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ALGEBRAIC ANALOGUE OF THE
ATIYAH COMPLETION THEOREM

ALISA KNIZEL and ALEXANDER NESHITOV

(communicated by Ulf Rehmann)

Abstract
In topology there is a well-known theorem of Atiyah, Hirze-

bruch, and Segal which states that for a connected compact Lie

group G there is an isomorphism R̂(G) ∼= K0(BG), where BG
is the classifying space of G. In the present paper we consider an
algebraic analogue of this theorem. For a split reductive group
G over a field k, we prove that there is a natural isomorphism

K̂G
n (k)IG

∼= Kn(BG),

where KG
n (k) is Thomason’s G-equivariant K-theory of Spec k,

BG is a motivic étale classifying space introduced by Voevodsky
and Morel, and IG is the augmentation ideal of KG

0 (k).

1. Introduction

The classical topological result by Atiyah and Hirzebruch [1] states that for a

compact connected Lie group G there is an isomorphism R̂(G) ∼= K0(BG), where BG
is a topological classifying space of G, K0 stands for the topological K-theory, and

R̂(G) denotes the representation ring ofG completed in the augmentation ideal I. This
ideal is the kernel of the dimension map R(G)→ Z. Later, this result was proved for
all compact Lie groups G by Atiyah and Segal in [2]. In the present paper we establish
an algebraic analogue of the Atiyah-Hirzebruch result. In the algebraic setting we take
a split reductive algebraic group G and its étale classifying space BG constructed by
Morel and Voevodsky.

In the paper by B. Totaro [14] it is shown that lim←−K0(BGi) is equal to R̂(G) for
a specially chosen sequence BGi. However, to compute K0(BG) one needs to prove
that lim←−

1 K1(BGi) vanishes.

Two months after the present work was finished, there appeared a preprint by
A. Krishna [6] (unpublished) where a more general result is shown. For the action
of a split reductive algebraic group G on a smooth projective X, there is established

an isomorphism K̂G
n (X) = Kn(X/G), where X/G is the motivic quotient space. The
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author also constructs a counterexample when the theorem does not hold for action
on a non-projective variety ([6, Theorem 1.4]).

For a split reductive group G we present the following approach: We will work
over an arbitrary base field k. Morel and Voevodsky in [8, Definition 4.2.4, Propo-
sition 4.2.6] constructed a model of the étale classifying space of a linear algebraic
group G in the form BG =

∪
BGm, where BGm = EGm/G and EGm are k-smooth

algebraic varieties with a free G-action, connected by a sequence of G-equivariant
closed embeddings ik

· · · im−1−−−−→ (EG)m
im−−−−→ (EG)m+1

im+1−−−−→ · · · .

The motivic space EG =
∪

EGm is A1-contractible with a freeG-action ([8, Propo-
sition 4.2.3]). We consider a split reductive affine algebraic group G. A G-equivariant
vector bundle over the Spec k is the same as a k-rational representation of G. So we
will identify these two categories. Notice that this identification respects the tensor
products. In particular, we will identify Thomason’s KG

0 (k) with the representation
ring of k-rational representations R(G) of the group G.

The Borel construction sends a G-equivariant vector bundle V over the point to
the vector bundle Vm = (V × EGm)/G over BGm. This construction respects ten-
sor products. Therefore, it induces a KG

0 (k)-module map ϕm : KG
n (k)→ Kn(BGm).

Obviously, ϕm = ¯im
∗ ◦ ϕm+1, where ¯im : BGm → BGm+1 is an embedding induced

by im. As we prove below, Kn(BG) = lim←−Kn(BGm). Combining all these, we get a

KG
0 (k)-module map

Φn : KG
n (k)→ Kn(BG).

We will write BorelGn for Φn. Let IG be the kernel of the augmentation KG
0 (k)→

K0(k) = Z. Our main result is the following.

Theorem 1.1. In the following diagram both maps are KG
0 (k)-module isomorphisms:

̂KG
n (k)IG

B̂orelGn // K̂n(BG)IG Kn(BG),
completionGoo

where B̂orelGn is the IG completion of BorelGn , and completionG is the canonical map.

Let us mention that in the case when char k = 0 and G is semi-simple, all linear
G-representations are completely reducible, so the category of linear representations
is equivalent to the direct sum of the categories of vector spaces for every irreducible
representation, and so there is an isomorphism KG

n (k) = R(G)⊗Kn(k).

The main idea of the proof is the reduction to a Borel subgroup B of G. For
the Borel subgroup B the KB

0 (k)-modules Kn(BB) and KB
n (k) can be computed

explicitly. It results in the following theorem.

Theorem 1.2. The Borel construction induces an isomorphism

K̂B
n (k)IB

B̂orelBn // ̂Kn(BB)IB Kn(BB).
∼=oo

To make a reduction to the latter theorem, we prove the following.



ALGEBRAIC ANALOGUE OF THE ATIYAH COMPLETION THEOREM 291

Theorem 1.3. There is a commutative diagram of the form:

K̂G
n (k)IG

B̂orelGn //

res

��

K̂n(BG)IG

p̂∗

��

Kn(BG)oo

p∗

��
K̂B

n (k)IB
B̂orelBn //

ind
��

̂Kn(BB)IB

p̂∗
��

Kn(BB)
∼=oo

p∗

��
K̂G

n (k)IG
B̂orelGn // K̂n(BG)IG Kn(BG),oo

(1)

with ind ◦ res = id, p̂∗ ◦ p̂∗ = id, p∗ ◦ p∗ = id.

Note that the induction-restriction facts are similar to Theorem 1.13 in [13].
Clearly, the main theorem follows from Theorem 1.2 and Theorem 1.3. We expect
the analogous result for non-connected linear groups, as in the case of non-connected
compact Lie groups established by Atiyah and Segal.

The paper is organized as follows: In Section 2 we prove some auxiliary results.
The proof of the main result can be found in Section 3.
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2. Auxiliary results

In this section we give basic definitions of equivariant K-theory, which was devel-
oped by Thomason in [12] (c.f. [7]). In Subsection 2.1 we prove some properties of
pullback and pushforward morphisms for the functor KG

n . Some of them may be
found in [13]. In Subsection 2.2 we prove a number of statements needed to establish
the main result. Throughout this section we work in the category Schk of finite-type
schemes over the base field k, and the direct product is understood as the direct
product over k.

Definition 2.1. Let X be a G-variety. We consider an action µx : G×X → X and
a projection px : G×X → X. Let M be an OX -module. Following [7], we will call M
a G-module if there is an isomorphism of OG×X -modules α : µ∗

X(M)→ p∗X(M) such
that the cocycle condition holds:

p∗23(α) ◦ (idG × µx)
∗(α) = (m× idX)∗(α),

where p23 : G×G×X → G×X is a projection and m : G×G→ G is a product
morphism.
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Definition 2.2. We denote by P(G;X) the exact category of locally free G-modules
on X, and byM(G;X) we denote the abelian category of coherent G-modules on X.
Following [7], we set Kn(G;X) = Kn(P(G;X)) and K ′

n(G;X) = Kn(M(G;X)).

In the case when X is smooth over k, the natural homomorphism Kn(G;X)→
K ′

n(G;X) is an isomorphism by [13, Remark 1.9(a)], and we will denote Kn(G;X) =
K ′

n(G;X) by KG
n (X).

2.1. Pullback and pushforward maps in equivariant K-theory.
Here we recall some standard facts about pullback and pushforward maps. For

any equivariant f : X → Y morphism between G-varieties and a G-equivariant vec-
tor bundle L over Y , its pullback f∗L has a natural structure of a G-equivariant
vector bundle over X. According to [7, §2.2], this induces a pullback morphism
f∗ : KG

n (Y )→ KG
n (X). The morphism f : X → Y is called G-projective if f factors

as f : X → P(E)→ Y , where E is a G-vector bundle over Y , and the map X → P(E)
is an equivariant closed embedding. This morphism yields the pushforward homomor-
phism f∗ : K

G
n (X)→ KG

n (Y ) (see [12, 1.5] or [7, §2.2]). We will need the following
technical facts:

Lemma 2.3. Consider the following diagram:

Y3
Q // Y2

q // Y1

X3
T //

f3

OO

X2
t //

f2

OO

X1.

f1

OO

Here q and Q are flat, X2 = X1 ×Y1 Y2, X3 = X2 ×Y2 Y3. Let M be an OX1-module.
Define hh1 : q∗Rif1∗ → Rif2∗t

∗, hh12 : Q∗q∗Rif1∗ → Rif3∗T
∗t∗, hh2 : Q∗Rif2∗ →

Rif3∗T
∗ to be natural isomorphisms given by Proposition 9.3 of [3]. Then the fol-

lowing diagram commutes:

Q∗q∗Rif1∗M

hh12(M) ((PP
PPP

PPP
PPP

P
Q∗hh1(M) // Q∗Rif2∗t

∗M

hh2(t
∗M)

vvnnn
nnn

nnn
nnn

Rif3∗T
∗t∗M.

Proof. Since the statement is local on Yi, we consider the case when all Yi are affine,
Yi = Spec Ai. If F is an R-module, we will denote by F̃ the corresponding sheaf on
Spec R. Recall the construction of hh1. Let M be an OX1

-module. Then

Rif∗(M) = ˜Hi(X1,M); q∗Rif1∗M = ˜A2 ⊗A1 H
i(X1,M);Rif2∗t

∗M = ˜Hi(X2, t∗M).

Let Ui be an affine covering of X1. Denote by K = Č(X1,M) the corresponding Čech
complex. Since Y1 and Y2 are affine, t−1(Ui) is the affine covering of X2. For this
covering we have that A2 ⊗A1 K is a Čech complex of X2-module t∗M . Then hh1 is
an obvious morphism

A2 ⊗A1 H
i(K)→ Hi(A2 ⊗A1 K),

which becomes an isomorphism since A2 is flat over A1. In a similar way, one can
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construct hh12 and hh2. Then one can rewrite the diagram as

A3 ⊗A2 A2 ⊗A1 H
i(K)

hh12(M) ))SSS
SSSS

SSSS
SSSS

id⊗hh1 // A3 ⊗A2 H
i(A2 ⊗A1 K)

hh2(t
∗M)

uukkkk
kkkk

kkkk
kkk

Hi(A3 ⊗A1 K),

which is trivially commutative.

Lemma 2.4 (Equivariant version of [3, Proposition 9.3]). Consider the base change
diagram

A
F //

Q

��

B

q

��
X

f // Y,

where X,Y,A,B are G-varieties; f, F,Q, q are G-morphisms; and f is flat.

Let M be a G-module on B. Then there is a natural G-module isomorphism on X:

f∗Riq∗M → RiQ∗F
∗M.

Proof. By Proposition 9.3 from [3] we have a natural isomorphism of OX -modules
hhX,Y,A,B : f∗Riq∗M → RiQ∗F

∗M . We need to check that this is a G-morphism.
That means commutativity of the following diagram:

µ∗
Xf∗Riq∗M

µ∗
XhhX,Y,A,B

��

G-structure
// p∗Xf∗Riq∗M

p∗
XhhX,Y,A,B

��
µ∗
XRiQ∗F

∗M
G-structure

// p∗XRiQ∗F
∗M.

Consider the following diagram:

G×A
id×F //

id×Q

��

pA

##G
GG

GG
GG

GG

µA

##G
GG

GG
GG

GG
G×B

id×q

��

pB

##F
FF

FF
FF

FF

µB
##F

FF
FF

FF
FF

A
F

//

Q

��

B

q

��

G×X
id×f

//
pX

##G
GG

GG
GG

GG

µX
##G

GG
GG

GG
GG

G× Y
pY

##F
FF

FF
FF

FF

µY
##F

FF
FF

FF
FF

X
f // Y

For any square in this cube denote by hh (with corresponding subscript) the iso-
morphism arising from Proposition 9.3 of [3], applied to this square. We rewrite the
G-structure diagram:
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µ∗
Xf∗Riq∗M

1
// p∗Xf∗Riq∗M

(id× f)∗µ∗
Y R

iq∗M
2

//

(id×f)∗hhµ
G×Y,Y,G×B,B(M)

��

(id× f)∗p∗Y R
iq∗M

(id×f)∗hhp
G×Y,Y,G×B,B(M)

��
(id× f)∗Ri(id× q)∗µ

∗
BM 3

//

hhG×X,G×Y,G×A,G×B(µ∗
BM)

��

(id× f)∗Ri(id× q)∗p
∗
BM

hhG×X,G×Y,G×A,G×B(p∗
BM)

��
Ri(id×Q)∗(id× F )∗µ∗

BM 4
// Ri(id×Q)∗(id× F )∗p∗BM

Ri(id×Q)∗µ
∗
AF

∗M

hhµ
G×X,X,G×A,A

��

5
// Ri(id×Q)∗p

∗
AF

∗M

hhp
G×X,X,G×A,A

��
µ∗
XRiQ∗F

∗M // p∗XRiQ∗F
∗M.

Square 1 is commutative because of the definition of the G-structure on pullback.
Square 2 is an (id× f)∗ image of the G-structure diagram for Riq∗M . Thus it

commutes.
Square 3 arises from the functor isomorphism (id× f)∗Ri(id× q)∗ →

Ri(id×Q)∗(id× F )∗ applied to the G-structure isomorphism µ∗
BM → p∗BM . So it

commutes.
Square 4 is commutative because of the definition of the G-structure on pullback.
Square 5 is commutative by the definition of the G-structure on RiQ∗F

∗M .
By Lemma 2.3 compositions of vertical arrows are equal to µ∗

XhhX,Y,A,B and
p∗XhhX,Y,A,B . This concludes the proof of the lemma.

Lemma 2.5. Let X,Y be smooth G-varieties, let G be a smooth reductive affine
algebraic group, and let π : X × Y → Y be a projection. Moreover, let X be projective
and Y be connected.

Denote by Pπ(G;X × Y ) the full subcategory of P(G;X × Y ) consisting of locally
free G-modules P such that Rkπ∗P = 0 for k > 0.

Then any G-module M possesses a finite-length resolution of the form

M → P 0 → P 1 → · · · → PN → 0,

with P i ∈ OB(Pπ(G;X × Y )).

Proof. First, we prove that for every M there is an embedding M ↪→ P 0. We will
construct P 0 in the form of M(n) for a large enough n. To do this, we construct a very
ample G-equivariant sheaf OX(1) and a G-equivariant embedding i : X ↪→ Pn such
that OX(1) = i∗OP(1). Let L be a very ample line bundle. By Corollary 1.6 of [10]
L⊗k is G-equivariant for some k. Then it defines the action of G on V = Γ(X,L⊗k)
and equivariant morphism i : X → P(V ), which is an embedding since L⊗k is very
ample. Then we set OX(1) = L⊗k.



ALGEBRAIC ANALOGUE OF THE ATIYAH COMPLETION THEOREM 295

The standard embedding of the tautological bundle τP(V ) ↪→ V × P(V ) gives us a
G-equivariant embedding of locally free sheaves OP(V )(−1) ↪→ OP(V ) ⊕ · · · ⊕ OP(V ).
After twisting by OP(1), we have OP(V ) ↪→ OP(V )(1)⊕ · · · ⊕ OP(V )(1). Inductively we
have the G-equivariant embedding OP(V ) ↪→ OP(V )(n)⊕ · · · ⊕ OP(V )(n). Applying i∗,
we get

OX ↪→ OX(n)⊕ · · · ⊕ OX(n).

Define OX×Y (1) = π∗OX(1). Applying π∗ we get an equivariant embedding

M ↪→M(n)⊕ · · · ⊕M(n)

for an arbitrary locally free G-module M . Clearly its cokernel is G-equivariant. It is
easy to check that it is a locally free sheaf. Then for every locally free G-module there
is a resolution consisting of direct sums of modules of the form M(n).

Let us show that M(n) lies in Pπ(G;X × Y ) for a large enough n. Rkπ∗M(n) is
associated to a presheaf V 7→ Hk(X × V,M(n)). Consider a finite affine covering Vi of
Y . By Serre’s theorem Hk(X × Vi,M(n)) equals zero for n > ni. Thus, R

kπ∗M(n) =
0 for n > nM = max{ni}.

It remains to show that this resolution ends at some finite step. Let N =
dim(X × Y ). Let C0 be a cokernel of the first resolution step: 0→M → P 0 → C0 →
0. Then we have the exact sequence

0 = RNπ∗P
0 → RNπ∗C

0 → RN+1π∗M = 0.

So, RNπ∗C
0 = 0. For the second cokernel C1 we have the exact sequence 0→ C0 →

P 1 → C1 → 0. Then

0 = RN−1π∗P
1 → RN−1π∗C

1 → RNπ∗C
0 = 0.

So, RN−1π∗C
N−1 = 0. By induction we have all Rkπ∗C

N = 0. Then CN ∈
Ob(Pπ(G;X × Y )).

Corollary 2.6. This lemma allows us to give an explicit presentation of the push-

forward map f∗ in the case when there is an equivariant decomposition f : X
i
↪→

Y ×W → Y where W is G-equivariant and projective. Since all Rki∗M = 0 for any
G-module M and k > 0, we have two exact functors i∗P(G;X)→ P(G;Y × Pn)
and πY ∗ : PπY

(G;Y × Pn)→ P(G;Y ). By Quillen’s theorem, the inclusion of
PπY (G;Y × Pn) into P(G;Y × Pn) induces an isomorphism

Kn(PπY
(G;Y ×W ))

α→ Kn(P(G;Y ×W )) = KG
n (Y × Pn).

Then we can describe the pushforward map f∗ : KG
n (X)→ KG

n (Y ) as the following
composition:

KG
n (X)

Kn(i∗)−→ KG
n (Y ×W )

α−1

−→ Kn(PπY (G;Y ×W ))→ Kn(P(G;Y )) = KG
n (Y ).

2.2. Reduction arguments.
According to [8, §4.2], for a given embedding G→ GLN there is a sequence EGj

of open subsets of corresponding linear representations on ANj such that G acts freely
on EGj and the quotient EGj/G exists as a scheme. Moreover, the codimension of
the closed complement limits to infinity: limj→∞ codimANj (ANj \ EGj) =∞. Also,
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we assume that we fix closed embeddings EGj → EGj+1. Take BGj = EGj/G. This
gives a geometric model for the étale classifying space BG = colimjBGj .

Lemma 2.7. Under the notation of Lemma 2.5, we have a commutative up to an
isomorphism diagram of exact functors:

PπEGj
(G;EGj ×G/B)

πEGj∗

��

PπEGj+1
(G;EGj+1 ×G/B)

(ij×id)∗
oo

πEGj+1∗

��
P(G;EGj) P(G;EGj+1).

i∗j

oo

(2)

Proof. To simplify notation let πj = πEGj and Pj = PπEGj
(G;EGj ×G/B). Let us

prove that Pj+1 is mapped to Pj under (ij × id)∗. LetM ∈ Ob(Pj+1). Let dim(EGj ×
G/B) = N . Then RN+1πj∗(ij × id)∗M = 0. By Corollary 2 of [9, §5]

RNπj∗(ij × id)∗M ⊗OEGj
k(y) = HN (EGj × {y}, (ij × id)∗M)

= HN (EGj × {y},M) = 0.

Then RNπj∗(ij × id)∗M = 0. By induction we obtain that all Rkπj∗i
∗
jM = 0 for

k > 0. Then i∗jM ∈ Ob(P). By Lemma 2.3 we have a natural G-isomorphism hh :
i∗jπj+1∗M → πj∗(ij × id)∗M, so diagram (2) is commutative up to a natural isomor-
phism.

Lemma 2.8. Under the notation of Lemma 2.5, for each j ⩾ 0 the functor

π∗
j : P(G;EGj)→ P(G;EGj ×G/B)

takes values in the subcategory PπEGj
(G;EGj ×G/B). As a consequence, the follow-

ing diagram of exact functors commutes up to a natural isomorphism:

P(G;EGj)

π∗
j

��

P(G;EGj+1)
i∗j

oo

π∗
j+1

��
PπEGj

(G;EGj ×G/B) PπEGj+1
(G;EGj+1 ×G/B).

(ij×id)∗
oo

(3)

Proof. To simplify notation, let πj = πEGj
and Pj = PπEGj

(G;EGj ×G/B). First

we prove that π∗
j maps P(G;EGj) to Pj . Let M be an object of P(G;EGj). Then

Rkπj∗π
∗
jM is associated to the presheaf V 7→ Hk(V ×G/B, π∗

jM). Let V be an affine
open subset of EGj . Let {Un} be an affine covering of G/B. For any intersection
W = Un1 ∩ · · · ∩ Unk

, we have

π∗
jM(V ×W ) = M(V )⊗OEGj

(V ) OEGj×G/B(V ×W ) = M(V )⊗k OG/B(W ).

Then Čech complex Č({V × Un}, π∗
jM) equals M(V )⊗k Č({Un},OG/B). Con-

sequently, Hk(V ×G/B, π∗
jM) = M(V )⊗k Hk(G/B,OG/B).

By Proposition 4.5 of [5], Hk(G/B,OG/B) = 0 for k > 0. Then πj∗M ∈ Ob(Pj).
The commutativity of (3) trivially follows from the equality πj+1 ◦ (ij × id) =
ij ◦ πj .
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Lemma 2.9. Composition πEGj∗ ◦ π∗
EGj

is naturally isomorphic to idP(G;EGj):

P(G;EGj)
π∗
EGj // PπEGj

(EGj ×G/B)
πEGj∗// P(G;EGj).

Proof. Let M ∈ Ob(P(G;EGj)). The sheaf πEGj∗π
∗
EGj

M is associated to presheaf

V 7→ π∗
EGj

(M)(V ×G/B). Since π∗
EGj

M is a sheaf associated to W 7→M(πEGj (W )),

we see that πEGj∗π
∗
EGj

M is associated to the presheaf V 7→M(V ). So, in the cate-
gory of presheaves, πEGj∗π

∗
EGj

∼= id. Applying the sheaffication functor to this iso-
morphism, we get a natural isomorphism πEGj∗π

∗
EGj

M ∼= M .

The same reasoning proves the statement for the projection πpt : G/B → pt =
Spec k.

Lemma 2.10. Composition πpt∗ ◦ π∗
pt is naturally isomorphic to idP(G;pt):

P(G; Spec k)
π∗
pt−→ Pπpt(G/B)

πpt∗−→ P(G; Spec k).

Lemma 2.11. Using the notation of Lemma 2.5, we have a diagram of exact functors
that is commutative up to an isomorphism:

Pπpt(G;G/B)

πpt∗

��

π∗
G/B // PπEGj

(G;EGj ×G/B)

πEGj∗

��
P(G; Spec k) // P(G;EGj).

(4)

Proof. Let us prove that Pπpt(G;G/B) is mapped to PπEGj
(G;EGj ×G/B) under

π∗
G/B . Let M ∈ Ob(Pπpt(G;G/B)). Then, by Proposition 9.3 of [3], RkπEGj (π

∗
G/BM)

is isomorphic to π∗
pt(R

kπpt∗M). The latter sheaf is zero by definition of Pπpt(G;G/B)

for k > 0. So, for k > 0 we have RkπEGj (π
∗
G/BM) = 0; then π∗

G/BM ∈
Ob(PπEGj

(G;EGj ×G/B)).

Commutativity of diagram (4) follows immediately from Lemma 2.4.

Lemma 2.12. Under the notation of Lemma 2.5, functor

π∗
pt : P(G; Spec k)→ P(G;G/B)

takes values in the subcategory Pπpt(G;G/B). As a consequence, the following diagram
of exact functors commutes up to a natural isomorphism:

P(G; Spec k)

π∗
pt

��

π∗
pt // P(G;EGj)

π∗
EGj

��
Pπpt(G;G/B)

π∗
G/B // PπEGj

(G;EGj ×G/B).

(5)
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Proof. We prove that π∗
pt maps P(G; Spec k) to Pπ∗

pt
(G;G/B). Let M be an object

of P(G; Spec k). Then Rkπpt∗π
∗
ptM is a vector space Hk(G/B, π∗

ptM). Let {Un} be
an affine covering of G/B. For any intersection W = Un1 ∩ · · · ∩ Unk

, we have

π∗
ptM(W ) = M ⊗k OG/B(W ).

Then Čech complex Č({Un}, π∗
ptM) equals M ⊗k Č({Un},OG/B). Consequently,

Hk(G/B, π∗
jM) = M ⊗k Hk(G/B,OG/B).

By [5, Proposition 4.5], Hk(G/B,OG/B) = 0 for k > 0. Then πpt∗M ∈ Ob(Pπpt

(G;G/B)). The commutativity of (5) trivially follows from the equality πpt ◦ πEGj =
πpt ◦ πG/B .

Remark 2.13. As we can see from proofs of Lemmas 2.7–2.12, we can replace G/B by
any projective G-variety X such that h0(X,OX) = 1 and hi(X,OX) = 0, for i > 0.

Proposition 2.14. There is a commutative diagram with πEGi∗ ◦ π∗
EGi

= idKG
n (EGi),

πpt∗π
∗
pt = idKG

n (k):

KG
n (k)

π∗
pt

��

π∗
pt // KG

n (EGi)

π∗
EGi

��
KG

n (G/B)
π∗
G/B //

πpt∗
��

KG
n (EGi ×G/B)

πEGi∗

��
KG

n (k)
π∗
pt // KG

n (EGi)

Proof. By Lemmas 2.11 and 2.12 we get the following commutative categories dia-
gram with exact arrows:

P(G; Spec k)

π∗
pt

��

π∗
pt // P(G;EGj)

π∗
EGj

��
Pπpt(G;G/B)

πpt∗

��

π∗
G/B // PπEGj

(EGj ×G/B)

πEGj∗

��
P(G; Spec k)

π∗
pt // P(G;EGj).

(6)

Recall that, by Quillen’s theorem and Lemma 2.5, categories inclusion Pπpt(G;G/B)⊆
P(G;G/B) induces an isomorphism Kn(P(G;G/B))→ Kn(Pπpt(G;G/B)). Then
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applying Kn to diagram (6) gives us

KG
n (k)

π∗
pt

��

π∗
pt // KG

n (EGi)

π∗
EGi

��
KG

n (G/B)
π∗
G/B //

πpt∗
��

KG
n (EGi ×G/B)

πEGi∗

��
KG

n (k)
π∗
pt // KG

n (EGi).

Equalities πEGi∗ ◦ π∗
EGi

= idKG
n (EGi) and πpt∗π

∗
pt = idKG

n (k) immediately follow from
Lemmas 2.9 and 2.10.

Remark 2.15. In particular, we get a well-known fact that the natural ring map
R(G)→ R(B) is injective.

Remark 2.16. By Remark 2.13, we can replace G/B in the statement of Proposition
2.14 by any projective G-variety X such that h0(X,OX) = 1 and hi(X,OX) = 0 for
i > 0.

Lemma 2.17. Suppose R is a commutative ring with an action of a finite group
W . Let S denote the invariant subring S = RW . Let IR be an ideal of R, and let
IS = S ∩ IR. Suppose that q is a prime ideal in R and q ⊇ IS. Then q ⊇ IR.

Proof. Denote W = {σ1, . . . , σn}. Consider x ∈ IR. For any symmetric polynomial
f ∈ R[t1, . . . tn] we have that f(x

σ1 , . . . , xσn) is invariant under the W -action, and so
f(xσ1 , . . . , xσn) ∈ S ∩ IR = IS ⊆ q. Denote by f1, . . . , fn the elementary symmetric
polynomials. Then x is a root of the polynomial

n∏
i=1

(t− xσi) = tn − f1(x
σ1 , . . . , xσn)tn−1 + · · ·+ (−1)nfn(xσ1 , . . . , xσn).

Then

xn = −(−f1(xσ1 , . . . , xσn)xn−1 + · · ·+ (−1)nfn(xσ1 , . . . , xσn)) ∈ q.

So xn ∈ q. Since q is prime, x ∈ q. Thus, IR ⊆ q.

Proposition 2.18. The IB-adic topology of R(B) coincides with the IG ·R(B)-adic
topology.

Proof. Let T be a maximal torus in G. Then R(B) = R(T ) and IB = IT , where IT is
the ideal of zero-dimensional representations of T . We will prove that

√
IG ·R(T ) =

IT . Denote by W = NG(T )/T the Weyl group of G. The group W acts by conjugation
on R(T ). It is known that W is a finite group and R(G) is the ring of invariants of
W : R(G) = R(T )W . Then taking R = R(T ) and S = R(G) in Lemma 2.17, we have
that any prime ideal of R(T ) containing IG contains IT . Then we have equality for
its radicals

√
IG ·R(T ) =

√
IT . Since IT is prime, IT =

√
IT . So

√
IG ·R(B) = IB.

Since R(B) is noetherian, this implies that ImB ⊆ IG ·R(B) for some m. Then IB and
IG ·R(B) determine the same topology on R(B).
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Proposition 2.19. Kn(BG) = lim←−Kn(BGi).

Proof. By [15, Theorem 6.9] algebraic K-theory is representable in the stable A1-
homotopy category, and then [4, Proposition 2.2.11(c)] implies the Milnor exact
sequence:

0→ lim←−
1Kn+1(BGi)→ Kn(BG)→ lim←−Kn(BGi)→ 0.

Let us show that lim←−
1Kn(BGi) = 0, for any n > 0.

We prove that the sequenceKn(BGi) is a direct summand of the sequenceKn(BBi).

By Proposition 1 of [7] we have Kn(BGi) = KG
n (EGi). Since we can choose EGi

as a model for EBi, we obtain

Kn(BBi) = KB
n (EBi) = KB

n (EGi) = KG
n (EGi ×G/B).

So, in fact, we prove that the sequence KG
n (EGi) is a direct summand of the sequence

KG
n (EGi ×G/B).

To simplify the notation denote Pj = PπEGj
(G;EGj ×G/B). By Lemmas 2.11

and 2.12 we obtain a commutative diagram with exact arrows:

P(G;EGj)

π∗
j

��

P(G;EGj+1)
(ij×id)∗

oo

π∗
j+1

��
Pj

πj∗

��

Pj+1
(ij×id)∗

oo

πj∗

��
P(G;EGj) P(G;EGj+1).

i∗j

oo

(7)

By Lemma 2.10 the composition

P(G;EGj)
π∗
j−→ Pj

πj∗−→ P(G;EGj)

is naturally isomorphic to idP(G;EGj). In the proof of Lemma 2.7 we checked that
(ij × id)∗(Pj+1) ⊆ Pj . By Lemma 2.5 each G-module in P(G;EGj ×G/B) has a
finite resolution consisting of sheaves from Pj . Then by Quillen’s theorem we get the
isomorphisms αj such that the following diagram of groups commutes:

Kn(Pj)

αj

��

Kn(Pj+1)

αj+1

��

(ij×id)∗
oo

KG
n (EGj ×G/B) KG

n (EGj+1 ×G/B).
(ij×id)∗

oo

(8)

In Corollary 2.6 we defined πj∗ : KG
n (EGj ×G/B)→ KG

n (EGj) as the composition
of

KG
n (EGj ×G/B)

α−1
j−→ Kn(Pj)

πj∗−→ KG
n (EGj).
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Commutativity of the diagrams (7) and (8) gives us a commutative diagram:

KG
n (EGj)

π∗
j

��

KG
n (EGj+1)

(ij×id)∗
oo

π∗
j+1

��
KG

n (EGj ×G/B)

πj∗

��

KG
n (EGj+1 ×G/B)

(ij×id)∗
oo

πj+1∗

��
KG

n (EGj) KG
n (EGj+1).

i∗j

oo

(9)

As we have shown, compositions of vertical arrows are identity, soKG
n (EGj) is a direct

summand of sequence KG
n (EGi ×G/B) = Kn(BBj). Since lim←−

1(Kn(BBj)) = 0 we

get lim←−
1(KG

n (EGj)) = 0. It remains to show that lim←−
1(Kn(BBj)) = 0. Let T be a

maximal torus. Since B/T is an affine space, we have that BTj → BBj is locally
trivial with fibers being affine spaces. Then pullback map Kn(BBj)→ Kn(BTj) is a
natural isomorphism. Since G is split, T is a split torus, T = Gm × · · · ×Gm. Then
BTj = Pj × · · · × Pj . So, Kn(BTj) = Kn(k)[t1, . . . , tn]/(t

j+1
1 , . . . , tj+1

n ). Embedding
pullbacks act as follows:

tk mod (tj+1
1 , . . . , tj+1

n ) 7→ tk mod (tj1, . . . , t
j
n).

Then all morphisms in the sequence · · · → Kn(BTj)→ Kn(BTj−1)→ · · · are surjec-
tive. Then lim←−

1(Kn(BTi)) = 0, and consequently, lim←−
1(Kn(BBi)) = 0. This concludes

the proof.

3. Proof of main result

Theorem 3.1. The Borel construction induces an isomorphism

K̂B
n (k)IB

B̂orelBn−→ ̂Kn(BB)IB
∼=←− Kn(BB).

Proof. We define BorelBn : KB
n (k)→ Kn(BB) in the following way: For any j we

construct (BorelBn )j : K
B
n (k)→ KB

n (EBj) as a pullback of a projection πpt : EBj →
Spec k. By Proposition 1 of [7], KB

n (EBj) are isomorphic to Kn(BBj). So we get
(BorelBn )j : K

B
n (k)→ Kn(BBj). By Proposition 2.19, we obtain BorelBn = lim←−

(BorelBn )j : K
B
n (k)→ Kn(BB).

Let T be a maximal torus of G. By Corollary 1 of [7] exact functor P(T ; Spec k)→
P(B;B/T ) induces an isomorphism KT

n (k)
∼= KB

n (B/T ). Note that B/T can be iden-
tified with a linear representation of the group B, so by Theorem 3 of [7] the pullback
morphism KB

n (k)→ KB
n (B/T ) is an isomorphism. Recall that we may choose the

models BTj and BBj of the form BTj = EBj/T and BBj/B. Then BTj → BBj is
locally trivial with fibers being affine spaces. Then using the homotopy equivalence
for non-equivariant K-theory, we have that Kn(BBj)→ Kn(BTj) is an isomorphism.



302 ALISA KNIZEL and ALEXANDER NESHITOV

So we get the commutative diagram

KB
n (k)

∼=
��

BorelBn // Kn(BB)

∼=
��

KB
n (B/T )

∼=
��

π∗
B/T // Kn(BB ×B/T )

∼=
��

KT
n (k)

BorelTn // Kn(BT ).

Therefore, it suffices to prove our theorem for maximal torus T . Since G is split,

T = Gm × · · · ×Gm (j times).

Let us compute KT
n (k) and KT

n (k)IT .
Since KT

n (k) = Kn(k)⊗Z R(T ) we have that

R(T ) = Z[λ1, . . . , λj , t]/(λ1 · . . . · λj · t = 1).

IT = (1− λ1, . . . , 1− λj , 1− t). So, we have the following:

̂KT
n (k)IT = R̂(T )IT ⊗Z Kn(k)

R̂(T )IT = lim←−Z[λ1, . . . , λj , t]/((Πλi · t− 1), (1− λ1)
k, . . . , (1− λj)

k, (1− t)k)

= lim←−Z[1− λ1, . . . , 1− λj , 1− t]/((Πλi · t− 1),

(1− λ1)
k, . . . , (1− λj)

k, (1− t)k)

= Z[[1− λ1, . . . , 1− λj , 1− t]]/(Πλi · t− 1)
= Z[[µ1, . . . , µl, 1− t]]/(Π(1− µi) · t− 1).

Since 1
1−µi

= 1 + µi + µ2
i + µ3

i + · · · , it follows that t =
∏
(1 + µi + µ2

i + · · · ). There-
fore we have 1− t = 1− (1 + µ1 + · · ·+ µj + · · · ) = −(µ1 + · · ·+ µj + · · · ). Then

R̂(T )IT = Z[[µ1, . . . , µj ]].

Finally we get

̂KT
n (k)IT = Kn(k)[[µ1, . . . , µj ]].

Let us compute Kn(BT ).
We can choose for ET the space A∞\{0} × · · · × A∞\{0}. This is a contractible

space with free T -action. Then ETk = Ak+1\{0} × · · · × Ak+1\{0} and BTk =
Pk × · · · × Pk. Then Kn(BTk) = Kn(k)[x1, . . . , xn]/(x

k
1 , . . . , x

k
n).

So we have BT = P∞ × · · · × P∞. And finally we get

Kn(BT ) = lim←−Kn(BTk) = Kn(k)[[x1, . . . , xn]].

The Borel construction KT
n (k)→ Kn(BTk) works as follows:

λi 7→ 1− xi

t 7→ 1
(1−x1)···(1−xn)

= (1 + x1 + · · ·+ xk−1
1 ) · · · (1 + x1 + · · ·+ xk−1

1 ).

Then on K̂T
n (k)IT the Borel construction induces an isomorphism µi 7→ xi. Let us
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prove that Kn(BT ) is complete in the IT -adic topology. The R(T )-module structure
on Kn(BT ) arises from the R(T )-structure on K0(BT ) = Z[[x1, . . . , xn]]. Then IT ·
Kn(BT ) = (x1, . . . , xn). Therefore Kn(BT ) is complete. This completes the proof of
the theorem.

Theorem 3.2. There is a commutative diagram of the following form:

K̂G
n (k)IG

B̂orelGn //

α

��

K̂n(BG)IG

p̂∗

��

Kn(BG)
completionGoo

p∗

��
K̂B

n (k)IB
B̂orelBn //

β

��

̂Kn(BB)IB

p̂∗
��

Kn(BB)
completionBoo

p∗

��
K̂G

n (k)IG
B̂orelGn // K̂n(BG)IG Kn(BG),

completionGoo

(10)

with β ◦ α = id, p̂∗ ◦ p̂∗ = id, and p∗ ◦ p∗ = id.

Proof. Since EGi → BGi is a G-torsor, Kn(BGi) = KG
n (EGi). By Proposition 1

of [7] EG can be chosen as a model for the contractible space EB. Proposition 1
of [7] also allows us to express all these objects in terms of G-equivariant K-theory:
KB

n (k) ∼= KG
n (G/B) KB

n (EGj) = KG
n (EGj ×G/B).

So, first we construct

KG
n (k)

π∗
pt //

π∗
pt

��

KG
n (EGi)

π∗
EGi

��
KG

n (G/B)
π∗
G/B //

πpt∗

��

KG
n (EGi ×G/B)

πEGi∗

��
KG

n (k)
π∗
pt // KG

n (EGi).

(11)

Proposition 2.14 proves that this diagram commutes and πpt∗ ◦ π∗
pt = id and πEGi∗ ◦

π∗
EGi

= id. Recall that KG
n (EGj) = Kn(BGj), KG

n (EGj ×G/B) = Kn(BBj), and

KG
n (G/B) = KB

n (k).
Therefore we can rewrite the above diagram as follows:

KG
n (k)

π∗
pt //

π∗
pt

��

Kn(BGi)

π∗
EGi

��
KB

n (k)
π∗
G/B //

πpt∗

��

Kn(BBi)

πEGi∗

��
KG

n (k)
π∗
pt // Kn(BGi).

(12)
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Take the projective limit of this diagram. Recall that lim←−Kn(BBi) = Kn(BB) and by
Proposition 2.19 we have lim←−Kn(BGi) = Kn(BG). So we get a commutative diagram

of KG
0 (k)-modules

KG
n (k)

BorelGn //

π∗
pt

��

Kn(BG)

lim←−π∗
EGi

��
KB

n (k)
BorelBn //

πpt∗

��

Kn(BB)

lim←−πEGi∗

��
KG

n (k)
BorelGn // Kn(BG).

(13)

Here we still have πpt∗ ◦ π∗
pt = id and lim←−πEGi∗ ◦ lim←−π∗

EGi
= id. Let us denote p∗ =

lim←−πEGi∗ and p∗ = lim←−π∗
EGi

. Recall that R(G)-structures on Kn(BB) and KB
n (k) are

induced by the R(G)-structure on R(B). Then Proposition 2.18 implies that IG-adic
completions of Kn(BB) and KB

n (k) coincide with IB-adic completions. So, by taking
the IG-adic completion of (13), we obtain the commutative diagram

K̂G
n (k)IG

B̂orelGn //

π̂∗
pt

��

K̂n(BG)IG

p̂∗

��

K̂B
n (k)IB

B̂orelBn //

π̂pt∗
��

̂Kn(BB)IB

p̂∗
��

K̂G
n (k)IG

B̂orelGn // K̂n(BG)IG

(14)

with π̂pt∗ ◦ π̂∗
pt = id and p̂∗ ◦ p̂∗ = id. Consider the commutative diagram

K̂n(BG)IG

p̂∗

��

Kn(BG)

p∗

��

completionGoo

̂Kn(BB)IB

p̂∗
��

Kn(BB)

p∗

��

completionBoo

K̂n(BG)IG Kn(BG).
completionGoo

(15)

Set α = π̂∗
pt, β = π̂pt∗, and recall that KG

n (G/B) = KB
n (k). Then by gluing together
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(15) and (14), we obtain the diagram (10):

K̂G
n (k)IG

B̂orelGn //

α

��

K̂n(BG)IG

p̂∗

��

Kn(BG)
completionGoo

p∗

��
K̂B

n (k)IB
B̂orelBn //

β

��

̂Kn(BB)IB

p̂∗
��

Kn(BB)
completionBoo

p∗

��
K̂G

n (k)IG
B̂orelGn // K̂n(BG)IG Kn(BG),

completionGoo

with β ◦ α = id, p̂∗ ◦ p̂∗ = id, and p∗ ◦ p∗ = id.

These two theorems immediately imply the main result:

Theorem 3.3. In the following diagram both maps are KG
0 (k)-module isomorphisms:

̂KG
n (k)IG

B̂orelGn−→ K̂n(BG)IG
completionG←− Kn(BG).

Proof. Theorem 3.2 states that B̂orelGn and completionG are retracts of B̂orelBn and

completionB which are isomorphisms by Theorem 3.1. Then B̂orelGn and completionG

are also isomorphisms.
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