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MOTIVES AND ORIENTED COHOMOLOGY
OF GENERICALLY CELLULAR VARIETIES

ALEXANDER NESHITOV

(communicated by Ulf Rehmann)

Abstract
For a cellular variety X over a field k of characteristic 0

and an algebraic oriented cohomology theory h of Levine-Morel
we construct a filtration on the cohomology ring h(X) such
that the associated graded ring is isomorphic to the Chow ring
of X. Using this filtration we establish the following comparison
result between Chow motives and h-motives of generically cellu-
lar varieties: any irreducible Chow-motivic decomposition of a
generically cellular variety Y gives rise to an h-motivic decompo-
sition of Y with the same generating function. Moreover, under
some conditions on the coefficient ring of h the obtained h-
motivic decomposition will be irreducible. We also prove that
if the Chow motives of two twisted forms of Y coincide, then
their h-motives coincide as well.

1. Introduction

We work over the base field k of characteristic 0. The notion of an algebraic oriented
cohomology theory was studied by Levine-Morel [11] and Panin-Smirnov [15]. In this
paper we will work with an oriented cohomology theory h in the sense of Levine-Morel
introduced in [11, §1.1]. Moreover, we assume that h is generically constant and has
the localization property (see Definition 2.7). We denote its coefficient ring h(Spec k)
by Λ. Let X be a cellular variety with N = dimX. We construct a filtration

h(X) = h(0)(X) ⊇ h(1)(X) ⊇ · · · ⊇ h(N)(X) ⊇ 0

on the cohomology ring such that the associated graded ring

Gr∗ h(X) =
⊕
i⩾0

h(i)(X)/ h(i+1)(X)

is isomorphic (as a graded ring) to the Chow ring CH∗(X,Λ) of algebraic cycles
modulo rational equivalence relation with coefficients in the ring Λ. We exploit this
filtration and isomorphism in the context of h-motives of generically cellular varieties.
The latter is a natural generalization of the notion of Chow motives to the case of an
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arbitrary algebraic oriented cohomology theory of Levine-Morel. The first construc-
tion of the category of h-motives was introduced by Manin in [12]. This notion was
also studied by Nenashev-Zainoulline in [14] and Vishik-Yagita in [18].

Let Λi denote the i-th graded component of the coefficient ring Λ. We prove the
following theorem that relates the h-motive of a generically cellular variety to its
Chow motive:

Theorem A. Let X be a generically cellular variety over k, i.e., cellular over the
function field k(X). Assume that the Chow motive of X with coefficients in Λ0 splits
as

MCH(X,Λ0) =
n⊕

i=1

R(αi),

for some motiveR that splits as a direct sum of twisted Tate motivesR=
⊕m

j=1Λ
0(βj)

over its splitting field.
Then the h-motive of X splits as

Mh(X) =

n⊕
i=1

Rh(αi)

for some motive Rh, and over the same splitting field Rh splits as a direct sum of
twisted h-Tate motives Rh =

⊕m
j=1 Λ(βj).

This result can also be derived from the arguments of [18] where it is proved that
sets of isomorphism classes of objects of categories of Chow motives and Ω-motives
coincide. However, our approach gives a more explicit correspondence between the
idempotents defining the (Chow) motive R and the h-motive Rh. The latter allows
us to prove the following result concerning the indecomposability of the h-motive Rh:

Theorem B. Assume that Λ1 = · · ·ΛN = 0, where N = dimX.
If the Chow motive R is indecomposable (over Λ0), then the h-motive Rh is inde-

composable (over Λ).

and also the following comparison property:

Theorem C. Suppose that X,Y are generically cellular and Y is a twisted form of
X, i.e., Y becomes isomorphic to X over some splitting field.

If MCH(X,Λ0) ∼=MCH(Y,Λ0), then Mh(X) ∼=Mh(Y ).

The paper is organized as follows: In section 2 we recall concepts of an algebraic
oriented cohomology theory h of Levine-Morel and the corresponding category of h-
motives. In section 3 we introduce the filtration on the cohomology ring h(X) of a
cellular variety X, which plays a central role in the paper. In section 4 we apply
the filtration to obtain comparison results between h-motives and Chow-motives of
generically split varieties.
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2. Preliminaries

In the present section we recall the notions of algebraic oriented cohomology theory,
formal group law, and cellular variety. We recall the definition of the category of h-
motives with the inverted Tate object.

Oriented cohomology theories
In this subsection we give a definition of a generically constant oriented cohomology

theory with localization property (Definition 2.7). Let Schk denote the category of
separated schemes of finite type over Spec k = pt, and Smk its full subcategory of
smooth quasiprojective schemes.

Definition 2.1. ([11, Definition 1.1.2])
An algebraic oriented cohomology theory h∗ on Smk is given by

(D1) Additive functor h∗ : Smop
k → Commutative graded rings;

(D2) For every projective morphism f : X → Y of relative codimension d, a homo-
morphism of graded h∗(Y )-modules fh : h

∗(X)→ h∗+d(Y ).

These satisfy the list of axioms (A1), (A2), (PB), (EH) of [11, Definition 1.1.2].

Let us fix some notation. For a morphism f : X → Y in Smk we will denote its
image h∗(f) : h∗(Y )→ h∗(X) by fh and call it the pullback morphism of f . For a
projective f : X → Y of relative codimension d the morphism fh : h

∗(X)→ h∗+d(Y )
introduced in (D2) is called the pushforward morphism of f .

We denote the coefficient ring h∗(pt) by Λ∗. As for the Chow groups, we will also
use the lower grading notation for h, i.e., hi(X) = hdimX−i(X) for an irreducible
variety X.

Let Sch′
k denote the subcategory of Schk consisting of projective morphisms

between all the schemes in Schk

Definition 2.2. ([11, Definition 2.1.2])
An oriented Borel-Moore functor H∗ on the category Schk is given by

• An additive functor H∗ : Sch
′
k → Graded abelian groups;

• For each smooth equidimensional morphism f : X → Y of relative dimension d,
a homomorphism of abelian groups f∗ : H∗(Y )→ H∗+d(X);

• For each line bundle L on X, a homomorphism of abelian groups c̃1 : H∗(X)→
H∗−1(X).

These data satisfy the axioms (A1)–(A5) of [11, Definition 2.1.2].
An oriented Borel-Moore functorH∗ is called an oriented Borel-Moore weak homol-

ogy if it additionally satisfies the axioms of [11, Definition 4.1.9].

Remark 2.3. Replacing Schk by Smk in the previous definition, we get the notion
of an oriented Borel-Moore weak homology on Smk.

Definition 2.4. ([11, Definition 4.4.6]) The oriented Borel-Moore weak homology H
on Schk has the localization property if the following sequence is exact:

H∗(Z)
i∗→ H∗(X)

j∗→ H∗(U)→ 0

for any closed immersion Z → X and its open complement U → X in Schk.
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Following the approach of [11, §4.4.1] for a finitely generated field extension F/k
and for every scheme X over k, we define the value of the oriented Borel-Moore weak
homology on the scheme X ×k F as follows:

H∗(X ×k F ) = colimU H∗+dimU (X ×k U),

where the colimit is taken over the category whose objects are schemes U ∈ Schk such
that k(U) = F , and whose morphisms are smooth birational maps between them.
Since k has characteristic zero, we may assume that all the schemes U are smooth.
Then we get a canonical map H∗(X)→ H∗(X ×k F ) arising from the pullbacks
H∗(X)→ H∗+dimU (X × U). Note that for the case F = k(Y ) for Y ∈ Smk, the defi-
nition gives the identification H∗(X ×k k(Y )) = colimU⊆Y H∗+dimY (X ×k U), where
the colimit is taken over the category of open subsets of Y .

Definition 2.5. ([11, Definition 4.4.1]) The oriented Borel-Moore weak homology
H∗ on Schk is generically constant if, for every finitely generated separable field
extension F/k, the canonical morphism H∗(k)→ H∗(F ) is an isomorphism.

According to [11, Remark 5.2.7] every oriented cohomology theory h∗ defines an
oriented Borel-Moore weak homology on the category Smk.

Definition 2.6. We say that an oriented cohomology theory h∗ is associated to a
Borel-Moore weak homology H∗ on Schk if the restriction of H∗ to the category Smk

coincides with the oriented Borel-Moore homology defined on Smk by the theory h∗.

Definition 2.7. An oriented cohomology theory h∗ is generically constant with a
localization property if it is associated to some oriented Borel-Moore weak homology
H∗ that is generically constant and satisfies the localization property.

Remark 2.8. Examples of the theories h∗ defined above include Chow groups CH∗,
Grothendieck K0, algebraic cobordism of Levine-Morel Ω∗, and the theories of the
form Ω∗ ⊗L Λ given by arbitrary formal group law over the base ring Λ.

Formal group law
For an oriented cohomology theory h∗ there is a notion of the first Chern class of a

line bundle. ForX ∈ Smk and a line bundle L overX it is defined as ch1(L) = zhzh(1) ∈
h1(X), where z : X → L is a zero section. There is a commutative associative 1-
dimensional formal group law F over Λ∗ such that for any two line bundles L1 and
L2 over X we have ch1(L1 ⊗ L2) = F (ch1(L1), c

h
1(L2)) [11, Lem. 1.1.3]. We will use the

notation x+F y for F (x, y). For any x we will denote by −Fx the unique element
such that x+F (−Fx) = 0. For any n ∈ Z we will denote by n ·F x the expression
x+F · · ·+F x (n times) if n is positive, and (−Fx) +F · · ·+F (−Fx) (−n times) if n
is negative.

By [11] there is a universal formal group law FU over the Lazard ring L. It cor-
responds to the algebraic cobordism theory Ω and there is a natural transformation
Ω∗(−)→ h∗(−) that commutes with pushforwards. This gives rise to a morphism

νX : Ω∗(X)⊗L∗ Λ∗ → h∗(X),

where the ring homomorphism L∗ → Λ∗ is obtained by specializing the coefficients of
FU to the coefficients of F . We will call νX the specialization homomorphism.
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Cellular and generically cellular varieties

Definition 2.9. A variety X ∈ Smk is called cellular if there is a filtration of X =
X0 ⊇ X1 ⊇ · · · ⊇ Xm ⊇ ∅ such that each Xi \Xi+1 is a disjoint union of affine spaces
of the same rank ci: Xi \Xi+1

∼= Aci
k

⨿
· · ·
⨿

Aci
k .

Definition 2.10. A variety X is called generically cellular if Xk(X) is a cellular vari-
ety over k(X), where k(X) is the function field of X.

Example 2.11. Let G be a split semisimple algebraic group, B its Borel subgroup
containing a fixed maximal split torus T , and W the corresponding Weyl group. For
any w ∈W let l(w) denote its length. Let w0 ∈W denote the longest element of W
and N = l(w0). Then the flag variety X = G/B is cellular of dimension N and the
cellular structure is given by the Schubert cells Xw:

X = Xw0 ⊇
∪

l(w)=N−1

Xw ⊇
∪

l(w)=N−2

Xw ⊇ · · · ⊇ Xe = pt,

where Xw is the closure of BwB/B in X.

Example 2.12. Let ζ ∈ Z1(k,G) be a 1-cocycle with values in G. Then the twisted
form ζ(G/B) of X = G/B provides an example of a generically split variety.

h-motives

The notion of h-motives for the algebraic oriented cohomology theory h first
appeared in [12]. Later it was studied in [14] and [18]. We refer to [18, §2] for
the definition of the category of effective h-motives. In the present paper we will deal
with the category of h-motives Mh with the inverted Tate object. It is constructed
as follows:

Let SmProjk denote the category of smooth projective varieties over k. Follow-
ing [5], we consider the category Corrh defined as follows: For X,Y ∈ SmProjk with
irreducible X and m ∈ Z we set

Corrm(X,Y ) = hdimX+m(X × Y ).

Objects of Corrh are pairs (X, i) with X ∈ SmProjk and i ∈ Z. For X ∈ SmProjk
with irreducible components Xl define the morphisms

HomCorr

(
(X, i), (Y, j)

)
=
⨿
l

Corri−j(Xl, Y ).

For α ∈ Hom
(
(X, i), (Y, j)

)
and β ∈ Hom

(
(Y, j), (Z, k)

)
the composition is given

by the usual correspondence product: α ◦ β = (pXZ)h
(
(pY Z)

h(β) · (pXY )
h(α)

)
, where

pXY , pY Z , pXZ denote the projections from X × Y × Z onto the corresponding sum-
mands.

Taking consecutive additive and idempotent completion of Corrh we obtain the
category Mh of h-motives with inverted Tate object. Objects of this category are
(
⨿

i(Xi, ni), p) where p is a matrix with entries pi,j ∈ Corrni−nj (Xi, Xj) such that p ◦
p = p. Morphisms between (

⨿
(Xi, ni), p) and (

⨿
(Yj ,mj), q) are given by the set q ◦⊕

i,j Corrni−mj (Xi, Yj) ◦ p considered as a subset of
⊕

i,j Corrni−mj (Xi, Yj). This is
an additive category where each idempotent splits. There is a functor

Mh : SmProjk →Mh



280 ALEXANDER NESHITOV

that maps a variety X to the motive Mh(X) = ((X, 0), idX) and any morphism
f : X → Y to the correspondence (Γf )h(1) ∈ hdimX(X × Y ) = Corr0(X,Y ), where
Γf : X → X × Y is the graph inclusion. We will denote by ∆: X → X ×X the diag-
onal embedding. Then ∆h(1) is the identity in Corr0(X,X).

We will denote Spec k by pt and its motiveMh(pt) by Λ. The h-Tate motive Λ(1) is
defined as ((pt, 1), idpt). We write Λ(n) for Λ(1)⊗n andMh(X)(n) forMh(X)⊗ Λ(n).
The motive Mh(X)(n) is called the n-th twist of the motive Mh(X).

By definition we have

hi(X) = HomMh
(Mh(X),Λ(i)) and hi(X) = HomMh

(Λ(i),Mh(X)).

Lemma 2.13. For X ∈ SmProjk with the structure morphism π : X → pt, a choice
of an isomorphism Mh(X) ∼=

⊕n
i=1 Λ(αi) is equivalent to a choice of two Λ-basis sets

{τi ∈ hαi(X)}i and {ζi ∈ hαi(X)}i
such that πh(τiζj) = δi,j in Λ and

∑
i ζi ⊗ τi = ∆h(1) in h(X ×X).

Proof. In the decomposition Mh(X) ∼=
⊕

i Λ(αi) the i-th projection pi : M
h(X)→

Λ(αi) is defined by an element τi ∈ hαi(X) and the i-th inclusion ıi : Λ(αi)→ h(X) is
defined by an element ζi ∈ hαi(X). Then the identities pi ◦ ıj = δi,j and

∑
ıi ◦ pi =

idMh(X) are equivalent to the equalities πh(τiζj) = δi,j and
∑n

i=1 ζi ⊗ τi = ∆h(1). Let
us check that {ζi}i form a basis of h(X). Indeed, we have

h∗(X) =
⊕
j∈Z

hj(X) =
⊕
j∈Z

HomMh
(Mh(X),Λ(j))

∼=
⊕
j∈Z

HomMh

(
n⊕

i=1

Λ(αi),Λ(j)

)
= ⊕j∈Z

n⊕
i=1

Λαi−j =

n⊕
i=1

Λαi−∗ =

n⊕
i=1

Λ∗−αi

and ζi are the images of standard generators. So {ζi}ni=1 form a Λ-basis of h(X).
Finally, since τi are dual to ζi, {τi}ni=1 is also a basis.

3. Filtration on the cohomology ring

In the present section we construct a filtration on the oriented cohomology h(X) of
a cellular variety X with dimX = N , which will play an important role in the sequel.

Proposition 3.1. Assume that X is a cellular variety over k. Then

(1) the h-motive of X splits as Mh(X) =
⊕n

i=1 Λ(αi);

(2) the Künneth formula holds, i.e., the natural map h(X)⊗Λ h(X)→ h(X ×X) is
an isomorphism;

(3) the specialization maps νX : Ω(X)⊗ Λ→ h(X) and νX×X : Ω(X ×X)⊗ Λ→
h(X ×X) are isomorphisms.

Proof. By [5, Cor. 66.4] the Chow motive MCH(X) splits: MCH(X) = ⊕n
i=1Z(αi).

Then [18, Cor. 2.9] implies that the motive MΩ(X) splits into a sum of twisted
Tate motivesMΩ(X) =

⊕n
i=1 L(αi). By Lemma 2.13 there are elements ζΩi ∈ Ωαi(X)

and τΩi ∈ Ωαi(X) such that πΩ(ζ
Ω
i τ

Ω
j ) = δi,j and ∆Ω(1) =

∑
i ζ

Ω
i ⊗ τΩi . Denote ζhi =

νX(ζΩi ⊗ 1) and τ hi = νX(τΩi ⊗ 1). Since νX commutes with pullbacks and pushfor-
wards, πh(ζ

h
i τ

h
j ) = δi,j and ∆h(1) =

∑
i ζ

h
i ⊗ τ hi . Then by Lemma 2.13 we have

Mh(X) =
⊕

i Λ(αi), so (1) holds.
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The Künneth map fits into the diagram

h(X)⊗Λ h(X) // h(X ×X)

(
⊕

i Λ
∗−αi)⊗Λ (

⊕
j Λ

∗−αj ) //⊕
i,j Λ

∗−αi−αj

where the bottom arrow is an isomorphism, so the Künneth formula (2) holds.
Note that the natural map νX can be factored as follows

Ω(X)⊗ Λ ∼= ⊕mHomMΩ⊗Λ
(
⊕

Λ(αi),Λ(m))
∼=→ HomMh

(
⊕

Λ(αi),Λ(m)) ∼= h(X).

Thus νX is an isomorphism. The same reasoning proves the statement for νX×X ;
hence, (3) holds.

Definition 3.2. Let X be a cellular variety. Fix two basis sets ζΩi ∈ Ωαi(X) and
τΩi ∈ Ωαi(X) provided by Proposition 3.1 and Lemma 2.13. Then ζi = ν(ζΩi ⊗ 1) and
τi = ν(τΩi ⊗ 1) is a dual basis for h(X) as in 2.13. We define the filtration h(l)(X) as
the Λ-linear span

h(l)(X) =
⊕

N−αi⩾l

Λζi =
⊕
αi⩾l

Λτi.

We denote h
(l)
N−l(X) = h(l)(X) ∩ hN−l(X) and h(l/l+1)(X) = h(l)(X)/ h(l+1)(X) and

h
(l/l+1)
N−l (X) to be the image of h

(l)
N−l(X) in h(l/l+1)(X). Lemma 3.4 implies that the

latter is a graded ring.

Remark 3.3. In the case when the theory h is generically constant and satisfies the
localization property, the filtration introduced above coincides with the topological
filtration on h(X), i.e., with the filtration where the l-th term is generated over Λ by
classes [Z → X] of projective morphisms Z → X birational on its image and dimX −
dimZ ⩽ l. This fact follows from the generalized degree formula [11, Thm. 4.4.7].

Lemma 3.4. h(l1)(X) · h(l2)(X) ⊆ h(l1+l2)(X).

Proof. We have τΩi τ
Ω
j =

∑
l alζ

Ω
l in Ω(X) for some al ∈ L. Then αi+αj =deg(al)+αl.

Since deg(al) ⩽ 0, αl ⩾ αi + αj ⩾ l1 + l2 for any nontrivial al. Since ζi = ν(ζΩi ⊗ 1)
we have ζiζj =

∑
l(al ⊗ 1)ζl with αl ⩾ αi + αj ⩾ l1 + l2. So ζiζj ∈ h(l1+l2)(X).

Proposition 3.5. For a cellular X there is a graded ring isomorphism

Ψ:

N⊕
i=0

h(i/i+1)(X)→ CH∗(X,Λ).

Proof. By Proposition 3.1 it is sufficient to prove the statement for h = Ω. Observe
that Ω(l/l+1)(X) is a free L-module with the basis τΩi +Ω(l+1)(X) with αi = l and
CHi(X,L) is a free L-module with basis τCH

i with αi = l. Thus the L-module homo-
morphism Ψl defined by

Ψl(τ
Ω
i +Ω(i+1)(X)) = τCH

i

is an isomorphism.
Let us check that Ψ =

⊕
Ψl preserves multiplication. For any i, j we have
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τΩi τ
Ω
j =

∑
m

amτ
Ω
m (∗)

for some am ∈ L. Then for any m we have deg(am) + αm = αi + αj . Then in the
quotient Ω(αi+αj/αi+αj+1)(X) we have

τΩi τ
Ω
j =

∑
αm=αi+αj

amτ
Ω
m mod Ω(αi+αj+1)(X)

Observe that L0 = Z and for all am ∈ L such that deg(am) < 0 we have am ⊗ 1Z = 0
in Z. Thus tensoring (∗) with 1Z we get

τCH

i τCH

j =
∑

αm=αi+αj

(am ⊗ 1)τCH

m .

So Ψαi+αj (τ
Ω
i +Ω(αi+1)(X) · τΩj +Ω(αj+1)(X)) = τCH

i · τCH
j . Hence Ψ is a graded ring

isomorphism.

Lemma 3.6. Ψ(ζi + h(αi+1)(X)) = ζCH
i .

Proof. It is sufficient to show the statement for h = Ω∗. Consider the expansion ζΩi =∑
ajτ

Ω
j for some aj ∈ L with deg aj + αj = N − αi. Since deg aj ⩽ 0 we have

ζΩi =
∑

deg aj=0

ajτ
Ω
j mod Ω(N−αi+1)(X).

Therefore Ψ(ζΩi +Ω(N−αi+1)(X)) = ζCH
i .

Corollary 3.7. The restriction gives rise to an isomorphism ⊕N
i=1Ψ

i : h
(i/i+1)
N−i (X)→

CH∗(X,Λ0).

Proof. This follows from the previous lemma and the fact that CH∗(X,Λ0) =⊕Λ0ζCH
i .

4. Applications to h-motivic decompositions

Throughout this section we consider a generically cellular varietyX of dimensionN
and an oriented cohomology theory h∗ that is generically constant and is associated
with weak Borel-Moore homology h∗ that satisfies the localization property. These
assumptions imply that the generalized degree formula of Levine-Morel hold [11,
Theorem 4.4.7]. The aim of this section is to prove theorems A, B, and C of the
introduction, which provide a comparison between the Chow motive M(X) and the
h-motive Mh(X) of X.

Let L be a splitting field of X and X = X ×Spec k Spec L. Let p denote the
projection p : X ×X → X ×X. For any k-scheme Z we denote by ZL the product
ZL = Z ×Spec k Spec L. Since X is cellular, we may consider the filtration on h(X)
introduced in Definition 3.2. It gives rise to a filtration on h(X ×X) = h(X)⊗Λ h(X).
Namely, we set

h(l)(X ×X) =
∑
i+j=l

h(i)(X)⊗Λ h(j)(X).
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On h(X ×X) we consider the induced filtration

h(l)(X ×X) = (ph)−1(h(l)(X ×X)).

Denote the quotient h(l)(X ×X)/ h(l+1)(X ×X) by h(l/l+1)(X ×X) and denote
by prl : h

(l)(X ×X)→ h(l/l+1)(X ×X), the usual projection. Denote

h
(i)
2N−i(X ×X) = h(i)(X ×X) ∩ h2N−i(X ×X) and

h
(i)
2N−i(X ×X) = h(i)(X ×X) ∩ h2N−i(X ×X).

Lemma 4.1. There is a graded ring isomorphism

Φ:
2N⊕
i=0

h(i/i+1)(X ×X)→ CH∗(X ×X,Λ).

Proof. By Künneth formula 3.1 we may take Φ = Ψ⊗Ψ, where Ψ is defined in Propo-
sition 3.5. Then the lemma follows from Proposition 3.5.

Analogous to Corollary 3.7 we get

Remark 4.2. The restriction of Φi gives an isomorphism Φi : h
(i/i+1)
2N−i (X ×X)→

CHi(X ×X,Λ0).

The following lemma provides an h-version of the Rost Nilpotence Theorem:

Lemma 4.3. The kernel of the pullback map ph : End(Mh(X))→ End(Mh(X)) con-
sists of nilpotents.

Proof. Let µ− : Ω(−)→ CH(−) denote the natural transformation arising from the
universality of Ω. Then we have that µX×X ◦ pΩ = pCH ◦ µX×X . The kernel of pCH con-
sists of nilpotents by [19, Prop 3.1]. By [18, Prop. 2.7] the maps µX×X and µX×X are
surjective and their kernels consist of nilpotents (according to composition product).
Then ker pΩ also consists of nilpotents. Note that ker(pΩ)⊗ Λ covers ker pΩ ⊗ id, so
the latter consists of nilpotents. Further, ph ◦ νX×X = νX×X ◦ (pΩ ⊗ id). Since νX×X

is surjective (by the generalized degree formula) and νX×X is an isomorphism (by

Proposition 3.1), we have that ker ph is covered by ker(pΩ ⊗ id) and thus consists of
nilpotents.

Lemma 4.4. We have h(N+i)(X ×X) ◦ h(N+j)(X ×X) ⊆ h(N+i+j)(X ×X).

Proof. Consider a generator ζm ⊗ τn ∈ h(N+i)(X×X), where N−αm+αn ⩾ N+ i
and ζm′ ⊗ τn′ ∈ h(N+j)(X ×X) whereN−αm′ +αn′ ⩾N+j. The composition (ζm ⊗
τn) ◦ (ζm′ ⊗ τn′) = πh(τnζm′)(ζm ⊗ τn′) is nonzero iff n = m′. In this case N−αm+
αn′ = (N − αm + αn) + (N − αm′ + αn′)−N ⩾ N + i+ j. Thus ζm ⊗ τn′ lies in the
filtration term h(N+i+j)(X ×X).

Lemma 4.5. The isomorphism ΦN : h
(N/N+1)
N (X ×X)→CHN (X ×X,Λ0) is a ring

homomorphism with respect to the composition product.

Proof. This immediately follows from the fact that Φ maps residue classes of ζhi ⊗ τ hj
to ζCH

i ⊗ τCH
j .
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Lemma 4.6. Let Y be a twisted form of X, i.e., YL ∼= XL = X. Let p : X ×X →
X × Y denote the projection. Then for every m in the diagram

CHm(X × Y,Λ0)
pCH

→ CHm(X ×X,Λ0)
Φm

← h
(m/m+1)
2N−m (X ×X)

prm← h
(m)
2N−m(X × Y )

we have im pCH ⊆ imΦm ◦ prm ◦ ph.

Proof. Note that CHm(X × Y,Λ0) is generated over Λ0 by classes iCH(1) where
i : Z → X × Y , where Z ∈ Smk, the morphism i is projective, and i(Z) is a closed
integral subscheme of codimension m and i : Z → i(Z) is birational. Consider the
Cartesian diagram

Z

i

��

ZL

j
��

qoo

X ×k Y X ×L X
poo

Since this diagram is transversal, we have

jh ◦ qh = ph ◦ ih and jCH ◦ qCH = pCH ◦ iCH.

By lemma 4.7 we have jCH(1) = Φm ◦ prm(jh(1)). Then pCH(iCH(1)) = Φm ◦ prm ◦
ph(ih(1)) ∈ imΦm ◦ prm ◦ ph.

Lemma 4.7. Consider a morphism j : Z → X ×L X, where Z ∈ Smk, the morphism
j is projective, and j(Z) is a closed integral subscheme of codimension m and j : Z →
j(Z) is birational. Then jh(1) ∈ h

(m)
2N−m(X ×X) and jCH(1) = Φm ◦ prm(jh(1)).

Proof. Observe that jh(1)= jΩ(1)⊗L 1Λ and jCH(1)= jΩ(1)⊗L 1Z. Expanding in the
basis we obtain

jΩ(1) =
∑
i1,i2

ri1,i2τ
Ω
i1 ⊗ τ

Ω
i2 for some ri1,i2 ∈ L. (∗)

Since jΩ(1) is homogeneous of degree m, we have ri1,i2 ∈ Lm−αi1−αi2 . Then for every
nonzero ri1,i2 we have αi1 + αi2 ⩾ m. Then we have

jΩ(1) ≡
∑

αi1+αi2=m

ri1,i2τ
Ω
i1 ⊗ τ

Ω
i2 mod Ω(m+1)(X ×X).

If αi1 + αi2 = m then ri1,i2 ∈ L0 = Z. Thus taking jh(1) = jΩ(1)⊗L 1Λ and jCH(1) =
jΩ(1)⊗L 1Z we get Φm ◦ prm(jh(1)) = jCH(1), since τ

CH
i1
⊗ τCH

i2
= Φm ◦ prm(τ hi1 ⊗ τ

h
i2
).

Lemma 4.8. The kernel of the composition

prN ◦ ph : h(N)
N (X ×X)→ h

(N)
N (X ×X)→ h

(N/N+1)
N (X ×X)

consists of nilpotents.

Proof. This follows from Lemma 4.3 and the fact that h(N+1)(X ×X) is nilpotent
by Lemma 4.4.

Lemma 4.9. Let C be an additive category, A,B ∈ Ob(C). Let f ∈ HomC(A,B) and
g ∈ HomC(B,A)such that f ◦ g − idB is nilpotent in the ring EndC(B) and g ◦ f −
idA is nilpotent in the ring EndC(A). Then A is isomorphic to B.
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Proof. Since fg is a sum of identity and a nilpotent, then fg is invertible in End(B),
so fg is an isomorphism, so then f has a right inverse. Symmetrically, gf is invertible,
so then f has a left inverse. Then f is an isomorphism.

We are now ready to prove theorems A, B, and C of the introduction.

Theorem A. SupposeX is generically cellular. Assume that there is a decomposition
of the Chow motive with coefficients in Λ0

MCH(X,Λ0) =

n⊕
i=0

R(αi) (∗)

such that over the splitting field L the motive R equals the sum of twisted Tate
motives: R =

⊕m
j=0 Λ

0(βj).
Then there is a h-motive Rh such that

Mh(X) =
n⊕

i=0

Rh(αi),

such that over the splitting field Rh splits into the h-Tate motives Rh =
⊕m

j=0 Λ(βj).

Proof. We may assume that α0 = 0 in (∗). Then each summand R(αi) equals (X, pi)
for some idempotent pi, and there are mutually inverse isomorphisms ϕi and ψi of
degree αi between (X, p0) and (X, pi). So we have

• idempotents pi ∈ CHN (X ×X),
∑
pi = ∆X

CH(1), pi ◦ pj = 0 for i ̸= j;

• isomorphisms ϕi ∈ p0 ◦ CHN+αi(X ×X) ◦ pi and ψi ∈ pi ◦ CHN−αi(X ×X) ◦
p0;

• such that ϕi ◦ ψi = p0 and ψi ◦ ϕi = pi.

Consider the homomorphisms

CHm(X ×X,Λ0)
pCH

−→CHm(X ×X,Λ0)
Φm◦prm
←−−−− h

(m)
2N−m(X ×X)

ph←− h
(m)
2N−m(X ×X).

For m = N this is a ring homomorphism by Lemma 4.5. By Lemma 4.6 the elements
pCH(pi), p

CH(ϕi), and p
CH(ψi) lie in the images imΦn ◦ prN ◦ ph, imΦN+αi ◦ prN+αi ◦

ph, and imΦN−αi ◦ prN−αi ◦ ph, respectively.
By Lemma 4.8 the kernel of prN ◦ ph : h(N)

N (X ×X)→ h
(N/N+1)
N (X ×X) is nilpo-

tent. Then by [1, Prop. 27.4] there is a set of idempotents ri such that ΦN ◦ prN ◦
ph(ri) = pCH(pi) and ri form a full system of orthogonal idempotents, i.e.,

∑
ri =

∆X
h (1), ri ◦ rj = 0 for i ̸= j.
Let us construct the isomorphisms between h-motives (X, ri) and (X, r0)(αi).

Let ϕ′i and ψ′
i be some elements such that ΦN+αi ◦ prN+αi ◦ ph(ϕ′i) = pCH(ϕi) and

ΦN−αi ◦ prN−αi ◦ ph(ψ′
i) = pCH(ψi). Then [17, Lem. 2.5] implies that there are ele-

ments ϕ′′i ∈ r0 h
(N)
N (X ×X)ri and ψ

′′
i ∈ ri h

(N)
N (X ×X)r0 such that ϕ′′i ψ

′′
i = r0 and

ψ′′
i ϕ

′′
i = ri. So the h-motives (X, ri) and (X, r0)(αi) are isomorphic. Taking Rh =

(X, r0) we obtain a decomposition

Mh(X) =

n⊕
i=0

(X, ri) =

n⊕
i=0

(X, r0)(αi) =

n⊕
i=0

Rh(αi).

Over the splitting field the motive Rh becomes isomorphic to (X, ph(r0)) Let us
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construct an isomorphism between (X, ph(r0)) and
⊕m

j=0 Λ(βj). Consider an iso-

morphism f between Chow motives f : (X, p0)→
⊕m

j=0 Λ
0(βj). Then f is an ele-

ment f ∈ ⊕m
j=0CH

βj (X). Since the map ΨN−βj ◦ prN−βj is surjective, we can lift

f to ϕ ∈
⊕m

j=0 h
βj

N−βj
(X) ⊆ Hom((X, r0),

⊕m
j=1 Λ(βj)). Analogously, lift the inverse

f−1 to γ ∈ ⊕m
j=1 h

N−βj

βj
(X). Then γ ◦ ϕ ∈ h

(N)
N (X ×X) is mapped to identity in

CHN (X ×X,Λ0), so γ ◦ ϕ− id is nilpotent according to the composition law, since it
lies in the kernel of ΦN ◦ prN . The element ϕ ◦ γ lies in End(⊕m

j=0Λ(βj)) so it is rep-

resented by a matrix (ak,l)k,l∈{0...m} such that ak,l ∈ Λβk−βl . Since h(N+1)(X) = 0,
we have that the composition of multiplication and pushforward

h(d1)(X)⊗ h(d2)(X)→ h(d1+d2)(X)
πh−→ h(Spec k)

is zero if d1 + d2 > N . Therefore ak,l = 0 if βk − βl > 0. Note that for k, l such

that βk = βl, we have ak,l = πh(ϕkγl) ∈ h
(N)
0 (X). Since h(N+1)(X) = 0 we have that

Ψ(N) : h
(N)
0 (X)→ CHN (X,Λ0) is an isomorphism and πh(ϕkγl) = πCH(fkgl) = δk,l.

Thus (ak,l) is a triangular matrix with identity on the diagonal, so it is the sum of
the identity matrix and a nilpotent matrix.

So γ ◦ ϕ− id is nilpotent and ϕ ◦ γ − id is nilpotent. Then by lemma 4.9 Rh
∼=⊕m

j=0 Λ(βj).

Lemma 4.10. Assume that Λ1 = · · · = ΛN = 0. Then hN (X ×X) ⊆ h(N)(X ×X)
and for the diagram of Lemma 4.6,

CHN (X ×X,Λ0)
pCH

−→CHN (X ×X,Λ0)
ΦN

←−− h
(N/N+1)
N (X ×X)

prN◦ph
←−−−− h

(N)
N (X ×X),

the equality holds: im pCH = imΦN ◦ prN ◦ ph.

Proof. Note that hN (X ×X) is additively generated by elements of the form x =
λτi ⊗ τj , where deg λ+ αi + αj = N . Then αi + αj ⩾ N, since Λ1 = · · ·ΛN = 0. Thus
x ∈ h(N)(X ×X).

Let us prove the equality im pCH = imΦN ◦ prN ◦ ph. One inclusion is established
in Lemma 4.6. It remains to check that imΦN ◦ prN ◦ ph ⊆ im pCH. By the degree
formula [11, Thm 4.4.7] h(X ×X) is generated as a Λ-module by pushforwards
ih(1), where i : Z → X ×X is projective, Z ∈ Smk, and i : Z → i(Z) is birational.
Following [11] we will denote such classes by [Z → X ×X]h. Then hN (X ×X) is
additively generated by elements λ[Z → X ×X]h, where λ is homogeneous such that
deg λ+ codim Z = N . Since Λ1 = · · ·ΛN = 0, we have codim Z ⩾ N .

Note that if codim Z > N then by Lemma 4.7 ph[Z → X ×X]h = [ZL → X ×
X]h ∈ h(N+1)(X ×X). So im prN ◦ ph is generated over Λ0 by classes of [ZL → X ×
X]h, where Z → X ×X has codimension N .

By Lemma 4.7 for any Z → X ×X of codimension N we have ΦN ◦ prN ◦
ph([Z → X ×X]h) = pCH([Z → X ×X]CH). Then imΦN ◦ prN ◦ ph ⊆ pCH and the
lemma is proven.

Theorem B. Let h be an oriented cohomology theory with coefficient ring Λ. Assume
that the Chow motive R is indecomposable over Λ0 and Λ1 = · · · = ΛN = 0. Then
the h-motive Rh from theorem A is indecomposable.
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Proof. By definition, Rh = (X, r0), where r0 is an idempotent in h
(N)
N (X ×X). If

Rh is decomposable, then r0 = r1 + r2 for some nontrivial orthogonal idempotents

r1, r2 ∈ hN (X ×X). Then by Lemma 4.10 r1, r2 ∈ h
(N)
N (X ×X) and p1 = ΦN ◦ prN ◦

ph(r1) and p2 = ΦN ◦ prN ◦ ph(r2) are rational idempotents and pCH(p0) = p1 + p2.
These idempotents are orthogonal and nontrivial, since kerΦN ◦ prN ◦ ph is nilpotent.
Hence, the Chow motive R = (X, p0) is decomposable, a contradiction.

Example 4.11. If h is Ω or connective K-theory, all the elements in the coefficient
ring have negative degree. Then Theorems A and B prove that the h-motivic irre-
ducible decomposition coincides with the integral Chow-motivic decomposition. This
gives another proof of the result by Vishik-Yagita [18, Cor. 2.8].

Example 4.12. Take h to be Morava K-theory h = K(n)∗. Its coefficient ring is
Fp[vn, v

−1
n ], where deg(vn) = −2(pn − 1). In the case n > logp(

N
2 + 1) Theorems A

and B prove that MK(n)(X) has the same irreducible decomposition as the Chow
motive modulo p.

Theorem C. Suppose that X,Y are generically cellular and Y is a twisted form of
X, i.e., Y ∼= X.

If MCH(X,Λ0) ∼=MCH(Y,Λ0), then Mh(X) ∼=Mh(Y ).

Proof. Let f ∈ CHN (X × Y ) and g ∈ CHN (Y ×X) be correspondences that give
mutually inverse isomorphisms betweenMCH(X) andMCH(Y ). Consider the diagram

CHN (X × Y,Λ0)
pCH

−→CHN (X ×X,Λ0)
ΦN

←−− h
(N/N+1)
N (X ×X)

prN◦ph
←−−−− h

(N)
N (X × Y ).

Then by Lemma 4.6 we can find f1 ∈ h
(N)
N (X × Y ) and g1 ∈ h

(N)
N (Y ×X) such that

ΦN ◦ prN ◦ ph(f1) = f and ΦN ◦ prN ◦ ph(g1) = g. Then g1 ◦ f1 − idX lies in the ker-
nel of the map

h
(N)
N (X ×X)

prN◦ph
−−−−→ h

(N/N+1)
N (X ×X),

which consists of nilpotents by Lemma 4.8. So g1 ◦ f1 − idX is nilpotent. By the
same reasons f1 ◦ g1 − idY is nilpotent. Then Mh(X) and Mh(Y ) are isomorphic by
Lemma 4.9.
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