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MOTIVES AND ORIENTED COHOMOLOGY
OF GENERICALLY CELLULAR VARIETIES

ALEXANDER NESHITOV
(communicated by Ulf Rehmann)

Abstract

For a cellular variety X over a field k& of characteristic 0
and an algebraic oriented cohomology theory h of Levine-Morel
we construct a filtration on the cohomology ring h(X) such
that the associated graded ring is isomorphic to the Chow ring
of X. Using this filtration we establish the following comparison
result between Chow motives and h-motives of generically cellu-
lar varieties: any irreducible Chow-motivic decomposition of a
generically cellular variety Y gives rise to an h-motivic decompo-
sition of Y with the same generating function. Moreover, under
some conditions on the coefficient ring of h the obtained h-
motivic decomposition will be irreducible. We also prove that
if the Chow motives of two twisted forms of Y coincide, then
their h-motives coincide as well.

1. Introduction

We work over the base field k of characteristic 0. The notion of an algebraic oriented
cohomology theory was studied by Levine-Morel [11] and Panin-Smirnov [15]. In this
paper we will work with an oriented cohomology theory h in the sense of Levine-Morel
introduced in [11, §1.1]. Moreover, we assume that h is generically constant and has
the localization property (see Definition 2.7). We denote its coefficient ring h(Spec k)
by A. Let X be a cellular variety with N = dim X. We construct a filtration

h(X) = h(O)(X) ) h(l)(X) 2..-D h(N)(X) D0
on the cohomology ring such that the associated graded ring
Grea(X) = @n? (X)/n ) (X)
i>0

is isomorphic (as a graded ring) to the Chow ring CH*(X,A) of algebraic cycles
modulo rational equivalence relation with coefficients in the ring A. We exploit this
filtration and isomorphism in the context of h-motives of generically cellular varieties.
The latter is a natural generalization of the notion of Chow motives to the case of an
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arbitrary algebraic oriented cohomology theory of Levine-Morel. The first construc-
tion of the category of h-motives was introduced by Manin in [12]. This notion was
also studied by Nenashev-Zainoulline in [14] and Vishik-Yagita in [18].

Let A? denote the i-th graded component of the coefficient ring A. We prove the
following theorem that relates the h-motive of a generically cellular variety to its
Chow motive:

Theorem A. Let X be a generically cellular variety over k, i.e., cellular over the
function field k£(X). Assume that the Chow motive of X with coefficients in A? splits
as

M (X, A%) = P R(ai),
=1

for some motive R that splits as a direct sum of twisted Tate motives R = @;":1 A°(B;)
over its splitting field.
Then the h-motive of X splits as

ME(X) = @Rh(ai)

for some motive Ry, and over the same splitting field Ry splits as a direct sum of
twisted h-Tate motives Ry = -, A(5;).

This result can also be derived from the arguments of [18] where it is proved that
sets of isomorphism classes of objects of categories of Chow motives and 2-motives
coincide. However, our approach gives a more explicit correspondence between the
idempotents defining the (Chow) motive R and the h-motive Ry. The latter allows
us to prove the following result concerning the indecomposability of the h-motive Ry:

Theorem B. Assume that A' = --- AN =0, where N = dim X.
If the Chow motive R is indecomposable (over A®), then the h-motive Ry, is inde-
composable (over A).

and also the following comparison property:

Theorem C. Suppose that X,Y are generically cellular and Y is a twisted form of
X, i.e., Y becomes isomorphic to X over some splitting field.

If MCH(X,A%) = M(Y,AY), then M®(X) = M®(Y).

The paper is organized as follows: In section 2 we recall concepts of an algebraic
oriented cohomology theory h of Levine-Morel and the corresponding category of h-
motives. In section 3 we introduce the filtration on the cohomology ring h(X) of a
cellular variety X, which plays a central role in the paper. In section 4 we apply
the filtration to obtain comparison results between h-motives and Chow-motives of
generically split varieties.
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2. Preliminaries

In the present section we recall the notions of algebraic oriented cohomology theory,
formal group law, and cellular variety. We recall the definition of the category of h-
motives with the inverted Tate object.

Oriented cohomology theories

In this subsection we give a definition of a generically constant oriented cohomology
theory with localization property (Definition 2.7). Let Schy denote the category of
separated schemes of finite type over Spec k = pt, and Smy, its full subcategory of
smooth quasiprojective schemes.

Definition 2.1. ([11, Definition 1.1.2])
An algebraic oriented cohomology theory h* on Smy, is given by
(D1) Additive functor h*: Sm;” — Commutative graded rings;
(D2) For every projective morphism f: X — Y of relative codimension d, a homo-
morphism of graded h*(Y)-modules f,: h*(X) — h*T¢(Y).
These satisfy the list of axioms (A1), (A2), (PB), (EH) of [11, Definition 1.1.2].

Let us fix some notation. For a morphism f: X — Y in Smy we will denote its
image h*(f): h*(Y) — h*(X) by f® and call it the pullback morphism of f. For a
projective f: X — Y of relative codimension d the morphism f;: h*(X) — h*+4(Y)
introduced in (D2) is called the pushforward morphism of f.

We denote the coefficient ring h*(pt) by A*. As for the Chow groups, we will also
use the lower grading notation for h, i.e., h;(X) = h¥™X=#(X) for an irreducible
variety X.

Let Schj, denote the subcategory of Schy consisting of projective morphisms
between all the schemes in Schy,

Definition 2.2. ([11, Definition 2.1.2])
An oriented Borel-Moore functor H, on the category Schy is given by
e An additive functor H,: Schj — Graded abelian groups;

e For each smooth equidimensional morphism f: X — Y of relative dimension d,
a homomorphism of abelian groups f*: H,.(Y) — H.1q(X);
e For each line bundle L on X, a homomorphism of abelian groups ¢;: H.(X) —
H._1(X).
These data satisfy the axioms (A1)-(A5) of [11, Definition 2.1.2].

An oriented Borel-Moore functor H, is called an oriented Borel-Moore weak homol-
ogy if it additionally satisfies the axioms of [11, Definition 4.1.9].

Remark 2.3. Replacing Schy by Smy, in the previous definition, we get the notion
of an oriented Borel-Moore weak homology on Smy,.

Definition 2.4. ([11, Definition 4.4.6]) The oriented Borel-Moore weak homology H
on Schy, has the localization property if the following sequence is exact:

Ho(Z) 5 H (X) 5 H.(U) =0

for any closed immersion Z — X and its open complement U — X in Schy.
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Following the approach of [11, §4.4.1] for a finitely generated field extension F/k
and for every scheme X over k, we define the value of the oriented Borel-Moore weak
homology on the scheme X xj F' as follows:

H*(X Xk F) = colimU H*+dij(X Xk U),

where the colimit is taken over the category whose objects are schemes U € Schy, such
that k(U) = F, and whose morphisms are smooth birational maps between them.
Since k has characteristic zero, we may assume that all the schemes U are smooth.
Then we get a canonical map H.(X) — H.(X xj F) arising from the pullbacks
H.(X) = Hiidgimu (X x U). Note that for the case F = k(Y') for Y € Smy, the defi-
nition gives the identification H.(X xj k(Y)) = colimycy Hutdimy (X X U), where
the colimit is taken over the category of open subsets of Y.

Definition 2.5. ([11, Definition 4.4.1]) The oriented Borel-Moore weak homology
H, on Schy is generically constant if, for every finitely generated separable field
extension F/k, the canonical morphism H, (k) — H,(F') is an isomorphism.

According to [11, Remark 5.2.7] every oriented cohomology theory h* defines an
oriented Borel-Moore weak homology on the category Smy,.

Definition 2.6. We say that an oriented cohomology theory h* is associated to a
Borel-Moore weak homology H, on Schy, if the restriction of H, to the category Smy,
coincides with the oriented Borel-Moore homology defined on Smy, by the theory h*.

Definition 2.7. An oriented cohomology theory h* is generically constant with a
localization property if it is associated to some oriented Borel-Moore weak homology
H, that is generically constant and satisfies the localization property.

Remark 2.8. Examples of the theories h* defined above include Chow groups CH,
Grothendieck K, algebraic cobordism of Levine-Morel 2%, and the theories of the
form Q* ®p, A given by arbitrary formal group law over the base ring A.

Formal group law

For an oriented cohomology theory h* there is a notion of the first Chern class of a
line bundle. For X € Smy, and a line bundle L over X it is defined as ¢ (L) = 2P2,(1) €
h!'(X), where z: X — L is a zero section. There is a commutative associative 1-
dimensional formal group law F' over A* such that for any two line bundles L; and
Ly over X we have ¢ (L; ® Ly) = F(& (L), (L)) [11, Lem. 1.1.3]. We will use the
notation z +p y for F(z,y). For any « we will denote by —px the unique element
such that « +p (—pz) = 0. For any n € Z we will denote by n - z the expression
x+p - +px (ntimes) if n is positive, and (—pz) +F5 - - +5 (—pz) (—n times) if n
is negative.

By [11] there is a universal formal group law Fy over the Lazard ring L. It cor-
responds to the algebraic cobordism theory 2 and there is a natural transformation
Q*(—=) — h*(—) that commutes with pushforwards. This gives rise to a morphism

vx: Q(X) @ A* — b*(X),

where the ring homomorphism L* — A* is obtained by specializing the coefficients of
Fy to the coefficients of F'. We will call vx the specialization homomorphism.
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Cellular and generically cellular varieties

Definition 2.9. A variety X € Smy, is called cellular if there is a filtration of X =
Xo 2 X1 2+ 2 X,, 2 0 such that each X; \ X, is a disjoint union of affine spaces
of the same rank ¢;: X; \ Xjp1 = AP [[---[TA}.

Definition 2.10. A variety X is called generically cellular if Xj,(x) is a cellular vari-
ety over k(X), where k(X) is the function field of X.

Example 2.11. Let G be a split semisimple algebraic group, B its Borel subgroup
containing a fixed maximal split torus 7', and W the corresponding Weyl group. For
any w € W let I(w) denote its length. Let wy € W denote the longest element of W
and N = [(wp). Then the flag variety X = G/B is cellular of dimension N and the
cellular structure is given by the Schubert cells X,,:

X:Xw(,:_) U Xw:_) U Xw:_)"'QXe:
l(w)=N-1 l(w)=N-2
where X, is the closure of BwB/B in X.

Example 2.12. Let ¢ € Z'(k,G) be a 1-cocycle with values in G. Then the twisted
form (G/B) of X = G/B provides an example of a generically split variety.

h-motives

The notion of h-motives for the algebraic oriented cohomology theory h first
appeared in [12]. Later it was studied in [14] and [18]. We refer to [18, §2] for
the definition of the category of effective h-motives. In the present paper we will deal
with the category of h-motives My with the inverted Tate object. It is constructed
as follows:

Let SmProj, denote the category of smooth projective varieties over k. Follow-
ing [5], we consider the category Corry, defined as follows: For X,Y € SmProj, with
irreducible X and m € Z we set

Corrm(X,Y) = haim x+m(X X Y).

Objects of Corry are pairs (X, ) with X € SmProj, and ¢ € Z. For X € SmProj,
with irreducible components X; define the morphisms

Homcorr ((X,4), (Y, 4)) = H Corr;—j(X1,Y).
1

For a € Hom((X,i), (Y, ])) and € Hom((Y,j), (Z, k)) the composition is given
by the usual correspondence product: a0 8 = (pxz)u((py 2)*(8) - (pxy)*(cx)), where
Pxy,Pyz,Pxz denote the projections from X x Y x Z onto the corresponding sum-
mands.

Taking consecutive additive and idempotent completion of Corry, we obtain the
category My of h-motives with inverted Tate object. Objects of this category are
(LL; (X%, mi), p) where p is a matrix with entries p; j € Corry, —pn; (X;, X;) such that p o
p = p. Morphisms between (][(X;,n;),p) and ([[(Y;,m;),q) are given by the set g o
@D, ; Corrn,—m;(Xi,Y;) o p considered as a subset of P, ; Corrp, —m, (X;,Y;). This is
an additive category Where each idempotent splits. There is a functor

M"®: SmProj;, — My
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that maps a variety X to the motive M®™(X) = ((X,0),idx) and any morphism
f: X =Y to the correspondence (I'f)n(1) € haim x (X x Y) = Corro(X,Y), where
I'y: X = X x Y is the graph inclusion. We will denote by A: X — X x X the diag-
onal embedding. Then Ay(1) is the identity in Corrg(X, X).

We will denote Spec k by pt and its motive M®(pt) by A. The h-Tate motive A(1) is
defined as ((pt, 1), id,). We write A(n) for A(1)®™ and M®(X)(n) for M*(X) @ A(n).
The motive M®(X)(n) is called the n-th twist of the motive M®(X).

By definition we have

h'(X) = Homp, (M®(X),A(7)) and hi(X) = Hom, (A(i), M*(X)).
Lemma 2.13. For X € SmProj, with the structure morphism m: X — pt, a choice
of an isomorphism M™(X) = @, _, Ala;) is equivalent to a choice of two A-basis sets

{rm €n®(X)}; and {¢; € ha, (X))}
such that my(7;(;) = 0;,5 in A and Y, (G ® 7, = Ayp(1) in h(X x X).
Proof. In the decomposition M®(X) = @, A(o;) the i-th projection p;: M®(X) —
A(ay) is defined by an element 7; € h® (X) and the i-th inclusion ¢;: A(a;) — h(X) is
defined by an element {; € hy,(X). Then the identities p; 01; =, ; and Y 1, 0p; =
idym(x) are equivalent to the equalities m (7;¢;) = d;,; and Yo G @7 = Ay(l). Let
us check that {(;}; form a basis of h(X). Indeed, we have

b (X) = P/ (X) = P Hom, (M*(X), A(j))

JEZ JEZ
=P Homm, (@ Ala), A(j)) = ®jez@P Mai—j =P Ao, =P A
JEL =1 =1 =1 =1

and (; are the images of standard generators. So {(;}?; form a A-basis of h(X).
Finally, since 7; are dual to {;, {7;}}_; is also a basis. O

3. Filtration on the cohomology ring

In the present section we construct a filtration on the oriented cohomology h(X) of
a cellular variety X with dim X = N, which will play an important role in the sequel.

Proposition 3.1. Assume that X is a cellular variety over k. Then
(1) the h-motive of X splits as M*(X) = @B, Ala;);
(2) the Kiinneth formula holds, i.e., the natural map h(X) @ h(X) — h(X x X) is
an isomorphism;
(3) the specialization maps vx: QX))@ A = h(X) and vxxx: UX X X)QA —
h(X x X) are isomorphisms.

Proof. By [5, Cor. 66.4] the Chow motive M°"(X) splits: M"(X) = &7 ,Z().
Then [18, Cor. 2.9] implies that the motive M (X) splits into a sum of twisted
Tate motives M} (X) = @;_, L(a;). By Lemma 2.13 there are elements (f* € Q,, (X)
and 7{* € Q% (X) such that 7o (¢;7}?) = 8;; and Ag(1) = Y, ¢* ® 7;*. Denote ¢} =
vx (¢ ®1) and 7 = vx (7 ® 1). Since vx commutes with pullbacks and pushfor-
wards, mn(Cf7}) = 0d;; and Ay(1) =3, G ® 7. Then by Lemma 2.13 we have
M"(X) =, Ala;), so (1) holds.
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The Kiinneth map fits into the diagram
h(X) @a h(X)

(B, A7) @ (B;AY) ——=€P, ; A~

where the bottom arrow is an isomorphism, so the Kiinneth formula (2) holds.
Note that the natural map vx can be factored as follows

QUX) ® A = @ Hompgg,, (D Alew), A(m)) = Hom, (€D Ale), A(m)) = h(X).

h(X x X)

Thus vx is an isomorphism. The same reasoning proves the statement for vy« x;
hence, (3) holds. O

Definition 3.2. Let X be a cellular variety. Fix two basis sets ({* € Q,,(X) and
75t € Q% (X) provided by Proposition 3.1 and Lemma 2.13. Then ¢; = v(¢? ® 1) and
7 = v(1{* ® 1) is a dual basis for h(X) as in 2.13. We define the filtration bV (X) as

the A-linear span
h(l)(X) = @ AC, = @ ATi.

N—Cvi)l Oq,}l

We denote h')_,(X) = h®(X) Nhy_;(X) and /D (X) = n®(X)/nl+D(X) and

h%/l;rl)(X) to be the image of hg\l,)il(X) in h/+1)(X). Lemma 3.4 implies that the
latter is a graded ring.

Remark 3.3. In the case when the theory h is generically constant and satisfies the
localization property, the filtration introduced above coincides with the topological
filtration on h(X), i.e., with the filtration where the I-th term is generated over A by
classes [Z — X] of projective morphisms Z — X birational on its image and dim X —
dim Z < I. This fact follows from the generalized degree formula [11, Thm. 4.4.7].

Lemma 3.4. h()(X)-n(2)(X) C nitl)(X).

Proof. We have TiQTJQ =", ¢ in Q(X) for some a; € L. Then a; + o = deg(a;) + .
Since deg(a;) < 0, oy > a; + a; = 11 + I for any nontrivial ¢;. Since ¢; = (1)
we have (;(; = >, (a; ® 1) with a; > o + a5 > 11 +12. So (¢ € n(it+i) (X)), O

Proposition 3.5. For a cellular X there is a graded ring isomorphism

N
U: Pnl/ T (X) - CH (X, A).
=0

Proof. By Proposition 3.1 it is sufficient to prove the statement for h = . Observe
that QU/!TD(X) is a free L-module with the basis 7{* + QU (X) with a; = and
CH(X,L) is a free L-module with basis 7" with o; = [. Thus the L-module homo-
morphism ¥; defined by

Uy (72 + QU (X)) = 77H

3
is an isomorphism.
Let us check that ¥ = @ ¥, preserves multiplication. For any i, j we have
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Q_Q Q
T Ty = E Am T, (*)
m

for some a,, € L. Then for any m we have deg(am;,) + am = a; + aj. Then in the
quotient Q(@ites/@itei+1)(X) we have

it = Z am7  mod QT (X)

am=a;+aj

Observe that L° = Z and for all a,, € L such that deg(a,,) < 0 we have a,, ® 17 =0
in Z. Thus tensoring (x) with 17 we get

CH_CH __ CH
T = E (am @ )10,

am=a;+aj

S0 Wg,ta, (7 4+ QEFD(X) - 782+ QT (X)) = 707 . 704, Hence ¥ is a graded ring

K3
isomorphism. O

Lemma 3.6. ¥((; + h(®+D (X)) = ¢,

Proof. 1t is sufficient to show the statement for h = Q*. Consider the expansion Ciﬂ =
ZajTjQ for some a; € L with dega; + a; = N — a4. Since dega; < 0 we have

= Z ajTjQ mod QW =it (X)),
deg a;j=0

Therefore W(¢f + QN+ (X)) = (4. =

Corollary 3.7. The restriction gives rise to an isomorphism &N, ¥': hg\i,/_ijl)(X) —
CH*(X,A%).

Proof. This follows from the previous lemma and the fact that CH* (X, A°%) = @A°¢SH.
O

4. Applications to h-motivic decompositions

Throughout this section we consider a generically cellular variety X of dimension N
and an oriented cohomology theory h* that is generically constant and is associated
with weak Borel-Moore homology h, that satisfies the localization property. These
assumptions imply that the generalized degree formula of Levine-Morel hold [11,
Theorem 4.4.7]. The aim of this section is to prove theorems A, B, and C of the
introduction, which provide a comparison between the Chow motive M (X) and the
h-motive M*(X) of X.

Let L be a splitting field of X and X = X Xspec k Opec L. Let p denote the
projection p: X x X — X x X. For any k-scheme Z we denote by Z; the product
Z1, = Z XSpec k Spec L. Since X is cellular, we may consider the filtration on h(X)
introduced in Definition 3.2. It gives rise to a filtration on h(X x X) = h(X) ®a h(X).
Namely, we set

B(X xX) = > n(X)@rn?(X).
i+j=l
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On h(X x X) we consider the induced filtration
BO(X x X) = (o)L (1O(X x X)).

Denote the quotient h") (X x X)/h(F1 (X x X) by b/ (X x X) and denote
by pri: h(X x X) = h/H1(X x X), the usual projection. Denote

n{ (X x X) =h® (X x X) Nhyy_;(X x X) and
niy (X x X) = (X x X) Nhoy (X x X).

Lemma 4.1. There is a graded ring isomorphism

2N
¢: @/ H(X x X) = CHY(X x X, A).
i=0
Proof. By Kiinneth formula 3.1 we may take ® = ¥ ® W, where V is defined in Propo-
sition 3.5. Then the lemma follows from Proposition 3.5. L]

Analogous to Corollary 3.7 we get

Remark 4.2. The restriction of ' gives an isomorphism ®': h{’/"(X x X) —
CH (X x X, A%).

The following lemma provides an h-version of the Rost Nilpotence Theorem:

Lemma 4.3. The kernel of the pullback map p*: End(M*(X)) — End(M®(X)) con-
sists of nilpotents.

Proof. Let p_: Q(—) — CH(—) denote the natural transformation arising from the
universality of 2. Then we have that p+ o Pt = p°" o px x x. The kernel of p°* con-
sists of nilpotents by [19, Prop 3.1]. By [18, Prop. 2.7] the maps p1x x x and y~, x are
surjective and their kernels consist of nilpotents (according to composition product).
Then ker p? also consists of nilpotents. Note that ker(p?) ® A covers ker p* ® id, so
the latter consists of nilpotents. Further, p® o vy x = vg, 5 © (p @ id). Since vxx x
is surjective (by the generalized degree formula) and v+ is an isomorphism (by
Proposition 3.1), we have that ker p* is covered by ker(p® ® id) and thus consists of
nilpotents. O

Lemma 4.4. We have hV+)(X x X) o h(NH1)(X x X) C hV++) (X x X)),

Proof. Consider a generator (,, ® 7, € h(V T (X x X), where N —a,, +a, = N +i
and (p ® 7y € hWVH)(X x X) where N — o + @ = N + 5. The composition (¢, ®
Tn) © (Cmr @ Tnr) = Tu(Tnlm ) (Cm @ Tr) is nonzero iff n = m’. In this case N — v, +
ap = (N —apm+ay)+ (N —ap +ay)—N2=N+i+j. Thus {, ® 7, lies in the
filtration term h(N++5) (X x X). O

Lemma 4.5. The isomorphism ® : hS\I,V/NH)(Y x X)— CHY (X x X, A% is a ring
homomorphism with respect to the composition product.

Proof. This immediately follows from the fact that ® maps residue classes of (} ® T]‘»1
to (7" @ 7M. O
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Lemma 4.6. Let Y be a twisted form of X, e, Yo 2 X; =X. Let p: X x X —
X XY denote the projection. Then for every m in the diagram
CH . m — — m
CH™(X x Y,A%) "= CH™(X x X, A% & n{7/™ (X « X) %2 nl) (X xY)
we have im p* C im ®™ o pry, o pt.

Proof. Note that CH™(X x Y,A%) is generated over A" by classes icy(1) where
i: Z = X xY, where Z € Smy, the morphism i is projective, and i(Z) is a closed
integral subscheme of codimension m and i: Z — i(Z) is birational. Consider the

Cartesian diagram
q

A 7Zr
i lj
XXkY P YXLY

Since this diagram is transversal, we have

Jno qh = ph ody and g o™ = p odcy.
By lemma 4.7 we have jcu(1) = @™ o pry,(ju(1)). Then p“(icu(1)) = @™ o pry, o
PP(in(1)) € im ™ o pr,, o p™. O

Lemma 4.7. Consider a morphism j: Z — X x5 X, where Z € Smy,, the morphism
j is projective, and j(Z) is a closed integral subscheme of codimension m and j: Z —

J(Z) is birational. Then ju(1) € hé"]:,)im(y X X) and jeu(1) = @™ o pry, (ju(1)).
Proof. Observe that ju(1) =jo(1) @1 1o and jou (1) =ja(1) ®L 1z. Expanding in the
basis we obtain
Jja(l) = Z Ti17i27'§12 ® T,g for some r;, 5, € L. (%)
11,12
Since jq(1) is homogeneous of degree m, we have r;, ;, € L™~ *1~%2_Then for every

nonzero 1, 4, we have o;, + o, 2 m. Then we have

ja)= > 17 @7 mod QT (X x X).
Qi o, =m

If a;, + iz, = m then 1y, 4, € LY = Z. Thus taking ju(1) = jo(1) @1 15 and jeu(1) =
Ja(1) @ 1z we get @™ o pry, (ju(1)) = jou(1), since 777 @ 75" = @™ o pro, (7 @ 711).
O

Lemma 4.8. The kernel of the composition
pryopt: BV (X x X) 5 a7V (X x X) - bV (X x X)
consists of nilpotents.

Proof. This follows from Lemma 4.3 and the fact that h¥*+1 (X x X) is nilpotent
by Lemma 4.4. O

Lemma 4.9. Let C be an additive category, A, B € Ob(C). Let f € Hom¢(A, B) and
g € Hom¢ (B, A)such that f o g —idp is nilpotent in the ring Endc(B) and go f —
id A 1s nilpotent in the ring Endc(A). Then A is isomorphic to B.
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Proof. Since fg is a sum of identity and a nilpotent, then fg is invertible in End(B),
so fg is an isomorphism, so then f has a right inverse. Symmetrically, ¢ f is invertible,
so then f has a left inverse. Then f is an isomorphism. O

We are now ready to prove theorems A, B, and C of the introduction.

Theorem A. Suppose X is generically cellular. Assume that there is a decomposition
of the Chow motive with coefficients in A°

MO (X, A%) = EDR ;) (%)

such that over the splitting field L the motive R equals the sum of twisted Tate
motives: R = @, A%(5;).
Then there is a h-motive Ry such that

= @ Rh(ai)7
i=0

such that over the splitting field Ry, splits into the h-Tate motives Ry = @Tzo A(B;).

Proof. We may assume that ag = 0 in (x). Then each summand R(«;) equals (X, p;)
for some idempotent p;, and there are mutually inverse isomorphisms ¢; and v; of
degree a; between (X, pg) and (X, p;). So we have
e idempotents p; € CHN(X x X), S pi = AX (1), piop; =0 for i # j;
e isomorphisms ¢; € pgo CHY T (X x X)op; and 1; € p; o CHY (X x X) o
Po;
e such that ¢; o ¢; = po and ¢; o ¢; = p;.

Consider the homomorphisms

CH _ _ p™
CH™(X x X, A%) 255 CH™(X x X, A%) 2" nlm) (X x X) - nl) (X x X).

For m = N this is a ring homomorphism by Lemma 4.5. By Lemma 4.6 the elements
P (p;), p°(¢;), and p°¥(1;) lie in the images im ®" o pry o p*, im @V T o pry,, ©
p?, and im @V =% o pry_,,, o p?, respectively.

By Lemma 4.8 the kernel of pry o p*: hg\],v) (X xX)— h%V/NH)(Y x X) is nilpo-
tent. Then by [1, Prop. 27.4] there is a set of idempotents r; such that ®V o pry o
pP(r;) = p(p;) and r; form a full system of orthogonal idempotents, i.e., Y. r; =
AX(1), r;or; =0 for i # j.

Let us construct the isomorphisms between h-motives (X,r;) and (X, rg)(a;).
Let ¢ and v be some elements such that ®N o pry.,. o p?(¢)) = p°(¢;) and
SN~ o pry_ g, 0 p2(¥L) = p®¥(1;). Then [17, Lem. 2.5] implies that there are ele-
ments ¢ € rg hS\J,V) (X x X)r; and ¢ € r; hg\j,v)(X x X)rg such that ¢y =rg and
Yo =r;. So the h-motives (X,r;) and (X,ro)(a;) are isomorphic. Taking Ry =
(X, 1) we obtain a decomposition

Mh(X):@(eri):®XTO @Rh az
=0

=0

Over the splitting field the motive Ry becomes isomorphic to (X,p*(rg)) Let us
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construct an isomorphism between (X, p®(r¢)) and @;nzo A(B;). Consider an iso-
morphism f between Chow motives f: (X,po) — @;nzo A°(3;). Then f is an ele-
ment f € @;”ZOCHﬁj (X). Since the map WN—5 opry-_g, is surjective, we can lift

ftope®i, h?vj_ﬁj (X) € Hom((X,70), @]-, A(B;)). Analogously, lift the inverse

fltovye ST, hg_ﬁj (X). Then yo¢ € h%\/) (X x X) is mapped to identity in

CHY (X x X,A%), so v o ¢ — id is nilpotent according to the composition law, since it
lies in the kernel of ®~ o pry. The element ¢ o v lies in End( T oA(B))) so itiis rep-
resented by a matrix (k) e{o...m} Such that ag; € A%~ Since hV+H)(X) =0,
we have that the composition of multiplication and pushforward

h(®)(X) @ h(42)(X) — nlh+42) (X) ™ n(Spec k)

is zero if di +dy > N. Therefore ap; =0 if 8y — B > 0. Note that for k,! such
that B = B;, we have aj; = m(¢rv1) € h(()N) (X). Since h(N+1)(X) = 0 we have that
PN héN)(Y) — CHN(Y, A%) is an isomorphism and m,(¢xVi) = Teu(feg1) = Ok
Thus (ag,;) is a triangular matrix with identity on the diagonal, so it is the sum of
the identity matrix and a nilpotent matrix.

So 70 ¢ —id is nilpotent and ¢ oy — id is nilpotent. Then by lemma 4.9 Ry =

@;'n:o A(ﬁj)'

Lemma 4.10. Assume that A' =--- =AY =0. Then hy(X x X) ChVM(X x X
and for the diagram of Lemma 4.6,

O

~—

—_. pryop"

CcH . N S
CHY (X x X, A% 25 CHY (X x X, A% «— "V ™(X x X) +——— V(X x X),
the equality holds: im p®™ = im & o pry o pP.

Proof. Note that hy (X x X) is additively generated by elements of the form z =
AT; ® 7;, where deg A + a; + a; = N. Then i + a; > N, since A = --- AN = 0. Thus
2 € nW(X x X).

Let us prove the equality im p®® = im ® o pry o p*. One inclusion is established
in Lemma 4.6. It remains to check that im ® o pry o p® C im p°™. By the degree
formula [11, Thm 4.4.7] h(X x X) is generated as a A-module by pushforwards
in(1), where i: Z — X x X is projective, Z € Smy, and i: Z — i(Z) is birational.
Following [11] we will denote such classes by [Z — X x X]n. Then hy(X x X) is
additively generated by elements A\[Z — X X X, where A is homogeneous such that
deg A + codim Z = N. Since A =--- AN =0, we have codim Z > N.

Note that if codim Z > N then by Lemma 4.7 p*[Z — X x X]n = [Z; — X X
X € hWHD(X x X). So impry o p* is generated over A° by classes of [Z; — X x
X]u, where Z — X x X has codimension N.

By Lemma 4.7 for any Z — X x X of codimension N we have ®Y opry o
P([Z = X x X]p) =p°"([Z = X x X]cy). Then im®Y opry op® C p°" and the
lemma is proven. O

Theorem B. Let h be an oriented cohomology theory with coefficient ring A. Assume
that the Chow motive R is indecomposable over A° and A' =-.. = AN =0. Then
the h-motive R, from theorem A is indecomposable.
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Proof. By definition, R, = (X, rg), where ro is an idempotent in hS\J,V) (X x X). If
Ry is decomposable, then rqg = r; + ro for some nontrivial orthogonal idempotents
r1,72 € hy(X x X). Then by Lemma 4.10 71,72 € hg\],v)(X x X)and p; = ®N opry o
p(r1) and py = & o pry o p(r2) are rational idempotents and p°*(pg) = p1 + po.
These idempotents are orthogonal and nontrivial, since ker " o pry o p® is nilpotent.
Hence, the Chow motive R = (X, pg) is decomposable, a contradiction. O

Example 4.11. If h is Q or connective K-theory, all the elements in the coefficient
ring have negative degree. Then Theorems A and B prove that the h-motivic irre-
ducible decomposition coincides with the integral Chow-motivic decomposition. This
gives another proof of the result by Vishik-Yagita [18, Cor. 2.8].

Example 4.12. Take h to be Morava K-theory h = K (n)*. Its coefficient ring is
Fplvn, v, ], where deg(v,,) = —2(p™ — 1). In the case n > logp(% + 1) Theorems A
and B prove that M%) (X) has the same irreducible decomposition as the Chow
motive modulo p.

Theorem C. Suppose that X, Y are generically cellular and Y is a twisted form of
X, ie,V =X.

If MOY(X, A%) = MOH(Y, A®), then M¥(X) = Mb(Y).
Proof. Let f € CHY(X xY) and g € CHY(Y x X) be correspondences that give
mutually inverse isomorphisms between M°"(X) and M°"(Y"). Consider the diagram

CH . N __  ___ pryop®
CHN (X x ¥, A%) 2 CHY (X x X, A%) +— ni{/™V (X x X) e nl (X x V).

Then by Lemma 4.6 we can find f; € hg\J,V) (X xY)and g, € h%v) (Y x X) such that
N opry o p(f1) = f and @ o pry o p*(g1) = g. Then gy o fi — idx lies in the ker-
nel of the map

n(V (X % X) s (VD (X« X)),

which consists of nilpotents by Lemma 4.8. So ¢; o fi — idx is nilpotent. By the
same reasons fi o g; — idy is nilpotent. Then M*(X) and M®(Y') are isomorphic by
Lemma 4.9. O
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