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COMPLETENESS RESULTS FOR QUASI-CATEGORIES OF
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Abstract
Consider a diagram of quasi-categories that admit and func-

tors that preserve limits or colimits of a fixed shape. We show
that any weighted limit whose weight is a projective cofibrant
simplicial functor is again a quasi-category admitting these
(co)limits and that they are preserved by the functors in the
limit cone. In particular, the Bousfield-Kan homotopy limit of
a diagram of quasi-categories admits any (co)limits existing in
and preserved by the functors in that diagram. In previous
work, we demonstrated that the quasi-category of algebras for
a homotopy coherent monad could be described as a weighted
limit of this type, so these results specialise to (co)completeness
results for quasi-categories of algebras. The second half of this
paper establishes a further result in the quasi-categorical set-
ting: proving, in analogy with the classical categorical case, that
the monadic forgetful functor of the quasi-category of algebras
for a homotopy coherent monad creates all limits that exist in
the base quasi-category, regardless of whether its functor part
preserves those limits. This proof relies upon a more delicate
and explicit analysis of the particular weight used to define
quasi-categories of algebras.

1. Introduction

Let qCat∞ denote the simplicial category of quasi-categories, a full subcategory
of the cartesian closed category of simplicial sets. Because the quasi-categories are
the fibrant objects in a model category enriched over the Joyal model structure (in
this case over itself), the simplicial category qCat∞ is closed under a certain class
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of weighted limits: those whose weights are projective cofibrant simplicial functors.
Here, a subcategory of an enriched category is closed under a certain class of limits
if it possesses those limits and if moreover they are preserved by the subcategory
inclusion.

Our aim in this paper is to prove the following theorem:

Theorem 1.1. Let X be a simplicial set. The quasi-categorically enriched subcategory
of qCat∞ spanned by those quasi-categories admitting (co)limits of shape X and those
functors preserving them is closed in qCat∞ under all projective cofibrant weighted
limits.

This paper is a continuation of [5] and [6], which contain all the necessary prelim-
inaries; references therein will have the form I.x.x.x. or II.x.x.x. Projective cofibrant
weights are discussed in §II.5, and a recognition theorem is proven. This class of
weights plays a fundamental role in our development of the quasi-categorical monadic-
ity theorem, which constructs the quasi-category of algebras for a homotopy coherent
monad and characterizes it up to equivalence.

The class of projective cofibrant weighted limits, that is, weighted limits with pro-
jective cofibrant weights, includes familiar Bousfield-Kan-style homotopy limits such
as comma quasi-categories or mapping cocylinders (see Example II.5.1.10). A weight
is projective cofibrant if and only if it can be built as a retract of a countable com-
posite of pushouts of coproducts of basic “cells” defined by tensoring representable
functors with the boundary inclusions ∂∆n ↪→ ∆n of simplicial sets. To prove that
projective cofibrant weighted limits of quasi-categories are again quasi-categories, it
suffices to show that qCat∞ is closed under the corresponding limit notions—namely,
splittings of idempotents, limits of towers of isofibrations, pullbacks of isofibrations,
products, and cotensors with simplicial sets—and that moreover the cotensor of a
quasi-category with a monomorphism is an isofibration. Here an isofibration is a
functor between quasi-categories that is a fibration in the Joyal model structure;
see I.2.2.4. In section 2 below the reader will find a general discussion of projective
cofibrant weighted limits.

Our first key result, Theorem 1.1, shows that if each quasi-category in a simplicial
diagram has (co)limits of a fixed shape and each functor in that diagram preserves
these, then the projective weighted limit again posseses these (co)limits and they are
preserved by the functors defining the limit cone. For example, the quasi-category of
algebras A[t] for a homotopy coherent monad on a quasi-category A is defined in §II.6
via a projective cofibrant weighted limit. Consequently, as an immediate corollary of
our first key result, we can show that the forgetful functor ut : A[t]→ A creates any
colimits that are preserved by the functor part t : A→ A of the monad—precisely as
is the case in ordinary category theory. In particular, the forgetful functor creates
colimits of ut-split simplicial objects, completing the proof of the quasi-categorical
monadicity theorem described in §II.7 (see Corollary 5.6).

However, the immediate application of Theorem 1.1 to the question of the creation
of limits by ut : A[t]→ A does not yield a true generalization of the corresponding
classical result, since that theorem does not require any assumption that the functor
part of our monad should preserve limits. Our second key result, Theorem 5.7, rectifies
this deficiency. It makes a much more detailed and concrete analysis of the specific
weight used in building quasi-categories of algebras to show that ut : A[t]→ A does
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indeed create any limits that exist in A without having to constrain our homotopy
coherent monad by any continuity assumptions.

In 2-category theory, the classes of flexible and PIE limits (cf. [2]) are of great
importance. They are, for example, the 2-limits that are inherited by 2-categories of
algebras and pseudo-morphisms for a 2-monad and are therefore the ones that exist
in common 2-algebraic situations such as in 2-categories of (co)complete categories,
monoidal categories, Grothendieck toposes, accessible categories, and so forth. They
also enjoy the familiar homotopy theoretic property that pseudo-transformations of
diagrams whose legs are equivalences induce equivalences of such limits. These classes
are not only parsimonious but they also encompass most 2-limit types of practical
importance, such as pseudo, lax and oplax limits, comma categories, cotensors, gluing
constructions, descent and lax descent constructions, and so forth. The class of limits
weighted by projective cofibrant functors or projective cell complexes are direct quasi-
categorical analogues of the classes of flexible and PIE limits respectively. They too
contain analogues of all of the 2-limit types discussed above and much more besides.
Consequently, the completeness results we develop in this paper are ripe for wide
application.

The techniques we use to prove Theorem 1.1 tell us how the limits or colimits in
a projective cofibrant weighted limit are constructed, enabling more precise applica-
tions. For example, a quasi-category is stable if it is finitely complete and cocomplete
and if moreover the terminal object is initial and a square is a pullback if and only if
it is a pushout [4, 1.1.3.4]. A functor of stable quasi-categories is exact if it preserves
finite limits or finite colimits, either condition implying the other [4, 1.1.4.1]. Theo-
rem 1.1 immediately implies that the homotopy limit of a diagram of stable quasi-
categories and exact functors is finitely complete and cocomplete, but we can show
further that the homotopy limit is again a stable quasi-category; see Theorem 4.21.

Our interest in the questions discussed here originally arose from our work on
homotopy coherent monads presented in [6]. We had also been interested in some
specific (co)completeness results for functor quasi-categories (hom-spaces in qCat∞),
comma constructions, homotopy limits, and the like, but had not sought to unify the
results we had developed. However, an email sent to us by Tom Fiore encouraged us
to look at the more general results we present here. Specifically, he asked whether
it was possible to select certain families of limits in a quasi-category in a suitably
functorial manner. Our approach to this problem was to observe that his result could
be reduced to asking whether a particular limit of quasi-categories weighted by some
projective cofibrant weight possessed limits of that kind. The results presented here
show that it does.

Limits and colimits in a quasi-category

In §I.5, we show that limits (resp. colimits) in a quasi-category are characterized by
certain absolute right (resp. left) lifting diagrams in qCat2, André Joyal’s 2-category
of quasi-categories. Absolute right liftings are introduced in Definition I.5.0.1 and
recalled in §4, where precise details are first needed. For ease of exposition, we restrict
our discussion to limits from here on; the corresponding results for colimits are dual.

Definition I.5.2.8. A quasi-category A has all limits of shape X if and only if there
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is an absolute right lifting

⇓λ

A

c
��

AX

lim

<<zzzzzzzz

idAX

// AX

of the identity through the constant diagram functor c : A→ AX . A functor f : A→ B
preserves all limits of shape X if the composite diagram

⇓λ

A

c
��

f
// B

c
��

AX

lim

<<zzzzzzzz

idAX

// AX

fX

// BX

is again an absolute right lifting; see, for example, I.5.2.12.

Taking X = ∅, Definition I.5.2.8 specialises to say that a quasi-category A has a
terminal object if and only if there is an absolute right lifting

⇓λ

A

c

��

1

a

??��������

id1

// 1

Here the 2-cell λ is necessarily an identity because the quasi-category 1 is terminal.
By a standard exercise in formal category theory, this is equivalent to asking that
the constant functor A→ 1 has a right adjoint 1 a−→ A that picks out the terminal
object. The unit of this adjunction is represented by a 1-simplex in AA from the
identity functor to the constant functor at the terminal object whose component at
the terminal vertex is degenerate; see Lemma I.4.1.3.

Outline of the proof
The special case of terminal objects will be of particular interest: the general case

for limits of shape X may be reduced to this special one. We shall prove Theorem 1.1
in two steps, which occupy sections 3 and 4 respectively:

(I) Prove the special case of quasi-categories which admit terminal objects.

(II) Reduce the general problem to that special case “fibre-wise.”

The key ingredient for this second step is Theorem I.6.1.3, recalled in §4, which
encodes absolute right lifting diagrams as a collection of terminal objects in particular
comma quasi-categories. In the special case of absolute lifting diagrams of the form
given in Definition I.5.2.8, the comma quasi-categories of Theorem I.6.1.3 are quasi-
categories of cones over a fixed diagram. A terminal object encodes a limiting cone;
see Observation I.5.2.7.

Special cases of Theorem 1.1 have been established before: for example, [3, 5.4.5.5]
proves this result for homotopy pullbacks of quasi-categories admitting and functors
preserving particular colimits; see also [3, 5.5.7.11]. But we know of no other treatment
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at this level of generality. Incidentally, the strategy used in [3, §5.4.5] is similar—the
case of general colimits is deduced from the special case of initial objects—although
the details of the proof are quite different.
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2. Weighted limits in qCat∞

The theory of weighted limits is reviewed in §II.5.1. For the reader’s convenience,
and as a warm-up to our proof of Theorem 1.1, recall:

Proposition II.5.2.4. The full simplicial subcategory qCat∞ of quasi-categories is
closed in sSet under each of the following classes of limits:

1) arbitrary small products,

2) pullbacks of isofibrations,

3) countable composites of isofibrations,

4) splitting of idempotents, and

5) cotensors with any simplicial set.

Moreover the cotensor of a quasi-category with a monomorphism of simplicial sets is
an isofibration. Hence, qCat∞ is closed under limits weighted by projective cofibrant
weights.

Proof. Let A be a small simplicial category. A weight W ∈ sSetA is projective cofi-
brant just when it is expressible as a retract of a countable composite of pushouts of
coproducts of maps i×Aa : X ×Aa → Y ×Aa built by tensoring a covariant rep-
resentable Aa with an inclusion X ↪→ Y of simplicial sets. By cocontinuity of the
weighted limit bifunctor in the weight, the weighted limit {W,D}A of a diagram
D : A→ qCat∞ is a retract of a countable tower of pullbacks of products of maps

{i×Aa, D}A ∼= Dai : DaY → DaX .

Because the quasi-categories are the fibrant objects in a monoidal model structure
with all objects cofibrant, qCat∞ is closed under simplicial cotensors, and in partic-
ular the domains and codomains of these maps are again quasi-categories. Moreover,
monoidalness of the Joyal model structure implies that each of these maps is an
isofibration (a fibration between fibrant objects).

As a category of fibrant objects, the quasi-categories are closed under products
and splittings of idempotents as well as pullbacks and composites of isofibrations. In
this way, we see that the weighted limit {W,D}A is again a quasi-category.

Remark 2.1. In the proof of Proposition II.5.2.4 just given, we have used a slightly
different definition of projective cofibrant weight than appears in II.5.2.1. These are
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of course equivalent: by the algebraic small object argument, a cofibrant object in
the projective model structure on sSetA is expressible as a retract of a countable
composite of pushouts of coproducts of maps of the form ∂∆n ×Aa → ∆n ×Aa.
Only countable composites are needed because the simplicial sets appearing here are
ω-small.

Example 2.2. The class of projective cofibrant weighted limits includes:

• cotensors by arbitrary simplicial sets (II.5.1.8),

• comma objects and iso-comma objects (II.5.1.9),

• the appropriate quasi-categorical versions of inserters and equifiers of 2-category
theory (left as an exercise for the interested reader),

• Bousfield-Kan-style homotopy limit for diagrams of any shape (II.5.1.10),

• algebras for a homotopy coherent monad (II.6.1.9; see also 5.1 below).

3. Quasi-categories with terminal objects

The basic theory of terminal objects is developed in §I.4.1. We begin by introducing
some special notation for the quasi-categorically enriched category described in the
statement of Theorem 1.1.

Definition 3.1. For any simplicial set X, let qCatX∞ denote the quasi-categorically
enriched subcategory of qCat∞ with:

• objects the quasi-categories A which admit all limits of shape X,

• n-arrows all those n-arrows whose vertices are functors f : A→ B which preserve
all limits of shape X.

We shall write qCatX for the underlying category of qCatX∞.

Our aim in this section is to prove that qCat∅∞, the subcategory of quasi-categories
admitting terminal objects and terminal-object-preserving functors, is closed in qCat∞
under limits with projective cofibrant weights.

Observation 3.2. In order to show that a functor f : A→ B of quasi-categories pre-
serves terminal objects, it is enough to show that there is some terminal object t in
A such that ft is terminal in B: all terminal objects in A are isomorphic, and any
functor between quasi-categories preserves isomorphisms.

Observation 3.3. Our first order of work will be to prove that qCat∅ is closed in qCat
under each of the following classes of conical limits:

1) arbitrary small products,

2) pullbacks of isofibrations,

3) countable composites of isofibrations, and

4) splitting of idempotents.

The “isofibrations” referred to here are isofibrations that preserve terminal objects,
i.e., isofibrations that lie in the subcategory qCat∅. We shall prove these closure
properties in a series of lemmas. In Corollary 4.20, we will prove that the quasi-
categorically enriched category qCat∅∞ is closed in qCat∞ under:
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5) cotensors with any simplicial set.

Moreover, we will show that the map induced by cotensoring with an inclusion of
simplicial sets is an isofibration in qCat∅. As in the proof of Proposition II.5.2.4,
it will follow that qCat∅∞ is closed in qCat∞ under limits weighted by projective
cofibrant weights.

Remark 3.4 (proof-schema). For each class of conical limits listed in Observation 3.3,
we shall prove the desired closure result using a similar argument. Specifically, given
a diagram in qCat∅ we shall take its limit L in qCat, which comes equipped with
projection functors πi : L→ Ai, and establish the following results:

(i) there is some object t of L which is pointwise terminal, in the sense that
each πit is terminal in Ai, and

(ii) every pointwise terminal object in L is a terminal object in L.

Now (i) delivers a pointwise terminal t which is terminal in L by (ii). The pointwise
terminality of t tells us that each πi maps that particular terminal to a terminal in
Ai, so it follows that πi preserves all terminal objects by Observation 3.2. Together
these arguments show that the vertex L and its limiting cone are in qCat∅.

Finally, if f : A→ L is a functor induced by another cone in qCat∅ then we know
that the components fi = πif : A→ Ai are all in qCat∅ and thus preserve terminal
objects. It follows that a terminal object s of A maps to an object fs of L for which
πifs = fis is terminal in Ai for each i. In other words, fs is pointwise terminal in
L and hence is thus terminal by (ii). This demonstrates that f preserves terminal
objects as required.

Universal properties of terminal objects
We will make repeated use of a few simple lemmas expressing the (relative) uni-

versal property of terminal objects and their behaviour with respect to isofibrations.

Recall 3.5 (terminal objects). Propositions I.4.3.5 and I.4.1.6 tell us that if a is an
object of a quasi-category A then the following are equivalent:

• The vertex a is a terminal object of A in the sense of Joyal [1]: it enjoys the
universal property that any sphere ∂∆n → A, n ⩾ 1, which maps the final vertex
[[n]] to a

∆0

[[n]]
//

a

((
∂∆n //

� _

��

A

∆n

=={
{

{
{

has a filler, this being the dashed arrow in the diagram above.

• For all quasi-categories B, the composite functor B
! //∆0 a //A is terminal

in the hom-category hom2(B,A) = h(AB) of qCat2.

• The functor a : ∆0 → A is right adjoint to the unique functor ! : A→ ∆0.

Lemma II.5.3.5. Suppose that E and B are quasi-categories which possess terminal
objects and that p : E ↠ B is an isofibration which preserves terminal objects. Assume
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also that e is terminal in E. Then any lifting problem

∆0

[[n]]
//

e

''
∂∆n

u
//

� _

��

E

p
����

∆n

<<z
z

z
z

v
// B

with n > 0 in which u carries the vertex [[n]] to e has a solution.

Observation 3.6. We observe in passing that the lifting property of the last lemma is
equivalent to the statement that

||

E
p
����

1

e
??�����

pe
// B

is an absolute right lifting diagram in qCat2.

Lemma II.5.3.5 possesses the following immediate converse:

Lemma 3.7. Suppose that p : E ↠ B is an isofibration of quasi-categories and that
e is an object of E for which pe is a terminal object in B. Assume also that the lifting
property of Lemma II.5.3.5 holds. Then e is a terminal object of E.

Proof. Suppose that u : ∂∆n → E is a sphere in E which carries the vertex [[n]] to
the object e. Then the sphere pu : ∂∆n → B carries [[n]] to the terminal object pe of
B and so it has a filler v : ∆n → B. This provides us with a lifting problem of the
form given in the statement of Lemma II.5.3.5, which we may solve to provide a filler
in E for the original sphere u, establishing the universal property which shows that
e is terminal in E.

Lemma 3.8. Suppose thatE andB are quasi-categories which possess terminal objects
and that p : E ↠ B is an isofibration which preserves terminal objects. If s is a ter-
minal object in B then there exists a terminal object t in E with pt = s.

Proof. The hypotheses imply that E admits a terminal object t′ and that pt′ is
terminal in B. By uniqueness of terminal objects, there exists some isomorphism
s ∼= pt′ in B which we can lift along the isofibration p to give t ∼= t′ which lies over
s ∼= pt′. It follows that t is also terminal in E, because it is isomorphic to our original
terminal object t′, and that pt = s as required.

Conical limits in qCat∅
We will now show that qCat∅ is closed under the conical limits of Observation 3.3.

Lemma 3.9. The subcategory qCat∅ is closed in qCat under arbitrary small products.

Proof. Let {Ai}i∈I be an indexed family of quasi-categories in qCat∅, and let
∏

i∈I Ai

denote their product in qCat with projection functors πi :
∏

i∈I Ai → Ai. We establish
the properties discussed in Remark 3.4:
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(i) Any choices of terminal object ti in Ai for each i ∈ I can be collected together
to give a pointwise terminal (ti)i∈I in

∏
i∈I Ai.

(ii) Suppose that (ti)i∈I is pointwise terminal and that we have a lifting problem

∂∆n f
//

� _

��

∏
i∈I Ai

∆n
?

77oooo

(3.10)

in which f maps [[n]] to (ti)i∈I . Composing (3.10) with the projection πi we
get a lifting problem

∂∆n f
//

� _

��

∏
i∈I Ai

πi // Ai

∆n
f̄i

33hhhhhhhhhh

in which πif maps [[n]] to the terminal ti in Ai. By the universal property of
the terminal ti, as recalled in 3.5, we may find a solution f̄i to this problem
as displayed. The collection of all of these lifts induces a functor f̄ : ∆n →∏

i∈I Ai with πif = fi, which provides us with a solution to the original
lifting problem (3.10). This proves that the object (ti)i∈I also possesses the
universal property of 3.5, making it terminal in

∏
i∈I Ai.

Lemma 3.11. The subcategory qCat∅ is closed in qCat under pullbacks of isofibra-
tions.

Proof. Given an isofibration p : E ↠ B and a functor f : A→ B in qCat∅, we form
the pullback

E ×B A
π0 //

π1
����

E

p
����

A
f

// B

in qCat. To show that E ×B A has and π1 preserves terminal objects, we follow the
outline of Remark 3.4:

(i) Given a terminal object t ∈ A, ft is terminal in B, and we may apply
Lemma 3.8 to obtain a terminal object s in E with ps = ft. The pair (s, t)
is an object of E ×B A which is pointwise terminal by construction.

(ii) Suppose we are given a pointwise terminal (s, t) in E ×B A and a lifting
problem

∂∆n g
//

� _

��

E ×B A

∆n
?

77oooo

(3.12)

in which g maps [[n]] to (s, t). To solve this problem consider the following
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diagram

∂∆n g
//

� _

��

E ×B A
π0 //

π1

����

E

p
����

∆n
ḡ1

//____

ḡ0

44jjjjjjjjj
A

f
// B

in which the dashed arrow ḡ1 is a solution to the lifting problem π1g : ∂∆
n →

A; this solution exists because π1g maps [[n]] to t, which is terminal in A.
The dashed solution ḡ0 exists by application of Lemma II.5.3.5, which applies
since p is a terminal-object-preserving isofibration and π0g maps [[n]] to the
terminal object s of E. The lower right triangle in this diagram tells us
that pḡ0 = fḡ1, so the pair (ḡ0, ḡ1) induces a map ḡ : ∆n → E ×B A which
provides a solution to the original lifting problem (3.12) as required.

Lemma 3.13. The subcategory qCat∅ is closed in qCat under countable composites
of isofibrations.

Proof. Suppose that we are given a countable sequence

pi // // Ai

pi−1
// //

p3 // // A3
p2 // // A2

p1 // // A1
p0 // // A0

of quasi-categories and isofibrations in qCat∅, and let A be their limit in qCat. We
know that the projection functors πi : A ↠ Ai are isofibrations. Once again, we estab-
lish the conditions of Remark 3.4:

(i) Our task is to build a family (ti)i∈N of terminal objects ti in Ai which
satisfies the compatibility property that piti+1 = ti for all i ∈ N. To do this
we simply proceed inductively, picking any terminal object t0 of A0 and then
extending our family from level i to level i+ 1 by applying Lemma 3.8 to
the terminal object-preserving-isofibration pi : Ai+1 ↠ Ai in order to find a
ti+1 which is terminal in Ai+1 and which has piti+1 = ti.

(ii) Suppose t in A is a pointwise terminal object projecting to the family (ti)i∈N.
To show that t is terminal, we must solve any lifting problem

∂∆n f
//

� _

��

A

∆n
?

99ssss

(3.14)

that maps the vertex [[n]] to t. We construct a solution f̄ by inductively
defining its components. Start by using the fact that t0 is terminal to find a
lift

∂∆n f
//

� _

��

A
π0 // A0

∆n
f̄0

44jjjjjjjj

Suppose now that we have defined maps f̄i : ∆
n → Ai so that pif̄i+1 = f̄i for

all i < k. By Lemma II.5.3.5 and the hypothesis that tk is terminal, there is
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a solution to the lifting problem

∂∆n f
//

� _

��

A
πk // Ak

pk−1
����

∆n
f̄k

44jjjjjjjj
f̄k−1

// Ak−1

defining f̄k. The family (f̄i)i∈N defines the desired solution f̄ to (3.14).

Lemma 3.15. The subcategory qCat∅ is closed in qCat under splitting of idempo-
tents.

Proof. Suppose that e : A→ A is an idempotent in qCat∅ and let Ae denote the
maximal sub-quasi-category of A stabilised by that idempotent—i.e., the equaliser of
e and idA—whose single limit cone projection is the inclusion Ae ↪→ A. We verify the
conditions of Remark 3.4 as follows:

(i) For any terminal object t of A, the object et of Ae is terminal in A, since
e is assumed to preserve terminal objects. Thus et is pointwise terminal in
Ae.

(ii) Now suppose that g : ∂∆n → Ae is a lifting problem which maps [[n]] to an
object s which is pointwise terminal in Ae. This means that s is terminal in
A, which ensures the existence of the dashed solution in the following lifting
problem:

∂∆n g
//

� _

��

Ae
� _

��

∆n
ḡ

//____ A

It is now easy to check that eḡ : ∆n → Ae is a solution to our original lifting
problem defined by the sphere g : ∂∆n → Ae.

We defer the proof that qCat∅ is closed under cotensors by simplicial sets and
that cotensors with monomorphisms induce terminal-object-preserving isofibrations
to Lemma 4.17, which proves a more general version of this statement. Modulo this
step, which appears as Corollary 4.20, we may now prove our desired result.

Theorem 3.16. qCat∅,∞ is closed in qCat∞ under limits weighted by projective cofi-
brant weights.

Proof. A projective cofibrant weighted limit may be expressed as a retract of the
limit of a countable tower of pullbacks of products of maps defined by cotensoring an
object in the diagram with a monomorphism of simplicial sets. Corollary 4.20 shows
that these maps are terminal-object preserving isofibrations between quasi-categories
admitting terminal objects. Lemmas 3.9, 3.11, 3.13, and 3.15 show that the rest of
the diagram lies in qCat∅ as well.
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4. Absolute lifting diagrams via terminal objects

We now turn our attention to step (II): the reduction of the general case of The-
orem 1.1 to the special one of quasi-categories admitting and functors preserving
terminal objects. First we must set up the precise result that we intend to prove.

Absolute right lifting diagrams and right exact transformations
Remark 4.1. As in I.5.2.21, we let ⌟ denote the category c //a boo and write
qCat⌟∞ for the simplicially enriched category of simplicial functors ⌟→ qCat∞. The
objects of qCat⌟∞ are pairs of maps

B

f
��

C
g
// A

(4.2)

and 0-arrows are natural transformations

B

f
��

v

!!C
CC

CC

C
g

//

w   
AA

AA
A A

u
BBB

!!BB

B′

f ′
��

C ′
g′

// A′

(4.3)

We say that a transformation of this kind is a pointwise isofibration if each of its
components u, v, and w is an isofibration.

As with any enriched functor category, qCat⌟∞ inherits limits pointwise from qCat∞.
In particular, it has limits weighted by projective cofibrant weights, which are then
preserved by the simplicial projection functors Pa, Pb, Pc : qCat

⌟
∞ → qCat∞ which

evaluate at each of the objects a, b, and c of ⌟ respectively.

Our particular interest is in a subcategory of qCat⌟∞ whose objects are those dia-
grams (4.2) in which g admits an absolute right lifting through f in Joyal’s 2-category
of quasi-categories qCat2.

Definition I.5.0.1. An absolute right lifting diagram in a 2-category consists of the
data

⇓λ

B

f
��

C
g
//

ℓ
>>~~~~~
A

(4.4)

with the universal property that if we are given any 2-cell χ of the form depicted to
the left of the following equality

X

c

��

b //

⇓χ

B

f

��

C
g

// A

=

X

c

��

b //

∃!⇓

⇓λ

B

f

��

C

ℓ~~

>>~~~~~

g
// A

then it admits a unique factorization of the form displayed to the right of that equality.
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Definition 4.5. Transformations of the kind depicted in (4.3) between diagrams
which admit absolute right liftings give rise to the following diagram

⇓λ

B

f
��

v

!!C
CC

CC

C

ℓ
>>}}}}}

g
//

w   
AA

AA
A A

u
BBB

!!BB

B′

f ′
��

C ′
g′

// A′

=

B
v

  B
BB

BB

C

ℓ
>>~~~~~

w   
@@

@@
@ ⇓τ

⇓λ′

B′

f ′
��

C ′

ℓ′
>>|||||

g′
// A′

(4.6)

in which the triangles are absolute right liftings and the 2-cell τ is induced by the
universal property of the triangle on the right. We say that the transformation (4.6) is
right exact if and only if the induced 2-cell τ is an isomorphism. This right exactness
condition holds if and only if, in the diagram on the left, the whiskered 2-cell uλ
displays vℓ as the absolute right lifting of g′w through f ′.

Definition 4.7. Let qCat⌟r∞ denote the simplicial subcategory of qCat⌟∞ with:

• objects those diagrams (4.2) in which g admits an absolute right lifting through
f , and

• n-arrows those n-arrows of qCat⌟∞ whose vertices are right exact transforma-
tions.

As usual, we let qCat⌟r denote the underlying category of qCat⌟r∞.

Observation 4.8. To check that this definition makes sense, we need to show that the
composite of a pair of right exact transformations is itself right exact. This follows
from the following calculation

⇓λ

B
f
��

v
""D

DD
D

C

ℓ
>>}}}}

g
//

w   
AA

AA
A

u
DD

!!DD
B′

f ′
��

v′

""E
EE

E

C ′
g′

//

w′ !!D
DD

D A′

u′
EE

""

B′′

f ′′
��

C ′′
g′′

// A′′

=

B
v
!!C

CC
C

C

ℓ
>>}}}}

w   
@@

@@
⇓τ

⇓λ′

B′

f ′
��

v′

""D
DD

D

C ′

ℓ′
=={{{{{

g′
//

w′ !!D
DD

D A′

u′
EE

""

B′′

f ′′
��

C ′′
g′′

// A′′

=

B
v
!!C

CC
C

C

ℓ
>>}}}}

w ��
??

??
⇓τ B′

v′

!!C
CCC

C

C ′

ℓ′
==|||||

w′ !!C
CC

C ⇓τ ′

⇓λ′′

B′′

f ′′
��

C ′′

ℓ′′
<<zzzz

g′′
// A′′

which shows that the 2-cell induced by the composite of a pair of transformations
may be computed as the pasted composite, shown on the right, of the 2-cells induced
by each individual transformation. Now if those induced 2-cells are isomorphisms,
then so is their pasted composite, from which our desired composition result follows.

Projective cofibrant weighted limits in qCat⌟r∞
Our aim is now to prove:

Proposition 4.9. The quasi-categorically enriched subcategory qCat⌟r∞ is closed in
qCat⌟∞ under limits weighted by projective cofibrant weights.

Before proving Proposition 4.9, let us explain how it will provide us with a proof
of Theorem 1.1.
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Proof of Theorem 1.1. For any fixed simplicial set X, there exists a simplicially en-
riched functor FX : qCat∞ → qCat⌟∞ which carries a quasi-category A to the diagram

A

c
��

AX

id
// AX

(4.10)

and carries a functor f : A→ B to the transformation:

A

c
��

f

##F
FF

FF
F

AX id //

fX ""E
EE

EE
AX

fX

EE

""

B

c
��

BX

id
// BX

(4.11)

By Definition I.5.2.8, the quasi-category A possesses limits of shape X if and only if
(4.10) admits an absolute right lifting, and a functor f : A→ B preserves limits of
shape X if and only if (4.11) is right exact. In other words, the simplicial category
qCatX∞ of Definition 3.1 is the inverse image of the simplicial subcategory qCat⌟r∞
along the simplicial functor FX : qCat∞ → qCat⌟∞.

Now qCat⌟∞ inherits limits pointwise from qCat∞ and the exponentiation functor
(−)X is right adjoint, so FX preserves those limits under which qCat∞ ⊂ sSet is
closed. In particular, it preserves all limits weighted by projective cofibrant weights.
It is a general and easily demonstrated fact that if A and B are enriched categories
admitting a certain class of limits, F : A → B is an enriched functor preserving those
limits, and B′ is an enriched subcategory of B which is closed under those limits, then
the enriched inverse image subcategory A′ := F−1(B′) is also closed in A under those
limits.

In particular, Proposition 4.9 tells us that the simplicial subcategory qCat⌟r∞ is
closed in qCat⌟∞ under limits weighted by projective cofibrant weights, and, moreover,
FX : qCat∞ → qCat⌟∞ preserves these limits. So it follows that the inverse image
qCatX∞ of qCat⌟r∞ along FX is closed in qCat∞ under projective cofibrant weighted
limits.

Now to prove Proposition 4.9, we first characterize the objects and 0-arrows of
qCat⌟r∞ in terms of the possession and preservation of terminal objects in certain
comma quasi-categories.

Observation 4.12. As described in Example II.5.1.9, the comma quasi-category con-
struction is one example of a limit weighted by a projective cofibrant weight W : ⌟→
sSet so, in particular, it gives rise to a simplicial functor ↓ = {W,−} : qCat⌟∞ →
qCat∞. Weighted limits commute with weighted limits so it follows that this comma
construction preserves all limits that are constructed pointwise in qCat⌟∞.

The following pair of results combine to supply a pointwise characterization of
right exactness.
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Theorem I.6.1.3. A functor g : C → A admits an absolute right lifting through the
functor f : B → A if and only if for all objects c of C the quasi-category f ↓ gc has a
terminal object.

Corollary I.6.1.7. A triangle (4.4) is an absolute right lifting diagram if and only
if for each c : ∆0 → C the restricted triangle

⇓λc

B

f

��

∆0
gc

//

ℓc

>>}}}}}}}
A

displays ℓc as an absolute right lifting of gc through f .

Observation 4.13 (a pointwise characterization of right exactness). Suppose that (4.3)
is a transformation of diagrams which admit absolute right liftings. Then we may pick
any absolute right lifting (4.4) of its domain and apply Corollary I.6.1.7 to show that
for all objects c of C the 2-cell λc : fℓc⇒ gc induces an object which is terminal in
f ↓ gc. Applying that same result to the composite triangle on the left of (4.6) we find
that (4.3) is a right exact transformation if and only if for all objects c in C the 2-cell
uλc : f ′vℓc = ufℓc⇒ ugc = g′wc induces an object which is terminal in f ′ ↓ g′wc.

Now observe that for each object c of C the transformation (4.3) restricts to define
a transformation

B

f
��

v

!!C
CC

CC

∆0 gc
//

id
CC

CC
C

CC
CC

C A

u
CCC

!!C
C

B′

f ′
��

∆0

g′wc

// A′

which is mapped to a functor v ↓u id : f ↓ gc→ f ′ ↓ g′wc under the comma construc-
tion. This functor maps any object of f ↓ gc which is induced by λc : fℓc⇒ gc to an
object of f ′ ↓ g′wc which is induced by uλc : f ′vℓc⇒ g′wc.

Combining and summarising these facts, we get the following lemma.

Lemma 4.14. The diagram C
g−→ A

f←− B is in the subcategory qCat⌟r∞ if and only
if for all objects c of C the comma quasi-category f ↓ gc has a terminal object. A
transformation (4.3) between two such diagrams is in the subcategory qCat⌟r∞ if and
only if for all objects c in C the induced functor v ↓u id : f ↓ gc→ f ′ ↓ g′wc preserves
terminal objects.

Proof. The first statement is the content of Theorem I.6.1.3. For the second, fix an
absolute right lifting as in (4.4) and an object c of C. By Corollary I.6.1.7, an object
induced by λc : fℓc⇒ gc is terminal in f ↓ gc. The functor v ↓u id : f ↓ gc→ f ′ ↓ g′wc
carries this terminal object to an object induced by uλc : f ′vℓc⇒ g′wc in f ′ ↓ g′wc.
Hence, it preserves terminal objects if and only if any object induced by the 2-cell
uλc is terminal in f ′ ↓ g′wc. As discussed in Observation 4.13, this latter condition
holds for all objects c in C if and only if the transformation in (4.3) is right exact, as
required.



16 EMILY RIEHL and DOMINIC VERITY

The characterization of the objects and 0-arrows of qCat⌟r∞ provided by Lemma4.14
enables the proof of the following result:

Lemma 4.15. The subcategory qCat⌟r is closed in qCat⌟ under arbitrary small prod-
ucts, pullbacks of pointwise isofibrations, countable composites of pointwise isofibra-
tions, and splitting of idempotents.

Proof. Suppose that we are given a diagram D : A→ qCat⌟r of one of the kinds
described in the statement. We shall adopt the notation

Bi

fi

��

Ci

gi

// Ai
and

Bi

fi

��

vϕ

!!C
CC

CC

Ci gi

//

wϕ !!B
BB

BB
Ai

uϕ

CC

!!CC

Bj

fj

��

Cj

gj

// Aj

for the diagram and transformation obtained by evaluating D : A→ qCat⌟r at an
object i and at an arrow ϕ : i→ j of A respectively. The diagram D possesses a
pointwise limit in qCat⌟ and we shall adopt the notation

limi∈A Bi

f
��

πb,i

''OO
OOO

OOO
O

limi∈A Ci g
//

πc,i
))SS

SSS
SSS

SSS
limi∈A Ai

πa,i

''PP
PPP

PPP
P Bi

fi

��

Ci

gi

// Ai

for the component of its limit cone at the object i of A.

Given an object c of limi∈A Ci we may apply the limit projection at the object
i in A to obtain an object ci := πc,ic of Ci. The limit projections commute with
the arrows in the diagram D, so if ϕ : i→ j is an arrow in A then we know that
wϕci = wϕπc,ic = πc,jc = cj . Consequently we have arrows as displayed on the left-
hand side

Bi

fi

��

vϕ

!!C
CC

CC

∆0 gici
//

id
CC

CC
C

CC
CC

C Ai

uϕ

CC

!!CC

Bj

fj

��

∆0

gjcj
// Aj

and

limi∈A Bi

f
��

πb,i

''OO
OOO

OOO
O

∆0 gc
//

id PPP
PPP

PPP
P

PPP
PPP

PPP
P limi∈A Ai

πa,i

''PP
PPP

PPP
P Bi

fi

��

∆0

gici
// Ai

(4.16)

that assemble to give a diagram Dc : A→ qCat⌟ and a cone over that diagram, as
displayed on the right. As limits in qCat⌟ are constructed pointwise in qCat, this cone
is a limit cone. Because the limit of any diagram of terminal objects is a terminal
object, the object in the lower left-hand corner of the limit diagram is ∆0.
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Applying the comma construction ↓ : qCat⌟ → qCat, we obtain a diagram A→
qCat which maps each object i of A to f i ↓ gici and maps an arrow ϕ : i→ j of A
to the induced functor vϕ ↓uϕ id : f i ↓ gici → f j ↓ gjcj . The comma construction, as
a weighted limit, preserves limits so it maps the limit cone (4.16) to a limit cone in
qCat, which displays f ↓ gc as a limit of the diagram A→ qCat.

Now D is a diagram which lands in qCat⌟r , mapping objects to diagrams which
admit an absolute right lifting and arrows to right exact transformations. Lemma 4.14
tells us that for each object i of A the quasi-category f i ↓ gici has a terminal object
and that for each arrow ϕ : i→ j of A the functor vϕ ↓uϕ id : f i ↓ gici → f j ↓ gjcj
preserves terminal objects. Furthermore, if an arrow ϕ : i→ j of A is mapped to a
pointwise isofibration underD then it is also mapped to a pointwise isofibration under
Dc. Observation I.3.3.18 demonstrates that the comma quasi-category functor carries
pointwise isofibrations to isofibrations, so it follows that the functor vϕ ↓uϕ id : f i ↓
gici → f j ↓ gjcj is an isofibration. Summarising these facts we find that the composite

functor A
Dc−−→ qCat⌟

↓−→ qCat lands in the subcategory qCat∅ and parametrizes one
of the conical limits listed in Observation 3.3.

Now depending on the particular limit involved, one of Lemmas 3.9, 3.11, 3.13,
or 3.15 applies to show that the limit f ↓ gc of the diagram ↓ ◦Dc possesses a termi-
nal object and that each of the limit cone projections πb,i ↓πa,i id : f ↓ gc→ f i ↓ gici
preserves terminal objects. Consequently, Lemma 4.14 implies that the limit of the
diagram D and each of its limit cone projections are in qCat⌟r .

Finally, if the transformation on the left of the following display

B′

f ′
��

v

))SSS
SSSS

SSSS

C ′ g′
//

w ''OO
OOO

OOO
O A′

u
RRRR

R

))RRR
RR

limi∈A Bi

f
��

limi∈A Ci
g

// limi∈A Ai

B′

f ′
��

vi

!!B
BB

BB

C ′ g′
//

wi   B
BB

BB
A′

ui

BB

!!BB

Bi

fi

��

Ci

gi

// Ai

is induced by the cone of right exact transformations on the right, we must show that
it too is right exact. To that end, suppose that c′ is an object of C ′ and recall from
the earlier argument that f ↓ gwc′ is a limit of the diagram ↓ ◦Dwc′ : A→ qCat∅.
Furthermore, the functor v ↓u id : f ′ ↓ g′c′ → f ↓ gwc′ is induced by applying the uni-
versal property of that limit to the cone of functors vi ↓ui id : f ′ ↓ g′c′ → f i ↓ giwic′.
Each functor in the limit cone is induced by a right exact transformation and so pre-
serves terminal objects by Lemma 4.14. Hence, by appeal to the appropriate closure
lemma cited above, this induced functor v ↓u id : f ′ ↓ g′c′ → f ↓ gwc′ also preserves
terminal objects. Lemma 4.14 now implies that the induced transformation in the
display above is indeed right exact, as required.

We complete the proof of Proposition 4.9 with the following lemma:

Lemma 4.17. The simplicial subcategory qCat⌟r∞ is closed in qCat⌟∞ under coten-
soring by an arbitrary simplicial set X. Moreover, the transformation induced by
cotensoring with a monomorphism X ↪→ Y is a right exact pointwise isofibration.
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Proof. Suppose that the diagram (4.2) is in qCat⌟r∞ and has the absolute right lift-
ing (4.4). Then its cotensor by X in qCat⌟∞ is determined pointwise, viz

BX

fX

��

CX

gX

// AX

(4.18)

and it is a matter of a routine argument using properties of the 2-adjunction −×X ⊣
(−)X on the 2-category qCat2, as discussed in Observation I.5.2.14, to show that the
triangle

⇓λX

BX

fX

��

CX

gX

//

ℓX
<<zzzzzzz
AX

is also an absolute right lifting. This shows that the cotensor (4.18) is an object of
qCat⌟r∞.

The projection transformations of this cotensor are indexed by the vertices x of X,
with the projection given by evaluation at that vertex (precomposition by x : ∆0 →
X). The 2-functoriality properties of cotensoring imply that the following pasting
equality holds:

⇓λX

BX

fX
��

Bx

!!B
BB

BB
B

CX

ℓX
<<yyyyy

gX

//

Cx
""F

FF
FF

F AX

Ax
CC

!!C
C

B

f
��

C
g

// A

=

BX

Bx

!!B
BB

BB
B

CX

ℓX
<<yyyyy

Cx
""F

FF
FF

F

⇓λ

B

f
��

C

ℓ
=={{{{{{

g
// A

This demonstrates that the comparison 2-cell induced as in (4.6) is an identity and
thus that the projection indexed by x is right exact.

All that remains is to show that if we are given a transformation

B′

f ′
��

v

""F
FF

FF

C ′ g′
//

w !!C
CC

CC
A′

u
EEE

""EE

BX

fX

��

CX

gX

// AX

(4.19)

whose composite with each of the projection transformations discussed above is right
exact, then that transformation itself is right exact. Write τ : vℓ⇒ ℓXw for the com-
parison 2-cell induced as in (4.6) from (4.19). Observation 4.8 tells us that the com-
parison 2-cell associated with the composite of (4.19) with the projection indexed by
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a vertex x of X is given by the pasting:

B
v //

⇓τ

BX Bx
// B

C

ℓ

OO

w
// CX

ℓX

OO

Cx
// C

ℓ

OO

Consequently, the hypothesis that the transformation (4.19) composes with each pro-
jection to give a right exact transformation asserts that the whiskered 2-cell

C
vℓ

((

ℓXw

66⇓τ BX Bx
// B

is an isomorphism for all vertices x in X. Taking transposes under the 2-adjunctions
−×X ⊣ (−)X and −× C ⊣ (−)C on the 2-category of all simplicial sets (discussed
in I.3.2.5), this 2-cell corresponds to the 2-cell

∆0 x // X
((
66⇓τ̂ BC

Now these transpositions preserve the isomorphism property of 2-cells, so this latter 2-
cell is an isomorphism for all vertices x of X. It follows, by Observation I.3.2.3, that
τ̂ is an isomorphism. Consequently, its transpose τ is also an isomorphism, which
completes our proof that the transformation (4.19) is right exact as required.

Finally, the 2-adjunction −×X ⊣ (−)X is in fact a parametrized 2-adjunction. A
map i : X ↪→ Y induces a 2-natural transformation (−)i : (−)Y → (−)X whose com-
ponents are isofibrations. By 2-naturality of (−)i, the following pasting equality holds:

⇓λY

BY

fY
��

Bi

""E
EE

EE

CY

ℓY
<<yyyyy

gY

//

Ci ""E
EE

EE
AY

Ai

EE

""

BX

fX

��

CX

gX

// AX

=

BY

Bi

""E
EE

EE

CY

ℓY
<<yyyyy

Ci ""E
EE

EE

⇓λX

BX

fX

��

CX

ℓX
<<yyyyy

gX

// AX

which tells us that the transformation induced by (−)i is right exact.

Corollary 4.20. The category qCat∅∞ is closed in qCat∞ under cotensoring by an
arbitrary simplicial set X. Moreover, the cotensor with an inclusion X ↪→ Y induces
a terminal-object preserving isofibration of quasi-categories.

Proof. Specializing Lemma 4.17 to a diagram

A

!
��

1 1

in qCatr constructs cotensors for a quasi-category A with a terminal object. The top
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right-hand component of the right exact pointwise isofibration induced by cotensor-
ing with an inclusion X ↪→ Y is a terminal-object-preserving isofibration of quasi-
categories.

We now complete the proof of Proposition 4.9 and, in doing so, finish proving
Theorem 1.1.

Proof of Proposition 4.9. Lemmas 4.15 and 4.17 demonstrate that qCat⌟r∞ is closed
in qCat⌟∞ under all of the limit types used in the proof of Proposition II.5.2.4. Con-
sequently, it follows, by the argument given in §2, that qCat⌟r∞ is closed in qCat⌟∞
under all limits weighted by projective cofibrant weights.

Homotopy limits of stable quasi-categories and exact functors
We close this section with a quick application, proving a theorem advertised in the

introduction. Compare with [4, 1.1.4.4].

Theorem 4.21. The simplicial subcategory of stable quasi-categories and exact func-
tors is closed in qCat∞ under projective cofibrant weighted limits. In particular, the
homotopy limit of a diagram of stable quasi-categories and exact functors is a stable
quasi-category.

Proof. Theorem 1.1 implies that a projective cofibrant weighted limit of a diagram
of stable quasi-categories and exact functors is finitely complete and cocomplete. It
remains to prove that the terminal object is initial and that pullbacks and pushouts
coincide.

As demonstrated in the proof of Proposition II.5.2.4, a projective cofibrant weighted
limit may be constructed as the limit of a conical diagram (an idempotent splitting
of the limit of a tower of pullbacks of products of isofibrations) that is built from the
original diagram and from cotensors of its objects with monomorphisms of simplicial
sets. By the stability hypothesis, in each of the quasi-categories in the original dia-
gram, the terminal object is also initial. The proof of Corollary 4.20 constructs the
terminal object in a cotensor as the constant functor at the given terminal object;
hence terminal objects in cotensors of stable quasi-categories are also initial. In the
proof of Theorem 3.16, the terminal object in the projective cofibrant weighted limit
is constructed as a pointwise terminal object defined with respect to the conical dia-
gram. These pointwise terminals are pointwise initial and hence also initial by the
proofs of Lemmas 3.9, 3.11, 3.13, and 3.15.

The proof that pullbacks coincide with pushouts is similar. We first argue that if
pushouts coincide with pullbacks in a quasi-category A, then the same is true in AX .
A square λ : ∆1 ×∆1 → AX induces a pair of 2-cells:

⇓λ

AX

c

��

∆0

λ0,0

;;xxxxxxxxx

λ⌟
// (AX)⌟

⇑λ

AX

c

��

∆0

λ1,1

;;xxxxxxxxx

λ⌜
// (AX)⌜

We use subscripts to denote the evident faces of λ. As argued in Lemma 4.17 (see
also Proposition I.5.2.17), these define absolute lifting diagrams if and only if the



COMPLETENESS RESULTS FOR QUASI-CATEGORIES OF ALGEBRAS 21

transposed 2-cells do so:

⇓λ

A

c

��

X ×∆0

λ0,0

::vvvvvvvvv

λ⌟
// A⌟

⇑λ

A

c

��

X ×∆0

λ1,1

::vvvvvvvvv

λ⌜
// A⌜

By Theorem I.6.1.3 and Corollary I.6.1.7, this is the case if and only if this is true
upon restricting along each vertex x : ∆0 → X (limits and colimits in cotensors are
defined pointwise). The data of λx is a pushout in A if and only if it is a pullback, so
we conclude that pullbacks and pushouts in AX coincide.

It remains only to consider conical projective cofibrant weighted limits. LetD : A→
qCat be a conical diagram of one of the four types considered by Lemma 4.15 and
fix a square λ : ∆1 ×∆1 → lima∈A Da. The proof of Lemma 4.15 demonstrates that
a 2-cell on the left-hand side

⇓λ

lima∈A Da

c

��

∆0

λ⌟
//

λ0,0

55llllllllllllllll
(lima∈A Da)⌟ ∼= lima∈A Da⌟

⇓λ

lima∈A Da

c
��

πa

((QQ
QQQ

QQQ
QQ

∆0

λ⌟
//

λ0,0
66mmmmmmmmmm

QQQ
QQQ

QQQ
QQ

QQQ
QQQ

QQQ
QQ lima∈A Da⌟

(πa)⌟

((RR
RRR

RRR
R Da

c
��

∆0

πaλ⌟
// Da⌟

defines an absolute right lifting diagram if and only if each of the projected 2-cells on
the right define absolute right lifting diagrams. If the quasi-categories Ai are stable
this is the case if and only if this same data defines absolute left lifting diagrams as
displayed below-right.

⇑λ

lima∈A Da

c

��

∆0

λ⌜
//

λ1,1

55llllllllllllllll
(lima∈A Da)⌜ ∼= lima∈A Da⌜

⇑λ

lima∈A Da

c
��

πa

((QQ
QQQ

QQQ
QQ

∆0

λ⌜
//

λ1,1
66mmmmmmmmmm

QQQ
QQQ

QQQ
QQ

QQQ
QQQ

QQQ
QQ lima∈A Da⌜

(πa)⌜

((RR
RRR

RRR
R Da

c
��

∆0

πaλ⌜
// Da⌟

This implies, again by the proof of Lemma 4.15, that the diagram on the left-hand side
is an absolute left lifting. Hence, pushouts and pullbacks in lima∈A Da coincide.

5. Limits and colimits in the quasi-category of algebras

The quasi-category of algebras for a homotopy coherent monad on a quasi-category
A is defined via a projective cofibrant weighted limit. After recalling the precise details
of this construction, we observe an immediate corollary of Theorem 1.1: any limit or
colimit possessed by A and preserved by the monad is created in the quasi-category
of algebras. A special case of this result, appearing as Corollary 5.6, is required by
the quasi-categorical monadicity theorem. The aim of the rest of this section is to
prove Theorem 5.7, which drops the preservation hypothesis in the case of limits in
A, in direct analogy with the classical categorical result.
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Recall 5.1 (homotopy coherent monads and their algebras). Recall, from §II.6, that
Mnd denotes the full simplicial subcategory of the free homotopy coherent adjunction
Adj determined by its object +. Its single hom-space Mnd(+,+) is the category
∆+ of finite ordinals and order-preserving maps, which we think of as a simplicial
set by identifying it with its nerve (as always). The endo-composition on this hom-
space is the ordinal sum functor ⊕ : ∆+ × ∆+ → ∆+ and its identity is the object
[−1]. Consequently, any simplicial functor X : Mnd→ sSet may be specified by giving
a simplicial set X, the image of the object + ∈ Mnd, equipped with a left action
· : ∆+ ×X → X of the simplicial monoid (∆+,⊕, [−1]). Natural transformations of
such are simply equivariant maps, that is, simplicial maps which preserve the left
action of ∆+.

A homotopy coherent monad on a quasi-category A consists of a simplicial func-
tor T : Mnd→ qCat∞ which maps the object + to A. Equivalently, such structures
correspond to left actions · : ∆+ ×A→ A of the simplicial monoid (∆+,⊕, [−1]) on
A. The endomorphism t := [0] · − : A→ A descends to a monad on the homotopy
category of A.

The quasi-category of algebras A[t] for a homotopy coherent monad is defined to
be the limit of T : Mnd→ qCat∞ weighted by the simplicial functor W− : Mnd→
sSet which maps + to ∆∞ and whose left action by ∆+ is again the ordinal sum
operation ⊕ : ∆+ × ∆∞ → ∆∞; here ∆∞ ⊂ ∆ is the subcategory containing only those
morphisms that preserve the top element in each ordinal. That this construction
delivers us a quasi-category of algebras, rather than just a mere simplicial set of such,
is a consequence of Proposition II.5.2.4 and the fact that the weightW− is a projective
cell complex (see Lemma II.6.1.9). This quasi-category of algebras comes equipped
with a forgetful functor ut : A[t]→ A, which is the component of its defining limit
cone at [0] ∈ ∆∞ (see Definition II.6.1.14).

Observation 5.2. The weighted limit construction {W−,−} : qCatMnd
∞ → qCat∞ is

functorial, so it maps a natural transformation f : A→ B of homotopy coherent
monads to a functor f [t] : A[t]→ B[t] of quasi-categories of algebras. The family of
underlying functors are natural with respect to this simplicial functor structure, so
in particular the following square

A[t]

ut
����

f [t]
// B[t]

ut
����

A
f

// B

(5.3)

commutes. The simplicial category of homotopy coherent monads qCatMnd
∞ possesses

all limits weighted by projective cofibrant weights, because it is a functor category.
These are computed as in qCat∞, and the quasi-category of algebras simplicial functor
−[t] := {W−,−} : qCatMnd

∞ → qCat∞ preserves them, because limits commute.

Observation 5.4. Every 0-arrow of Mnd is an iterated composite of the 0-arrow [0] ∈
Mnd(+,+), so it follows that all of the functors in the image of a homotopy coherent
monad T : Mnd→ qCat∞ preserve some limit or colimit in the quasi-category A if
and only if the single functor t : A→ A to which [0] ∈ Mnd(+,+) maps under T
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preserves that limit or colimit. We call t : A→ A the functor part of the homotopy
coherent monad T .

Now Theorem 1.1 admits the following immediate corollary:

Corollary 5.5. Let T : Mnd→ qCat∞ be a homotopy coherent monad on a quasi-
category A and let X be a simplicial set. Suppose also that A admits and the functor
part t : A→ A of T preserves all (co)limits of shape X. Then the forgetful functor
ut : A[t]→ A creates all (co)limits of shape X.

Using Corollary 5.5, it follows immediately that the monadic adjunction satisfies
one of the key hypotheses in the quasi-categorical monadicity theorem of §II.7.

Corollary 5.6. The monadic forgetful functor ut : A[t]→ A creates colimits of ut-
split simplicial objects.

Proof. A ut-split simplicial object in A[t] is a diagram of the form

∆op
� _

��

// A[t]

ut

��

∆∞ // A

In particular, a ut-split simplicial object in A[t] defines a split simplicial object in A.
Theorem I.5.3.1 proves that split simplicial objects are absolute colimits, preserved
by any functor, and, in particular, by t. Hence, Corollary 5.5 applies.

In the case of colimits, Corollary 5.5 is a direct analogue of the usual categorical
result. However, in the case of limits we expect the monadic forgetful functor to create
all limits that A admits, regardless of whether or not they are preserved by the functor
part of the monad. Our aim in this section is to prove the analogous quasi-categorical
result, viz:

Theorem 5.7. Let T : Mnd→ qCat∞ define a homotopy coherent monad on a quasi-
category A. Then ut : A[t]→ A creates any limits that A admits.

Our proof of this result, which takes up the remainder of this work, parallels that
of Theorem 1.1: we first dispense with the special case of terminal objects and then
extend this result to the general case of limits of any shape. The main technical tool
that we use in both cases is an explicit description of the monadic forgetful functor
ut : A[t]→ A as the limit of a tower of isofibrations. This description is formal rather
than ad-hoc: it arises from the fact that the weights for these limits define a relative
projective cell complex.

Understanding the monadic forgetful functor
For the remainder of this paper we fix a homotopy coherent monad T : Mnd→

qCat∞ on a quasi-category A.

Observation 5.8 (defining the monadic forgetful functor). We let W+ : Mnd→ sSet
denote the unique representable weight, which maps + to ∆+ and whose left action
by ∆+ is the ordinal sum ⊕ : ∆+ × ∆+ → ∆+. Applying Yoneda’s lemma in the form
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given in Example II.5.1.5, we find that the weighted limit {W+, T} is isomorphic to
A. The equivariant map −⊕ [0] : ∆+ ↪→ ∆∞ defines an inclusion W+ ↪→W−; this is
the natural transformation which corresponds, under Yoneda’s lemma, to the vertex
[0] of W−(+) = ∆∞.

The inclusion W+ ↪→W− induces a map of weighted limits A[t] ∼= {W−, T} →
{W+, T} ∼= A which is ut : A[t]→ A, by definition.

Recall 5.9 (graphical calculus for Adj). Our aim is to show that the inclusion W+ ↪→
W− is an explicitly presented relative projective cell complex. To characterize the
cells, we recall the graphical calculus introduced in §II.3 to describe the hom-spaces
in the simplicial category Adj, including in particular the simplicial sets ∆+ and
∆∞ on which the homotopy coherent monads W+ and W− act. Specializing Defini-
tion II.3.1.2, an n-simplex in ∆∞ is a strictly undulating squiggle on n+ 1 lines that
begins at − and ends at + (composition order is from right to left):

5

4

3

2

1

−

+

0

1

2

3

4

5

+, 2, 5, 3, 4,−,+, 1, 3,−

The ith face of the n-simplex is represented by the squiggle obtained by removing
the ith line and straightening if necessary to preserve the strict undulation. The n-
simplex is non-degenerate if and only if each of the characters {1, 2, . . . , n} appears
as an “interior turn-around point” listed in the sequence of characters displayed at
the bottom; the 5-simplex displayed above is non-degenerate. In this context, we say
an n-simplex of ∆∞ is atomic if it does not contain the symbol + in its interior; the
5-simplex displayed above is not atomic. The non-atomic n-simplices are in the image
of the atomic n-simplices under the action of the left ∆+-action.

The image of ∆+ under the inclusion −⊕ [0] : ∆+ ↪→ ∆∞ consists of those strictly
undulating squiggles whose right-most entry but one is +, e.g., the degenerate 3-
simplex:

3

2

1

−

+

0

1

2

3

+, 2,+,−, 2, 1,+,−

is in the image of ∆+.
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Lemma 5.10. The inclusion W+ ↪→W− is a relative projective cell complex: it may
be expressed as a transfinite (indeed countable) composite of pushouts of projective
cells ∂∆m ×W+ ↪→ ∆m ×W+ in sSetMnd.

Proof. The proofs of Corollary II.6.2.3 and Proposition II.5.3.3 provide an explicit
presentation of W− as a colimit of a countable sequence of pushouts of projective cells
∂∆m ×W+ ↪→ ∆m ×W+. Each cell corresponds to an atomic and non-degenerate m-
simplex in ∆∞ which is not in the image of the inclusion −⊕ [0] : ∆+ ↪→ ∆∞. This
inclusion is surjective on 0-simplices, so we will always have m ⩾ 1.

These atomic simplices may be indexed as a countable sequence {ai}i∈N in such a
way that each arrow is preceded by all of those of strictly smaller width (the number
of characters in the representing string minus one; see Definition II.3.1.2) and by those
of the same width but smaller dimension. Then we can define Wk to be the smallest
sub-weight of W− which contains the atomic 0-simplex u := (−,+) ∈ ∆∞ along with
all of the simplices ai with i < k. With this indexing convention, W0 is the image of
W+ ↪→W− and W− =

∪
k∈N Wk. The order of our sequence was selected to ensure

that the simplicial boundary of the simplex ak is contained within Wk; we write mk

for its dimension. As argued in the proof of Proposition II.5.3.3, the weight Wk+1

may be constructed from Wk as a pushout

∂∆mk ×W+

��

� � // ∆mk ×W+

��

Wk
� � ⊂

// Wk+1

(5.11)

in which the map ∆mk ×W+ →Wk+1 on the right corresponds to the mk-simplex
ak ∈Wk+1 by Yoneda’s lemma.

In particular it follows that the functor ut : A[t] ↠ A is an isofibration of quasi-
categories.

Corollary 5.12. The functor ut : A[t] ↠ A is the limit of a tower of isofibrations of
quasi-categories defined as projective weighted limits.

Proof. The contravariant weighted limit functor {−, T} carries colimits in sSetMnd to
limits in sSet. So it carries the sequenceW0 ↪→W1 ↪→ . . . ↪→Wk ↪→ . . . of Lemma 5.10
to a tower of functors

A[t] ∼= {W−, T} → · · · → {Wk+1, T} → {Wk, T} → · · · → {W0, T} ∼= A (5.13)

whose countable composite is ut :A[t]→A. Furthermore, it carries each pushout (5.11)
to a pullback

{Wk+1, T} //

����

{∆mk ×W+, T} ∼=

����

A∆mk

����

{Wk, T} // {∂∆mk ×W+, T} ∼= A∂∆mk

(5.14)

which describes the kth step in the tower decomposition of ut as a pullback of an
isofibration A∆mk ↠ A∂∆mk . In particular, this shows that each functor in that tower
is an isofibration and thus that its countable composite ut is also an isofibration.
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Observation 5.15 (The key fact). Observe that u is the final vertex of each atomic
simplex ak. This follows because ak has + at its left-hand end, − at its right-hand
end, and does not contain + in its interior, so when drawn as a squiggle it must have
the following form:

5

4

3

2

1

−

+

0

1

2

3

4

5

+, 2, 5, 3, 4,−, 5, 1, 3,−

in which it crosses the lowest line exactly once, with that crossing situated at the far
left of the squiggle. From this description of the shape of ak it is now easy to apply
Observation II.3.1.9 to show that its final vertex is u as stated. This tells us that the
inclusion W+ ↪→Wk factors through the attaching map of (5.11) via the inclusion
[[mk]] : ∆

0 ↪→ ∂∆mk of the final vertex:

∂∆mk ×W+

��

W+
� � //

[[mk]]×W+

99rrrrrrrrrr
Wk

(5.16)

This fact is absolutely key to our proof that no assumptions are required of t : A→
A in order for the quasi-category of algebras A[t] to inherit limits from A. To build
our intuition for why this is the case, we consider a simpler sub-problem, that of
showing that a terminal object a of A admits a canonical T -algebra structure. We
know that ut : A[t] ↠ A is the functor induced on weighted limits by the inclusion
W+ ↪→W−, so this problem reduces to constructing the dashed lift in the following
diagram:

W+� _

��

a // A

W−

>>|
|

|

of equivariant maps. Here the horizontal map is the one which corresponds to the
terminal object a of A by Yoneda’s lemma, and which therefore maps the representing
element u to that object. We construct this extension inductively, filling a simplex
boundary at each step to find a simplex in A to which we might map the next member
of our sequence {ak}k∈N of atomic and non-degenerate arrows, closing up at each step
under the action of ∆+. It is the result of the last paragraph which ensures that we
can find these fillers at each step: it tells us that u is the terminal vertex of each
ak and, thus, that its boundary maps to a sphere in A whose terminal vertex is the
terminal object a, this being the image of u under the original map we are extending.
Consequently, we can use the universal property of a to find the filler we seek.
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Notice that the same argument does not deliver us a side-condition-free result
which supplies canonical algebra structures for initial objects. Such a result would
require us to know that the initial vertex of each ak must map to an initial object of A
under the extension we are building. However, all we know is that these map to some
object obtained by applying an iterated composite of the functor part t : A→ A of
our monad to that initial object. This is not, in general, good enough for our purposes
here, unless we happen to know that t preserves initial objects.

Creation of terminal objects

Our aim in this section is to prove the following result:

Proposition 5.17. The functor ut : A[t] ↠ A creates terminal objects. Explicitly, we
show that if a is a terminal object in A then any commutative diagram

∂∆n v //

��

A[t]

ut

����

∆0
[[n]]

//

a

66∆n w //

<<y
y

y
y

A

(5.18)

of solid arrows admits the dashed diagonal filler shown.

Remark 5.19. The n = 0 case of the lifting property asserted by Proposition 5.17
implies that terminal vertices lift along ut. The n ⩾ 1 cases then allow us to apply
Lemma 3.7 to show that any such lifted vertex is terminal in A[t].

Before proving this result, observe that it immediately entails the following corol-
lary:

Corollary 5.20. Suppose that f : A→ B is a natural transformation of monads, that
the quasi-categories A and B possess terminal objects, and that the functor f preserves
terminal objects. Then the induced functor f [t] : A[t]→ B[t] preserves the terminal
objects that are guaranteed by Proposition 5.17.

Proof. This is an easy argument involving the commutative square (5.3) and the
fact that, by Proposition 5.17, the underlying functors there create (and thus both
preserve and reflect) terminal objects.

The results discussed in Corollary 5.12 and Observation 5.15 provide all of the tools
that we need to prove the lifting result described in the statement of Proposition 5.17.
Our argument directly generalises that given at the end of Observation 5.15 by giving
an inductive construction of a lift along the tower of isofibrations induced by applying
the weighted limit functor {−, T} to the relative projective cell decomposition of
W+ ↪→W−.

Proof of Proposition 5.17. Suppose we are given a terminal object a ∈ A and a lifting
problem (5.18). We construct a diagonal filler by inductively lifting along the tower of
fibrations (5.13). By the inductive hypothesis, we may assume that we have already
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constructed a lift lk : ∆
n → {Wk, T}, which features in the following commutative

diagram

A[t]

����

∂∆n

v

99tttttttttt
//

� _

��

{Wk+1, T} //

����

A∆mk

����

∆0
[[n]]

//

a

))TTT
TTTT

TTTT
TTTT

TTTT
T ∆n

lk+1

::t
t

t
t

t
m

77

e f h i
k

l
n

w

%%KK
KKK

KKK
KKK

K lk

// {Wk, T}

����

// A∂∆mk

ev[[mk]]

xxqqq
qqq

qqq
qqq

A

(5.21)

in which the right-hand square is the pullback displayed in (5.14) and the lower right-
hand commutative triangle is derived by applying {−, T} to the commutative triangle
(5.16).

The inductive step of our argument requires us to demonstrate the existence of
the dashed lift lk+1 : ∆

n → {Wk+1, T} filling the left-hand square in this diagram.
By the pullback property of the right-hand square, it suffices to construct a lift
m : ∆n → A∆mk for the composite of these two squares. Transposing that latter lifting
problem, we find in turn that we must solve a corresponding lifting problem:

∂∆n ×∆mk ∪∆n × ∂∆mk
� _

��

f
// A

∆n ×∆mk

66llllllll

The commutativity of the triangles at the bottom of (5.21) implies that the horizontal
map f at the top of this transposed problem carries the final vertex ([[n]], [[mk]]) to
the terminal object a of A. Moreover, all of the simplices of the prism ∆n ×∆mk

that are not contained in its boundary ∂∆n ×∆mk ∪∆n × ∂∆mk have final vertex
([[n]], [[mk]]), so it follows that we can use the universal property of the terminal object
a to extend f from one skeleton of ∆n ×∆mk to the next in order to construct the
desired filler and thereby complete our proof.

Creation of limits

We now move on to the general case. Given a diagram g : X → A[t], we wish to
show that if utg : X → A has a limit, then this lifts to a limit of g in A[t] that is
preserved by ut : A[t]→ A. That is, our aim will be to construct an absolute right
lifting

A[t]

c

��

1
g

// A[t]X

(5.22)
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of g along the constant diagram map. It will be most economical to describe the con-
struction of this absolute right lifting diagram in the following slightly more general
context.

Observation 5.23. A homotopy coherent monad on A induces a pointwise-defined
homotopy coherent monad on AX in such a way that the constant diagram map
c : A→ AX is a natural transformation of homotopy coherent monads. As weighted
limits commute, the diagram (5.22) is isomorphic to the diagram:

A[t]

c[t]

��

1
g

// AX [t]

Consequently, Theorem 5.7 may be obtained as an immediate corollary to the follow-
ing proposition, simply by specializing it to the natural transformation c : A→ AX .

Our aim is to prove the following general result.

Theorem 5.24. Suppose f : B → A is a natural transformation of homotopy coher-
ent monads, and suppose that

⇓λ

B

f

��

1
g

//

ℓ

66nnnnnnnnnnnnnnnn
A[t]

ut
// A

(5.25)

is an absolute right lifting diagram. Then

B[t]

f [t]

��

1
g

// A[t]

(5.26)

admits an absolute right lifting. Furthermore, that lifting is preserved by underlying
functors, in the sense that the transformation

B[t]

f [t]
��

ut

    
BB

BB
B

1
g
//

id BB
BB

BB

BB
BB

BB
A[t]

ut

CC

!! !!C
C

B

f
��

1
utg

// A

(5.27)

is right exact.

Remark 5.28. Observation 4.13 reminds us that the diagrams (5.25) and (5.26) admit
absolute right liftings if and only if the comma quasi-categories f ↓ utg and f [t] ↓
g admit terminal objects. Furthermore, Lemma 4.14 tells us that the isofibration
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f [t] ↓ g ↠ f ↓ utg induced by the pointwise isofibration (5.27) preserves these terminal
objects if and only if (5.27) is right exact. These observations reduce Theorem 5.24
to the following equivalent result:

Proposition 5.29. Suppose that the comma quasi-category f ↓ utg possesses a ter-
minal object. Then the comma quasi-category f [t] ↓ g also possesses a terminal object
and it is preserved by the isofibration f [t] ↓ g ↠ f ↓ utg induced by (5.27).

We now proceed to prove this latter proposition, but first we require a few prepara-
tory observations:

Observation 5.30. The defining universal property of weighted limits tells us that
simplicial maps h : X → A[t] correspond to equivariant maps h̄ : X ×W− → A, where
X ×W− denotes the tensor of W− by the simplicial set X. These corresponding maps
are related by the following commutative diagram:

X
h //

idX ×[0]

��

A[t]

ut

��

X ×W−
h

// A

(5.31)

This result also provides an explicit description of the action of the functor f [t] : A[t]→
B[t] constructed from a natural transformation f : A→ B of homotopy coherent mon-
ads. This follows by composing the square above with the commutative square in (5.3),
which reveals that the composite f [t]h : X → B[t] corresponds to the equivariant map
fh̄ : X ×W− → B.

Taking the special case of X = ∆n we see that an n-simplex a of A[t] may be
identified with an equivariant map ā : ∆n ×W− → A and that f [t] acts on that sim-
plex to carry it to the simplex of B[t] identified with the composite equivariant map
fā : ∆n ×W− → B.

Observation 5.32. The weight W− may equally be thought of as giving us a monad on
the category ∆∞. Here we have dropped the adjective “homotopy coherent” because
a homotopy coherent monad on a category is indeed no more nor less than a classical
monad, a fact which follows immediately from the characterization of (∆+,⊕, [−1])
as the free monoidal category containing a monoid. It is also easily checked that the
quasi-category of algebras for a monad on a category is indeed the usual Eilenberg-
Moore category of algebras for that monad. In the particular case of W−, we may
show that the category of algebras ∆∞[t] can be identified with the subcategory of
top and bottom preserving maps.

Via Observation 5.30, the identity map id: W− = ∆∞ → ∆∞ corresponds to an
object [0] of ∆∞[t] which is mapped to the object [0] of ∆∞ by the underlying func-
tor ut : ∆∞[t] ↠ ∆∞. Applying Proposition 5.17, we know that ut creates terminal
objects, and we also know that [0] is terminal in ∆∞, so it follows that [0] is termi-
nal in ∆∞[t]. Furthermore, if a is an object of A[t] given as a monad transformation
ā : ∆∞ → A then the induced functor ā[t] : ∆∞[t]→ A[t] of quasi-categories of algebras
maps the object [0] of ∆∞[t] to the object a of A[t]. This is an immediate consequence
of the fact that [0] is defined to be the object corresponding to the identity on ∆∞
and the explicit description of ā[t] given at the end of Observation 5.30.
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Observation 5.33. Returning now to the diagrams in the statement of Theorem 5.24,
we can apply Observation 5.30 to the map g : 1→ A[t] of (5.26) to obtain a cor-
responding equivariant map ḡ : W− → A. Applying the quasi-category of algebras
construction to the monads on A, B, and ∆∞ and to the monad transformations f
and ḡ, we obtain the following commutative diagram:

1
[0]

//

g

))
∆∞[t]

ḡ[t]
//

ut

����

A[t]

ut

����

B[t]

ut

����

f [t]
oo

1
[0]

//

utg

66∆∞
ḡ

// A B
f

oo

(5.34)

Here the equality ḡ[0] = utg is a special case of the commutative diagram (5.31), and
the equality (ḡ[t])[0] = g is discussed at the end of Observation 5.32.

A routine pullback computation, starting from Definition I.3.3.17, reveals that
if we are given three functors f : B → A, g : C → A, and h : D → C then we may
express the comma quasi-category f ↓ gh as the following pullback of the comma
quasi-category f ↓ g:

f ↓ gh //

p1 ����

f ↓ g
p1����

D
h

// C

Here the horizontal arrow at the top of this square is obtained by applying the comma
construction functor ↓ : qCat⌟∞ → qCat∞ to the following transformation:

D
gh

//

h
��

A B
f

oo

C
g
// A B

f
oo

Applying this result to the rows of (5.34), we obtain the following diagram of
commutative squares:

f [t] ↓ g
(A)

//

����

f [t] ↓ ḡ[t]

����

f ↓ utg

(B)

//

p1
����

f ↓ ḡ
p1
����

1
[0]

// ∆∞

=

f [t] ↓ g
(C)

//

p1
����

f [t] ↓ ḡ[t]
p1
����

1
[0]

// ∆∞

(5.35)

Here the pullbacks labelled (B) and (C) are those obtained by applying the result of
the last paragraph to the bottom and top rows of (5.34) respectively. The vertical
isofibrations of the square labelled (A) are those induced by the obvious transforma-
tions whose legs are various of the vertical isofibrations in (5.34). Most crucially, the
vertical isofibration on the left of square (A) is precisely the induced functor that
features in the statement of Proposition 5.29.
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This provides us with almost all of the machinery we need to establish Proposi-
tion 5.29. The last piece of the jigsaw is the following lemma:

Lemma 5.36. Under the assumption that (5.25) is an absolute right lifting diagram,
the comma quasi-category f ↓ ḡ possesses a terminal object which is preserved by the
projection functor p1 : f ↓ ḡ ↠ ∆∞.

We postpone the proof of this technical lemma in our brimming enthusiasm to get
to our ultimate goal:

Proof of Proposition 5.29. Our proof revolves around an analysis of the squares dis-
played in (5.35). First consider the square labelled (B). The domain and codomain
of its lower horizontal functor [0] : 1→ ∆∞ both possess terminal objects and the
inclusion preserves them, since [0] is the terminal object of ∆∞. What is more,
Lemma 5.36 tells us that the right-hand vertical f ↓ ḡ ↠ ∆∞ of (B) is also a func-
tor whose domain and codomain possess and which preserves terminal objects. So,
applying Lemma 3.11, we find that the top left vertex f ↓ utg of (B) also possesses a
terminal object and that its projection functors preserve such.

The cancellation lemma for pullbacks tells us that the square labelled (A) is also a
pullback. So our intention is again to apply Lemma 3.11 to (A) to show that its top
left-hand vertex f [t] ↓ g possesses a terminal object and that this is preserved by the
left-hand vertical isofibration f [t] ↓ g ↠ f ↓ utg, these being precisely the conclusions
of Proposition 5.29. We have just shown that the lower horizontal map of (A) is a
functor whose domain and codomain possess and which preserves terminal objects,
so all that remains in order to apply Lemma 3.11 and complete our proof is to
demonstrate the same properties for its right-hand vertical f [t] ↓ ḡ[t] ↠ f ↓ ḡ.

Now Observation 5.2 points out that qCatMnd
∞ possesses all limits weighted by

projective cofibrant weights, that these are constructed as in qCat∞, and that the
quasi-category of algebras construction preserves them. So, applying that result to the
comma construction for the monad transformations f and ḡ, we find that the comma
quasi-category f ↓ ḡ inherits a monad structure and that there exists a canonical
isomorphism between the category of algebras (f ↓ ḡ)[t] associated with that monad
and the comma quasi-category f [t] ↓ ḡ[t]. What is more, that isomorphism makes the
following triangle commute:

f [t] ↓ ḡ[t]
∼= //

## ##F
FF

FF
FF

(f ↓ ḡ)[t]

ut||||xx
xx
xx
x

f ↓ ḡ

where the diagonal map on the left is the right-hand vertical of square (A). Con-
sequently, the required result is equivalent to showing that the quasi-category of
algebras (f ↓ ḡ)[t] has a terminal object which is preserved by the underlying functor
down to f ↓ [̄g]. These facts follow immediately from Proposition 5.17 and the fact
that we know, from Lemma 5.36, that f ↓ ḡ possesses a terminal object.

Finally, we complete our argument by establishing the technical Lemma 5.36, which
is a special case of the following result:
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Lemma 5.37. Suppose that c is a terminal object in C and that we have an absolute
right lifting diagram

⇓λ

B

f
��

1
c
//

ℓ
77oooooooooo

C
g
// A

Then the comma quasi-category f ↓ g admits a terminal object which is preserved by
the projection p1 : f ↓ g ↠ C.

Proof. All of the components that we need are contained in the proof of Theo-
rem I.6.1.3. First, the existence of the absolute right lifting in the statement is equiv-
alent to asking for the comma quasi-category f ↓ gc ≃ f/gc to have a terminal object,
this being the object of f ↓ gc induced by λ. Given that result, the first part of the
proof of Theorem I.6.1.3 demonstrates that any lifting problem

∂∆m //
� _

��

f ↓ g
p1����

∆m

::u
u

u
// C

which maps the terminal vertex of ∂∆m to the object of f ↓ g induced by λ has a
solution as marked. However, that object is mapped to the terminal object c of C by
the projection p1 : f ↓ g ↠ C, so it follows that we can apply Lemma 3.7 to complete
our proof.

The desired Theorem 5.7 is an immediate corollary of Proposition 5.17 and Theo-
rem 5.24, or equivalently, Proposition 5.29.
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