-type decomposition, in characteristic 0, for the secondary cohomology, one
that is consistent with the Hodge decomposition of the usual Hochschild cohomology.
Finally, in the last section we investigate the (cup and bracket preserving) natural
map Φ : Hn((A,B, ε);A) → Hn(A,A). More precisely, we present examples which
show that in general Φ is neither surjective nor injective. Our examples deal with
subalgebras of the ring of polynomials. We show that requiring Φ2 to be injective
is equivalent to the Jacobian problem stated in [13], a question first posed by Ott-
Heinrich Keller in 1939.

2. Preliminaries

2.1. Hochschild cohomology of an algebra A
In this paper k is a field, ⊗ = ⊗k, and all k-algebras have a multiplicative unit.

We recall from [4] and [9] the definition of the Hochschild cohomology.
Suppose that A is an associative k-algebra, and M is an A-bimodule. Define

Cn(A,M) = Homk(A
⊗n,M) and δn : Cn(A,M) → Cn+1(A,M) determined by:

δn(f)(a1 ⊗ a2 ⊗ · · · ⊗ an+1) = a1f(a2 ⊗ · · · ⊗ an+1)

+

n∑
i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+(−1)n+1f(a1 ⊗ · · · ⊗ an)an+1.

One can show that δn+1δn = 0. The homology of this complex is denoted byHn(A,M)
and is called the Hochschild cohomology of A with coefficients in M .

2.2. Secondary cohomology of a triple (A,B, ε)
We recall from [12] the definition of the secondary Hochschild cohomology.
Let A be an associative k-algebra; B a commutative k-algebra; ε : B → A a mor-

phism of k-algebras such that ε(B) ⊂ Z(A), the center of A; and M an A-bimodule.
We assume that for every α ∈ B and m ∈ M we have ε(α)m = mε(α). Let

Cn((A,B, ε);M) = Homk(A
⊗n ⊗B⊗n(n−1)

2 ,M).

We want to define δεn : Cn((A,B, ε);M) → Cn+1((A,B, ε);M).
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It is convenient to think about an element T ∈ A⊗n ⊗B⊗n(n−1)
2 using the following

matrix representation:

T = ⊗


a1 b1,2 · · · b1,n−2 b1,n−1 b1,n
1 a2 · · · b2,n−2 b2,n−1 b2,n
...

...
...

...
...

1 1 · · · 1 an−1 bn−1,n

1 1 · · · 1 1 an

 ,

where ai ∈ A, bi,j ∈ B, and 1 ∈ k. Notice that we do not have exactly the same
notation as in [12]; the difference here is that all the indices are shifted by one.

For T ∈ A⊗m+n−1 ⊗B⊗ (m+n−1)(m+n−2)
2 and for all 0 ⩽ i ⩽ m− 1 we denote by

T i
i+n the following “sub-tensor matrix”:

T i
i+n = ⊗

 ai+1 · · · bi+1,i+n

...
...

1 · · · ai+n

 .

One should notice that unless i = 0 it does not make sense to talk about T i
i+n as a

tensor but only as a sub-tensor of T . Clearly we have T = T 0
n .

For a tensor matrix T ∈ A⊗n ⊗B⊗n(n−1)
2 and positive integers l, i, and k such that

1 ⩽ l ⩽ i ⩽ k ⩽ n− 1 we consider the sub-tensor matrix

M l,k
i,i+1 = ⊗



al bl,2 · · · bl,ibl,i+1 · · · bl,k bl,k+1

1 al+1 · · · bl+1,ibl+1,i+1 · · · bl+1,k bl+1,k+1

...
...

...
...

...
1 1 · · · ε(bi,i+1)aiai+1 · · · bi,kbi+1,k bi,k+1bi+1,k+1

...
...

...
...

...
1 1 · · · · · · ak bk,k+1

1 1 · · · · · · 1 ak+1


.

With the above notation we define

δεn : Cn((A,B, ε);M) → Cn+1((A,B, ε);M),

δεn(f)(T
0
n+1) = a1ε(b1,2b1,3 · · · b1,n+1)f(T

1
n+1)− f(M1,n

1,2 ) + f(M1,n
2,3 )

+ · · ·+ (−1)if(M1,n
i,i+1) + · · ·+ (−1)n−1f(M1,n

n−1,n) + (−1)nf(M1,n
n,n+1)

+ (−1)n+1f(T 0
n)an+1ε(b1,n+1b2,n+1 · · · bn,n+1).

Proposition 2.1. ([12]) (Cn((A,B, ε);M), δεn) is a complex (i.e. δεn+1δ
ε
n = 0). We

denote its homology by Hn((A,B, ε);M) and we call it the secondary Hochschild
cohomology of the triple (A,B, ε) with coefficients in M .

Example 2.2. When B = k and ε : k → A is the map defining the k-algebra structure
on A, we have that Hn((A, k, ε);M) is the usual Hochschild cohomology.
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2.3. Non-symmetric operads

We recall from [1], [7], and [10] a few results about non-symmetric operads.
The general context in which operads are defined is that of a monoidal category C
(see [10]). We need these results for vector spaces over a field and we denote the mul-
tiplication on C by ⊗ and the unit object by 1. For our purpose the most convenient
definition of non-symmetric unital operads is the following:

Definition 2.3. A non-symmetric unital operad is a sequence of objects P = {Pn}n⩾1

in C together with linear maps

◦i : Pn ⊗ Pm → Pn+m−1,

one for each n, m ⩾ 1, and 1 ⩽ i ⩽ n, and a distinguished element 1 ∈ P1 such that
the following relations hold for all x ∈ Pn, y ∈ Pm, and z ∈ Pp:

(x ◦j z) ◦i y= (x ◦i y) ◦m+j−1 z, if 1 ⩽ i < j ⩽ n,
(x ◦i y) ◦i+j−1 z= x ◦i (y ◦j z), if 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m,

x ◦i 1= x, if 1 ⩽ i ⩽ n,
1 ◦1 x= x.

For an equivalent definition of non-symmetric operads, see [10]. This uses maps

γ : Pk ⊗ Pi1 ⊗ · · · ⊗ Pik → Pi1+···+ik

which satisfy certain natural associativity axioms. To go from one definition to the
other it is enough to know that

γ(x; y1, . . . , yk) = (· · · (((x ◦1 y1) ◦i1+1 y2) ◦i1+i1+1 y3) · · · )

and

x ◦i y = γ(x; 1, . . . , 1, y, 1, . . . , 1),

where y is in the ith position.

For P as above we denote by deg x the degree of an element x ∈ P and by |x| the
degree in desuspension. That is, if x ∈ Pn then deg x = n and |x| = n− 1.

In [7], for each unital operad of vector spaces (symmetric or not), Gerstenhaber
and Voronov defined the following collection of multilinear operations (braces on P):

x{x1, . . . , xn} :=
∑

(−1)ϵγ(x; id, . . . , id, x1, id, . . . , id, xn, id, . . . , id)

for x, x1, . . . , xn ∈ P, where the summation goes through all possible substitutions of
x1, . . . , xn into x in the prescribed order and ϵ =

∑n
i=1 |xp|ip, where ip is the total

number of inputs in front of xp. With the conventions x{} := x and x ◦ y := x{y},
Gerstenhaber and Voronov proved that the braces satisfy certain identities, which in
particular imply that the degree −1 bracket

[x, y] := x ◦ y − (−1)|x||y|y ◦ x (1)

defines a structure of a graded Lie algebra on P.
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A multiplication on an operad P is an elementm ∈ P2 such thatm ◦m = 0. Such a
multiplication defines a differential graded associative algebra on P as follows (see [7],
Proposition 2). Set the product

x · y := (−1)|x|+1m{x, y} (2)

and the differential

dx = m ◦ x− (−1)|x|x ◦m, d2 = 0, deg d = 1. (3)

Gerstenhaber and Voronov proved that a multiplication on an operad of vector
spaces implies the existence of even more algebraic structure on the operad. More
precisely, they proved the following theorem.

Theorem 2.4. A multiplication on an operad P = {Pn}n⩾1 defines the structure of
a homotopy G-algebra on P = ⊕Pn.

The precise definition of a homotopy G-algebra can be found in [7]. As noted in
the same paper, every homotopy G-algebra is a differential graded Lie algebra with
respect to the commutator [−,−], which is a graded derivation of the dot product up
to null-homotopy. This implies that we have the following identities:

[x, y· z]− [x, y] · z − (−1)|x|(|y|+1)y · [x, z]
= (−1)|x|+|y|+1(d(x{y, z})− (dx){y, z} − (−1)|x|x{dy, z} − (−1)|x|+|y|x{y, dz})

(4)

x · y − (−1)(|x|+1)(|y|+1)y · x = (−1)|x|(d(x ◦ y)− dx ◦ y − (−1)|x|x ◦ dy). (5)

Note that the multiplication is homotopy graded commutative.

We conclude this section by recalling the definition of a G-algebra.

Definition 2.5. A G-algebra is a graded vector space H together with a dot product
x · y defining the structure of a graded commutative algebra and with a bracket [x, y]
of degree −1 defining the structure of a graded Lie algebra, such that the bracket
with an element is a derivation of the dot product:

[x, y · z] = [x, y] · z + (−1)|x|(|y|+1)y · [x, z].

3. The operad structure on C∗((A,B, ε);A)

In this section we define a multiplicative non-symmetric unital operad structure
on C∗((A,B, ε);A). The results of [7], outlined in Section 2.3, imply the existence
of a homotopy G-algebra structure on C∗((A,B, ε);A). In particular, the secondary
Hochschild cohomology H∗((A,B, ε);A) has a natural G-algebra structure.

Let Pn := Cn((A,B, ε);A), for n ⩾ 1. For each m,n ⩾ 1 and 1 ⩽ i ⩽ n we define
the linear maps

◦i : Pn ⊗ Pm → Pn+m−1
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as follows: If fn ∈ Pn, g
m ∈ Pm and 1 ⩽ i ⩽ n then

fn ◦i gm

⊗


a1 b1,2 · · · b1,n+m−2 b1,n+m−1

1 a2 · · · b2,n+m−2 b2,n+m−1

...
...

...
...

1 1 · · · an+m−2 bn+m−2,n+m−1

1 1 · · · 1 an+m−1





= fn



⊗



a1 · · · b1,i−1

m+i−1∏
j=i

b1,j b1,m+i · · · b1,n+m−1

1 · · · b2,i−1

m+i−1∏
j=i

b2,j b2,m+i · · · b2,n+m−1

...
...

...
...

...

1 · · · ai−1

m+i−1∏
j=i

bi−1,j bi−1,m+i · · · bi−1,n+m−1

1 · · · 1 gm
(
T i−1
m+i−1

) m+i−1∏
j=i

bj,m+i · · ·
m+i−1∏
j=i

bj,n+m−1

1 · · · 1 1 am+i · · · bm+i,n+m−1

...
...

...
...

...
1 · · · 1 1 1 · · · bn+m−2,n+m−1

1 · · · 1 1 1 · · · an+m−1




It is a straightforward computation to show that the maps “ ◦i ” satisfy the equations
of Definition 2.3, where the unit of the operad is the identity map A → A. We will
only check here that, for 1 ⩽ i < j ⩽ n, we have

(fn ◦j hp) ◦i gm = (fn ◦i gm) ◦m+j−1 h
p

and leave the remaining three relations to the reader. Indeed, we have that

(fn ◦j hp) ◦i gm

⊗

 a1 · · · b1,m+n+p−2

...
...

1 · · · am+n+p−2




= (fn ◦j hp)


⊗



a1 · · ·
i+m−1∏
k=i

b1,k · · · b1,m+n+p−2

...
...

...

1 · · · gm
(
T i−1
m+i−1

)
· · ·

i+m−1∏
k=i

bk,m+n+p−2

...
...

...
1 · · · 1 · · · am+n+p−2




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= fn



⊗



a1 · · ·
i+m−1∏
k=i

b1,k · · ·
m+p+j−2∏
l=m+j−1

b1,l · · · b1,m+n+p−2

...
...

...
...

1 · · · gm
(
T i−1
m+i−1

)
· · ·

m+p+j−2
m+i−1∏
k=i

l=m+j−1

bk,l · · ·
i+m−1∏
k=i

bk,m+n+p−2

...
...

...
...

1 · · · 1 · · · hp
(
Tm+j−2
m+p+j−2

)
· · ·

m+p+j−2∏
l=m+j−1

bl,m+n+p−2

...
...

...
...

1 · · · 1 · · · 1 · · · am+n+p−2





= (fn ◦i gm)


⊗



a1 · · ·
m+p+j−2∏
l=m+j−1

b1,l · · · b1,m+n+p−2

...
...

...

1 · · · h
(
Tm+j−2
m+p+j−2

)
· · ·

m+p+j−2∏
l=m+j−1

bl,m+n+p−2

...
...

...
1 · · · 1 · · · am+n+p−2





= (fn ◦i gm) ◦m+j−1 h
p

⊗

 a1 · · · b1,m+n+p−2

...
...

1 · · · am+n+p−2


 .

As noted in Section 2.3, an operad structure on Cn((A,B, ε);A) implies the exis-
tence of a graded Lie algebra structure on ⊕n⩾1C

n((A,B, ε);A). More explicitly,
Equation 1 defines a degree −1 bracket as follows:

[fn, gm] = fn ◦ gm − (−1)(n−1)(m−1)gm ◦ fn,

where fn ◦ gm = fn{gm} =
∑n

i=1(−1)(i−1)(m−1)fn ◦i gm.

In addition, one can see that the non-symmetric operad {Pn}n⩾1 is multiplicative.
Indeed, the map π ∈ P2 = C2((A,B, ε);A) defined by

π

(
⊗
(

a α
1 b

))
= ε(α)ab

satisfies π ◦ π = 0.

The existence of a multiplication on {Pn}n⩾1 determines a much richer algebraic
structure on the operad. Using Proposition 2 and Theorem 3 of [7] (outlined in
Section 2.3) we obtain the following result.
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Proposition 3.1. If A, B are associative algebras over a field k, B is commutative,
and ε : B → A is a morphism of algebras whose image belongs to the center of A,
then the secondary Hochschild complex C∗((A,B, ε);A) has a natural structure of
homotopy G-algebra.

One can notice that for fn ∈ Cn((A,B, ε);A) and gm ∈ Cm((A,B, ε);A) the dot
product is given by

fn · gm

⊗


a1 b1,2 · · · b1,n+m−1 b1,n+m

1 a2 · · · b2,n+m−1 b2,n+m

...
...

...
...

1 1 · · · an+m−1 bn+m−1,n+m

1 1 · · · 1 an+m





=(−1)nmfn

⊗


a1 b1,2 · · · b1,n−1 b1,n
1 a2 · · · b2,n−1 b2,n
...

...
...

...
1 1 · · · an−1 bn−1,n

1 1 · · · 1 an



 ·
∏

n+1⩽j⩽n+m
1⩽i⩽n

ε(bi,j)

·gm

⊗


an+1 bn+1,n+2 · · · bn+1,n+m−1 bn+1,n+m

1 an+2 · · · bn+2,n+m−1 bn+2,n+m

...
...

...
...

1 1 · · · an+m−1 bn+m−1,n+m

1 1 · · · 1 an+m



 .

A condensed version of the above formula is

(fn · gm)(T 0
n+m) = (−1)nmf(T 0

n)g(T
n
n+m)

∏
n+1⩽j⩽n+m

1⩽i⩽n

ε(bi,j).

If B = k, the secondary Hochschild cohomology H∗((A,B, ε);A) coincides with
the Hochschild cohomology H∗(A,A). We should note that the product fn · gm is the
usual cup product fn ⌣ gm altered by the sign (−1)nm. One can define an extension
of this cup product to one on the secondary Hochschild complex by dropping the sign
(−1)nm and expect to have the usual properties.

Similarly, we have

d(fn) = (−1)n+1δεn(f
n),

where δεn is the differential of the secondary Hochschild complex, which in the case
B = k coincides with the differential δn of the Hochschild complex C∗(A,A). The sign
difference does not change the cohomology, so, by taking into account Proposition 3.1,
we obtain the following corollary.

Corollary 3.2. H∗((A,B, ε);A) has a natural G-algebra structure.

Proof. The proof follows from the above discussion and the results from [7]. We
already know that the bracket defines a graded Lie algebra structure on the chain
groups C∗((A,B, ε);A), one which obviously induces a graded Lie algebra structure
on H∗((A,B, ε);A).
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In addition, the dot product is well defined on H∗((A,B, ε);A). Indeed, for all
cochains y, z ∈ C∗((A,B, ε);A) we have that

d(y · z) = (dy) · z + (−1)|y|+1y · (dz).

The above formula can be verified directly or obtained from Equation 4. Finally,
Equation 4 also implies that the bracket is a derivation of the dot product and Equa-
tion 5 implies that the dot product is graded commutative.

4. Extensions of B-algebras

In this section we use the secondary Hochschild cohomology in order to describe a
certain class of B-algebra extensions.

Suppose that X is a B-algebra with εX : B → X and that there exists a surjec-
tive morphism of B-algebras π : X → A such that ker(π)2 = 0. Let M = ker(π). We
require that the B-algebra structure induced on A by the map π ◦ εX coincides with
that defined by the map ε. Consider s : A → X a k-linear map such that πs = idA.
Then M is an A-bimodule with the multiplication given by

am = s(a)m, ma = ms(a),

for all m ∈ M and a ∈ A. One can notice that this action does not depend on the
choice of the section s. Moreover, for all α ∈ B and all m ∈ M we have

ε(α)m = mε(α) = εX(α)m.

As a k-vector space we obviously have that X = s(A)⊕M (that is, s(A) +M = X
and s(A) ∩M = 0).

Because of Proposition 2.1 from [12], we know that a B-algebra structure on X is
the same as an associative family of products mα,X : X ⊗X → X where mα,X(x⊗
y) = εX(α)xy. Since π : X → A is a morphism of B-algebras we must have that

π(mα,X((s(a) +m)⊗ (s(b) + n))) = mα(π(s(a) +m)⊗ π(s(b) + n)) = ε(α)ab.

Using this and the linearity of the product we get

mα,X((s(a) +m)⊗ (s(b) + n)) =

εX(α)(s(a)s(b) + s(a)n+ms(b)) =

s(ε(α)ab) + ε(α)an+mbε(α) + εX(α)s(a)s(b)− s(ε(α)ab).

One can see that the k-linear map cs : A⊗A⊗B → M defined by

cs(a⊗ b⊗ α) = εX(α)s(a)s(b)− s(ε(α)ab)

is a 2-cocycle. Moreover, if t : A → X is another section for π, then

δε1(s− t) = cs − ct.

To summarize, we have the following result:

Lemma 4.1. Let X be a B-algebra and π : X → A a surjective morphism of B-
algebras such that M2 = 0 (where M = ker(π)). Then ĉs ∈ H2((A,B, ε);M) does
not depend on the choice of the section s. We will denote this element by cX,π.
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Next we prove that cX,π depends only on the isomorphism class of the extension

0 → M → X
π→ A → 0.

Proposition 4.2. Let X1 and X2 be two B-algebras, πi : Xi → A surjective mor-
phisms of B-algebras such that (ker(πi))

2 = 0. Moreover, assume that there exists an
isomorphism of B-algebras F : X1 → X2 such that π2 ◦ F = π1. Under the identifica-
tion M2 = ker(π2) = F (M1) we have that cX2,π2 = F ∗(cX1,π1) ∈ H2((A,B, ε);M2).

Proof. The proof follows from Lemma 4.1 and the fact that if s : A → X1 is a section
for π1 then Fs : A → X2 is a section for π2.

In addition, for any A-bimodule M such that ε(α)m = mε(α) and for any cocycle
c ∈ C2((A,B, ε);M) we can define a B-algebra X and a surjective morphism of B-
algebras π : X → A such that M = ker(π), M2 = 0, and π ◦ εX = ε. To see this we
use Proposition 2.1 from [12] to define a family of products mα,X : X ⊗X → X as
follows. First, we take X = A⊕M , as a k-vector space. Second, we define

mα,X((a+m)⊗ (b+ n)) = ε(α)ab+ ε(α)an+mbε(α) + c(a⊗ b⊗ α).

One can check without any difficulty that (X,m1,X) is a k-algebra, with unit 1X =
1A − c(1A ⊗ 1A ⊗ 1B), and that for all α, β ∈ B and q ∈ k we havemα+β,X = mα,X +
mβ,X and mqα,X = qmα,X . The third condition of Proposition 2.1, mβγ,X(mα,X ⊗
id) = mαβ,X(id⊗mγ,X), is equivalent to c being a cocycle and it is satisfied, so X is
a B-algebra. We have εX : B → X defined by

εX(α) = ε(α)− 2ε(α)c(1A ⊗ 1A ⊗ 1B) + c(1A ⊗ 1A ⊗ α).

Third, it is clear that the canonical projection π : X → A is a surjective morphism
of k-algebras such that ker(π) = M , M2 = 0, and that π ◦ εX(α) = ε(α). To see that
π is a morphism of B-algebras note that for all α ∈ B, a ∈ A, and m ∈ M we have

π(α(a+m)) = π(m1,X(εX(α)⊗ (a+m)))
= π(m1,X((ε(α)− 2ε(α)c(1A ⊗ 1A ⊗ 1B) + c(1A ⊗ 1A ⊗ α))⊗ (a+m)))
= ε(α)a
= απ(a+m).

Finally, we show that the construction of X depends only on the cohomology class
of the cocycle c ∈ C2((A,B, ε);M). For this let c1, c2 ∈ C2((A,B, ε);M) such that
c1 − c2 = δε1f , where f : A → M is k-linear. Denote by X1 and X2 the B-algebras
defined by the cocycles c1 and c2, by mα,X1 and mα,X2 their corresponding families of
products, and by π1 and π2 the canonical projections of X1 and X2 onto A. Note that
by construction X1 = X2 = A⊕M as k-vector spaces. Then the map F : X1 → X2,
defined by the formula F (a+m) = a+m+ f(a), is an isomorphism of B-algebras
such that π2 ◦ F = π1. It is easy to see that F is an isomorphism of k-algebras such
that π2 ◦ F = π1, so we will only prove that F is B-linear. Indeed, for α ∈ B, a ∈ A,
and m ∈ M we have

F (α(a+m)) = F (m1,X1(εX1(α)⊗ (a+m)))
= F (m1,X1((ε(α)− 2ε(α)c1(1⊗ 1⊗ 1) + c1(1⊗ 1⊗ α))⊗ (a+m)))
= F (ε(α)a+ ε(α)m− 2ε(α)c1(1⊗ 1⊗ 1)a+ c1(1⊗ 1⊗ α)a

+c1(ε(α)⊗ a⊗ 1))
= ε(α)a+ ε(α)m− 2ε(α)c1(1⊗ 1⊗ 1)a+ c1(1⊗ 1⊗ α)a

+c1(ε(α)⊗ a⊗ 1) + f(ε(α)a)
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and

αF (a+m) = m1,X2(εX2(α)⊗ (a+m+ f(a)))
= m1,X2((ε(α)− 2ε(α)c2(1⊗ 1⊗ 1) + c2(1⊗ 1⊗ α))⊗ (a+m+ f(a)))
= ε(α)a+ ε(α)m+ ε(α)f(a)− 2ε(α)c2(1⊗ 1⊗ 1)a+ c2(1⊗ 1⊗ α)a

+c2(ε(α)⊗ a⊗ 1).

Thus we get

F (α(a+m))− αF (a+m) = 2ε(α)[c2(1⊗ 1⊗ 1)− c1(1⊗ 1⊗ 1)]a
+[c1(1⊗ 1⊗ α)− c2(1⊗ 1⊗ α)]a
+[c1(ε(α)⊗ a⊗ 1)− c2(ε(α)⊗ a⊗ 1)]
−ε(α)f(a) + f(ε(α)a).

Since c1 − c2 = δε1f we have the following identities:

c2(1⊗ 1⊗ 1)− c1(1⊗ 1⊗ 1) = −f(1)
c1(1⊗ 1⊗ α)− c2(1⊗ 1⊗ α) = 2ε(α)f(1)− f(ε(α))

c1(ε(α)⊗ a⊗ 1)− c2(ε(α)⊗ a⊗ 1) = ε(α)f(a)− f(ε(α)a) + f(ε(α))a.

Therefore we obtain that F (α(a+m))− αF (a+m) = 0, so F is an isomorphism
of B-algebras such that π2 ◦ F = π1.

Assume now that we have an extension given by the following data: a mor-
phism of k-algebras εX : B → X; a surjective morphism of B-algebras π : X → A such
that ker(π)2 = 0, M = ker(π); π ◦ εX = ε; and a k-linear map s : A → X such that
πs = idA. If we consider the cocycle cs ∈ C2((A,B, ε);M) defined earlier and then
we consider the extension associated to this cocycle then it is not hard to see that we
obtain an extension equivalent to the initial one. Similarly, given an A-bimodule M
such that ε(a)m = mε(a) and a cocycle c ∈ C2((A,B, ε);M) we construct the exten-
sion associated to c. If we now take the cocycle cs determined by a section s : A → X
with πs = idA then we have that cs − c = δε1u, where u : A → M is the k-linear
map induced by s on M . Indeed, we have that cs(a⊗ b⊗ α) = c(ε(α)⊗ ab⊗ 1) +
c(1⊗ 1⊗ α)ab− 2ε(α)c(1⊗ 1⊗ 1)ab+ ε(α)c(a⊗ b⊗ 1) + δu(a⊗ b⊗ α) for all a, b ∈
A and α ∈ B. The key observation here is that the cocycle condition implies that c(a⊗
b⊗ α) = c(ε(α)⊗ ab⊗ 1) + c(1⊗ 1⊗ α)ab− 2ε(α)c(1⊗ 1⊗ 1)ab+ ε(α)c(a⊗ b⊗ 1).

The above considerations allow us to conclude that H2((A,B, ε);M) can be nat-
urally identified with the equivalence classes of extensions of B-algebras of A by M ,
for any A-bimodule M such that ε(α)m = mε(α).

5. A Hodge-type decomposition of the secondary cohomology

In this section we will assume that A is commutative, k is a field of characteristic
0, and M is a symmetric A-bimodule (i.e. am = ma for all a ∈ A and m ∈ M). We
denote by kSn the group algebra of the group of permutations of n objects. Under
these conditions Barr proved in [2] that kSn operates on the n-cochains, Cn(A,M),
of the complex defining the Hochschild cohomology of A with coefficients in M and
that there is a non-central idempotent en ∈ QSn such that δn(enf) = en+1(δnf).
This implies that the Hochschild complex is a direct sum of two sub-complexes, cor-
responding to en and 1− en. Barr’s ideas were extended in [6] by Gerstenhaber
and Schack, who showed that QSn contains n mutually orthogonal idempotents



140 MIHAI D. STAIC and ALIN STANCU

en(1), en(2), . . . , en(n) which sum to the identity and with the property that for each
cochain f ∈ Cn(A,M) we have δn(en(k)f) = en+1(k)(δnf). From this it follows that
the Hochschild cohomology Hn(A,M) has a Hodge-type decomposition into a direct
sum of n summands. Barr’s original idempotent en is en(1) and the idempotents and
the decomposition are labeled BGS (Barr-Gerstenhaber-Schack). The action of Sn on
the n-cochains Cn(A,M) is given by

(πf)(a1 ⊗ · · · ⊗ an) = (fπ−1)(a1 ⊗ · · · ⊗ an) = f(aπ(1) ⊗ aπ(2) ⊗ · · · ⊗ aπ(n)).

It is not hard to see that Sn acts on the n-cochains of the secondary cohomology.
Indeed, for π ∈ Sn and f ∈ Cn((A,B, ε);M) we define the left action of Sn by setting

(πf)

⊗


a1 b1,2 · · · b1,n
1 a2 · · · b2,n
...

...
...

1 1 · · · an


 = f

⊗


aπ(1) bπ(1,2) · · · bπ(1,n)
1 aπ(2) · · · bπ(2,n)
...

...
...

1 1 · · · aπ(n)


 ,

where, for each 1 ⩽ i < j ⩽ n, the element bπ(i,j) is equal to bπ(i),π(j) if π(i) < π(j)
and equal to bπ(j),π(i) if π(j) < π(i). Similarly, one defines the right action of Sn

on Cn((A,B, ε);M) by using π−1. It is important to note that the order of the
elements aπ(1), aπ(2), . . . , aπ(n) on the diagonal of the above tensor matrix determines
completely the positions of bπ(i,j).

We want to show that for f ∈ Cn((A,B, ε);M) we have that

δεn(en(k)f) = en+1(k)(δ
ε
nf).

This will imply that the secondary cohomologyH•((A,B, ε);M) has a Hodge-type de-
composition. For this we use the fact that the BGS idempotents en(1), en(1), . . . , en(n)
are polynomials, with rational coefficients, of the total shuffle operator.

Following Barr [2], for 0 < r < n and π ∈ Sn we say that π is a pure shuffle of
r through n− r if π(1) < · · · < π(r) and π(r + 1) < · · · < π(n). Then the rth shuffle
operator is sr,n−r =

∑
pure

shuffles

(−1)ππ, where (−1)π is the sign of π. The total shuffle

operator is defined by sn =
∑

1⩽r⩽n−1

sr,n−r and satisfies δn(snf) = sn+1(δnf), for all

f ∈ Cn(A,M). Moreover, Gerstenhaber and Schack showed in [6] that the minimal
polynomial of sn over Q is µn(x) =

∏
1⩽i⩽n

[x− (2i − 2)]. They defined

en(k) =
∏

1⩽i⩽n
i ̸=k

(λk − λi)
−1

∏
1⩽i⩽n
i ̸=k

(sn − λi), where λi = 2i − 2.

We want to prove that for every f ∈ Cn((A,B, ε),M) we have

(δεn(snf)− sn+1(δ
ε
nf))

⊗


a1 b1,2 · · · b1,n+1

1 a2 · · · b2,n+1

...
...

...
1 1 · · · an+1


 = 0,

for a1, a2, . . . , an+1 ∈ A and bij ∈ B, 1 ⩽ i < j ⩽ n+ 1. The expansion of the left
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side shows that the identity holds for bi,j = 1, a direct consequence of δn(snf̄)−
sn+1(δnf̄) = 0 (where f̄ is obtained from f by taking bi,j = 1). This means that the

diagonals of the tensor sub-matrices of types Tn+1
1 , T 0

n , and M1,n
i,i+1 in the expansion

of δεn(snf)− sn+1(δ
ε
nf) appear in identical pairs and with opposite signs. But, as a

consequence of the way we defined the action of Sn on the secondary cochains and
of the definition of δεn, the order of the elements aπ(1), aπ(2), . . . , aπ(n+1) and of the
products aπ(i)aπ(j)ε(bπ(i,j)) on the diagonal of the above tensor matrices determines

completely the positions of all bπ(i,j) and their products in Tn+1
1 , T 0

n , and M1,n
i,i+1. This

implies that δεn(snf) = sn+1(δ
ε
nf).

In addition, because µn(sn) = 0, we have the identity

δεn(µn(sn)f) =
∏

1⩽i⩽n

(sn+1 − λi)(δ
ε
nf) = 0,

so we get that

δεn(en(k)f) =
∏

1⩽i⩽n
i̸=k

(λk − λi)
−1

∏
1⩽i⩽n
i ̸=k

(sn+1 − λi)(δ
ε
nf)

=
∏

1⩽i⩽n+1
i ̸=k

(λk − λi)
−1

∏
1⩽i⩽n
i ̸=k

(sn+1 − λi)(λk − λn+1 + sn+1 − λk)(δ
ε
nf)

= en+1(k)(δ
ε
nf).

Adopting the notation from [6], each idempotent en(k) determines a submodule
of Cn((A,B, ε);M), namely

Ck,n−k((A,B, ε);M) = en(k)C
n((A,B, ε);M).

By setting en(k) = 0 if k > n, en(0) = 0 if n ̸= 0, and e0(0) = 1 we have that the
complex defining the secondary cohomology decomposes as

C•((A,B, ε);M) =
⨿
k⩾0

Ck,•−k((A,B, ε);M) =
⨿
k⩾0

en(k)C
•((A,B, ε);M).

Denoting by Hk,•−k((A,B, ε);M) the homology of the complex Ck,•−k((A,B, ε);M)
we have the following

Theorem 5.1. If ε : B → A is a morphism of commutative k-algebras, Q ⊂ k, and
M is a symmetric A-bimodule, then

H•((A,B, ε);M) =
⨿
k⩾0

Hk,•−k((A,B, ε);M).

6. Some examples

It was noticed in [12] that there exists a natural morphism

Φn : Hn((A,B, ε);M) → Hn(A,M),
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induced by the inclusion i : A⊗n → A⊗n ⊗B⊗n(n−1)
2 ,

in(a1 ⊗ · · · ⊗ an) = ⊗


a1 1 · · · 1 1
1 a2 · · · 1 1
...

...
...

...
1 1 · · · an−1 1
1 1 · · · 1 an

 .

In this section we will see that in general Φn is neither onto nor one to one.
First, notice that if u : A → M is k-linear such that δε1(u) = 0 then we must have

that aε(α)u(b)− u(abε(α)) + u(a)bε(α) = 0. This implies that Φ1(u) is a derivation
that is B-linear. Since, in general, not all k-derivations of A are B-linear we get that
Φ1 is not necessarily onto. We have the following result:

Proposition 6.1.

H0((A,B, ε);M) = MA,

H1((A,B, ε);M) = DerB(A,M)/Inn(A,M),

where Inn(A,M) denotes the inner derivations.

Proof. Straightforward computation.

Proposition 6.2. Let Φ2 : H2((A,B, ε);M) → H2(A,M). If on M we consider the
B-bimodule structure induced by ε, then there exists an isomorphism

χ :
Derk(B,M)

ε∗(Derk(A,M))
→ ker(Φ2)

determined by χ(u)(a⊗ b⊗ α) = au(α)b, for all a, b ∈ A and α ∈ B.

Proof. Let σ ∈ Z2((A,B, ε);M) such that Φ2(σ̂) = 0 ∈ H2(A,M). This means that
there exists a k-linear map u : A → M such that

σ(a⊗ b⊗ 1) = δ1(u)(a⊗ b) = au(b)− u(ab) + au(b).

We consider the element τ ∈ Z2((A,B, ε);M), τ = σ − δε1(u). Obviously we have that

σ̂ = τ̂ ∈ H2((A,B, ε);M), and τ

(
⊗
(

a 1
1 b

))
= 0.

Since τ ∈ Z2((A,B, ε);M), we have

aε(αβ)τ

(
⊗
(

b γ
1 c

))
− τ

(
⊗
(

abε(α) βγ
1 c

))
+ τ

(
⊗
(

a αβ
1 bcε(γ)

))
− τ

(
⊗
(

a α
1 b

))
cε(βγ) = 0.

When α = β = 1 we have:

aτ

(
⊗
(

b γ
1 c

))
= τ

(
⊗
(

ab γ
1 c

))
,

and similarly when β = γ = 1,

τ

(
⊗
(

a α
1 bc

))
= τ

(
⊗
(

a α
1 b

))
c.
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If we define v : B → M by v(α) = τ

(
⊗
(

1 α
1 1

))
then we get:

τ

(
⊗
(

a α
1 b

))
= aτ

(
⊗
(

1 α
1 1

))
b = av(α)b.

We will denote the 2-cocycle τ by σv. One can easily check that v(αβ) = ε(α)v(β) +
v(α)ε(β) (i.e. v ∈ Derk(B,M)).

If σv = δε1(w) for some w : A → M , then we must have

av(α)b = aε(α)w(b)− w(aε(α)b) + w(a)ε(α)b. (6)

For α = 1 we get that w(ab) = aw(b) + w(a)b and so w ∈ Derk(A,M). If in equation
(6) we take a = b = 1 then we have

v(α) = w(ε(α)),

which concludes our proof.

Next, we want to show that Φ2 need not be one to one. For this let A = M = k[X],
f(X) ∈ k[X], B = k[f ], and let ε : B → A, ε(f) = f(X).

For q(X) ∈ k[X] we consider σq(X) : A⊗A⊗B → A defined by

σq(X)(P (X)⊗Q(X)⊗ α(f(X))) = q(X)P (X)Q(X)α′(f(X)).

One can see that δε2(σq(X)) = 0. Since H2(A,A) = 0 we have that H2((A,B, ε);M) =
ker(Φ2), so every σ̂ ∈ H2((A,B, ε);M) is cobordant to σ(a⊗ b⊗ α) = av(α)b, for
v ∈ Derk(B,M) (here σ̂ is the class of σ). With this remark we can prove the following
result:

Proposition 6.3. Let σ̂ ∈ H2((A,B, ε);M); then there exists q(X) ∈ k[X] such that
σ̂ = σ̂q(X). Moreover, if p(X), q(X) ∈ k[X] then σ̂q(X) = σ̂p(X) ∈ H2((A,B, ε);M) if

and only if p̂(X) = q̂(X) ∈ k[X]/(f ′(X)).

Proof. On M = k[X] we have the k[f ]-bimodule structure determined by

f · P (X) = f(X)P (X).

Let u ∈ Derk(B,M) and take q(X) = u(f). Then u(Λ(f)) = Λ′(f(X))q(X).
Let t ∈ Derk(A,M), and take t(X) = r(X) ∈ k[X]. We have that

t(P (X)) = P ′(X)r(X),

and so t(ε(Λ(f))) = t(Λ(f(X))) = Λ′(f(X))f ′(X)r(X). Now the result follows direct-
ly from Proposition 6.2.

Remark 6.4. If f(X) ∈ k[X] has the property that the ideal generated by f ′(X) is
not trivial then the map Φ is not one to one. Take for example n ⩾ 2 and f(X) = Xn

such that n does not divide the characteristic of k. Then we have that

dimk(H
2((k[X], k[Xn], ε); k[X])) = n− 1.

Remark 6.5. Using the results from [12], one can notice that the element σ̂p(X) ∈
H2((A,B, ε);M) corresponds to the B-algebra structure on A[[t]] defined by the
morphism εt : k[f(X)] → k[X][[t]] where εt(f(X)) = f(X) + tp(X).
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More generally, consider A = M = k[X,Y ]. Let f(X,Y ), g(X,Y ) ∈ A = k[X,Y ],
take B = k[f, g], and define ε : k[f, g] → k[X,Y ] determined by ε(f) = f(X,Y ) and
ε(g) = g(X,Y ). For any a(X,Y ) and b(X,Y ) ∈ k[X,Y ] we can define σa,b : A⊗A⊗
B → A by

σa,b(P (X,Y )⊗Q(X,Y )⊗ Λ(f, g)) =

P (X,Y )Q(X,Y )(
∂Λ

∂f
(f(X,Y ), g(X,Y ))a(X,Y ) +

∂Λ

∂g
(f(X,Y ), g(X,Y ))b(X,Y ))

for all P (X,Y ), Q(X,Y ) ∈ k[X,Y ] and Λ(f, g) ∈ k[f, g].

Proposition 6.6. Let σ̂ ∈ ker(Φ2 : H2((A,B, ε);M) → H2(A,M)), then there exist
a(X,Y ), b(X,Y ) ∈ k[X,Y ] such that σ̂ = σ̂a,b ∈ H2((A,B, ε);A). Moreover, σ̂a,b =
σ̂c,d if and only if there exist v(X,Y ) and w(X,Y ) ∈ k[X,Y ] such that(

a(X,Y )− c(X,Y )
b(X,Y )− d(X,Y )

)
=

(
∂f
∂X (X,Y ) ∂f

∂Y (X,Y )
∂g
∂X (X,Y ) ∂g

∂Y (X,Y )

)(
v(X,Y )
w(X,Y )

)
.

Proof. The proof is similar to that of Proposition 6.3. On M = k[X,Y ] we have
the k[f, g]-bimodule structure determined by f · P (X,Y ) = f(X,Y )P (X,Y ) and g ·
P (X,Y ) = g(X,Y )P (X,Y ).

Let u ∈ Derk(B,M) and take a(X,Y ) = u(f) and b(X,Y ) = u(g), then

u(Λ(f, g)) =
∂Λ

∂f
(f(X,Y ), g(X,Y ))a(X,Y ) +

∂Λ

∂g
(f(X,Y ), g(X,Y ))b(X,Y ).

Let t ∈ Derk(A,M), and take t(X) = v(X,Y ) and t(Y ) = w(X,Y ) ∈ k[X,Y ]. We
have that t(P (X,Y )) = ∂P

∂X (X,Y )u(X,Y ) + ∂P
∂Y (X,Y )v(X,Y ) and so

t(ε(f)) = t(f(X,Y )) =
∂f

∂X
(X,Y )v(X,Y ) +

∂f

∂Y
(X,Y )w(X,Y ),

t(ε(g)) = t(g(X,Y )) =
∂g

∂X
(X,Y )v(X,Y ) +

∂g

∂Y
(X,Y )w(X,Y ).

Now the result follows directly from Proposition 6.2.

Remark 6.7. A similar statement can be proved if we take A = k[X1, . . . , Xn], B =
k[f1, . . . , fn] and ε(fi) = fi(X1, . . . , Xn) ∈ k[X1, . . . , Xn].

Remark 6.8. From Proposition 6.6 we know that ker(Φ2) is isomorphic with the space
(k[X,Y ]⊕ k[X,Y ])/Image(J(f, g)), where

J(f, g) : k[X,Y ]⊕ k[X,Y ] → k[X,Y ]⊕ k[X,Y ]

is determined by the Jacobian matrix associated to the pair (f(X,Y ), g(X,Y )).
When k is a field with char(k) = p, f(X,Y ) = X +Xp and g(X,Y ) = Y + Y p then

one can see that Image(J(f, g)) = k[X,Y ]⊕ k[X,Y ] and ε is not onto. It is possible to
have ker(Φ) = 0 without the map ε being surjective. However, when char(k) = 0 we
can give the following reformulation, for polynomials in two variables, of the Jacobian
problem stated in [13] (n variables if we consider Remark 6.7).

Conjecture 6.9. Let k be a field, char(k) = 0. Take A = k[X,Y ], B = k[f, g], ε(f) =
f(X,Y ), and ε(g) = g(X,Y ). If Φ2 : H2((A,B, ε);A) → H2(A,A) is one to one, then
ε is surjective.
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Remark 6.10. Notice that from Proposition 6.2 we have an exact sequence:

H1(A,M)
ε∗→ H1(B,M)

χ→ H2((A,B, ε);M)
Φ2→ H2(A,M).

It is reasonable to believe that this can be extended to a long exact sequence. Also, one
can ask if the secondary cohomology can be seen as a derived functor (Ext functor) in
an appropriate category. We are planning to investigate these problems in a follow-up
paper.
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