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COEFFICIENTS FOR HIGHER ORDER
HOCHSCHILD COHOMOLOGY
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(communicated by Donald M. Davis)

Abstract

When studying deformations of an A-module M, Laudal
and Yau showed that one can consider 1-cocycles in the
Hochschild cohomology of A with coefficients in the bi-module
Endy,(M). With this in mind, the use of higher order Hochschild
(co)homology, presented by Pirashvili and Anderson, to study
deformations seems only natural though the current definition
allows only symmetric bi-module coefficients. In this paper we
present an extended definition for higher order Hochschild coho-
mology which allows multi-module coefficients (when the simpli-
cial sets X, are accommodating), which agrees with the current
definition. Furthermore, we determine the types of modules that
can be used as coefficients for the Hochschild cochain complexes
based on the simplicial sets they are associated to.

1. Introduction

In [5] Pirashvili makes explicit a definition of higher order Hochschild homology
of a k-algebra A with coefficients in an A-module M, implicitly defined in [1] by
Anderson. This is done by considering the composition of functors:

LA M): T — Vect

{0,1,--- ,n}%M®A®"
and
Y:A®? T

where we let I' denote the category of finite sets and where Y is a pointed simplicial
set. This composition yields a simplicial vector space, where the homology of the
associated chain complex serves as the definition of higher order Hochschild homology.

One can naturally extend the definition given in [5] to also define a notion of
higher order Hochschild cohomology (see [3] for a precise definition). A reason for
doing so would be to consider deformation theory in this new setting. This connection
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between traditional Hochschild cohomology and deformation theory has been studied
for some time. In [2], Gerstenhaber illustrates the connection between deformations
of an associative k-algebra A and 2-cocycles in the Hochschild cohomology of A with
trivial coefficients by showing that HH?(A, A) is the group of isomorphism classes
of square-zero deformations of A, and in [6] and [4], Yau and Laudal, respectively,
show the connection between deformations of an A-module M with 1-cocycles of the
Hochschild cochain complex of A with coefficients in Endy(M). More precisely, first
order deformations of an A-module M are in bijection with HH'(A, Endy(M)).

Upon examination, it can be seen that the current definition for higher order
Hochschild cohomology allows only symmetric bi-module coefficients; however, to
study deformations of a module we need to consider the nonsymmetric bi-modules
Endi(M).

One knows that classical Hochschild cohomology takes coefficients in a bi-module,
so we ask the following question. What coeflicients can higher order Hochschild coho-
mology take? The goal of this paper thus becomes twofold. We aim to extend the
definition of higher order Hochschild cohomology to include multi-modules (not neces-
sarily symmetric) as coefficients and in particular to determine what type of coefficient
modules can be used when choosing a simplicial set X, to construct a cosimplicial
k-vector space over. With this in mind, we aim to show the following theorem.

Theorem 1.1. Let A be a commutative k-algebra. Given a pointed simplicial set X,,
there exists a cosimplicial k-vector space (M, X)® associated to an A-module M given

by
(M, X)" = homy(k @, X) A, M)

oeX,
TF*

with coface and codegeneracy maps given by

d;f(l Rk ® a’ﬂ') = H (A((,;'77L)(a0)) : f(l Rk ® H aa—)

c€Xnt1 oc€Xnt1 QeX,, 0€Xpnt1
o#* di(o)=+ Q#x d; ()=

and

Sflor @ a)=f0er @ 1- [ a)

c€X 41 QeX, 11 oceX,
oF* QA% si(0)=0

if the actions A(i _y on M satisfy the following for simplices o, ), and p:

i) Aljnyry = Afnsny fo # %, di(o) = d;(0) = * and the dimension of o is at least
2 and i < j (we call this a sweep around);

i) AT, 1) = Agfl)_’n if di(0) = Q,d;j(0) = *,d;—1(2) = * and the dimension of o

is at least 2 (we call this a sweep out 1);
ii1) A?i’n) = A‘(‘jfl’n) if d;(Q) = *,d;j_1(u) = * and there exists a o of dimension at
least 2 where dj(o) = Q, d;(0) = p, and i < j (we call this a sweep across);
w) A?i’n) = Al ) Of di(o) = *,d;(Q) = *,d;(0) = Q and the dimension of o is at
least 2 (we call this a sweep out 2);



COEFFICIENTS FOR HIGHER ORDER HOCHSCHILD COHOMOLOGY 113

(im)

and d;(o) = *. We take a product of such actions to represent the composition of the
actions, which we assume to be commutative (i.e. if M has two actions, we actually
assume that M is a bi-module).

where AE‘i ) (a) represents the A action of a whenever 0 <1< 1 and 0 € X1

Remark 1.2. For

(M, X)" = homy(k @), (X) A, M)
oceX,,
oF*
in Theorem 1.1 we assume that the trivial & as a tensor factor in the domain represents
the base point.

While the list of axioms in Theorem 1.1 may seem random, we give an intuitive
visual description of each axiom in Section 4 and in Section 5 we use the visual
descriptions to give results for a variety of simplicial sets.

We can now define the following.

Definition 1.3. The cohomology of the cochain complex associated to (M, X)® (by
taking alternating sums of coface maps) is the higher order Hochschild cohomology of
A with coefficients in M, which we denote as HH% (A4, M).

For the remainder of this paper, we fix the field k£ and assume A is a commutative
algebra over k. We also assume the A-module M can have multiple actions as our
quest is to determine what actions may be present in the associated higher order
Hochschild cochain complex.

2. Comparison to classical definitions and applications

2.1. Comparison

We would like to see that the definition given in Section 1 agrees with both the
classical Hochschild cohomology definition and the higher order Hochschild cohomol-
ogy definition given by Pirashvili. We provide the connections through the following
examples.

Ezample 2.1. Let X, = S' be the simplicial set of S' which contains one 0-simplex
and one non-degenerate 1-simplex. Given an A bi-module M, we see that HH% (A, M)
is classical Hochschild cohomology. The fact that we are able to work over bi-modules,
which are not necessarily symmetric, is illustrated by Example 5.6.

Ezxample 2.2. For a simplicial set X, and symmetric A bi-module M, we see that
HH% (A, M) agrees with the definition of higher order Hochschild cohomology given
implicitly by Pirashvili in [5].

2.2. Applications

As stated in Section 1, one hope of defining higher order Hochschild cohomology
with multi-module coefficients is to discover additional connections to deformation
theory. To begin, consider the following definition.
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Definition 2.3. Given a k-algebra A and A-module I, we define a first order defor-
mation of A by I to be a short exact sequence

0T A% A0

which splits as k-vector spaces and with the properties that ¢ is a ring map and
I? = 0 as an ideal of A’.

We see that defining a deformation of A by I amounts to defining a multiplica-
tion for A @ I, given by (ao,i0)(a1,i1) = (apa1, asi1 +ioar + f(ap ® a1)), but such a
multiplication gives a map f: A® A — I so that f € HH?(A, I). Now, if we consider
the trivial first order deformation of A by A, i.e. f =0¢€ HH?(A, A), we get a short
exact sequence

0 A— Afz]/2? 5 A -0,
which induces a map of modules
mod(A[z]/x?) — mod(A),

which takes an A[z]/2? module M to M/xM. This brings us to the following defini-
tion.

Definition 2.4. Given an A-module M, a first order deformation of M is an A[xz]/z%-
module M’ so that M'/zM’ = M.

As stated in Section 1, we get the following.

Proposition 2.5. [6, 3.1] Isomorphism classes of first order deformations of an A-
module M are in bijection with HH (A, Endy(M)).

Seeing the connections between classical Hochschild cohomology and deforma-
tion theory, one can then ask the question: Are there similar connections to higher
order Hochschild cohomology when considering additional deformations? Certainly
we could consider modifying Definition 2.3 to let A’ =2 A @ I where I® = 0 instead of
I? = 0 (cubed zero deformations) or let A = Az, y]/2?,y? (or any Artinian algebra).
We could even consider deformations using Steenrod relations. This would, in princi-
ple, give a means of computing all isomorphism classes of finitely generated modules
over an Artinian algebra. Current work of the author and Salch seeks to answer such
questions and discover what structures exist on HH% (A, M).

3. Proof of Theorem 1.1

In order for the cosimplicial structure to exist, we simply need the cosimplicial
identities to be satisfied, precisely:

a) d'd' =d'd’! fori < j
b) s/st = si"1sl fori > j
o disi='  for 1<
c) 7d' = id for =35 or i=j+1
di=1s? for i>j+1
With this in mind, we prove Theorem 1.1:
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Proof of Theorem 1.1. When composing the coface and codegeneracy maps from Sec-
tion 1 it becomes clear what action identifications must be made in order for the
cosimplicial structure to exist.

For b) notice when i > j

shosnfl@r @Q a)=fler @ 1- [ II a0

ceX, HEX 1 QeX,, oceX,_1
oFEx W s5:(Q)=p s5(0)=0

fGew @ 1+ J[ a0

PEXp 41 ceXp-1
I sisj(o)=p

but this is precisely

Similarly we get

Ss0e @ an=f0ey @ 1+ [] )

oceX, pneXn 41 oceXp_1
oF* W sjsi—1(0)=p
Since s;8j(0) = sjs,-1(0) for all 0 € X,,_1 we get s7s" = 57157,
Now for part a) notice when ¢ < j
& odflor Q) a)
c€EX 42
oFE*
= [I AGuinle)) IT @GnC I] e -f0er @ [I @)
ce€X 42 QeX, 1 cEX 42 pneX, oeX,i2
dj(o)=x d; (Q2)=x dj(0)=0 uF* didj(o)=p
and
dopd f1er Q) as)
cEX 42
oF*
= I AGninG@e) TI A0 I e -f0ee @ [ a0
c€Xpnt2 QeX i1 o€EX 2 HeEX, o€Xnpi2
di(o)=x dj—1(Q)=x d;i(0)=Q pu#x dj_q1di(0)=p

Now, if there exists a o € X412 so that d;(c) = d;(0) = * then we must have that

& odiflorea Q D=d d florze @ 1)

YEXn+2 VYEX nt2
Y Y
y#o v#o

(where a is the element for the tensor factor associated to o), but this gives us that

(AGnt) (@) f(1) = (AT ppry (@) f(1)

which implies
o __AC
(Gn+1) = (in+1)s

so there is a set of actions that must be identified in order for a cosimplicial structure
to exist. The identification shown here is actually part i) of Theorem 1.1. Following
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an analogous argument it can be seen that parts ii), iii), and iv) are also consequences
that come from ensuring d’d* = d'd’~! for i < j. With that, part a) of the cosimplicial
identities is satisfied as long as these actions are identified, since d;d;(c) = dj_1d;(0)
for all 0 € X, 42.

Lastly, for part ¢) we see that

sd,flor @ a)

ceX,
oFEx
= I @igna II en-raer @ I a0
QeX i1 oceX,, peEX, oceX,
dL(U):* 5.7(0-)29 W dis_j(d):,u
and
d, 15,5 f(1 @y ® as)
oceX,,
oF*
= I W) foer @1+ [ a0
ceX, pneX, ceX,
di(o)=x oF* sj—1di(o)=p
Finally
dy sy f(L @y, ® ao)
oceX,,
oF*
= JI W) raer @1 [ a0
oceX, neX, ceX,
di—1(0)=x* pFEH sjdi—1(0)=p

Using the formulas above, we get the following identities on actions:
v) A% wy = Al forisj, di(o) = *, sj(0) = Q, di(2) = * and the dimension of
Qs at least 1;
vi) A&n) =Ai—1,n—1) for i>j+1, di_1(0) =%, sj(0) =Q, di(Q) = * and the
dimension of Q is at least 1;

but v) and vi) are consequences of ii) and iv) from the list in Theorem 1.1 since {2

must be of dimension larger than 1 in order to be a degenerate simplex and have

4. Visualization of action identifications

Remark 4.1. Notice that a AE’Z, n—1) action exists any time there is an n-simplex o
with the property that o # x and d;(0) = * for some i. We will refer to this as the
it" action of o and visually we can think of this action as being “pointed” toward the
it" face of o.

We now consider ways to visualize the identifications of the actions, presented in
Section 3.



COEFFICIENTS FOR HIGHER ORDER HOCHSCHILD COHOMOLOGY 117

Visualization 4.2. For iii) (sweep across) if two faces p and 2 of an n-simplex o
have a common face of %, then the action of g which points toward * is the same as
the action of 2 which points toward *. This is illustrated below with o, a 2-simplex;
i, the 0" face; and Q, the 2"? face, while the 0-simplex labeled 1 represents *. Notice
the 0 face of Q is * and the 1%¢ face of j is *. This gives us that the associated actions
which point toward * are identified. We can see that in this particular instance, the
action of 2 points in the direction of the orientation of €2 and the action of y points
against the orientation of u. For this reason, when dealing with simplices of dimension
1 we will refer to the action as either being forward or backward. In this case the
forward action of Q is identified with the backwards action of pu.

0 L 1=x
o
v (0
2

Visualization 4.3. For ii) and iv) (sweep out 1 and sweep out 2) we see that if an
n-simplex ¢ has an action which points toward a face 7, then any other face of o
which is not equal to * has an equal action pointing in the corresponding direction,
toward some face of . This is illustrated below with o, a 2-simplex whose first face
is v, which is in fact *. We also have that p is the 0" face of o and € is the 2"? face
of 0. Notice that the action of o, which points toward =, is the same as the backward
action of 2 and the forward action of p.

0 ¢ 1
g
* =7 fi
2

Lastly, for i) (sweep around) a visualization is not completely necessary, as we see
that the indication of i) is that if o is a simplex of dimension greater than or equal
to 2, then there is at most one action of ¢. In other words, any two actions of o are
equal.

5. Determining the coefficients for a few spaces

In this section, we will use the techniques discussed in Section 4 to show how one
might determine the possible coefficient modules for a given simplicial set. Before
doing so, we consider the following:
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Remark 5.1. When determining the possible coefficient modules, we can simply con-

sider and identify the actions among non-degenerate simplices, since for a degenerate
si(0)
(im) °

that if ¢ < j we have that s;_1d;(c) = * so di(0) = * and ¢ has action Af; ,_,,. Fur-

n + l-simplex s;(0), if sj(c) has an action A then d;(s;(0)) = *, which gives

thermore, by v) we get AZZ”(nU)) = A‘(’i n—1)- Similarly, if ¢ > 7 4+ 1 then o has action

E’;_l’n_l), which is equal to A‘(gfy(:)), which gives us that no additional actions come
from degenerate simplices.

To see that new identifications do not take place, we notice if i < r then
did,(sj(0)) = * and dr_1d;(s;(0)) = *. If i < j this gives that A((i;;’f(;; = A?;ijf;)q)'
However, any face of the degenerate n + 1-simplex s;(o) is degenerate via a face of o
and it can be checked that the actions identified above would also be identified with
part iii) using the faces of o.

We can now consider a few interesting examples:

Example 5.2. The figure below gives an illustration for the minimal simplicial decom-
position of the torus:

a

It is immediately evident from the picture above that there is a forward action
of a, which must agree with the backward action of ¢, since they are both faces of
o which each have a face of *. The other implications coming from o are that the
forward action of c¢ is equal to the forward action of b and the backward action of a
is equal to the backward action of b. Similarly, the backward action of ¢ must agree
with the forward action of b through 7, and we should get that the forward action
of a is equal to the forward action of b and the forward action of ¢ is equal to the
backward action of a. From the three 1-simplices a, b, and ¢ it can be seen that we
would start with 6 actions (one for each direction), but through our identifications,
we get that these all must be the same. Since no other simplices have a face of * we
get the following proposition.

Proposition 5.3. For the minimal simplicial decomposition of the torus, HH* takes
only uni-module coefficients.

Example 5.4. The figure below is an illustration for the minimal simplicial decompo-
sition of the pinched torus, where the 15 face of o and the 1°¢ face of 7 are identified
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with *:

a

Here we see that the 1%¢ action of ¢, the backward action of a, and the forward
action of ¢ are all equal, while the 1%¢ action of 7, the forward action of a, and the
backward action of ¢ are all equal. No other identifications can be made, so we have
the following proposition.

Proposition 5.5. For the minimal simplicial decomposition of the pinched torus,
HH* can take coefficients in any bi-module.

Ezample 5.6. In the case of S™ (when we consider the minimal simplicial decompo-
sitions with one n-dimensional non-degenerate simplex) we get the following:

For the classical case when n = 1 we are allowed bi-module coefficients, since there
is a 1-simplex with both a forward and backward action (see below):

a
* *

When n is larger than 1 we see that there is exactly one n-simplex, which has *
as every face, so by i), every arising action is identified, leaving us with the following
proposition.

Proposition 5.7. For the minimal simplicial decomposition of S™ withn > 1, HH*
can only take coefficients in uni-modules.
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