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DISTANCE FUNCTIONS, CRITICAL POINTS, AND THE
TOPOLOGY OF RANDOM ČECH COMPLEXES
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(communicated by Gunnar Carlsson)

Abstract
For a finite set of points P in Rd, the function dP : Rd → R+

measures Euclidean distance to the set P. We study the number
of critical points of dP when P is a Poisson process. In partic-
ular, we study the limit behavior of Nk—the number of critical
points of dP with Morse index k—as the density of points grows.
We present explicit computations for the normalized limiting
expectations and variances of the Nk, as well as distributional
limit theorems. We link these results to recent results in [16, 17]
in which the Betti numbers of the random Čech complex based
on P were studied.

1. Introduction

For a finite set P of points in Rd of size |P|, let dP : Rd → R+ be the distance
function for P, so that

dP(x) := min
p∈P

∥x− p∥2, x ∈ Rd, (1.1)

where ∥ · ∥2 denotes the Euclidean distance.

The main results of this paper provide considerable information about the asymp-
totic (in |P|) behavior of the critical points (defined below) of dP when P is random.
While the critical points are, by themselves, intrinsically interesting, knowledge of
their behavior also has immediate implications (via Morse theory) for the study of
the topology of Čech complexes built over random point sets.

Throughout, we shall concentrate on the situation in which the points in P are
those of a non-homogeneous Possion process with intensity λn = nf , where f is a
probability density on Rd. The mean number of points is therefore E {|P|} = n. Vir-
tually identical results hold when P is made up of n independent samples from f ,
and proofs in this situation can be found in the PhD thesis [6].
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cess, central limit theorem, Betti numbers.
Article available at http://dx.doi.org/10.4310/HHA.2014.v16.n2.a18
Copyright c⃝ 2014, International Press. Permission to copy for private use granted.



312 OMER BOBROWSKI and ROBERT J. ADLER

Most of what we shall have to say will concentrate on the distance function in
neighborhoods of radius rn around P, when n → ∞ and rn → 0. Our main results
give expressions for the normalized asymptotic means and variances of Nk,n—the
number of critical points with index k appearing within distance rn from P—along
with various distributional limit results. The limit distributions are of different kinds,
and, depending on delicate relationships between d, k, rn, and n, provide limits that
may be Gaussian, Poisson, or deterministic, while also exhibiting a range of critical
phenomena. Note that there are various notions of convergence used in probability
theory, and so in Appendix A we provide definitions of the notions that we need.
Our main results on critical points are described in detail in Section 3. However,
before stating the results, we first need to describe precisely how to define the critical
points, along with their indices, for the distance function. The difficulty lies in the
fact that the distance function is not everywhere differentiable. We shall do this in
the following section.

In Section 4 we shall discuss the relationship between Nk,n and the Betti numbers
of a special simplicial complex, the Čech complex, based on P. The homology of the
Čech complex is closely related to the neighborhood set, or rn-tube around P,

Bn :=
∪
p∈P

Brn(p), (1.2)

where Brn(p) is the d-ball of radius rn around p. What we shall see in Section 4
is that, if rn is too small, then the individual balls in (1.2) will generally fail to
intersect, and the topology will be approximately that of a large number of disjoint
points. This is occasionally referred to as the “dust” or “sparse” regime, although
there does not yet seem to be a universally accepted term. If rn decays too slowly,
then the balls will connect and the topology of Bn will be that of a single ball. At the
(phase) transition Bn will have a percolative-like structure, and so we call this the
percolation phase, which is also known as the “thermodynamic limit.” Each of these
phases exhibits different limit behavior, with even more subtle differences possible
within phases depending on interactions between parameters.

Translating our results about critical points into statements about the (algebraic)
topological structure of Bn, as n → ∞, will also allow us to compare them to other
results currently in the literature (primarily [16, 17]). The one comment that we
already make at this stage, however, is that we can provide a much richer set of
results for the asymptotic behavior of numbers of critical points than is currently
available for the Betti numbers of these Čech complexes. Indeed, we can also provide
some topological results via critical points that are not yet available with a direct
topological approach. For example, we are able to compute properties of the Euler
characteristic χn of the complex, and can show (see Corollary 4.2 for details) that
there exist functions γk such that

lim
n→∞

n−1E {χn} =


1 nrdn → 0,

1 +
∑d

k=1 (−1)kγk(λ) nrdn → λ ∈ (0,∞),

0 nrdn → ∞.

Moreover, when nrdn → ∞ and nrdn ⩾ D⋆ log n for some D⋆ (cf. Proposition 3.9), then
E {χn} → 1.
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The remainder of the paper contains the proofs of the results in Sections 3 and 4.
These are organized in a number of sections and appendices so as to make them
as user friendly as possible. Many of the proofs rely on techniques in the theory of
random geometric graphs as developed in [23].

Finally, a few words on motivation. There is considerable current interest in the
study, from a topological, homological point of view of random structures such as
graphs and simplicial complexes. Some recent references are [3, 5, 7, 10, 18, 24]
with two reviews, from different aspects, in [1] and [12]. Many of these papers find
their raison d’être in essentially statistical problems, in which data generates these
structures. An important example appears in the papers [22, 21], which show that
the homology of an unknown manifold can be recovered, with high probability, by
looking at the homology of the union of balls around the points of random samples
(or equivalently, at the homology of the Čech complex generated by the sampling
points on the manifold) with or without additional noise. The homological theme of
these papers, which considers manifolds as being “close” if their homologies are the
same, seems particularly promising for situations in which the manifold of interest is
embedded in a space of much higher dimension than itself; i.e., in dimension reduction
problems and in manifold learning.

The approach adopted in this paper shares the motivation of the others listed
above, but as already noted, by adopting a Morse theoretic point of view based on
critical points of the distance function, obtains a more internally complete theory.
Further, as mentioned above and shown later, it often gives some information on
global topological invariants, such as Betti numbers. However, being based on critical
points, this approach is naturally limited in its ability to reveal the full picture about
the global topological invariants of random complexes.

Acknowledgments
We thank Shmuel Weinberger for introducing us to this problem, and also thank

Yuliy Baryshnikov, Matthew Strom Borman, Matthew Kahle, and Shmuel Wein-
berger, for many useful discussions in the earlier stages of our work.

2. Critical points of the distance function

Critical points of smooth functions have been studied since the earliest days of
calculus, but took on significant additional importance following the development of
Morse theory (e.g., [19, 20]), which tied them closely to the homologies of manifolds,
a topic that we shall discuss briefly in Section 4. At this point we note that if M is
a nice (closed, differentiable) n-dimensional manifold, and f : M → R a nice (Morse)
function, then a point c is called a critical point if∇f(c) = 0. A non-degenerate critical
point is one for which the Hessian matrix Hf (c) is non-singular. The Morse index
k ∈ {0, 1, . . . , n} of a non-degenerate critical point c is then the number of negative
eigenvalues of Hf (c). These points, along with their indices, provide one of the main
links between differential and algebraic topology.

Classical Morse theory does not directly apply to the distance function mainly
because it is not everywhere differentiable. However, when the set P is finite, one
can still define a notion of non-degenerate critical points for the distance function
dP , as well as their Morse index. It turns out that, even in this case, knowledge of
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the critical points and their indices allows one to deduce topological properties of
the related Čech complexes. We shall see how to do this later in Section 4, but for
now we need some definitions. Our arguments follow from the results presented in
[11]. While the distance function served as the main motivation in [11], the results
presented there are given in the more general context of “min-type” functions. Here,
we specialize those results to the case of the distance function.

Given a finite set of points P ⊂ Rd, and defining the distance function dP (1.1), we
start with the local (and global) minima of dP ; viz. the points of P (where dP = 0),
and call these critical points with index 0. For higher indices, we have the following
definition.

Definition 2.1. A point c ∈ Rd is a critical point of dP with index 1 ⩽ k ⩽ d if there
exists a subset Y of k + 1 points in P such that:

1. ∀y ∈ Y : dP(c) = ∥c− y∥2, and ∀p ∈ P\Y : ∥c− p∥2 > dP(p).

2. The points in Y are in general position (i.e., the k + 1 points of Y do not lie in
a (k − 1)-dimensional affine space).

3. c ∈ conv◦(Y), where conv◦(Y) is the interior of the convex hull of Y (an open
k-simplex in this case).

The first condition implies that dP ≡ dY in a small neighborhood of c. The second
condition implies that the points in Y lie on a unique (k − 1)-dimensional sphere. We
shall use the following notation:

S(Y) = the unique (k − 1)-dimensional sphere containing Y, (2.1)

C(Y) = the center of S(Y) in Rd, (2.2)

R(Y) = the radius of S(Y), (2.3)

B(Y) = the open ball in Rd with radius R(Y) centered at C(Y). (2.4)

Note that S(Y) is a (k − 1)-dimensional sphere, whereas B(Y) is a d-dimensional
ball. Obviously, S(Y) ⊂ B(Y), but unless k = d, S is not the boundary of B. Since
the critical point c in Definition 2.1 is equidistant from all the points in Y, we have
that c = C(Y). Thus, we say that c is the unique index k critical point generated by
the k + 1 points in Y. The last statement can be rephrased as follows:

Lemma 2.2. A subset Y ⊂ P of k + 1 points in general position generates an index k
critical point if, and only if, the following two conditions hold:

CP1 C(Y) ∈ conv◦(Y),
CP2 P ∩B(Y) = ∅.

Furthermore, the critical point is C(Y) and the critical value is R(Y).

Figure 1 depicts the generation of an index 2 critical point in R2 by subsets of 3
points. We shall also be interested in critical points c that are within distance ϵ from
P, i.e., dP(c) ⩽ ϵ. This adds a third condition,

CP3 R(Y) ⩽ ϵ.

The following indicator functions, related to CP1–CP3, will appear often.
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Figure 1: Generating a critical point of index 2 in R2 (i.e., a maximum point). The
small disks are the points of P. We examine three subsets of P: Y1 = {y1, y2, y3},
Y2 = {y4, y5, y6}, and Y3 = {y7, y8, y9}. S(Yi) are the dashed circles, whose centers are
C(Yi) = ci. The shaded balls are B(Yi), and the interior of the triangles are conv◦(Yi).
(1) We see that both C(Y1) ∈ conv◦(Y1) (CP1) and P ∩B(Y1) = ∅ (CP2). Hence c1
is a critical point of index 2. (2) C(Y2) ̸∈ conv◦(Y2), which means that (CP1) does
not hold, and therefore c2 is not a critical point (as can be observed from the flow
arrows). (3) C(Y3) ∈ conv◦(Y3), so (CP1) holds. However, we have P ∩B(Y3) = {p},
so (CP2) does not hold, and therefore c3 is also not a critical point. Note that in a
small neighborhood of c3 we have dP ≡ d{p}, completely ignoring the existence of Y3.

Definition 2.3. Using the notation above,

h(Y) := 11 {C(Y) ∈ conv◦(Y)} (CP1) (2.5)

hϵ(Y) := h(Y)11[0,ϵ](R(Y)) (CP1+CP3) (2.6)

gϵ(Y,P) := hϵ(Y)11 {P ∩B(Y) = ∅} (CP1+CP2+CP3) (2.7)

3. Main results

Let f be a bounded probability density function on Rd, which we assume to be
bounded. This assumption will remain in force throughout the paper, without further
comment. Let Pn be a spatial Poisson process on Rd with intensity function λn = nf .
Denote by C(n, k) the sets of critical points with index k of dPn . Let {rn}∞n=1 be a
sequence of positive numbers with limn→∞ rn = 0, and define

Nk,n := #{c ∈ C(n, k) : dPn(c) ⩽ rn}.

Our main goal is to study the limits of Nk,n as n → ∞. Since E{N0,n} ≡ n (the
minima are the points of Pn), we shall only be interested in 1 ⩽ k ⩽ d. The results
split into three main regimes, depending on the rate of convergence of rn to zero,
specifically, on the limit of the term nrdn.

A word on notation: In the formulae presented below, for g : (Rd)k+1 → R and
y = (y1, . . . , yk) ∈ (Rd)k we write g(0,y) for g(0, y1, . . . , yk).
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3.1. The subcritical range (nrdn → 0)
This range is also known as the “dust phase,” for reasons that will become clearer

later, when we discuss Čech complexes. We start with the limiting mean.

Theorem 3.1 (Limit mean). If nrdn → 0, then for 1 ⩽ k ⩽ d,

lim
n→∞

(nk+1rdkn )−1E {Nk,n} = µk, (3.1)

where

µk =
1

(k + 1)!

∫
Rd

fk+1(x)dx

∫
(Rd)k

h1(0,y)dy, (3.2)

and h1 is defined in (2.6).

In general, as is common for results of this nature, it is difficult to express this
integral in a more transparent form. However, when k = 1, y contains only a single
point, and so h ≡ 1 and R(0,y) = ∥y∥/2. Therefore, h1(0,y) = 11 {∥y∥ ⩽ 2}, yield-
ing µ1 = 2d−1ωd

∫
Rd f

2(x) dx, where ωd is the volume of the unit ball in Rd. Some
numerics for other cases are given below.

The observation that, for a specific choice of rn, there is at most one α ∈ [1, d] such
that limn→∞ nα+1rdαn ∈ (0,∞) leads to the important fact that there is a “critical”’
index, kc := ⌊α⌋, such that

k < kc ⇒ lim
n→∞

E {Nk,n} = ∞, k > kc ⇒ lim
n→∞

E {Nk,n} = 0, (3.3)

with any value in (0,∞] possible at k = kc. That is, there is phase transition occurring
within the subcritical regime itself. Similar regimes, with identical limits, appear for
asymptotic variances.

Theorem 3.2 (Limit variance). If nrdn → 0, then for 1 ⩽ k ⩽ d,

lim
n→∞

(nk+1rdkn )−1Var (Nk,n) = µk.

Not surprisingly, the three regimes also yield different limit distributions.

Theorem 3.3 (Limit distribution). Let nrdn → 0, and 1 ⩽ k ⩽ d.

1. If limn→∞ nk+1rdkn = 0, then

Nk,n
L2

−−→ 0.

2. If limn→∞ nk+1rdkn = α ∈ (0,∞), then

Nk,n
L−→ Poisson (αµk) .

3. If limn→∞ nk+1rdkn = ∞, then

Nk,n − E {Nk,n}
(nk+1rdkn )1/2

L−→ N (0, µk).

As above, for a specific choice of rn, there is going to be at most a single kc for
which the Poisson limit applies. Otherwise Nk,n converges either to zero or infinity.
Thus, in the subcritical regime, the picture is that n = N0,n ≫ N1,n ≫ · · · ≫ Nkc,n,
while for k > kc the value of Nk,n will be zero with high probability, which increases
with k.
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3.2. The critical and supercritical ranges (nrdn → λ ∈ (0,∞])
We now look at the critical (nrdn → λ ∈ (0,∞)) and supercritical (nrdn → ∞)

regimes. While there are differences between the two regimes, the general outline
of the results is the same. In both, the correct scaling for Nk,n is n (as opposed to
nk+1rdkn in the subcritical range). Consequently, the limit results are similar for all
the indices.

The supercritical regime is significantly more difficult to analyze than either the
critical or subcritical, and we shall require an additional assumption for this case,
which necessitates a definition.

Definition 3.4. Let f : Rd → R be a probability density function. We say that f is
lower bounded if it has compact support and fmin := inf {f(x) : x ∈ supp(f)} > 0.

Henceforth, when dealing with the supercritical phase, we always assume that f
is a lower bounded probability density, and that supp(f) is convex. It is not clear at
this point if these are necessary conditions, or a consequence of our proofs.

Theorem 3.5 (Limit mean). If nrdn → λ ∈ (0,∞], then, for 1 ⩽ k ⩽ d,

lim
n→∞

n−1E {Nk,n} = γk(λ),

where

γk(λ) =
λk

(k + 1)!

∫
(Rd)k+1

fk+1(x)h1(0,y)e
−λωdR

d(0,y)f(x) dydx,

γk(∞) = lim
λ→∞

γk(λ) =
1

(k + 1)!

∫
(Rd)k

h(0,y)e−ωdR
d(0,y) dy,

ωd is the volume of the unit ball in Rd, and R, h, and h1 are defined in (2.3), (2.5),
and (2.6), respectively.

Again, these terms can be evaluated for k = 1, in which case

γ1(λ) =
λ

2

∫
Rd

∫
∥y∥2⩽2

f2(x)e−λωd2
−d∥y∥d

2f(x) dydx, (3.4)

γ1(∞) =
1

2

∫
Rd

e−ωd2
−d∥y∥d

2 dy = 2d−1.

For a uniform distribution on a compact set D ⊂ Rd it is easy to show that γ1(λ)
is given by

γ1(λ) = 2d−1(1− e−λωd/Vol(D)), (3.5)

from which it is easy to check that γ1(λ) → γ1(∞) as λ → ∞. For higher indices, we
have no analytic way to compute γk(λ). However, it can be evaluated numerically, and
an example is given in Figure 2 for the uniform distribution on [0, 1]3. Note that, in
that example, γ0(∞)− γ1(∞) + γ2(∞)− γ3(∞) ≈ 0. This is not a coincidence, and
the explanation for this phenomenon will be given in Section 4.3, where we discuss
the mean Euler characteristic of Čech complexes.

Recall that, in the subcritical phase, the limit mean and the limit variance were
exactly the same. For other phases, this is no longer true.
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Figure 2: The γk(λ) function. In this example d = 3, and f(x) is the uniform density on
[0, 1]3. For k = 0 we know that n−1N0,n = 1, and for k = 1 we have an explicit formula
in (3.5). For k = 2, 3 we used numerical integration followed by some smoothing.

Theorem 3.6 (Limit variance). If nrdn → λ ∈ (0,∞] and 1 ⩽ k ⩽ d,

lim
n→∞

n−1Var (Nk,n) = σ2
k(λ) > 0.

The expression defining σ2
k(λ) is rather complicated, and can be found in (8.4).

Note that as an immediate corollary of Theorems 3.5 and 3.6, we have the “law

of large numbers” that n−1Nk,n
L2

−−→ γk(λ). In addition, we also prove the following
“central limit theorem” (CLT).

Theorem 3.7 (CLT). If nrdn → λ ∈ (0,∞], then for 1 ⩽ k ⩽ d,

Nk,n − ENk,n√
n

L−→ N (0, σ2
k(λ)). (3.6)

To conclude this section, we note an interesting result which is unique to the

supercritical regime, for which we define N
(g)
k,n := |C(n, k)|, the “global” number of

critical points of the distance function dXn in Rd (i.e., without requiring (CP3)). We

note first that Nk,n and N
(g)
k,n have identical asymptotic behaviors, at least at the level

of their first two moments and CLT:

Theorem 3.8. Let f be lower bounded with a convex support. Then, for 1 ⩽ k ⩽ d,

lim
n→∞

n−1E
{
N

(g)
k,n

}
= γk(∞), lim

n→∞
n−1Var

(
N

(g)
k,n

)
= σ2

k(∞),
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and

N
(g)
k,n − E

{
N

(g)
k,n

}
√
n

L−→ N (0, σ2
k(∞)).

An obvious corollary of Theorem 3.8 is that n−1E
{
N

(g)
k,n −Nk,n

}
→ 0. However,

much more is true:

Proposition 3.9. Under the conditions of Theorem 3.8, and if nrdn ⩾ D⋆ log n, for suf-
ficiently large (f -dependent) D⋆, then, for 1 ⩽ k ⩽ d,

lim
n→∞

E
{∣∣∣N (g)

k,n −Nk,n

∣∣∣} = 0. (3.7)

Thus, in the supercritical phase, the slow decrease of the radii rn implies that
the global and the local number of critical points are ultimately equal with high
probability, despite the fact that both grow to infinity with increasing n. This is
an interesting result, and will turn out to be important when we discuss the Euler
characteristic of the Čech complex in the next section. The equality between the local
and global counts can be explained if we study how well supp(f) is covered by the
random balls of radius rn. Denoting by Cn the event that supp(f) ⊂

∪
X∈P Brn(X),

similar methods as in [13, 15, 2] can then be applied to show that if nrdn ⩾ D log n,
then P (Cn) → 1. Thus, under the assumptions of Proposition 3.9, the support of f is
completely covered by the rn-balls. Since all the critical points lie within the support,
we have that they all should be accounted for in Nk,n. Note that (3.7) relies heavily on
the assumed convexity of supp(f). For example, take f to be the uniform density on
the annulus A =

{
x ∈ R2 : 1 ⩽ |x| ⩽ 2

}
. Then, for n large enough, we would expect

to have a maximum point (index 2) close to the origin. This critical point will be

accounted for in N
(g)
2,n, but will be ignored by N2,n, since its distance to Xn is greater

than 1. Thus, we would expect that E{|N (g)
2,n −N2,n|} → 1, which contradicts (3.7).

4. Random Čech complexes

As mentioned already a number of times, the results of the previous section regard-
ing critical points of the distance function have implications for the homology and
Betti numbers of certain random Čech complexes, and so are related to recent results
of [16] and [17]. Our plan in this section is to describe these complexes and then the
connections. We shall assume that the reader either has a basic grounding in alge-
braic topology at the level of the first two chapters of [14] or is prepared to accept
a definition of the k-th Betti number βk := βk(X) of a topological space X as the
number of k-dimensional “holes” in X, where a k-dimensional hole can be thought of
as anything that can be continuously transformed into a k-dimensional sphere. The
zeroth Betti number, β0(X), is merely the number of connected components in X.

4.1. Čech complexes and the distance function
The Čech complex generated by a set of points P is a simplicial complex, made up

of vertices, edges, triangles, and higher dimensional faces. While its general definition
is quite broad, we focus on the following special case.
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Figure 3: The Čech complex Č(P, ϵ), for P = {x1, . . . , x6} ⊂ R2, and some ϵ. The
complex contains 6 vertices, 7 edges, and a single 2-dimensional face.

Definition 4.1 (Čech complex). Let P = {x1, x2, . . .} be a collection of points in Rd,
and let ϵ > 0. The Čech complex Č(P, ϵ) is constructed as follows:

1. The 0-simplices (vertices) are the points in P.

2. An n-simplex [xi0 , . . . , xin ] is in Č(P, ϵ) if
∩n

k=0 Bϵ(xik) ̸= ∅.

Figure 3 depicts a simple example of a Čech complex in R2.

An important result, known as the “nerve theorem,” links Čech complexes Č(P, ϵ)
and the neighborhood set

∪
p∈P Bϵ(p), and states that they are homotopy equivalent

(cf. [9]). Thus, for example, they have the same Betti numbers. Furthermore, both
are linked to sublevel sets of the distance function, since it is immediate from the
definitions that

d−1
P ([0, ϵ]) =

{
x ∈ Rd : dP(x) ⩽ ϵ

}
=
∪
p∈P

Bϵ(p) ≃ Č(P, ϵ). (4.1)

4.2. Critical points and Betti numbers

Classical Morse theory, in particular the version developed in [11] that applies to
the distance function, tells us that, in view of the equivalences in (4.1), there is a
connection between the critical points of dP over the set d−1

P ([0, ϵ]), along with their
indices, and the Betti numbers of Č(P, ϵ). As usual, P is a point set in Rd, and assume
that P is in general position. Then for every critical point of dP at height ϵ and of
index k, for all small enough η, either

βk

(
Č(P, ϵ+ η)

)
= βk

(
Č(P, ϵ− η)

)
+ 1, (4.2)

or

βk−1

(
Č(P, ϵ+ η)

)
= βk−1

(
Č(P, ϵ− η)

)
− 1. (4.3)

Despite this connection, Betti numbers, dealing, as they do, with “holes,” are typ-
ically determined by global phenomena, and this makes them hard to study directly
in the random setting. On the other hand, the structure of critical points is a local
phenomenon, which is why, in the random case, we can say more about critical points
than what is known for Betti numbers to date.
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4.3. Random Čech complexes
Retaining the notation of the previous section, and defining βk,n := βk(Č(Pn, rn)),

our aim will be to examine relationships between the random variables Nk,n and the
βk,n and βk−1,n. In addition, we shall compare our results for Nk,n to those of [16] and
[17] for βk,n, using Morse theory to explain the connections. Note that the results in
[16] are phrased in terms of the random samples case (with n i.i.d. points); however,
the proofs there can be easily adjusted to fit the Poisson case as well (as in [17] or
[6], where both the Poisson and random samples cases are treated).

In direct analogy to the results of Section 3, [16, 17] show that the limiting
behavior of Č(Pn, rn) splits into three main regimes, depending on the limit of nrdn.
In the subcritical (nrdn → 0) or dust phase, in which the Čech complex consists mostly
of small disconnected particles and very few holes, Theorem 3.2 in [16] states that
for 1 ⩽ k ⩽ d− 1,

lim
n→∞

(nk+2rd(k+1)
n )−1E {βk,n} = Dk,

for some constant Dk defined in an integral form and related to the µk of our Theo-
rem 3.1. In [17] the subcritical phase is explored in more detail, and limit theorems
analogous to those of Theorem 3.3 are proved. Combining their results with those in
Section 3.1, observe that the Nk,n and the βk−1,n exhibit similar limiting behavior,
and are O(nk+1rdkn ). Furthermore, based on the expected values, we can informally
summarize the relationship between the different Nk,n and βk,n as follows:

N1,n ≫ N2,n ≫ N3,n ≫ · · · ≫ Nkc,n

≈ ≈ ≈
β1,n ≫ β2,n ≫ · · · ≫ βkc−1,n,

(4.4)

where by an ≈ bn we mean that an/bn → c ∈ (0,∞) and by an ≫ bn we mean that
an/bn → ∞, and kc is as in (3.3). For k > kc all terms are zero with high probability
that grows with k.

Recall that Morse theory tells us that each critical point of index k contributes
either +1 to βk,n or −1 to βk−1,n (see (4.2), (4.3)). Splitting Nk,n accordingly as
Nk,n = N+

k,n +N−
k,n, the diagram (4.4) implies that N−

k,n ≫ N+
k,n. In other words,

most of the critical points of index k destroy homology generators rather than create
new ones.

For the other regimes, making statements about the Čech complex becomes
extremely difficult, and thus the theory is still incomplete.

In the critical phase (nrdn → λ ∈ (0,∞)), the Čech complex starts to connect and
the topology becomes more complex. In addition, once λ passes a certain threshold,
a giant component emerges (cf. Chapter 9 of [23]), from which comes the alternate
description of this phase as the “percolation phase.” Theorem 4.1 in [16] states that
for 1 ⩽ k ⩽ d− 1,

lim
n→∞

n−1E {βk,n} ∈ (0,∞),

although the exact limit is not computed. This agrees with the results in Section 3.2
of this paper. The main difference between the two sets of results is that for critical
points we are able to give a closed form expression for the limit mean of Nk,n (The-
orem 3.5), as well as stronger limit results (Theorems 3.6, 3.7). This will be useful
below, when we discuss Euler characteristics.
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In the supercritical regime (nrdn → ∞) even less is known about the Čech com-
plex. In general, the Čech complex becomes highly connected, the topology becomes
simpler, and the Betti numbers decrease. Theorem 6.1 of [16] gives the precise
results that if f is a uniform density with a compact and convex support, and
limn→∞(log n/n)−1/drn > 0, then

lim
n→∞

P (β0,n = 1, β1,n = · · · = βd−1,n = 0) = 1, (4.5)

which is described in [16] by saying that Č(Pn, rn) is “asymptotically almost surely
contractible.” We have no analogous result about critical points, nor could we, since
Nk,n is O(n) and thus Nk,n → ∞ (Section 3.2). However, Corollary 4.2 below gives
information about the Euler characteristic of the Čech complex which is different
from, but related to, (4.5). (Note that (4.5) requires that the underlying probability
density is lower bounded with convex support, the same assumption we adopted in
Section 3.2.)

To conclude this section, we present a novel statement about the Čech complex
Č(Pn, rn) that can be made based on the results in Section 3. The Euler characteristic
of a simplicial complex S has a number of equivalent definitions, and a number of
important applications. One of the definitions, via Betti numbers, is

χ(S) =
∞∑
k=0

(−1)kβk(S). (4.6)

However, χ(S) also has a definition via indices of critical points of appropriately
defined functions supported on S, and this leads to

Corollary 4.2. Let χn be the Euler characteristic of Č(Pn, rn). Then

lim
n→∞

n−1E {χn} =


1 nrdn → 0,

1 +
∑d

k=1 (−1)kγk(λ) nrdn → λ ∈ (0,∞),

0 nrdn → ∞.

(4.7)

Moreover, when nrdn → ∞ and nrdn ⩾ D⋆ logn (with D⋆ as in Proposition 3.9), then
E {χn} → 1.

The proof of Corollary 4.2 is presented in Section 9. Note that (4.7) cannot be
proven using only the existing results on Betti numbers, since the values of the limiting
mean in the critical and supercritical regimes are not available. This demonstrates
one of the advantages of studying the homology of the Čech complex via the distance
function.

In closing we note some of the implications of Corollary 4.2. In the subcritical
phase, we have that χn ∼ n, which agrees with the intuition developed so far that,
in this range, the Čech complex consists of mostly small disconnected particles and
very few holes. In the critical range we have a non-trivial limit resulting from the fact
that the Čech complex has many holes of all possible dimensions. In the supercritical
range, χn ∼ 1, which is exactly what we get when β0,n = 1, β1,n = · · · = βd−1,n = 0
(cf. (4.6), (4.5)). Since n−1E {χn} → 0 in this regime, it is clear now why the numerics

of Figure 2 showed that
∑3

k=0(−1)kγk(∞) ≈ 0. Finally, note that in a sequel [8], we
explore the Čech complex when the samples are generated by a distribution supported
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on a closed manifold M. In this case we can make a much more concrete statement,
and prove that βk,n → βk(M) with an appropriate choice of radius rn. A different
direction, in which the underlying samples are generated by stochastic processes with
dependence between the points, can be found in [26].

5. Some notation and elementary considerations

The remaining sections of the paper are devoted to proofs of the results in Sec-
tions 3 and 4, and are organized according to situations: sub-critical (dust), critical
(percolation), and super-critical. In this section we list some common notation and
note some simple facts that will be used in many of them.

• Henceforth, k will be fixed, and whenever we use Y, Y ′, or Yi we implicitly assume
that |Y| = |Y ′| = |Yi| = k + 1, unless stated otherwise.

• Usually, finite subsets of Rd will be denoted calligraphically (X ,Y). However, inside
integrals we use boldfacing and lowercase (x,y).

• For x ∈ Rd, x ∈ (Rd)k+1, and y ∈ (Rd)k, we use the shorthand

f(x) := f(x1)f(x2) · · · f(xk+1),

f(x+ rny) := f(x+ rny1)f(x+ rny2) · · · f(x+ rnyk),

h(0,y) := h(0, y1, . . . , yk).

• The symbol “c⋆” denotes a constant value, which might depend on d (ambient
dimension), f (the probability density of the samples), and k (the Morse index),
but on neither n nor rn. The actual value of c⋆ may change between and even
within lines.

• While not exactly a notational issue, we shall often use the fact that, for every k,
n−k

(
n
k

)
→ 1/k! as n → ∞, and there is a c⋆ such that

(
n
k

)
⩽ c⋆nk.

Lemma 5.1. Let X = (X1, . . . , Xk) be a set of k i.i.d. points in Rd sampled from a
bounded density f . Then there exists a constant c⋆ such that

P (X is contained in a ball with radius r) ⩽ c⋆rd(k−1).

Proof. If X is bounded by a ball with radius r, thenX2, . . . , Xk are all within distance
2r from X1; thus

P (X is bounded by a ball of radius r) ⩽
∫
Rd

(∫
B2r(x)

f(y)dy

)k−1

f(x)dx

⩽
∫
Rd

(fmax Vol(B2r(x)))
k−1

f(x)dx

= fk−1
maxω

k−1
d (2r)d(k−1)

:= c⋆rd(k−1),

where fmax := supx∈Rd f(x), and ωd is the volume of the unit ball in Rd.
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6. Means for the subcritical range (nrdn → 0)

We start by proving Theorem 3.1 (the limit expectation), which requires the fol-
lowing important lemma. Note that the lemma has two implications. Firstly, it gives
a precise order of magnitude, with constant, for the probability that k + 1 points in
the rn-neighborhood of a point in Xn generate an index-k critical point. Secondly, it
implies that if an additional, high density set of Poisson points is added to the pic-
ture, the probability that any of these will be in the ball containing the k + 1 original
points is of a smaller order of magnitude.

Lemma 6.1. Let Y ⊂ Xn be a set of k + 1 random i.i.d. points with density function
f , independent of the Poisson process Pn. Then,

lim
n→∞

r−dk
n E {hrn(Y)} = lim

n→∞
r−dk
n E {grn(Y,Y ∪ Pn)} = (k + 1)!µk.

Proof. Note that from the definition of hϵ(·), it follows that

hϵ(x, x+ ϵy) := hϵ(x, x+ ϵy1, . . . , x+ ϵyk) = h1(0,y).

Thus, using the change of variables x → (x, x+ rny),

E {hrn(Y)} =

∫
(Rd)k+1

f(x)hrn(x)dx

= rdkn

∫
Rd

∫
(Rd)k

f(x)f(x+ rny)hrn(x, x+ rny)dydx

= rdkn

∫
Rd

f(x)

∫
(Rd)k

f(x+ rny)h1(0,y)dydx. (6.1)

Now, for h1(0,y) to be nonzero, all the elements y1, . . . , yk ∈ Rd must lie inside
B2(0)—the ball of radius 2 around the origin. Therefore,

|f(x+ rny)h1(0,y)| ⩽ fk
max11B2(0)(y1) · · · 11B2(0)(yk),

and applying the dominated convergence theorem (DCT) to (6.1) yields

lim
n→∞

∫
(Rd)k

f(x+ rny)h1(0,y)dxdy = fk(x)

∫
(Rd)k

h1(0,y)dy, (6.2)

from which follows

lim
n→∞

r−dk
n E {hrn(Y)} =

∫
Rd

fk+1(x)dx

∫
(Rd)k

h1(0,y)dy = (k + 1)!µk, (6.3)

completing the proof for hrn(Y).
Next, the definition of Pn as a Poisson process with intensity nf(x) implies

E {grn(Y,Y ∪ Pn) | Y} = hrn(Y)P (B(Y) ∩ Pn = ∅ | Y) = hrn(Y)e−np(Y).
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Thus,

E {grn(Y,Y ∪ Pn)} = E {E {grn(Y,Y ∪ Pn) | Y}}

=

∫
(Rd)k+1

f(x)hrn(x)e
−np(x)dx

= rdkn

∫
Rd

f(x)

∫
(Rd)k

f(x+ rny)h1(0,y)e
−np(x,x+rny)dydx.

The integrand here is smaller than or equal to the one in (6.1); therefore we can
safely apply the DCT to it. To find the limit, first note that

np(x, x+ rny) = n

∫
B(x,x+rny)

f(z)dz

= nVol(B(x, x+ rny))

∫
B(x,x+rny)

f(z)dz

Vol(B(x, x+ rny))

= nωd(rnR(0,y))d

∫
B(x,x+rny)

f(z)dz

Vol(B(x, x+ rny))
.

Applying the Lebesgue differentiation theorem yields

lim
n→∞

∫
B(x,x+rny)

f(z)dz

Vol(B(x, x+ rny))
= f(x).

Therefore, since nrdn → 0, we have

lim
n→∞

np(x, x+ rny) = 0. (6.4)

Thus, we have

lim
n→∞

r−dk
n E {grn(Y,Pn)} = lim

n→∞
r−dk
n E {hrn(Y)} = (k + 1)!µk,

and we are done.

Using the previous lemma, it is now easy to prove Theorem 3.1.

Proof of Theorem 3.1. Note that Nk,n =
∑

Y⊂Pn
grn(Y,Pn). Applying Theorem B.1

therefore yields that

E {Nk,n} =
nk+1

(k + 1)!
E {grn(Y ′,Y ′ ∪ Pn)} ,

where Y ′ is a copy of Y independent of Pn. Lemma 6.1 then implies

lim
n→∞

(nk+1rdkn )−1E {Nk,n} = µk,

as required.

7. Variances and limit distributions for the subcritical range

The proofs of Theorems 3.2 and 3.3 split into three different cases, depending on
the limit of nk+1rdkn .
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Case 1: nk+1rdkn → 0
We start with the limit variance for this case.

Proof of Theorem 3.2. We start by writing

E
{
N2

k,n

}
= E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

grn(Y1,Pn)grn(Y2,Pn)

}

=
k+1∑
j=0

E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

grn(Y1,Pn)grn(Y2,Pn)11 {|Y1 ∩ Y2| = j}

}

:=

k+1∑
j=0

E {Ij} . (7.1)

Note that

Ik+1 =
∑

Y1⊂Pn

grn(Y1,Pn) = Nk,n.

Thus, from Theorem 3.1,

lim
n→∞

(nk+1rdkn )−1E {Ik+1} = µk. (7.2)

Next, for 0 ⩽ j < k + 1, using Corollary B.2 we have

E {Ij} = c⋆n2k+2−jE {grn(Y ′
1,Y ′

12 ∪ Pn)grn(Y ′
2,Y ′

12 ∪ Pn)}|Y′
1∩Y′

2|=j ,

where Y ′
12 = Y ′

1 ∪ Y ′
2 is a set of 2k − j i.i.d. points in Rd with density f(x), indepen-

dent of Pn, and |Y ′
1 ∩ Y ′

2| = j.
For 0 < j < k + 1, if |Y1 ∩ Y2| = j and grn(Y ′

1,Y ′
12 ∪ Pn)grn(Y ′

2,Y ′
12 ∪ Pn) = 1,

then necessarily the 2k + 2− j points in Y ′
1 ∪ Y ′

2 are bounded by a ball of radius
2rn, and using Lemma 5.1 we have

E {Ij} =⩽ c⋆n2k+2−jrd(2k+1−j)
n .

Thus,

(nk+1rdkn )−1E {Ij} ⩽ c⋆(nrdn)
k+1−j → 0. (7.3)

For j = 0, the sets Y ′
1 and Y ′

2 are independent. Since grn(Y ′
i,Y ′

12 ∪ Pn) ⩽ hrn(Y ′
i),

we have

E {grn(Y ′
1,Y ′

12 ∪ Pn)grn(Y ′
2,Y ′

12 ∪ Pn)} ⩽ E {hrn(Y ′
1)hrn(Y ′

2)} = (E {hrn(Y ′
1)})

2
.

Therefore,

E {I0} ⩽ c⋆n2(k+1) (E {hrn(Y)})2 .

Using Lemma 6.1 together with the fact that nk+1rdkn → 0 yields

(nk+1rdkn )−1E {I0} ⩽ c⋆nk+1rdkn
(
r−dk
n E {hrn(Y)}

)2 → 0. (7.4)

Combining (7.2), (7.3), and (7.4) yields

lim
n→∞

(nk+1rdkn )−1E
{
N2

k,n

}
= µk.
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In addition, Theorem 3.1 implies

(nk+1rdkn )−1(E {Nk,n})2 = nk+1rdkn
(
(nk+1rdkn )−1E {Nk,n}

)2 → 0.

Therefore, since var{Nk,n} = EN2
k,n − (ENk,n)

2, we conclude that

lim
n→∞

(nk+1rdkn )−1Var (Nk,n) = µk,

which completes the proof.

Next, we wish to prove the first part of Theorem 3.3, i.e., that Nk,n
L2→ 0.

Proof of Theorem 3.3—Part 1. Clearly, it suffices to show that

lim
n→∞

E
{
N2

k,n

}
= 0. (7.5)

However, in the previous proof, we saw that

lim
n→∞

(nk+1rdkn )−1E
{
N2

k,n

}
= µk.

Since nk+1rdkn → 0, (7.5) follows immediately, and we are done.

Case 2: nk+1rdkn → α ∈ (0,∞)
Proof of Theorem 3.2 continued. The proof in this case is similar to the previous
one. We define Ij the same way as in (7.1). The same arguments that led to (7.2)
and (7.3) can be repeated here, providing the limits of E {Ij} for 0 < j ⩽ k + 1. The
only difference is in how to bound the term E {I0}. For that, a proof in the spirit of
Lemma 6.1 can be used to show that

lim
n→∞

r−2dk
n E {grn(Y ′

1,Y ′
12 ∪ Pn)grn(Y ′

2,Y ′
12 ∪ Pn)}|Y′

1∩Y′
2|=0 = ((k + 1)!µk)

2.

Using Corollary B.2, we have

lim
n→∞

(nk+1rdkn )−1E {I0}

= lim
n→∞

(nk+1rdkn )−1 n2k+2

((k + 1)!)2
E {grn(Y ′

1,Y ′
12 ∪ Pn)grn(Y ′

2,Y ′
12 ∪ Pn)}|Y′

1∩Y′
2|=0 ,

and therefore,

lim
n→∞

(nk+1rdkn )−1E {I0} = αµ2
k.

Finally, we also have

lim
n→∞

(nk+1rdkn )−1 (E {Nk,n})2 = αµ2
k.

This completes the proof.

For X,Y random variables taking values in N, define the total variation distance
to be dTV(X,Y ) := supA⊂N |P (X ∈ A)− P (Y ∈ A)|. To prove the Poisson limit of
Theorem 3.3, we need the following lemma.

Lemma 7.1. Let Sk,n :=
∑

Y⊂Pn
hrn(Y), and let Z ∼ Poisson (E {Sk,n}). If nrdn → 0,

then

dTV (Sk,n, Z) ⩽ c⋆nrdn.
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Proof. The proof is very similar to the proof of Theorem 3.4 in [23], and uses the
Poisson approximation given in Theorem C.2. Let A ⊂ N be a set of natural numbers,
we wish to bound the difference∣∣∣P (Sk,n ∈ A)− P (Z ∈ A)

∣∣∣.
Start by conditioning on |Pn|, the number of points in Pn.∣∣∣P (Sk,n ∈ A)− P (Z ∈ A)

∣∣∣
=
∣∣∣ ∞∑
m=0

(P (Sk,n ∈ A | |Pn| = m)− P (Z ∈ A))P (|Pn| = m)
∣∣∣

⩽
∞∑

m=0

∣∣∣P (Sk,n ∈ A | |Pn| = m)− P (Z ∈ A)
∣∣∣P (|Pn| = m) .

(7.6)

Given |Pn| = m, let Im = {i⊂{1, 2, . . . ,m} : |i| = k + 1}. Then, for i = {i0, . . . , ik}
and Xi = {Xi0 , . . . , Xik}, we can write

Sk,n =
∑
i∈Im

hrn(Xi).

Set Ni = {j ∈ Im : |i ∩ j| > 0}, and let ∼ be a relation on Im such that i ∼ j if and
only if j ∈ Ni. For i ̸= j, Xi and Xj are independent unless j ∈ Ni. Thus, the graph
(Im,∼) is the dependency graph for ξi := hrn(Xi).

Now, if hrn(Xi) ̸= 0, then the k + 1 points in Xi are bounded by a ball of radius
rn, and using Lemma 5.1 we have

pi := E {ξi} ⩽ c⋆rdkn .

Therefore,∑
i∈Im

∑
j∈Ni

pipj ⩽
(

m

k + 1

)((
m

k + 1

)
−
(
m− k − 1

k + 1

))
c⋆r2dkn ⩽ c⋆m2k+1r2dkn .

Next, if i ∼ j with |i ∩ j| = l > 0, and hrn(Xi)hrn(Xj) ̸= 0, then necessarily the 2k +
2− l points in Xi ∪ Xj are bounded by a ball of radius 2rn, and therefore,

pi,j := E {ξiξj} ⩽ c⋆rd(2k+1−l)
n .

Thus,

∑
i∈Im

∑
j∈Ni\{i}

pi,j ⩽
k∑

l=1

(
m

k + 1

)(
m− k − 1

k + 1− l

)(
k + 1

l

)
c⋆rd(2k+1−l)

n

⩽ c⋆
k∑

l=1

m2k+2−lrd(2k+1−l)
n .

Finally, using Lemma 6.1 it is easy to prove that

lim
n→∞

(nk+1rdkn )−1E {Sk,n} = µk,
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which implies that

1

E {Sk,n}
⩽ c⋆(nk+1rdkn )−1.

Therefore, from Theorem C.2, we can conclude that

|P (Sk,n ∈ A | |Pn| = m)− P (Z ∈ A)| ⩽ c⋆n−(k+1)
k∑

l=1

m2k+2−lrd(k+1−l)
n .

Substituting back into (7.6), we have

dTV (Sk,n, Z) ⩽ c⋆n−k+1
k∑

l=1

rd(k+1−l)
n E

{
|Pn|2k+2−l

}
.

Since |Pn| ∼ Poisson (n), it is easy to find a constant c⋆ such that

E
{
|Pn|2k+2−l

}
⩽ c⋆n2k+2−l,

for every 1 ⩽ l ⩽ k. So, finally, we have that

dTV (Sk,n, Z) ⩽ c⋆
k∑

l=1

nk+1−lrd(k+1−l)
n ⩽ c⋆nrdn,

since nrdn → 0 and so is bounded.

Note that the previous result did not use the assumption that nk+1rdkn → α ∈
(0,∞). However, to prove an analogous result for Nk,n rather than Sk,n, we shall
need it. We shall also need the following two lemmas, the second of which follows
easily from the first, which itself follows from a simple calculation.

Lemma 7.2. Let X,Y be integer random variables defined over the same probability
space, such that ∆ := X − Y ⩾ 0. Then dTV (X,Y ) ⩽ E {∆} .

Lemma 7.3. Let X ∼ Poisson (λx) , Y ∼ Poisson (λy). Then dTV (X,Y ) ⩽ |λx − λy|.

Proof of Theorem 3.3—Part 2. For a start, we need to prove that dTV (Nk,n, Sk,n) ⩽
c⋆nrdn. To this end, define ∆ := Sk,n −Nk,n and note that ∆ counts the number of
subsets Y ⊂ Pn for which hrn(Y) = 1 but grn(Y,Pn) = 0. This implies that there
exists X ∈ Pn\Y for which X ∈ B(Y). Thus, ∆ is bounded from above by k + 2 times
the number of (k + 2)-subsets contained in a ball of radius rn. From Lemma 5.1 and
Lemma 7.2 we have

dTV (Nk,n, Sk,n) ⩽ E {∆} ⩽ c⋆nk+2rd(k+1)
n ⩽ c⋆(nk+1rdkn )(nrdn) ⩽ c⋆(nrdn),

where we used the fact that nk+1rdkn is bounded.

Next, if

ZN ∼ Poisson (E {Nk,n}) and ZS ∼ Poisson (E {Sk,n}) ,
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then from Lemma 7.1 and the triangle inequality,

dTV (Nk,n, ZN ) ⩽ dTV (Nk,n, Sk,n) + dTV (Sk,n, ZS) + dTV (ZS , ZN )

⩽ c⋆(nrdn) + dTV (ZS , ZN ) .

Finally, Lemma 7.3 implies that

dTV (ZS , ZN ) ⩽ |E {Sk,n} − E {Nk,n}| = |E {∆}| ⩽ c⋆(nrdn).

This completes the proof that dTV (Nk,n, ZN ) ⩽ c⋆(nrdn) → 0. From Theorem 3.1,
since nk+1rdkn → α, we have that E {Nk,n} → αµk. Using the fact that ZN ∼
Poisson (E {Nk,n}), it is easy to see that dTV (Nk,n,Poisson (αµk)) → 0, which implies
convergence in distribution.

Case 3: nk+1rdkn → ∞
Proof of Theorem 3.2 continued (Nk,n only). We start with the second moment of
Nk,n,

E
{
N2

k,n

}
= E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

grn(Y1,Pn)grn(Y2,Pn)

}

=
k+1∑
j=0

E

{ ∑
Y1⊂Pn

∑
Y2⊂Pn

grn(Y1,Pn)grn(Y2,Pn)11 {|Y1 ∩ Y2| = j}

}

:=

k+1∑
j=0

E {Ij} .

As in the proof of the previous cases, we have that

lim
n→∞

(nk+1rdkn )−1EIk+1 = µk, lim
n→∞

(nk+1rdkn )−1EIj = 0, 1 ⩽ j ⩽ k.

However, in this case, I0 requires a different treatment. Recall that our interest is in
the variance—Var (Nk,n). So we have

Var
(
N2

k,n

)
= E

{
N2

k,n

}
− (E {Nk,n})2

= E {Ik+1}+
k∑

j=1

E {Ij}+
(
E
{
Î0

}
− (E {Nk,n})2

)
.

Thus, to complete the proof, we need to show that

lim
n→∞

(nk+1rdkn )−1

(
E
{
Î0

}
−
(
E
{
N̂k,n

})2)
= 0.

Applying Corollary B.2, we have

E {I0} =

(
nk+1

(k + 1)!

)2

E {grn(Y ′
1,Y ′

12 ∪ Pn)grn(Y ′
2,Y ′

12 ∪ Pn)}Y′
1∩Y′

2=∅ ,
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where Y ′
1 and Y ′

2 are sets of i.i.d. points with density f , independent of Pn, and
Y ′
12 = Y ′

1 ∪ Y ′
2. Similarly, applying Theorem B.1, we have

E {Nk,n} =
nk+1

(k + 1)!
E {grn(Y ′

1,Y ′
1 ∪ Pn)} .

Therefore, we can write

(E {Nk,n})2 =

(
nk+1

(k + 1)!

)2

E {grn(Y ′
1,Y ′

1 ∪ Pn)grn(Y ′
2,Y ′

2 ∪ P ′
n)} ,

where P ′
n is an independent copy of Pn. Set

∆ := grn(Y ′
1,Y ′

12 ∪ Pn)grn(Y ′
2,Y ′

12 ∪ Pn)− grn(Y ′
1,Y ′

1 ∪ Pn)grn(Y ′
2,Y ′

2 ∪ P ′
n).

Showing that nk+1r−dk
n E {∆} → 0 will complete the proof. Set

∆1 = ∆ · 11 {B(Y ′
1) ∩B(Y ′

2) ̸= ∅} , ∆2 = ∆ · 11 {B(Y ′
1) ∩B(Y ′

2) = ∅} .

If ∆1 ̸= 0 then all the elements in Y ′
1 and Y ′

2 are bounded by a ball of radius 2rn.
Therefore, using Lemma 5.1,

E {∆1} ⩽ c⋆rd(2k+1)
n .

Next, note that

∆2 = hrn(Y ′
1)hrn(Y ′

2)11 {B(Y ′
1) ∩B(Y ′

2) = ∅}

×
(
11 {Pn ∩B(Y ′

1) = ∅} 11 {Pn ∩B(Y ′
2) = ∅}

− 11 {Pn ∩B(Y ′
1) = ∅} 11 {P ′

n ∩B(Y ′
2) = ∅}

)
.

If ∆2 ̸= 0, thenB(Y ′
1) andB(Y ′

2) are disjoint. Therefore, given Y ′
1 and Y ′

2, the set Pn ∩
B(Y ′

2) is independent of the set Pn ∩B(Y ′
1) (by the spatial independence of the Pois-

son process), and has the same distribution as P ′
n ∩B(Y ′

2). Thus, E {∆2 | Y ′
1,Y ′

2} = 0,
which implies that E {∆2} = 0.

To conclude, E {∆} ⩽ c⋆r
d(2k+1)
n . Therefore,

lim
n→∞

nk+1r−dk
n E {∆} ⩽ lim

n→∞
c⋆(nrdn)

k+1 = 0.

This completes the proof for the limit variance.

Next, we wish to prove the CLT in Theorem 3.3.

Proof of Theorem 3.3—Part 3. The proof is based on the normal approximation for
sums of dependent variables given by Stein’s method (Appendix C). We start by
counting only critical points located in a compact A ⊂ Rd for which

∫
A
f(x)dx > 0.

For a fixed n, let {Qi,n}i∈N be a partition of Rd into cubes of side rn, and let IA ⊂ N
be the (finite) set of indices i for which Qi,n ∩A ̸= ∅. For i ∈ IA, set

g(i)rn (Y,Pn) := grn(Y,Pn)11A∩Qi,n
(C(Y)), (7.7)

where C(Y) is the critical point in Rd generated by Y (cf. (2.2)). That is, g
(i)
rn = 1
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implies that Y generates a critical point located in A ∩Qi,n. Then

N
(i)
k,n :=

∑
Y⊂Pn

g(i)rn (Y,Pn)

is the number of critical points inside A ∩Qi,n, and

NA
k,n := # {critical points of dPn inside A} =

∑
i∈IA

N
(i)
k,n.

First, as in the proof of Theorem 3.2, one can show that

µk(A) := lim
n→∞

(nk+1rdkn )−1Var
(
NA

k,n

)
∈ (0,∞). (7.8)

Now, for i, j ∈ IA, define the relation i ∼ j if the distance betweenQi,n andQj,n is less

than 2rn. Then (IA,∼) is the dependency graph (cf. (C.1)) for the set
{
N

(i)
k,n

}
i∈IA

.

This follows from the fact that a critical point located inside Qi,n is generated by
points of Pn that are within distance rn from Qi,n (along with the spatial indepen-
dence of Pn). The degree of this graph is bounded by 5d. Consider the normalized
random variables

ξi :=
N

(i)
k,n − E

{
N

(i)
k,n

}
(
Var

(
NA

k,n

))1/2 .
According to Theorem C.3, in order to prove a CLT for NA

k,n, all we have to do now

is to find bounds for E {|ξi|p}, p = 3, 4.
Let Brn(Qi,n) ⊂ Rd be the set of points within distance rn of Qi,n, and let Zi :=

|Pn ∩Brn(Qi,n)| be the number of points of the Poisson process Pn lying inside
Brn(Qi,n). Then Zi ∼ Poisson (λi) where λi =

∫
Brn (Qi,n)

nf(x)dx ⩽ nfmax(3rn)
d.

Thus, Zi is stochastically dominated by a Poisson random variable with parameter
c⋆nrdn. Now,

N
(i)
k,n ⩽

(
Zi

k + 1

)
⩽ c⋆Zk+1

i .

Therefore, for any p ⩾ 1,

E
{∣∣∣N (i)

k,n

∣∣∣p} ⩽ c⋆E
{
Z

p(k+1)
i

}
⩽ c⋆(nrdn)

p(k+1) ⩽ c⋆(nrdn)
k+1,

since nrdn is bounded (note that each of the c⋆’s stands for a different value). Thus,
it is easy to show that also

E
{∣∣∣N (i)

k,n − E
{
N

(i)
k,n

}∣∣∣p} ⩽ c⋆(nrdn)
k+1.

Since A is compact, there exists a constant v such that |IA| ⩽ vr−d
n . Therefore, for

p = 3, 4,

∑
i∈IA

E {|ξi|p} ⩽ vr−d
n c⋆(nrdn)

k+1(
Var

(
NA

k,n

))p/2 = vc⋆(nk+1rdkn )1−p/2

 (nk+1rdkn )

Var
(
NA

k,n

)
p/2

→ 0,

where we used the fact that nk+1rdkn → ∞, and the limit in Theorem 3.2. From



DISTANCE FUNCTIONS 333

Theorem C.3, we conclude that

NA
k,n − E

{
NA

k,n

}
(
Var

(
NA

k,n

))1/2 L−→ N (0, 1). (7.9)

Now that we have a CLT forNA
k,n, we need to extend it to one for N̂k,n. The method

we shall use is exactly the same as the one used in [23], but, for completeness, we
nevertheless include it.

Set AM = [−M,M ]d, AM = Rd\AM , and suppose that M is large enough such
that

∫
AM

f(z)dz > 0. Set

ζn(A) =
NA

k,n − E
{
NA

k,n

}
(nk+1rdkn )

1/2
ζn =

Nk,n − E {Nk,n}
(nk+1rdkn )

1/2
.

To complete the proof we need to show that
∣∣P (ζn ⩽ t)− Φ(t/

√
µk)
∣∣→ 0, where Φ(·)

is the standard normal distribution function. Clearly, ζn = ζn(AM ) + ζn(A
M ), and

from (7.9) we have that

ζn(AM )
L−→ N (0, µk(AM )). (7.10)

For every t ∈ R and M, δ > 0 we have

|P (ζn ⩽ t)− Φ(t/
√
µk)| ⩽ |P (ζn ⩽ t)− P (ζn(AM ) ⩽ t− δ)|

+
∣∣∣P (ζn(AM ) ⩽ t− δ)− Φ((t− δ)/

√
µk(AM ))

∣∣∣
+
∣∣∣Φ((t− δ)/

√
µk(AM )

)
− Φ(t/

√
µk)
∣∣∣ . (7.11)

Now,

P (ζn ⩽ t) = P (ζn(AM ) ⩽ t− δ, ζn ⩽ t) + P (|ζn(AM )− t| < δ, ζn ⩽ t)

+ P (ζn(AM ) ⩾ t+ δ, ζn ⩽ t) .

Note that the first term equals

P (ζn(AM ) ⩽ t− δ)− P (ζn(AM ) ⩽ t− δ, ζn > t) .

Thus,

|P (ζn ⩽ t)− P (ζn(AM ) ⩽ t− δ)| ⩽ P (ζn(AM ) ⩽ t− δ, ζn > t)

+ P (|ζn(AM )− t| < δ, ζn ⩽ t) + P (ζn(AM ) ⩾ t+ δ, ζn ⩽ t)

⩽ P
(∣∣ζn(AM )

∣∣ > δ
)
+ P (|ζn(AM )− t| < δ) .

From Chebyshev’s inequality we have that P
(∣∣ζn(AM )

∣∣ > δ
)
⩽ δ−2Var

(
ζn(A

M )
)
.

From (7.10), we have that

lim
n→∞

P (|ζn(AM )− t| < δ) = Φ((t+ δ)/
√

µk(AM ))− Φ((t− δ)/
√

µk(AM ))

⩽ 2δ√
2πµk(AM )

.
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Therefore,

lim sup
n→∞

|P (ζn ⩽ t)− P (ζn(AM ) ⩽ t− δ)| ⩽ µk(A
M )

δ2
+

2δ√
2πµk(AM )

.

For ϵ > 0, choose δ = ϵ
√
πµk/4. Since limM→∞ µk(AM ) = µk, and limM→∞ µk(A

M )
= 0, there exists M large enough such that µk(AM ) ⩾ µk/2, µk(A

M ) ⩽ ϵδ2/2, and

also
∣∣∣Φ((t− δ)/

√
µk(AM )

)
− Φ

(
t/
√
µk

)∣∣∣ < 2ϵ. For this choice of δ,M , using last

displayed inequality, we have

lim sup
n→∞

|P (ζn ⩽ t)− P (ζn(AM ) ⩽ t− δ)| ⩽ ϵ.

Finally, returning to (7.11), there exists N > 0 such that for every n > N ,

|P (ζn ⩽ t)− Φ(t/
√
µk)| < 4ϵ.

This completes the proof.

8. The critical and supercritical ranges (nrdn → λ ∈ (0,∞])

We start with the expectation computations. The following standard lemma is
going to play a key role in the supercritical regime.

Lemma 8.1. Let D ⊂ Rd be a compact convex set with positive Lebesgue measure,
and let Br(x) ⊂ Rd be the ball of radius r around x. Then there exists a constant c⋆

such that for every r < diam(D) and x ∈ D,

Vol(Br(x) ∩D) ⩾ c⋆rd.

The following lemma is analogous to Lemma 6.1.

Lemma 8.2. Let Y be a set of k + 1 i.i.d. random variables with density f , indepen-
dent of the Poisson process Pn. Then,

lim
n→∞

nkE {grn(Y,Y ∪ Pn)} = (k + 1)!γk(λ).

Proof. Setting sn = n−1/d and mimicking the proof of Lemma 6.1, we obtain

E {grn(Y,Y ∪ Pn)} =

∫
(Rd)k+1

f(x)hrn(x)e
−np(x)dx

= sdkn

∫
Rd

∫
(Rd)k

f(x)f(x+ sny)hrn(x, x+ sny)e
−np(x,x+sny)dydx

= n−k

∫
Rd

f(x)

∫
(Rd)k

f(x+ sny)hτn(0,y)e
−np(x,x+sny)dydx, (8.1)

where τn = rn/sn = n1/drn. We wish to apply the dominated convergence theorem for
the last integral. Thus, we need to bound the integrand with an integrable expression.

In the critical range this is done much as in the subcritical range. Since nrdn → λ <
∞, we have that τn is bounded by some value M . Now, for hτn(0,y) to be nonzero,
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all the elements y1, . . . , yk ∈ Rd must lie inside B2τn(0) ⊂ B2M (0). Therefore,∣∣∣f(x+ sny)hτn(0,y)e
−np(x,x+sny)

∣∣∣ ⩽ fk
max11B2M (0)(y1) · · · 11B2M (0)(yk),

and this expression is integrable.

The last argument cannot be applied in the supercritical range, since then τn is no
longer bounded. However, applying our additional lower boundedness assumptions
on the f , we can proceed as follows. Since we now have fmin > 0, we also have that

p(x) =

∫
B(x)

f(z)dz ⩾ fmin Vol(B(x) ∩ supp(f)). (8.2)

If hrn(x) ̸= 0, then necessarily C(x) ∈ conv◦(x) and R(x) ⩽ rn (cf. (2.6)). In addi-
tion, if f(x) ̸= 0, then x ⊂ supp(f). Since we assume that supp(f) is convex, we have
that C(x) ∈ supp(f) as well. Thus, B(x) is a ball centered at C(x) ∈ supp(f), with
radius R(x) small enough, and Lemma 8.1 yields

Vol(B(x) ∩ supp(f)) ⩾ c⋆Rd(x).

Using the inequality in (8.2), and the definition of R(x) in (2.3), we have that

p(x, x+ sny) ⩾ fminc
⋆R(x, x+ sny) = fminc

⋆sdnR
d(0,y) = fminc

⋆n−1Rd(0,y).

This can be used to bound the integrand in (8.1), so that∣∣∣f(x+ sny)hτn(0,y)e
−np(x,x+sny)

∣∣∣ ⩽ fk
maxe

−nfminc
⋆Rd(x,x+sny)

= fk
maxe

−fminc
⋆Rd(0,y).

(8.3)

Next, note that for i = 1, . . . , k, R(0,y) ⩾ ∥yi∥ /2. Thus,

Rd(0,y) ⩾ 1

2dk

k∑
j=1

∥yj∥d,

which implies that the expression in (8.3) is indeed integrable, and so the DCT can
be safely applied in both regimes.

Next, we compute the limit of the integral in (8.1). Note first that

np(x, x+ sny) = n

∫
B(x,x+sny)

f(z)dz

= nVol(B(x, x+ sny))

∫
B(x,x+sny)

f(z)dz

Vol(B(x, x+ sny))

= nωd(snR(0,y))d

∫
B(x,x+sny)

f(z)dz

Vol(B(x, x+ sny))

= ωdR
d(0,y)

∫
B(x,x+sny)

f(z)dz

Vol(B(x, x+ sny))
,

and using the Lebesgue differentiation theorem yields

lim
n→∞

np(x, x+ sny) = ωdR
d(0,y)f(x).



336 OMER BOBROWSKI and ROBERT J. ADLER

Taking the limit of all the other terms in (8.1), we have

lim
n→∞

nkE {grn(Y,Y ∪ Pn)} =

∫
(Rd)k+1

fk+1(x)hτ∞(0,y)e−ωdR
d(0,y)f(x)dydx,

where τ∞ = limn→∞ τn. In the supercritical regime, τ∞ = ∞, and consequently
hτ∞(·) = h∞(·) = h(·). Thus,

lim
n→∞

nkE {grn(Y,Y ∪ Pn)} =

∫
(Rd)k+1

fk+1(x)h(0,y)e−ωdR
d(0,y)f(x)dydx

= (k + 1)!γk(∞).

In the critical range, τn → λ1/d. Therefore,

lim
n→∞

nkE {grn(Y,Y ∪ Pn)} =

∫
(Rd)k+1

fk+1(x)hλ1/d(0,y)e−ωdR
d(0,y)f(x)dydx

= λk

∫
(Rd)k+1

fk+1(x)hλ1/d(0, λ1/dz)e−λωdR
d(0,z)f(x)dzdx = (k + 1)!γk(λ).

This completes the proof.

8.1. Asymptotic means

Using Lemma 8.2, we can prove Theorem 3.5.

Proof of Theorem 3.5. Using Theorem B.1,

E {Nk,n} =
nk+1

(k + 1)!
E {grn(Y ′,Y ′ ∪ Pn)} ,

and, using Lemma 8.2,

lim
n→∞

n−1E {Nk,n} = γk(λ),

which completes the proof.

8.2. Asymptotic variance

Proof of Theorem 3.6. As in the proof of Theorem 3.2,

Var
(
N2

k,n

)
= E {Nk,n}+

k∑
j=1

E {Ij}+
(
E {I0} − (E {Nk,n})2

)
,

where

Ij =
∑

Y1⊂Pn

∑
Y2⊂Pn

grn(Y1,Pn)grn(Y2,Pn)11 {|Y1 ∩ Y2| = j} .

From Corollary B.2,

E {Ij} =
n2k+2−j

j!((k + 1− j)!)2
E {grn(Y ′

1,Y ′
12 ∪ Pn)grn(Y ′

2,Y ′
12 ∪ Pn)}|Y′

1∩Y′
2|=j .



DISTANCE FUNCTIONS 337

For 0 < j < k + 1, as in the proof of Lemma 8.2, one can show that

lim
n→∞

nd(2k+1−j)E {grn(Y ′
1,Y ′

12 ∪ Pn)grn(Y ′
2,Y ′

12 ∪ Pn)}|Y′
1∩Y′

2|=j

=

∫
Rd(2k+2−j)

f2k+2−j(x)hτ∞(0,y1 ∪ z)hτ∞(0,y2 ∪ z)

× e−Vol(B(0,y1∪z)∪B(0,y2∪z))f(x)dxdy1dy2dz,

where x ∈ Rd, yi ∈ Rd(k+1−j), z ∈ Rd(j−1), and τ∞ = limn→∞ n1/drn. Therefore,

lim
n→∞

n−1E {Ij} = γ
(j)
k (λ),

where

γ
(j)
k (λ) :=

λ2k+1−j

j!((k + 1− j)!)2

∫
Rd(2k+2−j)

f2k+2−j(x)h1(0,y1 ∪ z)h1(0,y2 ∪ z)

× e−λVol(B(0,y1∪z)∪B(0,y2∪z))f(x)dxdy1dy2dz

for λ ∈ (0,∞), and

γ
(j)
k (∞) :=

1

j!((k + 1− j)!)2

∫
Rd(2k+2−j)

f2k+2−j(x)h(0,y1 ∪ z)h(0,y2 ∪ z)

× e−Vol(B(0,y1∪z)∪B(0,y2∪z))f(x)dxdy1dy2dz.

It is easy to show that 0 < γj
k(λ) < ∞ for λ ∈ (0,∞]. For j = 0, we define

∆ := grn(Y ′
1,Y ′

12 ∪ Pn)grn(Y ′
2,Y ′

12 ∪ Pn)− grn(Y ′
1,Y ′

1 ∪ Pn)grn(Y ′
2,Y ′

2 ∪ P ′
n)

so that

E {I0} − (E {Nk,n})2 =
n2k+2

((k + 1)!)2
E {∆} .

Now set

∆1 = ∆ · 11 {B(Y ′
1) ∩B(Y ′

2) ̸= ∅} , ∆2 = ∆ · 11 {B(Y ′
1) ∩B(Y ′

2) = ∅} .

Then, as in the proof of Theorem 3.2, we can show that E {∆2} = 0, and

lim
n→∞

n2k+1E {∆1}

=

∫
Rd(2k+2)

f2k+2(x)hτ∞(0,y1)hτ∞(0,y2)11 {B(0,y1) ∩B(z, z + y2) ̸= ∅}

×
(
e−Vol(B(0,y1)∪B(z,z+y2))f(x) − e−ωd(R

d(0,y1)+Rd(0,y2))f(x)
)
dxdzdy1dy2,

where x, z ∈ Rd, and yi ∈ (Rd)k. Thus,

lim
n→∞

n−1
(
E {I0} − (E {Nk,n})2

)
= γ

(0)
k (λ),
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where

γ
(0)
k (λ) :=

λ2k+1

((k + 1)!)2

×
∫
Rd(2k+2)

f2k+2(x)h1(0,y1)h1(0,y2)11 {B(0,y1) ∩B(z, z + y2) ̸= ∅}

×
(
e−λVol(B(0,y1)∪B(z,z+y2))f(x) − e−λωd(R

d(0,y1)+Rd(0,y2))f(x)
)
dxdzdy1dy2,

for λ < ∞, and

γ
(0)
k (∞) :=

1

((k + 1)!)2

×
∫
Rd(2k+2)

f2k+2(x)h(0,y1)h(0,y2)11 {B(0,y1) ∩B(z, z + y2) ̸= ∅}

×
(
e−Vol(B(0,y1)∪B(z,z+y2))f(x) − e−ωd(R

d(0,y1)+Rd(0,y2))f(x)
)
dxdzdy1dy2.

To conclude, we have proven that

lim
n→∞

n−1Var (Nk,n) = γk(λ) +

k∑
j=0

γ
(j)
k (λ) := σ2

k(λ) ∈ (0,∞), (8.4)

as required.

8.3. CLT
Next, we prove the CLT result in Theorem 3.7, again using Stein’s method, as in

the proof of Theorem 3.3.

Proof of Theorem 3.7. We start again by counting only critical points located in a
compact set A ⊂ Rd, with

∫
A
f(x)dx > 0.

We define Qi,n, N
(i)
k,n, N

A
k,n, g

(i)
rn , (IA,∼), and ξi the same way as in the proof of

Theorem 3.3. Then, as in the proof of Theorem 3.6, one can show that

lim
n→∞

n−1Var
(
NA

k,n

)
∈ (0,∞). (8.5)

According to Theorem C.3, in order to prove a CLT for NA
k,n, we need to find bounds

for E {|ξi|p} , p = 3, 4. We start with p = 3.

E
{(

N
(i)
k,n − E

{
N

(i)
k,n

})3}
=

3∑
j=0

(
3

j

)
(−1)j

(
E
{
N

(i)
k,n

})3−j

E
{(

N
(i)
k,n

)j}
.

The computation of the bound here is similar in spirit to the ones we used in the
proof of Theorem 3.2, but technically more complicated, and we shall not give details.
Rather, we shall suffice with a brief description of the main ideas: Every element in
the sum can be expressed as the expectation of a triple sum of the form

E

{ ∑
Y1⊂P(1)

n

∑
Y2⊂P(2)

n

∑
Y3⊂P(3)

n

g(i)rn (Y1,P(1)
n )g(i)rn (Y2,P(2)

n )g(i)rn (Y3,P(3)
n )

}
, (8.6)

where each of the Poisson processes can either be equal to one of the others or an
independent copy, depending on j. As for E {∆2} in the proof of Theorem 3.6, we can
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use Palm theory, collect all the terms in which at least one of the balls B(Yi) is disjoint
from the others, and show that they cancel each other. For each of the remaining
terms, we can show that if |Y1 ∪ Y2 ∪ Y3| = 3k + 3− j, with 0 ⩽ j ⩽ 3k + 3, then

the relevant part of the sum in (8.6) is bounded by c⋆n3k+3−js
d(3k+2−j)
n rdn = c⋆nrdn.

This bound is achieved using integral evaluations similar to the ones used in the proof
of Theorem 3.6, along with the fact that all the points are located within a distance
of rn from the cube Qi,n. Thus, we have

E
{(

N
(i)
k,n − E

{
N

(i)
k,n

})3}
⩽ c⋆nrdn.

Recall that |IA| ⩽ c⋆r−d
n . Therefore,∑

i∈IA

E
{
|ξi|3

}
⩽ c⋆r−d

n nrdn(
Var

(
NA

k,n

))3/2 =
c⋆n

n3/2
(
n−1Var

(
NA

k,n

))3/2 → 0.

The proof for p = 4 is similar. Thus, from Theorem C.3 we have that

NA
k,n − E

{
NA

k,n

}
(
Var

(
NA

k,n

))1/2 L−→ N (0, 1).

To conclude the proof, we need to show that the CLT for NA
k,n implies a CLT for

Nk,n. This is done exactly as for Part 3 of Theorem 3.3.

The only remaining results in Section 3 that still require proofs relate to the global
number of critical points.

Proof of Theorem 3.8. This theorem is proved exactly the same way as Theorems 3.5,
3.6, and 3.7 are proved in the super-critical phase. The only difference is that, through-
out, h(x) replaces hτn(x). This, however does not affect any of the results, since in
the limit hτn(x) → h(x).

Proof of Proposition 3.9. The expected difference between the global and local num-
ber of critical points is given by

E
{
N

(g)
k,n −Nk,n

}
=

nk+1

(k + 1)!
n−k

∫
(Rd)k+1

f(x)f(x+ sny)(h(0,y)− hτn(0,y))e
−np(x,x+sny)dydx

=
1

(k + 1)!

∫
(Rd)k+1

f(x)f(x+ sny)(h(0,y)− hτn(0,y))ne
−np(x,x+sny)dydx. (8.7)

As in the proof of Theorem 3.5 (cf. (8.3)), we can show that the integrand is bounded
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by

f(x)fk
max(h(0,y)− hτn(0,y))ne

−fminc
⋆Rd(0,y). (8.8)

Now note that if the integrand is nonzero, then h ̸= hτn , and so R(0,y) > τn. There-
fore, Rd(0,y) > 1/2(Rd(0,y) + nrdn), and (8.8) can be replaced by

f(x)fk
max(h(0,y)− hτn(0,y))e

−fminc
⋆Rd(0,y)/2ne−fminc

⋆nrdn/2. (8.9)

Assuming that nrdn ⩾ D⋆ log n, with D⋆ = (fminc
⋆/2)−1, then ne−fminc

⋆nrdn/2 ⩽ 1 and
we obtain an integrable bound for the integrand. Thus, we can apply the DCT to
(8.7). Finally, note that the bound we found in (8.9) converges to zero (since hτn → h),
so we are done.

9. Euler characteristic results

Finally, we prove Corollary 4.2.

Proof of Corollary 4.2. First note that E {N0,n} = n. Thus,

E {χn} = n+
d∑

k=1

(−1)kE {Nk,n} .

The first two cases of the theorem are now obvious consequences of Theorems 3.1
and 3.5. For the third case, using Theorem 3.8, we have

lim
n→∞

n−1χn = lim
n→∞

n−1
d∑

k=0

(−1)kN
(g)
k,n.

However, since N
(g)
k,n counts all the critical points in Rd, Morse theory implies

d∑
k=0

(−1)kN
(g)
k,n = χ(Rd) = 1,

and we can conclude that limn→∞ n−1χn = 0.

If, in addition, rdn satisfies the conditions of Proposition 3.9 (i.e., nrdn ⩾ D⋆ log n),
then

0 = lim
n→∞

d∑
k=0

(−1)kE
{
N

(g)
k,n −Nk,n

}
= 1− lim

n→∞
χn,

which implies that χn → 1.

Appendix A. Convergence of random variables

Probability theory uses a number of different notions of convergence. Below we
define the ones used in this paper.
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Let X1, X2, . . . be a sequence of real valued random variables, with the cumulative
distribution function (cdf) of Xn given by

Fn(x) = P (Xn ⩽ x) ,

and let X be a random variable with cumulative distribution function F .

Definition A.1. Xn converges in distribution, or in law to X (denoted by Xn
L−→ X)

if

lim
n→∞

Fn(x) = F (x)

for every x ∈ R at which F (x) is continuous.

This type of convergence is also sometimes referred to as “weak convergence.”

Definition A.2. Xn converges in Lp to X (denoted by Xn
Lp

−−→ X) if

E {|Xn −X|p} → 0.

Finally, let A be a Borel subset of R, and define the probability measures µn and
µ by

µn(A) = P (Xn ∈ A) , µ(A) = P (X ∈ A) .

Then the total variation distance between Xn and X, or between µn and µ, is defined
as

dTV(Xn, X) ≡ dTV(µn, µ) := sup
A

|P (Xn ∈ A)− P (X ∈ A)| ,

where the supremum is taken over all Borel subsets of R. This distance provides us
with the following notion of convergence.

Definition A.3. Xn converges in the total variation distance (Xn
TV−−→ X) if

lim
n→∞

dTV(Xn, X) = 0.

Note that both Lp and total variation convergence are stronger than convergence in
distribution. Further, while convergence in total variation and in distribution actually
refer only to convergence of (deterministic) measures and/or cdf’s, convergence in Lp

demands that all the random variables involved are defined on a common probability
space, and that the convergence is that of the random variables themselves.

Appendix B. Palm theory for Poisson processes

This appendix contains a collection of definitions and theorems which are used in
the proofs of this paper. Most of the results are cited from [23], although they may
not necessarily have originated there. However, for notational reasons we refer the
reader to [23], while other resources include [25, 4]. The following theorem is very
useful when computing expectations related to Poisson processes.

Theorem B.1 (Palm theory for Poisson processes, [23] Theorem 1.6). Let f be a
probability density on Rd, and let Pn be a Poisson process on Rd with intensity λn =
nf . Let h(Y,X ) be a measurable function defined for all finite subsets Y ⊂ X ⊂ Rd

with |Y| = k. Then
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E
{ ∑

Y⊂Pn

h(Y,Pn)
}
=

nk

k!
E {h(Y ′,Y ′ ∪ Pn)}

where Y ′ is a set of k i.i.d. points in Rd with density f , independent of Pn.

We shall also need the following corollary, which treats second moments:

Corollary B.2. With the notation above, assuming |Y1| = |Y2| = k,

E
{ ∑

Y1,Y2⊂Pn

|Y1∩Y2|=j

h(Y1,Pn)h(Y2,Pn)
}
=

n2k−j

j!((k − j)!)2
E {h(Y ′

1,Y ′
12 ∪ Pn)h(Y ′

2,Y ′
12 ∪ Pn)}

where Y ′
12 = Y ′

1 ∪ Y ′
2 is a set of 2k − j i.i.d. points in Rd with density f(x), indepen-

dent of Pn, and |Y ′
1 ∩ Y ′

2| = j.

Proof. Given |Pn| = m, the sum on the LHS is finite. Therefore,

E
{ ∑

Y1,Y2⊂Pn

|Y1∩Y2|=j

h(Y1,Pn)h(Y2,Pn)
∣∣∣|Pn| = m

}
(B.1)

=

(
m

2k − j

)(
2k − j

k

)(
k

j

)
E {h(Y1,Pn)h(Y2,Pn) | |Pn| = m}|Y1∩Y2|=j .

Choosing now all possible subsets Y of size 2k − j, and splitting each of them into
two arbitrary subsets Y1,Y2 of size k with |Y1 ∩ Y2| = j, yields

E
{ ∑

Y⊂Pn

|Y|=2k−j

h(Y1,Pn)h(Y2,Pn)
∣∣∣|Pn| = m

}
(B.2)

=

(
m

2k − j

)
E {h(Y1,Pn)h(Y2,Pn) | |Pn| = m}|Y1∩Y2|=j .

Combining (B.1), (B.2), and Theorem B.1 for subsets Y of size 2k − j yields

E
{ ∑

Y1,Y2⊂Pn

|Y1∩Y2|=j

h(Y1,Pn)h(Y2,Pn)
}

=

(
2k − j

k

)(
k

j

)
E
{ ∑

Y⊂Pn

|Y|=2k−j

h(Y1,Pn)h(Y2,Pn)
}

=
n2k−j

j!((k − j)!)2
E {h(Y ′

1,Y ′
12 ∪ Pn)h(Y ′

2,Y ′
12 ∪ Pn)} ,

where Y ′
12 = Y ′

1 ∪ Y ′
2 is a set of 2k − j i.i.d. points in Rd with density f(x), indepen-

dent of Pn, and |Y ′
1 ∩ Y ′

2| = j.

Appendix C. Stein’s method

In this paper we heavily used Stein’s method to derive limit theorems for the sums
of dependent Bernoulli variables. We need both the Poisson and normal approxima-
tions, which are presented below.
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Definition C.1. Let (I, E) be a graph. For i, j ∈ I we denote i ∼ j if (i, j) ∈ E. Let
{ξi}i∈I be a set of random variables. We say that (I,∼) is a dependency graph for
{ξi} if for every I1 ∩ I2 = ∅, with no edges between I1 and I2, the set of variables
{ξi}i∈I1

is independent of {ξi}i∈I2
. We also define the neighborhood of i as Ni :=

{i} ∪ {j ∈ I : j ∼ i}.

Theorem C.2 (Stein’s Method for Bernoulli Variables, Theorem 2.1 in [23]). Let
{ξi}i∈I be a set of Bernoulli random variables, with dependency graph (I,∼). Let

pi := E {ξi} , pi,j := E {ξiξj} , λ :=
∑
i∈I

pi, W :=
∑
i∈I

ξi, Z ∼ Poisson (λ) .

Then,

dTV (W,Z) ⩽ min(3, λ−1)
(∑

i∈I

∑
j∈Ni\{i}

pij +
∑
i∈I

∑
j∈Ni

pipj

)
.

Theorem C.3 (CLT for sums of weakly dependent variables, Theorem 2.4 in [23]).
Let (ξi)i∈I be a finite collection of random variables, with E {ξi} = 0. Let (I,∼) be
the dependency graph of (ξi)i∈I , and assume that its maximal degree is D − 1. Set
W :=

∑
i∈I ξi, and suppose that E

{
W 2
}
= 1. Then for all w ∈ R,

|FW (w)− Φ(w)| ⩽ 2(2π)−1/4

√
D2
∑
i∈I

E
{
|ξi|3

}
+ 6

√
D3
∑
i∈I

E
{
|ξi|4

}
,

where FW is the distribution function of W and Φ that of a standard Gaussian.
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