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BEHAVIOR OF QUILLEN (CO)HOMOLOGY
WITH RESPECT TO ADJUNCTIONS

MARTIN FRANKLAND

(communicated by J. Daniel Christensen)

Abstract
This paper aims to answer the following question: Given an

adjunction between two categories, how is Quillen (co)homology in
one category related to that in the other? We identify the induced
comparison diagram, giving necessary and sufficient conditions for
it to arise, and describe the various comparison maps. Examples
are given. Along the way, we clarify some categorical assumptions
underlying Quillen (co)homology: cocomplete categories with a
set of small projective generators provide a convenient setup.

1. Introduction

1.1. Motivation and goals
Quillen [20, §II.5] introduced a notion of cohomology that makes use of homo-

topical algebra and simplicial methods to take derived functors in a non-abelian
context, generalizing the derived functors of homological algebra. One of the goals
was to solve problems in algebra using methods from homotopy theory, although
Quillen cohomology later found many applications to homotopy theory and topology
[16, Remark 4.35].

Quillen cohomology works in a broad context which includes many interesting cat-
egories. The case of commutative algebras, the celebrated André-Quillen cohomology
[21, §4] [4] [16, §4.4], was one of the first examples studied. The analogue for asso-
ciative algebras [21, §3] is related to another well studied theory, namely Hochschild
cohomology. Quillen exhibited relations between the two [21, §8], which can be useful
when cohomology is easier to compute in one category or the other.

This paper investigates the question of relating Quillen (co)homology in different
categories, more specifically when two categories are related by an adjunction. Our
motivating example was to compute some Quillen cohomology groups of truncated Π-
algebras controlling the obstructions to realization [7], which is done in Subsection 5.3.
However, the broader question seems natural, given that adjoint pairs abound in
nature.
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1.2. Organization and results
Section 2 contains some background material. Section 3 clarifies the categorical

assumptions underlying Quillen cohomology. It consists mostly of category theory, for
the purposes of homotopical algebra. The main clarifications are Propositions 3.26
and 3.40. Examples 3.41 and 3.42 clarify conditions related to Beck modules being
abelian.

Section 4 is the heart of the paper, describing the effect of an adjunction on Quillen
(co)homology. We first describe the comparison diagram consisting of Quillen pairs,
and work out various comparison maps from it. The main result is Theorem 4.7, from
which Propositions 4.10 and 4.13 follow.

Section 5 studies examples of adjunctions where the right adjoint is the inclusion
of a regular-epireflective full subcategory. In other words, the right adjoint forgets
certain conditions satisfied by the objects, and the left adjoint is the quotient that
freely imposes the conditions. The main results are Corollary 5.14 and Theorem 5.16.

1.3. Notations, conventions, and terminology
1.3.1. Simplicial objects
Notation 1.1. Let ∆ denote the simplicial indexing category, whose objects are the
finite ordinals n = {0, 1, . . . , n}, for n ⩾ 0, and maps ϕ : : m → n are order-preserving
functions.

Given a category C, denote by sC the category of simplicial objects in C, i.e., the
functor category Fun(∆op, C). Denote a simplicial object by X•, where Xn := X(n)
denotes the object in simplicial degree n.

Denote the standard n-simplex by ∆n := Hom∆(−,n), which is a simplicial set.
We say that a property of a simplicial object X• holds degreewise if it holds for

Xn for all n ⩾ 0, and likewise for maps f• : X• → Y•.
An object X of C can be viewed as a constant simplicial object, denoted Xc (or

just X, by abuse of notation). This defines a fully faithful functor (−)c : C → sC.

1.3.2. Quillen (co)homology
Definition 1.2. For an object X of C, the category of Beck modules over X is the
category (C/X)ab of abelian group objects in the slice category C/X. We sometimes
use the notation ModX := (C/X)ab.

Definition 1.3. If the forgetful functor UX : (C/X)ab → C/X has a left adjoint
AbX : C/X → (C/X)ab, the latter is called abelianization over X.

Definition 1.4. For a map f : X → Y in C, the direct image functor f! : C/X →
C/Y is postcomposition by f , which is left adjoint to the pullback functor f∗ : C/Y →
C/X. Since f∗ preserves limits, it induces a functor f∗ : (C/Y )ab → (C/X)ab also
called pullback. The pushforward along f is the left adjoint f♯ : (C/X)ab → (C/Y )ab
of f∗, if it exists.

Definition 1.5. The cotangent complex LX of X is the derived abelianization of
X, i.e., the simplicial module over X given by LX := AbX(C• → X), where C• → X
is a cofibrant replacement of X in sC.

Definition 1.6. The nth Quillen homology group of X is the nth derived functor
of abelianization, given by HQn(X) := πn(LX). If the category ModX has a good
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notion of tensor product ⊗, then Quillen homology with coefficients in a module M
over X is HQn(X;M) := πn(LX ⊗M).

Definition 1.7. The nth Quillen cohomology group of X with coefficients in a
moduleM is the nth (simplicially) derived functor of derivations, given by HQn(X;M)
:= πnHom(LX ,M).

Definition 1.8. The nth abelian cohomology group of X with coefficients in
a module M is the nth derived functor of derivations in the sense of homologi-
cal algebra, given by HAn(X;M) := Extn(AbXX,M). The nth abelian homology
group of X with coefficients in M is HAn(X;M) := Torn(AbXX,M). They can be
viewed as abelian approximations of Quillen (co)homology, with comparison maps
HAn(X;M) → HQn(X;M) and HQn(X;M) → HAn(X;M).

1.3.3. Category theory
We follow mostly [9, Chapter 4], [10, Chapter 2], [20, §II.4], [5, Chapter 1], and
[2, Chapter 1]. All categories will be assumed locally small, i.e., HomC(X,Y ) forms a
set for any two objectsX and Y of the category C. We will not distinguish between the
notions of small category and essentially small category, i.e., one that is equivalent to
a small category. The term “finite products” will always include the nullary product,
i.e., the terminal object; likewise for finite coproducts.

Definition 1.9. The kernel pair of a map f : X → Y is the pullback of f along
itself:

X ×Y X

��

// X

f

��
X

f
// Y

equipped with its two projections X ×Y X ⇒ X.

Definition 1.10. A map f : X → Y is called a regular epimorphism if it is the
coequalizer of some parallel pair of maps W ⇒ X. Note that a regular epimorphism
is indeed automatically an epimorphism.

Remark 1.11. A map f : X → Y is called an effective epimorphism if f admits a
kernel pair X ×Y X ⇒ X and f is the coequalizer of its kernel pair. If a map f is a
coequalizer of some parallel pair (i.e., a regular epimorphism) and f admits a kernel
pair, then f is the coequalizer of its kernel pair [9, Proposition 2.5.7]. Thus, in a
category C with all kernel pairs, the notions of regular epimorphism and effective
epimorphism coincide.

Definition 1.12. A category C is called regular if it satisfies the following conditions
[10, Definition 2.1.1].

• Every map f : X → Y has a kernel pair.

• Every kernel pair X ×Y X ⇒ X has a coequalizer.

• The pullback of a regular epimorphism along any map exists and is again a
regular epimorphism.
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Remark 1.13. The notion of regular category in [5, Chapter 1 §8.9] is more restrictive.
The first two conditions are strengthened to the existence of all finite limits and of
all coequalizers.

Definition 1.14. An object X of C is called finitely presentable if the functor
HomC(X,−) : C → Set preserves filtered colimits [2, Definition 1.1].

Given a regular cardinal κ, an object X is called κ-presentable if the functor
HomC(X,−) : C → Set preserves κ-filtered colimits [10, Definition 5.1.1] [2, Definition
1.13]. An object is presentable if it is κ-presentable for some regular cardinal κ.
Finitely presentable is thus another name for ℵ0-presentable.

Remark 1.15. This notion of finitely presentable is called small in [20, §II.4]. Let us
clarify the distinction between smallness and presentability.

Given a regular cardinalκ, an objectX is calledκ-small if the functor HomC(X,−): C
→ Set preserves κ-directed sequential colimits, where sequential means indexed by
a well-ordered set. An object is small if it is κ-small for some regular cardinal κ.
Smallness and various weaker conditions play a role in the small object argument; cf.
[14, Definition II.6.1], [18, Definition 2.1.3], and [17, Definition 10.4.1].

By definition, every κ-presentable object is also κ-small. For κ = ℵ0, the converse
holds: an object is ℵ0-presentable if and only if it is ℵ0-small [2, Corollary 1.7].
However, this is no longer true for larger cardinals. For example, [2, Remark 1.21]
describes an object which is ℵ1-small but not ℵ1-presentable.

Definition 1.16. A class G of objects of C is called a class of generators if for
every object X of C, there is a regular epimorphism ⨿iGi ↠ X from a coproduct of
objects Gi in G. This notion is also called a regular class of generators in the literature
[9, Definition 4.5.3].

Definition 1.17. A category C is locally finitely presentable if it is cocomplete
and has a set G of finitely presentable objects such that every object of C is a filtered
colimit of objects from G [2, Definition 1.9].

Given a regular cardinal κ, a category C is locally κ-presentable if it is cocom-
plete and has a set G of κ-presentable objects such that every object of C is a κ-
filtered colimit of objects from G [2, Definition 1.17] [10, Definition 5.2.1]. A category
is locally presentable if it is locally κ-presentable for some regular cardinal κ.
Locally finitely presentable is thus another name for locally ℵ0-presentable.

Definition 1.18. An object P of C is called projective if the functor HomC(P,−) :
C → Set preserves regular epimorphisms. More explicitly, recall that (regular) epi-
morphisms in Set are the surjections, so that an object P of C is projective if and
only if maps out of P can be lifted across any regular epimorphism f : X ↠ Y , as
illustrated in the diagram:

P

~~}
}
}
}

��
X

f
// // Y.

(1)

The category C has enough projectives if for every object X of C, there exists a
regular epimorphism P ↠ X from a projective object P .
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Remark 1.19. This notion of projective is also called regular projective in the litera-
ture [2, Remark 3.4 (5)]. We drop the adjective because regular projectives are the
only kind of projectives we work with in this paper. Note that this notion is implied by
the notion of projective in [9, Definition 4.6.1]; the two notions agree if the category
C is regular [10, Proposition 2.1.4].

Remark 1.20. In an abelian category A, every epimorphism is regular, and the notion
of (regular) projective is the usual notion of projective from homological algebra.

Definition 1.21. Let P be a class of objects in C. A map f : X → Y is P-epic if for
every object P of P, the map f∗ : HomC(P,X) → HomC(P, Y ) is surjective [11, §1.1].
In other words, maps out of any P in P can be lifted across f : X ↠ Y , as in the
diagram (1).

In this paper, P will be the class of regular projectives unless otherwise noted. In
that case, every regular epimorphism is P-epic by definition, though a P-epic map
need not be a regular epimorphism. Note moreover that projectives and P-epic maps
determine each other via the lifting condition.

Definition 1.22. A subobject of an object X in a category C is an equivalence
class of monomorphisms Z ↪→ X, up to isomorphism over X [9, Definition 4.1.1].
The equivalence class of Z ↪→ X is denoted [Z ↪→ X].

Definition 1.23. A relation on an object X is a subobject [R ↪→ X ×X] [10, Def-
inition 2.5.1].

By abuse of notation, we sometimes blur the distinction between a relation [R ↪→
X ×X] and one of its representative monomorphisms R ↪→ X ×X.

Note that a monomorphism R ↪→ X ×X is the same as a pair of maps r1, r2 : R⇒
X which are jointly monomorphic. The coequalizer of a relation [R→ X ×X] is
defined as the coequalizer of such a pair R⇒ X for any representative map R ↪→
X ×X. The coequalizer is independent of the choice of representative.

Definition 1.24. An equivalence relation [R ↪→ X ×X] on an object X is a rela-
tion on X which satisfies reflexivity, symmetry, and transitivity; see [10, Proposition
2.5.5] for more details.

Definition 1.25. An equivalence relation R⇒ X on an object X is called effective
if it is the kernel pair of some map [10, Definition 2.5.3] [5, Chapter 1 §8.11].

Definition 1.26. An exact category (in the sense of Barr) is a regular category in
which all equivalence relations are effective [10, Definition 2.6.1] [5, Chapter 1 §8.11].
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2. What kinds of categories?

In the classic [20, §II.4], Quillen introduces a standard simplicial model structure
on the category sC of simplicial objects in C, assuming C is nice enough. In this
section, we recall some conditions on C that make this construction work, and we
describe the kinds of categories we will be working with.

2.1. Standard model structure on simplicial objects

Definition 2.1. A complete and cocomplete category C has nice simplicial objects
if the following notions define a (closed) model structure on sC. A map f• : X• → Y•
in sC is a:

• fibration (resp. weak equivalence) if for every projective object P of C, the map

HomC(P,X•)
f∗ // HomC(P, Y•)

is a fibration (resp. weak equivalence) of simplicial sets;

• cofibration if it has the left lifting property with respect to all trivial fibrations.

Remark 2.2. Quillen’s original construction only assumed finite limits and colimits.
As explained in [18, §1.1], by assuming the existence of all small limits and colimits,
one loses little generality and gains much convenience.

Definition 2.3. A category is quasi-algebraic if it is cocomplete and has a set of
finitely presentable projective generators.

This notion is called a multi-sorted quasi-algebraic category in [19, Chapter VI,
§3.1, 4.2], where the term quasi-algebraic category is reserved for the case where said
set of generators consists of a single object.

In [20, §II.4, Theorem 4], Quillen shows that quasi-algebraic categories have nice
simplicial objects. In [21, §2], he proposes the word “algebraic” for categories as
in Definition 2.3 and then provides examples from Lawvere’s work, in which the
categories are assumed to be exact. We reserve the word “algebraic” for the more
restrictive sense in Definition 2.6, for reasons which will be explained below.

Quasi-algebraic categories have excellent properties. They are locally finitely pre-
sentable (by [2, Theorem 1.11]) and in particular complete (by [2, Corollary 1.28]),
and they are regular (by Corollary 3.2).

Remark 2.4. Not every locally finitely presentable category is quasi-algebraic. For
example, the category Poset of partially ordered sets is locally finitely presentable,
by [2, Example 1.10 (1)], but it is not quasi-algebraic, by [2, Remark 3.21 (1)]. Indeed,
the only projective posets are the discrete ones. The regular epimorphisms in Poset
are the surjective maps f : X → Y such that the image f(X) generates Y under
composition (viewing posets as categories). The poset with two comparable elements
Y = {y0 < y1} admits no regular epimorphism P → Y from a projective P ; hence
Poset does not have enough projectives.

Note that the P-epic maps in Poset are those that are regular epimorphisms of
underlying sets, namely the surjective maps.
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Definition 2.5. An algebraic theory is a small category T with finite products
[3, Definition 1.1]. A model for the theory T is a functorM : T → Set that preserves
finite products. Morphisms between models for T are natural transformations. The
category Model(T ) of models for T is a full subcategory of the functor category
SetT .

More generally, given a category C, a C-valued model for T is a functorM : T → C
that preserves finite products. The category Model(T ; C) of C-valued models for T
is a full subcategory of the functor category CT .

An algebraic theory T is one-sorted if there is an object T1 of T such that every
object T is a finite product T ∼= Tn1 for some n ⩾ 0. In that case, there is a forgetful
functor U : Model(T ; C) → C, which evaluates a model M : T → C at the object T1.
This functor U is well-defined up to natural isomorphism, namely up to the choice of
the object T1; cf. [10, Proposition 3.3.3].

Definition 2.6. A category is algebraic if it is equivalent to the categoryModel(T )
of models for some algebraic theory T [3, Definition 1.2].

Every algebraic category is quasi-algebraic, with a set of finitely presentable pro-
jective generators consisting of free objects. The difference between algebraic and
quasi-algebraic categories lies in exactness.

Theorem 2.7. [2, Corollary 3.25] A category is algebraic if and only if it is quasi-
algebraic and exact.

2.2. Varieties of algebras
Our choice of terminology for (quasi-)algebraic categories comes from universal

algebra. Let us recall the basics about varieties of algebras; more details can be found
in [2, §3.A, 3.B] and [1, §1.1].

Definition 2.8. Let S be a set, called the set of sorts. An S-sorted signature is a set
Σ, called the set of operation symbols, together with an arity function which assigns
to each σ ∈ Σ a family of sorts (s1, . . . , sn) (with n ⩾ 0) called the input sorts of σ,
along with a sort s, called the output sort. We denote the arity by s1 × . . .× sn → s.
In the one-sorted case, i.e., when S = {∗} consists of one element, the arity can be
identified with the number n of inputs.

A Σ-algebra A consists of sets As for each sort s ∈ S together with maps (called
operations)

σA : As1 × . . .×Asn → As

for each operation symbol σ ∈ Σ of arity s1 × . . .× sn → s. A map f : A→ B of Σ-
algebras consists of maps fs : As → Bs for each sort s ∈ S which commute with all
operations. Let AlgΣ denote the category of Σ-algebras.

An equation is a pair of terms (τ, τ ′) of the same sort in a free Σ-algebra. Equa-
tions are denoted symbolically by τ = τ ′. A Σ-algebra A satisfies the equation τ = τ ′

of sort s if substitution of any inputs from the respective sets Asi for the formal vari-
ables in τ and τ ′ yields the same element in As.

A variety (or equational class) of Σ-algebras is a full subcategory of AlgΣ of the
form Alg(Σ, E), consisting of the Σ-algebras that satisfy all equations in some set of
equations E.
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A variety of S-sorted finitary algebras is a variety of Σ-algebras for some S-sorted
signature Σ. Here, finitary refers to the fact that all operations have finitely many
inputs. A variety of many-sorted finitary algebras, or many-sorted finitary variety for
short, is a variety of S-sorted finitary algebras for some set S.

Example 2.9. Abelian groups form a one-sorted finitary variety. Let S = {∗}, and let
Σ = {µ, e, ι} be operation symbols of arity 2, 0, and 1 respectively. Consider the set
E of four equations:

µ(µ(x, y), z) = µ(x, µ(y, z))

µ(x, e) = x

µ(x, ι(x)) = e

µ(x, y) = µ(y, x).

Then abelian groups are precisely (Σ, E)-algebras, and we have Ab = Alg(Σ, E).
Likewise, monoids, groups, rings, commutative rings, Lie algebras, R-modules, R-

algebras, and commutative R-algebras (for a fixed commutative ring R) are one-sorted
finitary varieties.

Definition 2.10. An implication is a finite list of equations τi = τ ′i called premises
together with an equation τ = τ ′ called a conclusion. We denote an implication sym-
bolically by: ∧

i

τi = τ ′i ⇒ τ = τ ′.

A Σ-algebra A satisfies such an implication if for any inputs from the respective sets
As satisfying all premises, these inputs also satisfy the conclusion.

A quasivariety (or implicational class) of Σ-algebras is a full subcategory ofAlgΣ
of the form Alg(Σ, E, I), consisting of the Σ-algebras that satisfy a set of equations
E and a set of implications I.

Many-sorted finitary quasivarieties are defined analogously to varieties.

One has the following universal-algebraic characterization theorems. The first is
due to Lawvere, at least in the one-sorted case; the second is due to Isbell.

Theorem 2.11. [2, Theorem 3.16, Remark 3.17] A category is algebraic if and only
if it is equivalent to a many-sorted finitary variety.

Remark 2.12. Given a many-sorted finitary variety C, the theory of C is the algebraic
theory TC := Cop

ff , the opposite of the full subcategory Cff of C consisting of finitely gen-
erated free objects. One direction of Theorem 2.11 is the equivalence C ∼= Model(TC).

Remark 2.13. Abelian group objects in C can be described as C-valued models of
the theory TAb of abelian groups: Cab ∼= Model(TAb; C). Via this equivalence, the
forgetful functor U : Model(TAb; C) → C from Definition 2.5 is the usual forgetful
functor U : Cab → C.

Theorem 2.14 (Isbell’s Characterization Theorem). [2, Theorem 3.24] A category
is quasi-algebraic if and only if it is equivalent to a finitary quasivariety.
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Example 2.15. Consider the category Abtf of torsion-free abelian groups, viewed as
a full subcategory of abelian groups. In the notation of Example 2.9, we have the
equational presentation Ab = Alg(Σ, E). Consider the set of implications I given
by:

µ(x, x) = e⇒ x = e

µ(x, µ(x, x)) = e⇒ x = e

...

Then torsion-free abelian groups are precisely those satisfying all implications in I,
so that Abtf is the quasivariety Alg(Σ, E, I).

By Theorem 2.14, Abtf is a quasi-algebraic category, as one can check directly. The
inclusion Abtf ↪→ Ab has a left adjoint, which quotients out the torsion subgroup.
Thus Abtf is cocomplete. Moreover, Z is a finitely presentable projective generator
for Abtf , as it is for Ab.

Presenting Abtf as a quasivariety does not a priori exclude that it be a variety.
However, by Theorem 2.7, Abtf is not a variety since it is not exact. For any integer
n ⩾ 2, the map n : Z → Z in Abtf is a monomorphism which is not the kernel of its
cokernel. Indeed, its cokernel is Z → 0, whose kernel is 1 : Z → Z. In other words, the
equivalence relation {(x, y) ∈ Z× Z | x ≡ y mod (n)} on Z is not effective.

Example 2.16. Let Com denote the category of commutative rings, and Comred the
full subcategory consisting of reduced commutative rings, i.e., those without nilpo-
tents. Then Com is variety Alg(Σ, E), with signature Σ = {µ, e, ι,m, u} where µ, e, ι
represent the addition, zero element, and negative in the underlying abelian group,
and m and u represent the multiplication and unit element. Consider the set of impli-
cations I given by:

m(x, x) = e⇒ x = e

m(x,m(x, x)) = e⇒ x = e

...

Then reduced commutative rings are precisely those satisfying all implications in I,
so that Comred is the quasivariety Alg(Σ, E, I).

Again, one can check directly that Comred is quasi-algebraic. The inclusion
Comred ↪→ Com has a left adjoint, which quotients out the nilradical. Thus Comred

is cocomplete. Moreover, the free commutative ring on one generator, the polynomial
ring Z[x], is a finitely presentable projective generator for Comred, as it is for Com.

However, Comred is not a variety since it is not exact. Consider the equivalence
relation R = {(x, y) ∈ Z× Z | x ≡ y mod (4)} on Z. The coequalizer of R in Comred

is Z ↠ Z/2, whose kernel pair is {(x, y) ∈ Z× Z | x ≡ y mod (2)}; hence R is not
effective.

A useful generalization of algebraic theories is provided by sketches, as introduced
by Ehresmann.

Definition 2.17. [2, Definition 1.49] [10, Definition 5.6.1] A limit sketch consists
of a pair (S,L) where S is a small category, and L is a set of limiting cones over small
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diagrams in S. A finite product sketch, or FP sketch for short, is a limit sketch
where the limiting cones in L are over finite discrete diagrams in S, i.e., the cones
are finite products.

Note that an algebraic theory T can be viewed as an FP sketch, where we take L
to be the set of all finite products in T .

Definition 2.18. A model for the limit sketch (S,L) is a functorM : S → Set send-
ing the cones in L to limiting cones in Set; in other words, M preserves the spec-
ified limits. Morphisms between models are natural transformations. The category
Model(S,L) of models for (S,L) is a full subcategory of the functor category SetS .

Definition 2.19. A category is FP sketchable if it is equivalent to the category
Model(S,L) of models for some FP sketch (S,L).

Theorem 2.20. [2, Theorem 3.16, Remark 3.17] A category is FP sketchable if and
only if it is algebraic.

Therefore, FP sketches provide a more general way to describe an algebraic cate-
gory, but do not provide a broader class of categories of models.

3. Setup for Quillen (co)homology

In this section, we study in more detail the categorical assumptions needed in
order to work with Quillen cohomology. Most importantly, we want the prolonged
adjunction AbX : sC/X ⇄ s(C/X)ab : UX to be a Quillen pair.

3.1. Prolonged adjunctions as Quillen pairs

Recall the following useful fact, giving sufficient conditions for the regular epimor-
phisms to be determined by the projectives.

Proposition 3.1. [20, §II.4, Proposition 2] If a category C has finite limits and
enough projectives, then every P-epic map in C is a regular epimorphism. In other
words, a map f : X → Y is a regular epimorphism if and only if the map

f∗ : HomC(P,X) → HomC(P, Y )

is a surjection for every projective P .

Corollary 3.2. If C has finite limits and enough projectives, then regular epimor-
phisms in C are closed under pullbacks.

In particular, if moreover C has coequalizers of kernel pairs, then C is regular.

Proposition 3.3. Assume we have an adjunction F : C ⇄ D : G. Then G sends reg-
ular epimorphisms to P-epic maps if and only if F preserves projectives.

In particular, if C has finite limits and enough projectives, then the condition is
equivalent to G preserving regular epimorphisms.
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Proof. Given a map f : d→ d′ in D and an object P in C, consider the commutative
diagram of sets

HomD(FP, d)

∼=
��

f∗ // HomD(FP, d
′)

∼=
��

HomC(P,Gd)
(Gf)∗ // HomC(P,Gd

′)

in which the top map is surjective if and only if the bottom map is surjective. Sur-
jectivity for every projective P in C and every regular epimorphism f : d→ d′ in D is
equivalent to FP being projective in D for every projective P in C, and also equiva-
lent to Gf : Gd→ Gd′ being P-epic in C for every regular epimorphism f : d→ d′ in
D.

Lemma 3.4. Let C be a category with nice simplicial objects, as in Definition 2.1.
Then every cofibrant object of sC is degreewise projective.

Proof. Let evn : sC → C be the functor evaluating at n, and let rn : C → sC be its
right adjoint, which can be described as a right Kan extension. Let C• be a cofibrant
object in sC. We want to show that Cn is projective. The lifting problem

X

f
����

Cn

>>|
|

|
|

// Y

for a regular epimorphism f : X ↠ Y in C is equivalent, by adjunction, to the lifting
problem

rnX

rnf

��
C•

==z
z

z
z

// rnY

in sC. Since C• is cofibrant, it suffices to show that rnf is a trivial fibration in sC to
guarantee the existence of such a lift.

To show that rnf is a trivial fibration, let P be a projective object of C, and
consider the map of simplicial sets

HomC(P, rnX)
(rnf)∗ // HomC(P, rnY ).

Recall the isomorphism of simplicial sets from [14, Proof of Theorem II.2.5]

HomC(P,Z•) ∼= HomsC(Pc, Z•)

where HomsC(V•, Z•) is the usual simplicial mapping space in sC, whose degree n
object is HomsC(V•, Z•)n = HomsC(V• ⊗∆n, Z•). To show that the map (rnf)∗ is a
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trivial fibration, we test it against an arbitrary cofibration of simplicial sets:

A•

i•

��

// HomC(P, rnX)

(rnf)∗

��
B•

88rrrrrr // HomC(P, rnY ).

By adjunction, this lifting problem in sSet is equivalent to the lifting problem in sC:

Pc ⊗A•

Pc⊗i•
��

// rnX

rnf

��
Pc ⊗B•

::u
u

u
u

u
// rnY

which, again by adjunction, is equivalent to the lifting problem in C:

(Pc ⊗A•)n

(Pc⊗i•)n
��

// X

f

��
(Pc ⊗B•)n

::u
u

u
u

u
// Y.

(2)

Using the explicit description of the tensoring ⊗ : sC × sSet → sC, the map (Pc ⊗ i•)n
on the left can be written as: ⨿

a∈An

P →
⨿
b∈Bn

P (3)

induced by the map of sets in : An → Bn. Since i• : A• → B• is a cofibration of simpli-
cial sets, in : An → Bn is injective and the map (3) is the inclusion of the correspond-
ing summands. Since P is projective in C, the lifting problem (2) has a solution.

Lemma 3.5. Let C be a category with nice simplicial objects.

1. Every trivial fibration f• : X• → Y• in sC is degreewise P-epic. In particular, if
C has enough projectives, then f• is a degreewise regular epimorphism.

2. If f : X → Y is a P-epic map in C, then there is a trivial fibration f• : X• → Yc
in sC whose degree 0 part is f0 = f .

3. Every object X of C admits a P-epic map P → X from a projective P .

4. C has enough projectives if and only if all trivial fibrations in sC are degreewise
regular epimorphisms.

Proof. 1. Let P be a projective object in C. By definition of trivial fibrations in sC,
the map

HomC(P,X•)
f∗ // HomC(P, Y•)

is a trivial fibration of simplicial sets, in particular a degreewise surjection. Therefore
each fn is P-epic.
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2. Since f : X → Y coequalizes the two projections of the kernel pairX ×Y X ⇒ X
(though f need not be the coequalizer), one can form the augmented simplicial object

. . . X ×Y X ×Y X
// //// X ×Y X // // X

f // Y

which can be viewed as a map f• : X• → Yc in sC. Here, X• is the simplicial object
with Xn = X ×Y . . .×Y X (n+ 1 factors), where faces are given by projections and
degeneracies are given by diagonals.

Let us show that f• is a trivial fibration in sC. Without loss of generality, we may
assume C = Set, since for every projective P of C, the functor HomC(P,−) : C →
Set preserves limits and sends P-epic maps to surjections. Since Yc is constant, the
assertion is equivalent to this: the preimage by f : X• → Yc over each point y ∈ Y is
a contractible Kan complex. Since f0 = f : X → Y is surjective, we may assume that
Y is a point and X is non-empty.

NowX• = N(EX) is the nerve of the contractible groupoid (or indiscrete category)
EX on the set X, where EX has as objects the elements of X, and exactly one
morphism from x to x′ for any x, x′ ∈ X. Hence X• is a contractible Kan complex.

3. Let C• → Xc be a trivial fibration in sC from a cofibrant object to X viewed
as a constant simplicial object. Then C0 is projective, by Lemma 3.4, and the map
C0 → X is P-epic, by part 1.

4. If C has enough projectives, then every P-epic map in C is a regular epimorphism,
and by part 1, trivial fibrations in sC are degreewise regular epimorphisms. Conversely,
if trivial fibrations in sC are degreewise regular epimorphisms, then the map C0 → X
constructed in part 3 is a regular epimorphism from a projective.

Remark 3.6. By Lemma 3.5 (3), the class P of regular projectives and the P-epic maps
then form a projective class in the sense of [11, Definition 1.1]; see also [11, §6.2].

Remark 3.7. The converse of part 1 is false, even for C = Set. For example, recall
that a map of constant simplicial sets is always a fibration, and is a weak equivalence
if and only if it is bijective. Now take a surjective map of sets f : X ↠ Y which is
not bijective, viewed as a map of constant simplicial sets fc : Xc → Yc. Then fc is a
degreewise regular epimorphism but not a trivial fibration.

Remark 3.8. Having nice simplicial objects does not guarantee having enough pro-
jectives. For example, consider the category C = Poset, which is locally finitely pre-
sentable. Recall from Remark 2.4 that the projectives in Poset are precisely the
discrete posets. Therefore, the notions in Definition 2.1 are that a map f• : X• → Y•
of simplicial posets is a fibration (resp. weak equivalence) if the map of underlying
simplicial sets Uf• : UX• → UY• is a fibration (resp. weak equivalence) of simplicial
sets. By [14, Corollary II.5.6], these notions do define a (closed) model structure on
sPoset, in fact a simplicial model structure.

By Lemma 3.5 (4), sPoset has some trivial fibrations which are not degreewise
regular epimorphisms. Let us describe an explicit example thereof. A map of constant
simplicial posets is always a fibration, and is a weak equivalence if and only if it is
bijective. In particular, consider the discrete two-element poset X = {x0, x1}, the
non-discrete two-element poset Y = {y0 < y1}, and the map f : X → Y defined by
f(xi) = yi for i = 0, 1. Then the map of constant simplicial posets fc : Xc → Yc is a
trivial fibration in sPoset, but it is not a regular epimorphism in any degree.
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Proposition 3.9. Assume C and D have nice simplicial objects. Assume we have an
adjunction F : C ⇄ D : G, and hence a prolonged adjunction

sC
F //

sD
G

oo

between model categories. Then this prolonged adjunction is a Quillen pair if and only
if F preserves projectives, or equivalently, if G sends regular epimorphisms to P-epic
maps.

Proof. (⇒) Take a regular epimorphism f : X → Y in D and consider a trivial fibra-
tion f• : X• → Yc in sD satisfying f0 = f , as in Lemma 3.5 (2). Since G prolongs to
a right Quillen functor, Gf• is a trivial fibration in sC, and hence degreewise P-epic.
In particular, Gf = Gf0 is P-epic.

(⇐) We show a slightly stronger statement: G preserves fibrations and weak equiv-
alences. Take a fibration (resp. weak equivalence) f : X• → Y• in sD and a projective
P in C, and consider:

HomC(P,GX•)

∼=
��

(Gf)∗ // HomC(P,GY•)

∼=
��

HomD(FP,X•)
f∗ // HomD(FP, Y•).

By assumption, FP is projective in D; hence the bottom and top maps are fibrations
(resp. weak equivalences) of simplicial sets. ThusGf : GX• → GY• is a fibration (resp.
weak equivalence) in sC.

Remark 3.10. We have seen that a prolonged right Quillen functor in Proposition 3.9
is particularly strong: it preserves fibrations and all weak equivalences, not just
between fibrant objects. However, the prolonged left Quillen functor does not enjoy
this additional property in general, i.e., it need not preserve all weak equivalences,
only those between cofibrant objects.

Example 3.11. Let R be a commutative ring and consider the functor R⊗− from
abelian groups to R-modules. It preserves projectives (since it sends a free abelian
group to a free R-module), but the prolonged left Quillen functor does not preserve
all weak equivalences if R is not flat over Z.

3.2. Slice categories
Proposition 3.9 gives a simple criterion for when a prolonged adjunction is a Quillen

pair. We want to know if the induced adjunction on slice categories is also a Quillen
pair. Let us first describe regular epimorphisms and projectives in the slice category.

Proposition 3.12. If f : Y → Z is a regular epimorphism in C, then

Y

  @
@@

@@
@@

@
f // Z

��
X

is a regular epimorphism in C/X. The converse also holds if C has coequalizers.
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Proof. See [5, Chapter 1, Proposition 8.12]. It follows from the fact that the “source”
forgetful functor C/X → C creates colimits.

Proposition 3.13. 1. If P is projective in C, then p : P → X is projective in C/X.

2. The converse also holds if C has enough projectives.

Proof. 1. Start with a regular epimorphism

Y

y   @
@@

@@
@@

@
f // Z

z

��
X

in C/X, which means f : Y → Z is a regular epimorphism in C, by Proposition 3.12.
We want to know if the map

f∗ : HomC/X(P
p−→ X,Y

y−→ X) → HomC/X(P
p−→ X,Z

z−→ X)

is surjective. Let α be a map in the right-hand side which we are trying to reach and
consider the diagram:

Y

y

��0
00
00
00
00
00
00
0

f // Z

z

����
��
��
��
��
��
��

P

α̃

??~
~

~
~

α

44iiiiiiiiiiiiiiiiiiiiii

p

''PP
PPP

PPP
PPP

PPP

X

Since P is projective in C, there is a lift α̃ in the top triangle, meaning fα̃ = α. If α̃

is in fact a map in HomC/X(P
p−→ X,Y

y−→ X), then it will be our desired lift. So it
suffices to check that the triangle on the left commutes: yα̃ = zfα̃ = zα = p.

2. Let E
e−→ X be projective in C/X. Since C has enough projectives, pick a regular

epimorphism π : P → E from a projective P . Consider the diagram:

P

eπ

��0
00
00
00
00
00
00
0

π // E

e

����
��
��
��
��
��
��

E

s

??~
~

~
~

id

44iiiiiiiiiiiiiiiiiiiiii

e

''PP
PPP

PPP
PPP

PPP

X

where there exists a lift s since E
e−→ X is projective in C/X. The relation πs = idE

exhibits E as a retract of a projective in C, and hence is itself projective.

Now we can describe the standard Quillen model structure on s(C/X) ∼= sC/X. A
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map

Y•

y
  B

BB
BB

BB
f // Z•

z

��
X

(4)

is a fibration (resp. weak equivalence) in s(C/X) if and only if the map

HomC/X(P
p−→ X,Y•

y−→ X)
f∗ // HomC/X(P

p−→ X,Z•
z−→ X)

is a fibration (resp. weak equivalence) of simplicial sets for all projective P
p−→ X in

C/X. By Proposition 3.13, we can rephrase the latter as: for all projective P in C and
map p ∈ HomC(P,X).

However, in the framework of Quillen (co)homology, we decided to work with
the “slice” model structure on sC/X, where the map (4) is a fibration (resp. weak
equivalence) if and only if the map f∗ : HomC(P, Y•) → HomC(P,Z•) is a fibration
(resp. weak equivalence) of simplicial sets for all projective P in C. In fact, let us
check that the two model structures agree.

Proposition 3.14. There is a natural isomorphism of simplicial sets:⨿
p∈HomC(P,X) HomC/X(P

p−→ X,Y•
y−→ X)

∼= // HomC(P, Y•).

Proof. For a fixed y : Y → X, a map g : P → Y is the same as the data of the com-
mutative diagram:

P

p   @
@@

@@
@@

@
g // Y

y

��
X

and thus we can partition all maps g : P → Y according to their composite p =
yg : P → X. More precisely, we take the map⨿

p∈HomC(P,X)

HomC/X(P
p−→ X,Y

y−→ X) → HomC(P, Y )

which is readily seen to be surjective and injective, i.e., an isomorphism of sets. More-
over, it is natural in y : Y → X, i.e., the two sides define two naturally isomorphic
functors from C/X to Set. By naturality, it prolongs to a natural isomorphism of sim-
plicial sets. Since colimits of simplicial objects are computed degreewise, the simplicial
set whose nth degree is ⨿

p∈HomC(P,X)

HomC/X(P
p−→ X,Yn

yn−→ X)


n

equals the left-hand side in the statement.

Proposition 3.15. The standard model structures on s(C/X) and sC/X are the
same.
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Proof. The top row in the diagram

HomC(P, Y•)
f∗ // HomC(P,Z•)

⨿
pHomC/X(P

p−→ X,Y•
y−→ X)

f∗ // ⨿
pHomC/X(P

p−→ X,Z•
z−→ X)

is a fibration (resp. weak equivalence) of simplicial sets if and only if each summand
is so. This means that f is a fibration (resp. weak equivalence) in sC/X if and only
if it is so in s(C/X). Moreover, the model structures are closed, i.e., cofibrations are
determined by fibrations and weak equivalences (as having the left lifting property
with respect to trivial fibrations). Therefore, the two model structures agree.

3.3. Regularity of abelian group objects

In this section, we study the properties of the category Cab of abelian group objects
in a category C and the forgetful functor U : Cab → C.

It is convenient to work with regular categories, so we would like to know if Cab
is regular whenever C is. The main feature of regular categories is that any map
can be factored as a regular epimorphism followed by monomorphism; we call this
the regular-epi–mono factorization, which is unique up to isomorphism [10, Theorem
2.1.3]. Isomorphisms are precisely maps that are both a regular epimorphism and
a monomorphism. We will check that all three classes of maps are preserved and
reflected by U .

First, recall that U is faithful, creates limits, and reflects isomorphisms. Indeed, if
Uf is an isomorphism in C, then (Uf)−1 lifts to a map in Cab.

Proposition 3.16. Assume C has kernel pairs. Then U preserves monomorphisms.

Proof. In a category with kernel pairs, a map f : X → Y is a monomorphism if and
only if the two projections X ×Y X ⇒ X from its kernel pair are equal. Thus, any
functor between categories with kernel pairs which preserves kernel pairs also pre-
serves monomorphisms.

In [5, Chapter 6, Proposition 1.7], Barr shows the following.

Proposition 3.17. Assume C is regular. Then U : Cab → C lifts the regular-epi–mono
factorization in C. In other words, if f : X → Y is a map in Cab and UX ↠ Z ′ ↪→ UY
is a regular-epi–mono factorization of the underlying map Uf , then we can lift it
(uniquely) to a factorization X → Z → Y in Cab.

Corollary 3.18. If C is regular, then U : Cab → C preserves regular epimorphisms.

In addition, we would like to know if U reflects regular epimorphisms.

Proposition 3.19. If C is regular, then Cab has coequalizers of kernel pairs, created
by U .
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Proof. Let f : X → Y be any map in Cab and take its kernel pair X ×Y X ⇒ X. Since
U preserves limits, the underlying diagram is still a kernel pair, and we can take its
coequalizer:

UX ×UY UX
pr1 //
pr2

// UX
Uf //

"" ""E
EE

EE
EE

EE
UY

C.

h

OO

Since C is regular, the map h : C → Y is a monomorphism, by [5, Chapter 1, Propo-

sition 8.10]. By Proposition 3.17, there is a unique lift X → C̃ → Y of that regular-

epi–mono factorization. One can check that X → C̃ is the desired coequalizer in Cab
of the kernel pair of f .

Proposition 3.20. If C is regular, then U : Cab → C reflects regular epimorphisms.

Proof. Let f : X → Y be a map in Cab such that Uf is a regular epimorphism in
C. We want to show that f is a regular epimorphism. Since U creates limits, the
kernel pair of f is the unique lift of the kernel pair UX ×UY UX ⇒ UX of Uf , and
the latter has a coequalizer, namely Uf : UX → UY . Since U creates coequalizers of
kernel pairs, there is a unique cocone lifting Uf : UX → UY and it is a coequalizer
of X ×Y X ⇒ X. But f : X → Y is such a lift; hence f is a regular epimorphism.

Corollary 3.21. The lifted factorization of Proposition 3.17 is a regular-epi–mono
factorization in Cab.

Corollary 3.22. If C is regular, then Cab is regular.

Proof. Cab has kernel pairs (and any limits that C has) and coequalizers of kernel
pairs. It remains to check that the pullback of a regular epimorphism is a regular
epimorphism:

P

f∗e

��

// X

e
����

W
f

// Y.

Since U preserves regular epimorphisms, Ue is a regular epimorphism. Since pull-
backs are computed in C, we have U(f∗e) = (Uf)∗(Ue), which is a regular epimor-
phism since C is regular. Since U reflects regular epimorphisms, f∗e itself is a regular
epimorphism in Cab.

For the record, let us extract a more general statement from the arguments above.

Proposition 3.23. Let T be a one-sorted algebraic theory. Then all the statements in
Subsection 3.3 about U : Cab →C also apply to the forgetful functor U :Model(T ; C) →
C. In particular, if C is regular, then Model(T ; C) is regular.

Proof. By the argument of [2, Remark 3.17] or [10, §3.3], there is a one-sorted fini-
tary variety V and an equivalence of categories Model(T ; C) ∼= Model(TV ; C). In
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[5, Chapter 6, Proposition 1.7], Barr notes that the proofs of Proposition 3.17 and-
Corollary 3.18 hold more generally for C-valued models of finitary equational theories,
i.e., for the forgetful functor U : Model(TV ; C) → C as above. One readily checks that
the remaining proofs also hold in that context.

3.4. Abelianizations and pushforwards
Proposition 3.24. Let C be a locally κ-presentable category for some regular cardinal
κ. Then the following holds.

1. U : Cab → C creates κ-filtered colimits. In particular, Cab has κ-filtered colimits
and U preserves them.

2. Cab is locally κ-presentable.

3. U : Cab → C has a left adjoint.

Proof. 1. This is similar to the proof that U creates limits. Let J be a κ-filtered
category and F : J → Cab a diagram whose underlying diagram UF : J → C admits a
colimit. Then there is a unique lift of the colimiting cocone in C to a cocone in Cab.
Indeed, there is at most one way to endow colimJ UF with structure maps, since they
are prescribed on each summand, as illustrated in the diagram

colimJ (UF × UF ) ∼= colimJ UF × colimJ UF // colimJ UF

UF (j)× UF (j)

OO

µ
// UF (j)

OO

where j is any object of J . Applying colimJ to the structure maps of UF produces
those structure maps for colimJ UF . The result is the colimit of F in Cab.

We used the fact that κ-filtered colimits commute with finite limits in C, since C
is locally κ-presentable [10, Corollary 5.2.8] [2, Proposition 1.59].

2. Recall the equivalence Cab ∼= Model(TAb; C). Since the diagrams in the limit
sketch TAb are all finite, the result follows from [2, Proposition 1.53].

3. C is locally κ-presentable and so is Cab, by part 2. Moreover, U : Cab → C pre-
serves all (small) limits as well as κ-filtered colimits, by part 1. By the adjoint functor
theorem for locally presentable categories [2, Theorem 1.66], U has a left adjoint.

Note that the statement Proposition 3.24 (3) can be found in [5, Chapter 6 §1.5].
Now recall the following useful fact.

Proposition 3.25. [2, Proposition 1.57] Let C be a locally κ-presentable category for
some regular cardinal κ, and let X be an object of C. Then the slice category C/X is
locally κ-presentable.

Proposition 3.26. Let C be a locally presentable category. Then the following holds.

1. C has all abelianizations: For every object X of C, the forgetful functor
UX : (C/X)ab → C/X has a left adjoint AbX : C/X → (C/X)ab.

2. C has all pushforwards: For every map f : X → Y in C, the pullback functor
f∗ : (C/Y )ab → (C/X)ab has a left adjoint f♯ : (C/X)ab → (C/Y )ab.
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Proof. Let κ be a regular cardinal such that C is locally κ-presentable.

1. By Proposition 3.25, C/X is locally κ-presentable. By Proposition 3.24, UX :
(C/X)ab → C/X has a left adjoint.

2. Consider the diagram

(C/Y )ab

UY

��

f∗
//
(C/X)ab

UX

��
C/Y

AbY

OO

f∗
// C/X

f!

oo

AbX

OO

where the abelianizations exist, by part 1. The right adjoints commute.

Since (C/Y )ab and (C/X)ab are locally κ-presentable, it suffices to show that
f∗ : (C/Y )ab → (C/X)ab preserves limits and κ-filtered colimits to guarantee the exis-
tence of a left adjoint (by the adjoint functor theorem for locally presentable cate-
gories). Since UX : (C/X)ab → C/X creates limits and κ-filtered colimits, by Propo-
sition 3.24 (1), it suffices to show that UXf

∗ preserves limits and κ-filtered colimits.

Now UXf
∗ = f∗UY is a composite of right adjoints and thus preserves limits. More-

over, UY preserves κ-filtered colimits; hence it suffices to show that f∗ : C/Y → C/X
preserves κ-filtered colimits. Since the forgetful functor C/X → C creates colimits, it

suffices to show that the composite C/Y f∗

−→ C/X → C preserves κ-filtered colimits.
This holds, since κ-filtered colimits and finite limits commute in C, as C is locally
κ-presentable.

We will use the following basic facts.

Lemma 3.27. 1. In a preadditive category A, finite products are canonically
biproducts; likewise, finite coproducts are canonically biproducts. In particular,
A is additive if and only if it has finite products (or equivalently, it has finite
coproducts).

2. A functor F : A → B between preadditive categories with finite powers is addi-
tive if and only if it preserves finite powers (or equivalently, it preserves finite
copowers). If moreover A is additive, then F is additive if and only if it preserves
finite products (or equivalently, it preserves finite coproducts).

3. If a category C has finite powers, then the category Cab is preadditive. If moreover
C has finite products, then Cab is additive.

4. Let C and D be categories with finite powers, and let F : C → D be a func-
tor which preserves finite powers. Then F naturally induces an additive func-
tor F : Cab → Dab obtained by applying F to objects and structure maps. For
example, the addition structure map µFX of FX is the composite FX × FX ∼=
F (X ×X)

FµX−−−→ FX.

Proof. See [5, Chapter 2, §1], along with a straightforward verification.

Corollary 3.28. Any left adjoint or right adjoint between additive categories is addi-
tive.
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Definition 3.29. We say that a functor F : C → D passes to abelian group
objects if there is an additive functor F : Cab → Dab making the diagram

Cab

U

��

F // Dab

U

��
C F // D

commute (up to natural isomorphism). In other words, given any abelian group object
A in C, the object FA in D can be endowed with the structure of an abelian group
object, functorially in A.

We say that F passes to Beck modules if for every object c of C, the functor
between slice categories F : C/c→ D/Fc passes to abelian group objects.

Lemma 3.30. Let C and D be categories with finite powers.

1. A functor F : C → D passes to abelian group objects if and only if it preserves
finite powers of objects in the (essential) image of U : Cab → C, i.e., those objects
of C that can be endowed with an abelian group object structure.

2. If F passes to abelian group objects, then the functor F : Cab → Dab is naturally
isomorphic to the functor obtained by applying F to the objects and structure
maps.

Proof. 1. The “if” direction follows from the argument in Lemma 3.27 (4). The “only
if” direction follows from the fact that U : Cab → C creates limits, and an additive
functor F : Cab → Dab preserves finite powers.

2. Recall that the structure maps of an abelian group object A are themselves maps
in Cab (which would not be true, say, for group objects). By the interchange law, the
addition structure map µFA : FA× FA→ FA must be that induced by FµA, and
likewise for the remaining structure maps.

Example 3.31. If F preserves finite powers of objects admitting a map from the ter-
minal object, then F passes to abelian group objects. Likewise, if F preserves limits
of the form E ×c E ×c . . .×c E for every split epimorphism p : E → c in C, then F
passes to Beck modules. Note that for a Beck module p : E → c over c, the projection
map p is a split epimorphism, because of the zero section e : c→ E.

Proposition 3.32. Let F : C ⇄ D : G be an adjunction, and consider the induced
functor G : Dab → Cab on abelian group objects.

1. If C and D are locally presentable, then G : Dab →Cab has a left adjoint F̃ : Cab →
Dab.

2. If F : C → D passes to abelian group objects, then the induced functor F : Cab →
Dab is left adjoint to G : Dab → Cab. In particular, the two functors F com-
mute with the forgetful functors U , i.e., there is a natural isomorphism FU =
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UF : Cab → D, as illustrated in the diagram:

C

F

��

Ab // Cab
U

oo

F̃=F

��
D

G

OO

Ab // Dab.
U

oo

G

OO

In view of part 2, we will say that the left adjoint F̃ : Cab → Dab is induced by F : C →
D, whether or not F passes to abelian group objects.

Proof. 1. Both Cab andDab are locally presentable, by Proposition 3.24, andG : Dab →
Cab preserves limits. Thus it suffices to show that this functor is accessible, i.e., pre-
serves κ-filtered colimits for some regular cardinal κ.

Let C be locally κ1-presentable and let D be locally κ2-presentable. By the adjoint
functor theorem for locally presentable categories, the right adjoint G : D → C pre-
serves κ3-filtered colimits for some regular cardinal κ3. The induced functorG : Dab →
Cab makes the diagram

Dab

U

��

G // Cab

U

��
D G // C

commute. By Proposition 3.24, U : Cab → C creates κ1-filtered colimits and U : Dab →
D preserves (in fact creates) κ2-filtered colimits. Therefore, G : Dab → Cab preserves
κ-filtered colimits for any regular cardinal κ greater than κ1, κ2, and κ3.

2. Consider abelian group objects c in Cab and d in Dab. We want to exhibit a
natural isomorphism:

HomDab
(Fc, d)� _

��

? ____ ____ HomCab
(c,Gd)� _

��
HomD(UFc, Ud) HomC(Uc, UGd)

which says that a map f : Fc→ d in D respects the abelian group object structure if
and only if its adjunct f ′ : c→ Gd in C does. This holds, since the diagram

F (c× c)

Fµc &&MM
MMM

MMM
MMM

∼= // Fc× Fc

µFc

��

f×f // d× d

µd

��
Fc

f // d

commutes if and only if its adjoint diagram

c× c

µc

��

f ′×f ′
// Gd×Gd

µGd

��

G(d× d)

Gµdxxqqq
qqq

qqq
qq

∼=oo

c
f ′

// Gd
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commutes, and likewise for the remaining structure maps.

3.5. Quasi-algebraic Beck modules
Our next goal is to show that if C is quasi-algebraic, then its categories of Beck

modules (C/X)ab are also quasi-algebraic, and therefore have nice simplicial objects.

Proposition 3.33. Let C be a quasi-algebraic category and X an object of C. Then
the slice category C/X is quasi-algebraic.

Proof. 1. C/X has small colimits, since they are created by the forgetful functor
C/X → C.

2. Let G be a set of finitely presentable projective generators for C. Then{
P

p−→ X | P ∈ G, p ∈ HomC(P,X)
}

is a set of finitely presentable projective generators for C/X. Presentability is a
straightforward verification; the rest follows from Propositions 3.13 and 3.12, and
the fact that (⨿Pi) → X is the coproduct ⨿(Pi → X) in C/X. (By the same argu-
ment, if C has enough projectives, then so does C/X.)

Proposition 3.34. If C is a many-sorted finitary variety (resp. quasivariety), then
so is Cab.

In particular, if C is algebraic (resp. quasi-algebraic), then so is Cab.

Proof. Let C ∼= Alg(Σ, E, I) be an equational presentation of C, where Σ is an S-
sorted signature for some set S. We treat the case of varieties simultaneously, by
allowing the set of implications I to be empty.

Objects of Cab have the underlying S-graded set of their underlying object in C,
equipped with the additional structure maps µ : X ×X → X, e : ∗ → X, and ι : X →
X satisfying the conditions of associativity and so on, and the conditions that the
structure maps be maps in C. Since the forgetful functor C → SetS creates limits, the
structure maps amount to maps µs : Xs ×Xs → Xs, es : ∗s → Xs, and ιs : Xs → Xs

for each sort s ∈ S, making Xs into an abelian group. Define the S-sorted signature

Σ′ := Σ ∪
∪
s∈S

{µs, es, ιs}

where the additional operations µs, es, ιs have arities s× s→ s, → s, and s→ s
respectively. Let Eab,s denote the set of equations for µs, es, ιs as abelian group struc-
ture maps, as in Example 2.9, and let Eab :=

∪
s∈S Eab,s. Recall that C is a full sub-

category of AlgΣ, that is, maps in C are maps of underlying S-graded sets that com-
mute with all operations. For each operation symbol σ ∈ Σ of arity s1 × . . .× sn → s,
consider the condition that µ : X ×X → X commute with σ:

(X ×X)s1 × . . .× (X ×X)sn

µs1×...×µsn

��

σX×X // (X ×X)s

µs

��
Xs1 × . . .×Xsn

σX // Xs.

Let Eσ denote the set containing the three equations expressing the compatibility of
σ with µ, e, and ι respectively, and let Estruc :=

∪
σ∈ΣEσ. With the set of equations
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E′ := E ∪ Eab ∪ Estruc, we obtain the equational presentation Cab
∼= Alg(Σ′, E′, I).

The proof of Proposition 3.34 does not provide an explicit set of finitely presentable
projective generators for Cab. For the record, we describe such a set below in Propo-
sition 3.38.

Lemma 3.35. Assume C is regular and U : Cab → C has a left adjoint. If a map
f : X ↠ UB is a regular epimorphism in C, then its adjunct map f ′ : AbX → B is a
regular epimorphism in Cab. In particular, the counit AbUA↠ A is always a regular
epimorphism.

Proof. Recall that AbX → B is a regular epimorphism in Cab if and only if UAbX →
UB is a regular epimorphism in C. The regular epimorphism f factors as f = (Uf ′) ◦
ηX : X → UAbX → UB, which implies that Uf ′ is a regular epimorphism since C is
regular [9, Corollary 2.1.5 (2)].

Remark 3.36. The converse is false in general. For example, take C = Set, X = {∗},
Y = Z, and f(∗) = 1. The map f is far from being a regular epimorphism (i.e., a
surjection), but its adjunct f ′ : Ab(∗) = Z → Z is a regular epimorphism, even an
isomorphism.

Lemma 3.37. Assume C is regular and has enough projectives, and U : Cab → C has
a left adjoint. Then an object of Cab is projective if and only if it is a retract of AbP
for some projective P of C.

Proof. (⇐) Trying to lift a map AbP → B along a regular epimorphism A↠ B is
the same as trying to lift the adjunct map:

P

||x
x
x
x

��
UA // // UB.

The bottom map is a regular epimorphism since U preserves them, and thus the lift
exists. Therefore AbP is projective, and a retract of a projective is projective.

(⇒) Let Q be a projective in Cab. Since C has enough projectives, there is a
projective P of C with a regular epimorphism P ↠ UQ. Take its adjunct map AbP ↠
Q, which is still a regular epimorphism by Lemma 3.35. Lifting the identity of Q along
that regular epimorphism exhibits Q as a retract of AbP .

Proposition 3.38. Let C be a quasi-algebraic category and S a set of finitely pre-
sentable projective generators for C. Then {AbP | P ∈ S} is a set of finitely pre-
sentable projective generators for Cab.

Proof. Since C is locally finitely presentable, U : Cab → C has a left adjoint Ab : C →
Cab, by Proposition 3.24 (3). Each AbP is finitely presentable, by Proposition 3.24
(1), and projective, by Lemma 3.37. Let us show that they form a family of gen-
erators. For any object X of Cab, take a regular epimorphism ⨿Pi ↠ UX from a
coproduct of generators in S. Then the adjunct map ⨿Ab(Pi) = Ab (⨿Pi) ↠ X is a
regular epimorphism in Cab, by Lemma 3.35. (By the same argument, if C has enough
projectives, then so does Cab.)
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Remark 3.39. Proposition 3.38 provides an alternate proof of Proposition 3.34 which
does not rely on the universal-algebraic characterization theorems. If C is quasi-
algebraic, then C is in particular locally finitely presentable. By Proposition 3.24
(2), Cab is also locally finitely presentable, in particular cocomplete. By Proposi-
tion 3.38, Cab has a set of finitely presentable projective generators, and is therefore
quasi-algebraic. If moreover C is exact, then so is Cab, by [5, Chapter 2, Theorem 2.3],
and thus Cab is algebraic, by Theorem 2.7.

3.6. The setup
Putting the ingredients together, we obtain a good setup for Quillen cohomology.

It is essentially an observation of Quillen [20, §II.5, (4) before Theorem 5], which we
state and prove in more detail.

Proposition 3.40. Let C be a quasi-algebraic category and X an object of C. Then
C/X and (C/X)ab are quasi-algebraic, and in the prolonged adjunction

sC/X
AbX //

s(C/X)ab
UX

oo

the right adjoint UX : s(C/X)ab → sC/X creates (i.e., preserves and reflects) fibra-
tions and weak equivalences. In particular, the prolonged adjunction is a Quillen pair.

Proof. The abelianization AbX : C/X → (C/X)ab exists, by Proposition 3.26. Both
C/X and (C/X)ab are quasi-algebraic, by Propositions 3.33 and 3.34; in particular,
both have nice simplicial objects. By definition, a map f : M• → N• in s(C/X)ab is
a fibration (resp. weak equivalence) if the map of simplicial sets

Hom(C/X)ab(P
′,M•)

f∗ // Hom(C/X)ab(P
′, N•) (5)

is so, for every projective P ′ in (C/X)ab. By Proposition 3.38, it suffices that the
condition hold for projectives of the form P ′ = AbXP , where P is a projective in
C/X. In that case, the map (5) is a fibration (resp. weak equivalence) of simplicial
sets if and only if its adjunct map

HomC/X(P,UXM•)
UXf∗ // HomC/X(P,UXN•)

is so. This holds for every projective P in C/X if and only if UXf : UXM• → UXN• is
a fibration (resp. weak equivalence) in s(C/X), or equivalently in (sC)/X, by Propo-
sition 3.15.

The setup above is not quite enough to work with Quillen cohomology. In [20, §II.5],
Quillen describes additional assumptions on the homotopy category Ho(sC/X•)ab,
which are satisfied for example if C has abelian Beck modules, i.e., the category
(C/X)ab is abelian for every object X. One condition guaranteeing abelian Beck mod-
ules is exactness [5, Chapter 2, Theorem 2.4], though this condition is not necessary,
as we show below.

Example 3.41. A quasi-algebraic category does not necessarily have abelian Beck
modules. For example, take the category Abtf of torsion-free abelian groups, viewed
as a full subcategory of abelian groups, with inclusion ι : Abtf → Ab.
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Let us show that Abtf does not have abelian Beck modules. Since ι preserves
limits, a Beck module E → G over a torsion-free abelian group G is in particular
a Beck module viewed in Ab, i.e., a direct sum G⊕M ↠ G. The only additional
condition is that G⊕M be torsion-free, which happens if and only if M itself is
torsion-free. Hence, for every object G, we have (Abtf/G)ab ∼= Abtf , which is not an
abelian category.

Example 3.42. A quasi-algebraic category with abelian Beck modules is not neces-
sarily exact. For example, take the category Comred of reduced commutative rings,
viewed as a full subcategory of all commutative (unital) rings, with inclusion
ι : Comred → Com.

Let us show thatComred has abelian Beck modules. A Beck module over a reduced
commutative ring R is in particular a Beck module viewed in Com, i.e., a square zero
extension R⊕M ↠ R with multiplication (r,m)(r′,m′) = (rr′, rm′ +mr′), where
the left and right actions of R on M coincide. The only additional condition is for
R⊕M to be a reduced ring, which happens if and only if M is zero, since the nil-
radical is Nil(R⊕M) =M . Hence for every object R, we have (Comred/R)ab ∼= 0,
which is an abelian category.

In short, a quasi-algebraic category has most of the ingredients for Quillen coho-
mology. An algebraic category (i.e., a quasi-algebraic category which is exact) has all
the ingredients.

4. Effect of an adjunction

In this section, we investigate the main question: What does an adjunction F : C ⇄
D : G do to Quillen (co)homology?

Assumptions for Section 4: C and D are quasi-algebraic categories with abelian
Beck modules. This is satisfied in particular when C and D are algebraic categories.

4.1. Effect on Beck modules

First, let us see how an adjunction passes to slice categories. There are two ver-
sions, depending if one starts with a ground object in C or in D. A straightforward
verification yields the following proposition.

Proposition 4.1. 1. For every object c in C, there is an induced adjunction:

C/c
F // D/Fc
η∗cG
oo (6)

where ηc : c→ GFc is the unit map.

2. For every object d in D, there is an induced adjunction:

C/Gd
ϵd!F // D/d
G

oo

where ϵd : FGd→ d is the counit map.
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Proposition 4.2. 1. For every object c in C, there is an induced adjunction on
Beck modules:

(C/c)ab
F̃ //

(D/Fc)ab.
η∗cG
oo

2. For every object d in D, there is an induced adjunction on Beck modules:

(C/Gd)ab
ϵd♯F̃ //

(D/d)ab.
G

oo

3. If F : C → D passes to Beck modules, then the induced left adjoint on Beck
modules is F̃ = F : (C/c)ab → (D/Fc)ab, the functor obtained by applying F to
the objects and structure maps.

Proof. 1. By Proposition 3.32 and the fact that C and D are locally presentable, the
adjunction (6) induces such an adjunction on abelian group objects.

2. Using the previous part, consider the two adjunctions:

(C/Gd)ab
F̃ //

(D/FGd)ab
ϵd♯ //

η∗GdG
oo (D/d)ab.

ϵ∗d

oo

The result follows from the natural isomorphism η∗GdGϵ
∗
d
∼= G : (D/d)ab → (C/Gd)ab,

which follows from the equality idGd = Gϵd ◦ ηGd : Gd→ GFGd→ Gd.
3. This follows from Proposition 3.32.

4.2. Effect on abelian cohomology
Before introducing any homotopical algebra, let us study the problem at the level

of homological algebra. We want to describe the effect of the adjunction on abelian
cohomology. As we have seen in Proposition 4.2, there are two induced adjunctions,
depending if one starts with a ground object in C or in D.

4.2.1. Ground object in C
Pick a ground object c in C. The induced adjunction on Beck modules fits into the
diagram

C/c

F

��

Abc //
(C/c)ab

Uc

oo

F̃

��
D/Fc

η∗cG

OO

AbFc //
(D/Fc)ab

UFc

oo

η∗cG

OO
(7)

where the diagram of right adjoints commutes (strictly), and thus the diagram of left
adjoints commutes as well. In particular, applying the left adjoints to idc, we obtain
F̃Abcc = AbFcFc. Take a module N over Fc and consider:

HA∗(c; η∗cGN) = Ext∗(Abcc, η
∗
cGN)

= H∗ HomModc(P•, η
∗
cGN)

= H∗ HomModFc
(F̃P•, N) (8)
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where P• → Abcc is a projective resolution. We want to compare this to:

HA∗(Fc;N) = Ext∗(AbFcFc,N)

= H∗ HomModFc(Q•, N)

where Q• → AbFcFc is a projective resolution. Assume the induced left adjoint
F̃ : (C/c)ab → (D/Fc)ab preserves projectives (which is the case for example when

its right adjoint η∗cG preserves epimorphisms, i.e., is exact). Then F̃P• is projective

but is not a resolution of F̃Abcc. However, the map factors as

F̃P• ↪→ Q•
∼−→ F̃Abcc = AbFcFc

and the first map induces

HomModFc
(Q•, N) → HomModFc

(F̃P•, N)

which, upon passing to cohomology, induces a well-defined map. We sum up the
argument in the following proposition.

Proposition 4.3. If the left adjoint F induces a functor F̃ on Beck modules which
preserves projectives, then we obtain a comparison map in abelian cohomology:

HA∗(Fc;N) → HA∗(c; η∗cGN). (9)

Note that (8) exhibits HA∗(c; η∗cGN) as the derived functors of HomModFc
(−, N) ◦

F̃ applied to Abcc. Since F̃ sends projectives to projectives, we obtain a Grothendieck
spectral sequence:

Es,t2 = Exts
(
(LtF̃ )(Abcc), N

)
⇒ HAs+t(c; η∗cGN)

which is first quadrant, cohomologically graded. The comparison map (9) is the edge
morphism:

HAs(Fc;N) = Exts(F̃Abcc,N) = Es,02 ↠ Es,0∞ ↪→ HAs(c; η∗cGN).

If F̃ : (C/c)ab → (D/Fc)ab happens to be exact, then F̃P• is a projective resolution

of F̃Abcc = AbFcFc and the comparison map (9) is an isomorphism.

Remark 4.4. Starting with a module M over c, there is a map

HomModc(Abcc,M) →HomModFc
(F̃Abcc, F̃M)

=HomModFc
(Abcc, η

∗
cGF̃M)

given by applying F̃ , or equivalently, induced by the unit M → η∗cGF̃M . One might

want to compare HA∗(c;M) and HA∗(Fc; F̃M), but they both naturally map to

HA∗(c; η∗cGF̃M), respectively via the unit and the comparison map (9). There is no
direct comparison.
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4.2.2. Ground object in D
Pick a ground object d in D. The induced adjunction on Beck modules fits into the
diagram

C/Gd

ϵd!F

��

AbGd //
(C/Gd)ab

UGd

oo

ϵd♯F̃

��
D/d

G

OO

Abd //
(D/d)ab

Ud

oo

G

OO
(10)

where the diagram of right adjoints commutes, and thus the diagram of left adjoints
commutes as well. Take a module N over d and consider

HA∗(d;N) = Ext∗(Abdd,N)

= H∗ HomModd
(P•, N)

where P• → Abdd is a projective resolution. We want to compare this to

HA∗(Gd;GN) = Ext∗(AbGdGd,GN)

= H∗ HomModGd
(Q•, GN)

= H∗ HomModd
(ϵd♯F̃Q•, N) (11)

where Q• → AbGdGd is a projective resolution. Here again, assume the induced left
adjoint ϵd♯F̃ : (C/Gd)ab → (D/d)ab preserves projectives. Then ϵd♯F̃Q• is projective
and we have a map:

ϵd♯F̃Q• →ϵd♯F̃AbGdGd

=ϵd♯AbFGdFGd

=Abd(FGd
ϵd−→ d)

Abd(ϵd)−−−−−→ Abdd.

It admits a factorization ϵd♯F̃Q• ↪→ P•
∼−→ Abdd and the first map induces

HomModd
(P•, N) → HomModd

(ϵd♯F̃Q•, N)

which, upon passing to cohomology, induces a well-defined map. We sum up the
argument in the following proposition.

Proposition 4.5. If the induced left adjoint ϵd♯F̃ : (C/Gd)ab → (D/d)ab preserves
projectives, then we obtain a comparison map in abelian cohomology:

HA∗(d;N) → HA∗(Gd;GN). (12)

Note that (11) exhibits HA∗(Gd;GN) as the derived functors of HomModd
(−, N) ◦

ϵd♯F̃ applied to AbGdGd. Since ϵd♯F̃ sends projectives to projectives, we obtain a
Grothendieck composite spectral sequence

Es,t2 = Exts
(
Lt(ϵd♯F̃ )(AbGdGd), N

)
⇒ HAs+t(Gd;GN)

which is first quadrant, cohomologically graded. The comparison map (12) is Abd(ϵd)
∗
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followed by an edge morphism:

HAs(d;N) = Exts(Abdd,N)
Abd(ϵd)

∗

−−−−−−→Exts(ϵd♯F̃AbGdGd,N)

=Es,02 ↠ Es,0∞ ↪→ HAs(Gd;GN).

If ϵd♯F̃ : (C/Gd)ab → (D/d)ab happens to be exact, then ϵd♯F̃Q• is a projective res-

olution of ϵd♯F̃AbGdGd, and we obtain an isomorphism Ext∗(ϵd♯F̃AbGdGd,N) ∼=
HA∗(Gd;GN). In that case, the comparison map (12) is simply Abd(ϵd)

∗, which is
not necessarily an isomorphism.

Remark 4.6. Starting with a module M over Gd, one might want to compare
HA∗(Gd;M) and HA∗(d; ϵd♯F̃M). Again, there is no direct comparison. They both

map naturally to HA∗(Gd;Gϵd♯F̃M), the former via the unit M → Gϵd♯F̃M and the
latter via the comparison map (12).

4.3. The comparison diagram
Now let us check that the adjunction behaves well at the level of homotopical

algebra, when we pass to simplicial objects.

Theorem 4.7. Let C and D be quasi-algebraic categories with abelian Beck modules.
Let F : C ⇄ D : G be an adjunction that prolongs to a Quillen pair (equivalently, G
preserves regular epimorphisms, or F preserves projectives). Then for every object c
of C, the commutative diagram (7) simplicially prolongs to four Quillen pairs:

sC/c

F

��

Abc //
s(C/c)ab

Uc

oo

F̃

��
sD/Fc

η∗cG

OO

AbFc //
s(D/Fc)ab

UFc

oo

η∗cG

OO

where, moreover, the right Quillen functors Uc and UFc create fibrations and weak
equivalences.

Likewise, for every object d of D, the commutative diagram (10) simplicially pro-
longs to four Quillen pairs:

sC/Gd

ϵd!F

��

AbGd //
s(C/Gd)ab

UGd

oo

ϵd♯F̃

��
sD/d

G

OO

Abd //
s(D/d)ab

Ud

oo

G

OO

where Ud and UGd create fibrations and weak equivalences.

Proof. The statements about the rows of the diagrams follow from Proposition 3.40.
Now we prove the rest.

Case 1: Ground object c in C. The induced right adjoint on slice categories is
η∗cG : D/Fc→C/c and it preserves regular epimorphisms. Indeed,G : D/Fc→ C/GFc
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preserves regular epimorphisms by assumption and Proposition 3.12. The pullback η∗c
also preserves regular epimorphisms since C is regular and again by Proposition 3.12.

The induced right adjoint on Beck modules η∗cG : (D/Fc)ab → (C/c)ab preserves
regular epimorphisms. This follows from the same argument, and the fact that regular
epimorphisms in (−)ab are preserved and reflected by the forgetful functor U , by
Corollary 3.18 and Proposition 3.20.

Case 2: Ground object d in D. The induced right adjoint on slice categories is just
G : D/d→ C/Gd, which preserves regular epimorphisms. The induced right adjoint
on Beck modules G : (D/d)ab → (C/Gd)ab also preserves regular epimorphisms.

4.4. Effect on Quillen (co)homology

In this section, we describe the comparison maps induced on Quillen (co)homology.
The argument is similar to Subsection 4.2, except that we start with the comparison
diagrams in Theorem 4.7.

Definition 4.8. For every object c of C and module M in (C/c)ab, the composite

C/c Abc // (C/c)ab
Hom(−,M)// Abop

evaluated at idc gives rise to a composite spectral sequence

Es,t2 = Exts (HQt(c),M) ⇒ HQs+t(c;M) (13)

which is first quadrant, cohomologically graded. We call it the universal coefficient
spectral sequence for Quillen cohomology. It has a left edge morphism

HQt(c;M) ↠ E0,t
∞ ↪→ E0,t

2 = HomModc (HQt(c),M)

which is the pairing between homology and cohomology, and a bottom edge morphism

HAs(c;M) = Es,02 ↠ Es,0∞ ↪→ HQs(c;M)

which is the comparison induced by the map Lc → Abcc in s(C/c)ab.

Remark 4.9. Since C/c is not an abelian category, the spectral sequence (13) is not
a Grothendieck spectral sequence in the usual sense [23, Corollary 5.8.4], but rather
an instance of the related hyperhomology spectral sequence [23, Proposition 5.7.6,
Corollary 5.7.7].

4.4.1. Ground object in C
Proposition 4.10. Assume the setup of Theorem 4.7. Then the comparison diagram
induces the following comparison maps.

1. A natural (up to homotopy) comparison map of cotangent complexes:

α : F̃ (Lc) → LFc. (14)
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2. For every degree n ⩾ 0, a natural comparison map in Quillen homology:

F̃ (HQn(c)) → HQn(Fc) (15)

which factors as a composite:

F̃ (HQn(c))
h // Ln(F̃Abc)(idc)

πn(α) // HQn(Fc)

where h is a left edge morphism in a composite spectral sequence:

E2
s,t = (LsF̃ ) (HQt(c)) ⇒ Ls+t(F̃Abc)(idc) = πs+t(F̃Lc). (16)

3. If F preserves pullbacks, then the map h : F̃ (HQn(c))
∼=−→ πnF̃ (Lc) is an iso-

morphism, so that the map (15) can be identified with πn(α), the effect of (14)
on homotopy.

4. If F preserves all weak equivalences, then (14) is a weak equivalence. If moreover
F passes to Beck modules, then (15) is an isomorphism.

Proof. 1. Starting with a cofibrant replacement qc : Qc
∼−→ c of idc, we can apply F to

obtain FQc→ Fc, where the source is still cofibrant (since F is a left Quillen functor)
but the map is not a weak equivalence anymore. However, it factors (uniquely and

functorially up to homotopy) as FQc
ψ−→ QFc

∼−→ Fc and we obtain the comparison
map

F̃ (Lc) = F̃Abc(Qc→ c)

= AbFcF (Qc→ c)

= AbFc(FQc→ Fc) → AbFc(QFc→ Fc) = LFc

which is AbFc(ψ).

2. Consider the composite of left adjoints C/c Abc−−→ (C/c)ab
F̃−→ (D/Fc)ab where the

categories of Beck modules (C/c)ab and (D/Fc)ab are abelian by assumption, and F̃
is additive, by Lemma 3.27. Both C/c and (C/c)ab have enough projectives, since
they are quasi-algebraic. Since Abc prolongs to a left Quillen functor, we obtain a
first quadrant, homologically graded composite spectral sequence

E2
s,t = (LsF̃ ) (LtAbc) (E → c) ⇒ Ls+t(F̃Abc)(E → c)

for any object E → c of C/c. Applying the spectral sequence to idc yields the E
2 term

in (16). The left edge morphism is:

F̃ HQt(c) = E2
0,t ↠ E∞

0,t ↪→ Lt(F̃Abc)(idc).

This edge morphism can also be described as the homology comparison map [6,

Theorems 2.2 and 2.6] for the right exact functor F̃ , applied to the chain complex Lc
(using implicitly the Dold-Kan correspondence):

F̃ (HQn(c)) = F̃Hn(Lc) → HnF̃ (Lc).

3. If F preserves pullbacks, then F passes to Beck modules and, moreover, the
induced left adjoint F̃ = F : (C/c)ab → (D/Fc)ab preserves finite limits, and hence is
left exact (and thus exact). In that case, the homology comparison h is an isomor-
phism.
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4. If F preserves all weak equivalences, then the map ψ : FQc
∼−→ QFc is a weak

equivalence (between cofibrant objects). Since AbFc is a left Quillen functor, the map
α = AbFc(ψ) is also a weak equivalence.

If moreover F passes to Beck modules, then the induced left adjoint F̃ = F also
preserves all weak equivalences, and in particular is exact, so that the homology com-
parison h is an isomorphism. Using Proposition 3.32 (2), if w is a weak equivalence in
s(C/c)ab, then UFcF (w) = FUc(w) is a weak equivalence in sD/Fc. Since UFc reflects
weak equivalences (by Theorem 4.7), F (w) is a weak equivalence in s(D/Fc)ab.

Remark 4.11. Consider the other factorization F̃Abc = AbFcF of left adjoints C/c F−→
D/Fc AbFc−−−→ (D/Fc)ab. Assume that D is an N-sorted finitary variety such that the
underlying N-graded set has a natural structure of graded group, i.e., there is a
faithful functor D → GpN lifting the forgetful functor U : D → SetN. Then there is
a generalized Grothendieck spectral sequence [8, Theorem 4.4] abutting to the left
derived functors L∗(AbFcF ) which involves homotopy operations in s(D/Fc). The
map πn(α) : Ln(AbFcF )(idc) → HQn(Fc) from Proposition 4.10 is a bottom edge
morphism in that spectral sequence.

Proposition 4.12. Let N be a module over Fc.

1. The comparison diagram in Theorem 4.7 induces for every degree n ⩾ 0 a nat-
ural comparison map:

α∗ : HQn(Fc;N) → HQn(c; η∗cGN). (17)

2. If the comparison of cotangent complexes (14) is a weak equivalence, then (17)
is an isomorphism. This holds in particular when F preserves all weak equiva-
lences.

3. The maps πn(α) : πn(F̃Lc) → HQn(Fc) induce a map of spectral sequences:

Es,t2 = Exts (HQt(Fc), N)

πt(α)
∗

��

+3 HQs+t(Fc;N)

α∗

��
Es,t2 = Exts

(
πt(F̃Lc), N

)
+3 HQs+t(c; η∗cGN)

where the top row is the universal coefficient spectral sequence.

Proof. 1. Apply the functor HomModFc
(−, N) to the comparison map (14):

HomModFc
(LFc, N) → HomModFc

(F̃ (Lc), N) ∼= HomModc(Lc, η
∗
cGN)

and upon passing to cohomology, we obtain the map (17).

2. Since F̃ (Lc) and LFc are cofibrant, a weak equivalence (14) between them will
induce a weak equivalence upon applying Hom(−, N), by [23, Corollary 5.7.7].

3. This follows from the naturality of the hyper-derived functor spectral sequence
for Hom(−, N), applied to the map of chain complexes α : F̃Lc → LFc.

4.4.2. Ground object in D
A similar reasoning yields the following propositions.
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Proposition 4.13. Assume the setup of Theorem 4.7. Then the comparison diagram
induces the following comparison maps.

1. A natural (up to homotopy) comparison map of cotangent complexes:

α : ϵd♯F̃ (LGd) → Ld. (18)

2. For every degree n ⩾ 0, a natural comparison map in Quillen homology:

ϵd♯F̃ (HQn(Gd)) → HQn(d) (19)

which factors as a composite:

ϵd♯F̃ (HQn(Gd))
h // Ln(ϵd♯F̃AbGd)(idGd)

πn(α) // HQn(d)

where h is a left edge morphism in a composite spectral sequence:

E2
s,t =

(
Ls(ϵd♯F̃ )

)
(HQt(Gd)) ⇒ Ls+t(ϵd♯F̃AbGd)(idGd) = πs+t(ϵd♯F̃LGd).

3. If F preserves pullbacks and ϵd♯ is exact, then the map h : ϵd♯F̃ (HQn(Gd))
∼=−→

πnϵd♯F̃ (LGd) is an isomorphism, so that the map (19) can be identified with
πn(α), the effect of (18) on homotopy.

4. If F preserves all weak equivalences and ϵd is an isomorphism, then (18) is
a weak equivalence. If moreover F passes to Beck modules, then (19) is an
isomorphism.

Proposition 4.14. Let N be a module over d.

1. The comparison diagram in Theorem 4.7 induces for every degree n ⩾ 0 a nat-
ural comparison map:

α∗ : HQ∗(d;N) → HQ∗(Gd;GN). (20)

2. If the comparison of cotangent complexes (18) is a weak equivalence, then the
map (20) is an isomorphism.

3. The maps πn(α) : πn(ϵd♯F̃LGd) → HQn(d) induce a map of spectral sequences:

Es,t2 = Exts (HQt(d), N)

πt(α)
∗

��

+3 HQs+t(d;N)

α∗

��
Es,t2 = Exts

(
πt(ϵd♯F̃LGd), N

)
+3 HQs+t(Gd;GN)

where the top row is the universal coefficient spectral sequence.

5. Examples

In this section, we study three examples. The first serves as a warm-up. The second
relates André-Quillen cohomology to Hochschild cohomology (Proposition 5.6). The
third shows how Quillen cohomology of a Π-algebra with coefficients in a truncated
module can be computed within the world of truncated Π-algebras (Theorem 5.16),
which have a much simpler structure than (non-truncated) Π-algebras.



BEHAVIOR OF QUILLEN (CO)HOMOLOGY WITH RESPECT TO ADJUNCTIONS 101

5.1. Abelian groups
Consider the functorAb : Gp→Ab that kills commutators, i.e.,Ab(G) =G/[G,G],

which is left adjoint to the inclusion functor ι : Ab → Gp. In the notation above, the
functor Ab is Ab{∗} : Gp/{∗} → (Gp/{∗})ab ∼= Ab, the abelianization functor over
the trivial group {∗}.

Although Ab does not preserve kernel pairs in general, it does pass to Beck modules.
Recall that for a (left) G-moduleM , the semidirect product G⋉M is the group with
underlying set G×M and multiplication (g,m)(g′,m′) = (gg′,m+ gm′).

Proposition 5.1. Ab : Gp → Ab passes to Beck modules, on which it induces the
coinvariants functor (−)G : ModG → Ab.

Proof. Let us first compute Ab(G⋉M). Commutators in G⋉M are given by

[(g1,m1), (g2,m2)] =
(
[g1, g2],m1 − g1g2g

−1
1 m1 + g1m2 − g1g2g

−1
1 g−1

2 m2

)
.

Applying Ab to the split extension G⋉M → G yields a split extension Ab(G⋉M) →
Ab(G) in Ab whose kernel is M modulo the subgroup⟨

m1 − g1g2g
−1
1 m1 + g1m2 − g1g2g

−1
1 g−1

2 m2 | gi ∈ G,mi ∈M
⟩

= ⟨m− gm | g ∈ G,m ∈M⟩ .

In other words, we have Ab(G⋉M) ∼= Ab(G)⊕MG, where MG is the abelian group
of coinvariants of M .

Moreover, Ab : Gp → Ab preserves the pullback that defines the multiplication
structure map:

Ab ((G⋉M)×G (G⋉M)) = Ab(G⋉M)×Ab(G) Ab(G⋉M).

In Gp as well as in Ab, we think of the module as the kernel of the split extension,
and in this case, a G-module M is sent to the abelian group MG.

Let us describe the effect of the adjunction Ab : Gp ⇄ Ab : ι on Quillen homol-
ogy. Note that the right adjoint ι preserves regular epimorphisms, which are just
surjections. Hence, the prolonged adjunctions are Quillen pairs.

Note also that the unit of the adjunction is ηG : G↠ G/[G,G] and the counit is
the identity. We work with a ground object G in Gp, since we get nothing new from
a ground object in Ab. The comparison diagram (7) becomes

sGp/G

Ab

��

AbG //
sModG

G⋉−
oo

(−)G

��
sAb/Ab(G)

η∗Gι

OO

Src //
sAb

Ab(G)⊕−
oo

Triv

OO (21)

and by Theorem 4.7, it prolongs to four Quillen pairs. Here Src is the “source”
functor, which is the abelianization over any abelian group, and Triv is the functor
assigning to an abelian group the trivial G-action. Indeed, the right adjoint on Beck
modules is η∗Gι. Given a Beck module Ab(G)⊕A, view it as a split extension of
groups, which means A has a trivial Ab(G) action, and then pull the action back
along ηG : G→ G/[G,G], which endows A with the trivial G-action.
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Remark 5.2. In Proposition 5.1, we checked explicitly that Ab induces the functor
(−)G on Beck modules. We could also look at the induced right adjoint η∗Gι = Triv
and use its left adjoint to complete diagram (21). The left adjoint of Triv = ϵ∗ is
indeed (−)G = ϵ♯ = Z⊗ZG (−), where ϵ : ZG→ Z is the augmentation.

We now formulate the result about Quillen homology.

Proposition 5.3. Let C• → G be a cofibrant replacement of G in groups and let LG
denote the cotangent complex of G. Then the following holds:

π∗ (C•/[C•, C•]) = π∗ ((LG)G) .

Proof. Starting from a cofibrant replacement of G in Gp (or equivalently, of idG in
Gp/G) in the upper left corner of (21), going down then right yields

Src ◦Ab(C• → G) = Src (Ab(C•) → Ab(G))

= Ab(C•) = C•/[C•, C•]

whereas going right then down yields (AbG(C• → G))G = (LG)G. Taking π∗ gives a
well-defined equality, since the simplicial G-module LG is defined up to homotopy.

In fact, one can compute both sides explicitly and check that they coincide. For
groups, abelianization is AbGG = IG = ker(ZG→ Z) and the cotangent complex is
discrete, meaning LG → IG is a cofibrant replacement, in particular a flat resolution.
Taking coinvariants results in the derived functors thereof, namely, group homology:

π∗ ((LG)G) = L∗(−)G(IG) = H∗(G; IG).

Using the short exact sequence 0 → IG → ZG→ Z → 0 of G-modules, the connecting
morphism Hi+1(G;Z) → Hi(G; IG) is an isomorphism for all i ⩾ 0, from which we
conclude πi ((LG)G) = Hi+1(G;Z) for all i ⩾ 0. On the other hand, [16, Example
4.26] uses a different argument to show πi (C•/[C•, C•]) = Hi+1(G;Z) for all i ⩾ 0.
Proposition 5.3 is consistent with these computations.

5.2. Commutative algebras

Let R be a fixed commutative ring; denote by AlgR the category of associative R-
algebras and by ComR the category of commutative R-algebras. (All our rings and
algebras are assumed associative and unital.) Consider the functor Com : AlgR →
ComR which kills the 2-sided ideal generated by commutators, that is, Com(A) =
A/[A,A]. It is left adjoint to the inclusion functor ι : ComR → AlgR, which preserves
regular epimorphisms (i.e., surjections).

Recall that Beck modules over an associative R-algebra A are A-bimodules over
R, meaning that scalars in R act the same way on the left and the right; we denote
this category by A-BimodR. Beck modules over a commutative R-algebra A are
A-modules in the usual sense, which we denote A-Mod.

Proposition 5.4. 1. The functor Com : AlgR → ComR passes to Beck modules.

2. It induces the “central quotient” functor CQ : A-BimodR → Com(A)-Mod
which coequalizes the two actions.
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Proof. Start with a Beck module overA inAlgR, i.e., a split extension p : A⊕M → A
satisfying M2 = 0. Applying Com to it yields a split extension

0 // K // Com(A⊕M)
Com(p)//

Com(A)
Com(s)
oo // 0

in ComR. It remains to show that its kernel has square zero.

Commutators in A⊕M . Using the decomposition (a,m) = (a, 0) + (0,m), com-
mutators will be generated by those of the forms [(a, 0), (a′, 0)] = ([a, a′], 0) and
[(a, 0), (0,m)] = (0, a ·m−m · a). Thus the kernel is

K ≃M/ ⟨a ·m−m · a⟩ (22)

where we kill the A-subbimodule generated by all elements of that form.

K has square zero. Take two elements x, x′ ∈ K = kerCom(p) ⊂ Com(A⊕M)
and choose representatives (c,m) and (c′,m′) in A⊕M , for c, c′ ∈ [A,A]. Then xx′ is
represented by (c,m)(c′,m′) = (cc′, c ·m′ +m · c′). One readily checks that elements
of the form c ·m and m · c are zero in Com(A⊕M), for any m ∈M and c ∈ [A,A].
This proves the first assertion, and (22) proves the second.

The adjunction Com : AlgR ⇄ ComR : ι allows us to compare the two categories.
According to Proposition 5.4, the comparison diagram (7) becomes

AlgR/A

Com

��

A⊗I(−)⊗A //
A-BimodR

A⊕−
oo

CQ

��
ComR/Com(A)

η∗Aι

OO

Com(A)⊗Ω(−)/R//
Com(A)-Mod

Com(A)⊕−
oo

same action

OO (23)

where “same action”, the right adjoint on the right, means that we view a Com(A)-
module as an A-bimodule by acting via the unit A→ Com(A) = A/[A,A] both on
the left and the right. Abelianization in associative algebras is AbA(B → A) = A⊗B
IB ⊗B A where IB denotes the kernel of the multiplication map m : B ⊗R B → B.
Abelianization in commutative algebras is AbS(T → S) = S ⊗T ΩT/R where ΩT/R
denotes the module of Kähler differentials IT /I

2
T . By Theorem 4.7, diagram (23)

prolongs to four Quillen pairs.

Remark 5.5. One can view A-BimodR as the category of left A⊗R Aop modules, and
the “same action” functor Com(A)-Mod → A-BimodR as the restriction (ηAm)∗

along A⊗R Aop m−→ A
ηA−−→ Com(A). Its left adjoint is the pushforward (ηAm)♯ =

Com(A)⊗A⊗RAop − which is indeed the functor coequalizing the two actions.

Some special cases are of particular interest. When the R-algebra A is just R
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itself—and is in particular commutative—the comparison diagram (23) becomes

AlgR/R

Com

��

R⊗I(−)⊗R//
R-BimodR

R⊕−
oo

id

��
ComR/R

ι

OO

R⊗Ω(−)/R //
R-Mod.

R⊕−
oo

id

OO

The diagram says that killing all products can be done in two steps, by killing all
commutators first. One could try to use the Grothendieck composite spectral sequence
for the non-abelian setting [8, Theorem 4.4] to relate Quillen homology in AlgR to
Quillen homology inComR, i.e., André-Quillen homology. This approach requires the
knowledge of homotopy operations in sComR, which are known notably for R = F2

[12] [13, Chapter II] [15].
More generally, another interesting case is when the cotangent complex in associa-

tive algebras is discrete, i.e., LA → AbAA is a weak equivalence. Quillen [21, Propo-
sition 3.6] shows that this happens under the condition TorRi (A,A) = 0 for all i ⩾ 1
(for example if R is a field), in which case HA∗(A;M) ∼= HQ∗(A;M) is essentially the
same as the usual Hochschild cohomology, and likewise for homology.

Proposition 5.6. Let A be a commutative R-algebra satisfying TorRi (A,A) = 0 for
all i ⩾ 1. Then for every j ⩾ 1, the Hochschild homology of A can be written as

HHj+1(A) = πj
(
A⊗Com(C•) ΩCom(C•)/R

)
where C• → A is a cofibrant replacement of A in AlgR. In particular, there is a
comparison map HHj+1(A) → HQj(A) for j ⩾ 1.

Proof. Starting from a cofibrant replacement C• → A inAlgR and going right in (23),
one obtains LA → IA, which is a weak equivalence because of the flatness assump-
tion on A. Then going down yields A⊗A⊗RAop LA, whose π∗ is TorA⊗RA

op

∗ (A, IA).
Again by the flatness assumption, Hochschild homology HH∗(A) is not just a rela-

tive Tor but the (absolute) TorA⊗RA
op

∗ (A,A). The short exact sequence of bimod-

ules 0 → IA → A⊗R Aop → A→ 0 gives a natural isomorphism TorA⊗RA
op

i+1 (A,A) ∼=
TorA⊗RA

op

i (A, IA) for all i ⩾ 1.
On the other hand, going down in the diagram yields Com(C•) → A and then

going right yields A⊗Com(C•) ΩCom(C•)/R. The comparison map is π∗ of (18), which
measures the failure of Com : AlgR → ComR to preserve weak equivalences.

Remark 5.7. The comparison map in Proposition 5.6 is an edge morphism in a spec-
tral sequence of Quillen [21, Theorem 8.1].

5.3. Truncated Π-algebras
A Π-algebra is the algebraic structure describing the action of the primary homo-

topy operations on the homotopy groups of a pointed space X. More details can be
found in [7, §4] [22, §4]; we recall the essentials.

Let Π denote the homotopy category of finite (possibly empty) wedges of spheres∨
Sni , with ni ⩾ 1. The category Π has finite coproducts, given by the wedge, and

thus its opposite Πop is an algebraic theory as in Definition 2.5.
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Definition 5.8. A Π-algebra is a contravariant functor A : Π → Set that sends
wedges to products, i.e., a product-preserving functor Πop → Set (or equivalently to
pointed sets). In other words, a Π-algebra is a model for the algebraic theory Πop.

Let ΠAlg := Model(Πop) denote the category of Π-algebras.

The prototypical example is the functor [−, X] of pointed homotopy classes of
pointed maps into X, called the homotopy Π-algebra of the pointed space X. A Π-
algebra A can be viewed as a graded group {πi = A(Si)} (abelian for i ⩾ 2) equipped
with primary homotopy operations induced by maps between wedges of spheres,
such as precomposition operations α∗ : πk → πn for every α ∈ πn(S

k). The additional
structure is determined by operations of that form, Whitehead products, and the π1-
action on higher πi, and there are classical relations between them.

5.3.1. Postnikov truncation of Π-algebras

Definition 5.9. AΠ-algebraA is called n-truncated if for all i > n, we have A(Si) =
∗, the trivial pointed set.

Denote by ΠAlgn1 the full subcategory of ΠAlg consisting of n-truncated Π-
algebras. Denote by Πn the full subcategory of Π consisting of wedges of spheres
of dimension at most n, and let In : Πn → Π be the inclusion functor. One can go
the other way, by removing spheres above a certain dimension. To make this precise,
assume without loss of generality that the category Π is skeletal, i.e., each isomor-
phism class contains exactly one object. In other words, we choose a representative
space for each homotopy type

∨
Sni inΠ. Define a “truncation” functor Tn : Π → Πn

by Tn

(∨k
i=1 S

ni

)
=

∨
ni⩽n S

ni . This functor sends a map f :
∨
i S

ni →
∨
j S

mj to the

homotopy lift ∨
ni⩽n S

ni

Tnf **UUUUUUUUU
� � // ∨

i S
ni

f // ∨
j S

mj

∨
mj⩽n S

mj
?�

OO

which exists and is unique, since
∨
mj⩽n S

mj ↪→
∨
j S

mj is an isomorphism on πk
for k ⩽ n. By the same argument, In is left adjoint to Tn. The unit 1 → TnIn is
the identity, and the counit InTn → 1 is the inclusion of wedge summands of small
dimension.

Both In : Πn →Π and Tn : Π→Πn preserve coproducts (wedges), and thus induce
restriction functors on models I∗n : Model(Πop) → Model(Πop

n ) and T ∗
n : Model

(Πop
n ) → Model(Πop), where T ∗

n lands in the subcategory ΠAlgn1 .

Proposition 5.10. The functors I∗n : ΠAlgn1
∼= Model(Πop

n ) : T ∗
n form an equiva-

lence of categories.

Proof. If F is a product-preserving functor Πop
n → Set, then we have I∗nT

∗
nF =

(TnIn)
∗F = F , since TnIn is the identity. On the other hand, if A is an n-truncated
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Π-algebra, we have T ∗
nI

∗
nA = (InTn)

∗A ∼= A. Indeed, A sends all counit maps

InTn(
∨
i

Sni) =
∨
ni⩽n

Sni ↪→
∨
i

Sni

to isomorphisms since A is n-truncated.

Example 5.11. 1-truncated Π-algebras are the same as groups. In the category Π1,

the hom-set
[
S1,

∨k
i=1 S

1
]
= π1

(∨k
i=1 S

1
)
is a free group on k generators. This yields

an equivalence of algebraic theories Πop
1

∼= TGp and thus an equivalence of models
ΠAlg1

1
∼= Gp.

Write Pn : ΠAlg → ΠAlgn1 for I∗n, which is the Postnikov n-truncation of Π-
algebras, and ιn : ΠAlgn1 → ΠAlg for T ∗

n , which is the inclusion of n-truncated Π-
algebras.

Proposition 5.12. Pn is left adjoint to ιn.

Proof. (Functor point of view) In : Πn → Π is the left adjoint, and thus In : Π
op
n →

Πop is the right adjoint. Note that Fun(−,Set) is a (strict) 2-functor Catop → Cat,
where the superscript in Catop means that 1-cells have been reversed but 2-cells do
not change. The same holds for product-preserving functors Fun×(−,Set), as long
as we take only categories and product-preserving functors between them. Therefore
Pn = I∗n is left adjoint to ιn = T ∗

n .

Proof. (Graded group point of view) A map f : A→ ιnB of Π-algebras into an n-
truncated Π-algebra is determined by the map of graded group up to degree n. The
additional conditions are that f respect the additional structure (π1-action, White-
head products, and precomposition operations). These operations preserve or increase
degree, which means that all the conditions coming from or landing in degree greater
than n are vacuous. In other words, the data of a map f is the same data as the
corresponding map PnA→ B in ΠAlgn1 .

Both ΠAlg and ΠAlgn1 are categories of universal algebras—many-sorted finitary
varieties, to be more precise. The free Π-algebra on a graded set {Xi} is F{Xi} =
π∗(

∨
i

∨
j∈Xi

Si). By combining the two adjunctions:

GrSet
F //

ΠAlg
U

oo
Pn //

ΠAlgn1
ιn

oo

we see that the free n-truncated Π-algebra on {Xi} is

Fn{Xi} = Pnπ∗(
∨
i

∨
j∈Xi

Si) = π∗(Pn
∨
i

∨
j∈Xi

Si).

In both categories, projective objects are retracts of free objects and regular epimor-
phisms are surjections of underlying graded sets [20, II.4, Remark 1 after Proposition
1]. In particular, the left adjoint Pn preserves projectives and prolongs to a left Quillen
functor. Note that

{
π∗(PnS

1), π∗(PnS
2), . . . , π∗(PnS

n)
}
is a set of finitely presentable

projective generators for ΠAlgn1 .
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5.3.2. Standard model structure
The standard model structure on the category sΠAlg of simplicial Π-algebras is
described in [7, §4.5] and the same description holds for sΠAlgn1 . A map f : X• → Y•
is a fibration (resp. weak equivalence) if it is so at the level of underlying graded sets
or graded groups. Cofibrations are maps with the left lifting property with respect to
trivial fibrations and can be characterized as retracts of free maps.

Proposition 5.13. The left Quillen functor Pn : sΠAlg → sΠAlgn1 preserves weak
equivalences and fibrations. In particular, it preserves cofibrant replacements.

Proof. (Functor point of view) Let f : X• → Y• be a fibration (resp. weak equiva-
lence) in sΠAlg. Let P be a projective of ΠAlgn1 , exhibited as a retract of a free

object by P
s−→ F

p−→ P . Then (Pnf)∗ : Hom(P, PnX•) → Hom(P, PnY•) is a retract
of Hom(F, Pnf) so it suffices that the latter be a fibration (resp. weak equivalence)
of simplicial sets.

Note that F = Fn(S) is free on a graded set S empty above dimension n, so we
have

HomΠAlgn
1
(F, PnX•) = HomGrSet(S,UPnX•)

= HomGrSet(S,UX•)

= HomΠAlg(F (S), X•).

Using this, we obtain

HomΠAlgn
1
(F, PnX•)

∼=
��

(Pnf)∗ // HomΠAlgn
1
(F, PnY•)

∼=
��

HomΠAlg(F (S), X•)
f∗ // HomΠAlg(F (S), Y•).

Since f is a fibration (resp. weak equivalence) in sΠAlg, the bottom row is a fibration
(resp. weak equivalence) of simplicial sets.

Proof. (Graded group point of view) The map f : X• → Y• is a fibration (resp. weak
equivalence) of simplicial sets in each degree; hence the map Pnf is a fibration (resp.
weak equivalence) of simplicial sets in each degree, that is, in degrees 1 through n.

Corollary 5.14. 1. For every Π-algebra A, the comparison map of cotangent com-
plexes Pn(LA)

∼−→ LPnA induced by the adjunction Pn ⊣ ιn is a weak equivalence.

2. If N is a module over PnA, then the comparison map in Quillen cohomology

HQ∗
ΠAlgn

1
(PnA;N)

∼=−→ HQ∗
ΠAlg(A; η

∗
AιnN) (24)

is a natural isomorphism.

Proof. By Propositions 4.10, 4.12, and 5.13.

Here ηA : A→ ιnPnA is the Postnikov truncation map. We would like a better
description of the module η∗AιnN in (24). Think of a module over A as an abelian
Π-algebra on which A acts (cf. [7, §4.11]), namely the kernel of the split extension as
opposed to its “total space.”



108 MARTIN FRANKLAND

Lemma 5.15. The category ModPnA of modules over PnA is equivalent to the full
subcategory Modn-trA of ModA of modules that are n-truncated.

Proof. Consider the adjunction on modules

ModA
Pn //

ModPnA
η∗Aιn

oo

from Proposition 4.2. The composite Pnη
∗
Aιn is naturally isomorphic to the iden-

tity. Moreover, η∗Aιn lands in Modn-trA . By restricting Pn to the latter, we obtain
an adjunction Modn-trA ⇄ ModPnA where both composites Pnη

∗
Aιn and η∗AιnPn are

naturally isomorphic to the identity.

The lemma justifies the abuse of notation in the following repackaged statement.

Theorem 5.16 (Truncation isomorphism). Let A be a Π-algebra and N a module
over A that is n-truncated. Then there is a natural isomorphism

HQ∗
ΠAlgn

1
(PnA;N)

∼=−→ HQ∗
ΠAlg(A;N).

The following example is of interest in light of [7, Theorems 1.3 and 9.6].

Example 5.17. Let A be an n-truncated Π-algebra. For k a positive integer, the k-fold
loops ΩkA form a module over A (which is zero if k ⩾ n) and we are interested in
the cohomology groups HQ∗(A; ΩkA). Since ΩkA is (n− k)-truncated, Theorem 5.16
gives a natural isomorphism HQ∗

ΠAlgn−k
1

(Pn−kA; Ω
kA) ∼= HQ∗

ΠAlg(A; Ω
kA).
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Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR2840650.

[15] P. G. Goerss and T. J. Lada, Relations among homotopy operations for simplicial commuta-
tive algebras, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2637–2641, DOI 10.2307/2160555.
MR1260166 (95k:18007).

[16] P. Goerss and K. Schemmerhorn, Model categories and simplicial methods, Interactions between
homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI,
2007, pp. 3–49, DOI 10.1090/conm/436/08403. MR2355769 (2009a:18010).

[17] P. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and
Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR1944041
(2003j:18018).

[18] M. Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Math-
ematical Society, Providence, RI, 1999. MR1650134 (99h:55031).

[19] M. C. Pedicchio and F. Rovatti, Algebraic categories, Categorical foundations, Encyclopedia
Math. Appl., vol. 97, Cambridge Univ. Press, Cambridge, 2004, pp. 269–309. MR2056585.

[20] D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag,
Berlin-New York, 1967. MR0223432 (36 #6480).

[21] D. Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra
(Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), Amer. Math. Soc., Providence, R.I.,
1970, pp. 65–87. MR0257068 (41 #1722).

[22] C. R. Stover, A van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990),
no. 1, 9–26, DOI 10.1016/0040-9383(90)90022-C. MR1046622 (91h:55011).

[23] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathe-
matics, vol. 38, Cambridge University Press, Cambridge, 1994. MR1269324 (95f:18001).

Martin Frankland mfrankla@uwo.ca

Department of Mathematics, University of Western Ontario, Middlesex College,
London, ON, N6A 5B7, Canada

mailto:mfrankla@uwo.ca

