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PROPERNESS AND SIMPLICIAL RESOLUTIONS
IN THE MODEL CATEGORY dgCat

JULIAN V. S. HOLSTEIN
(communicated by Daniel Dugger)

Abstract
We give an elementary proof that the model category of dg-
categories over a ring of flat dimension 0 is left proper and we
provide a construction of simplicial resolutions in dg-categories,
given by categories of Maurer—Cartan elements.

1. Introduction

We provide proofs of the following properties of the model category dgCat,, of
dg-categories (with the Morita or Dwyer-Kan model structure) over a ring k.

e When £ has flat dimension 0, the category dgCat,, is left proper.

e Natural simplicial resolutions in dgCat are given by dg-categories of Maurer—
Cartan elements.

Left properness is essential to show the existence of Bousfield localizations of dg-
categories. (Under stronger assumptions on k left properness also follows from [7].)
We also remark that dgCat is cellular and there is a Quillen equivalent combinatorial
subcategory (without assumptions on the existence of large cardinals).

Simplicial resolutions allow for constructions of explicit mapping spaces and
simplicial actions. These play a crucial role in categorifying cohomology to Morita
cohomology; see [4]. We construct simplicial resolutions by an explicit if somewhat
lengthy computation motivated by the Cech globalization in [10]. Note that the
explicit combinatorics of this construction have appeared in other contexts: If K
is the nerve of a category this is the data of an A,.-functor; see for example [5]. If K
is any simplicial set one recovers the oco-local systems defined in [1]. We feel that the
interpretation here as the cotensor action of simplicial sets on dgCat, computed via
simplicial resolutions, provides a satisfying conceptual viewpoint.

These results are taken from the author’s thesis. Thanks are due to Ian Grojnowski
and Jon Pridham for helpful discussions.

1.1. Conventions

We assume the reader is familiar with the theory of dg-categories. Basic references
are [6] and [16].
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Recall in particular that there are two model structures on dgCat,, the category of
differential graded categories over a ring k. These are the Dwyer-Kan model structure,
constructed in [12], and the Morita model structure [13] which is its left Bousfield
localization, cf. [14]. We will often not distinguish between them as our results will
apply to both model categories.

We use homological grading conventions; all differentials decrease the degree. The
degree is indicated by a subscript or the inverse of a superscript, C; = C .

2. Dg-categories over a ring of flat dimension 0 form a
left proper, cellular, combinatorial model category

2.1. Left properness

In this section we will show that the model category of dg-categories over a field
k is left proper. Recall that a model category is left proper if any pushout of a weak
equivalence along a cofibration is again a weak equivalence.

Remark 2.1. Recall that dgCat with the Dwyer-Kan model structure is right proper
since every object is fibrant, and it is not right proper with the Morita model structure,
as is shown explicitly by Example 4.10 in [15].

Before proceeding to the proof we mention two closely related results from the
literature. Dwyer and Kan prove left properness for simplicial categories on a fixed
set of objects in [2].

If we strengthen our assumption and let £ have global dimension 0, then it follows
from Corollary 1.3 in [7] that dgCat, is left proper. To see this, note that in this
case all chain complexes over k are cofibrant in the projective model structure, so
the results in [7] apply. Indeed, any chain complex is a direct limit of its canonical
filtration by bounded below subcomplexes. If all k-modules are projective this is a
special direct limit in the sense of [11]; hence the limit is a K-projective object and
hence cofibrant.

Theorem 2.2. If k has flat dimension 0 the model category dgCat,, is left proper.

Proof. Left Bousfield localization preserves left properness (see Proposition 3.4.4
of [3]), so it is enough to show that dgCat with the Dwyer-Kan model structure
is left proper.

The main work is in showing that pushout along the generating cofibrations
preserves quasi-equivalences.

To see this suffices, note first that transfinite compositions are just filtered colimits,
and filtered colimits preserve quasi-equivalences as follows: A filtered colimit of
categories can be computed set-theoretically on objects and morphisms. Now filtered
colimits preserve weak equivalences of simplicial sets and hence of mapping spaces.
They also preserve the homotopy category since a filtered colimit of equivalences of
categories is an equivalence of categories and taking the homotopy category commutes
with filtered colimits. Second, if pushout along some map preserves weak equivalences
then so does pushout along a retract by functoriality of colimits. Since all cofibrations
are retracts of transfinite compositions of generating cofibrations, it does indeed suffice
to check generating cofibrations.



PROPERNESS AND SIMPLICIAL RESOLUTIONS IN THE MODEL CATEGORY dgCat 265

Recall the generating cofibrations of dgCat [15]. We write k for the dg-category
with one object with endomorphisms k concentrated in degree 0. Also let .#(n — 1)
have two objects a and b and End(a) = End(b) = k[0] while Hom(a, b) = k.g with ¢ in
degree n — 1 and Hom(b, a) = 0. Finally let 2(n) be obtained by .#(n — 1) by adding
a generating morphism f of degree n to #(n — 1) with df = g. Then the generating
cofibrations of dgCat are given by § — k and by .¥(n — 1) = 2(n) for all n € Z.

It is clear that pushout along () — k preserves quasi-equivalences.

So consider the generating cofibration .(n — 1) — 2(n) with a map j: .#(n —
1) = € and a quasi-equivalence F': ¥ — &. In forming the pushforward we adjoin
a new map f with df = j(g). We call the resulting category ¢”. Then let &’ be the
pushout of .#(n —1) — Z(n) along F o j.

The pushout along j has the same objects as €. The morphism space is obtained by
collecting maps from C to D, graded by how often they factor through f: j(a) — j(b).
Write €' (A, B) etc. for the enriched hom-spaces Hom. (A, B) etc. Then the hom-
spaces in ¢’ are given as follows:

¢'(C,D) = Tot? (¢(C,D) & (¢ (j(b),D)@k.f @T @ €(C, j(a)))) (1)

Here T'= 3", -, (€(j(b),j(a)) ® k.f)®" and we introduce a horizontal degree n with
% (C,D) in degree —1. The right-hand side has a vertical differential d, given
by the internal differential and a horizontal differential dj given by f+— j(g) €
Hom(j(b), j(a)) composed with the necessary compositions.

If the functor F' is not the identity on objects from % to & we factor

F=QoH:¢—>2—&

where 2 has as objects the objects of ¢ but Homg (A, B) = Homg(F A, FB). Then
H is identity on objects and @ is an isomorphism on hom-spaces. We form the
pushforward and obtain the factorization F' = Q' o H’' through 2'.

So it suffices to prove the following two lemmas. O

Lemma 2.3. The functor Q' defined as above is a quasi-equivalence if Q is.

Proof. Note that Q' is quasi-essentially surjective if @ is since both 2 — 2’ and
& — &' are essentially surjective as pushout along j does not change the set of objects.

Next we use a spectral sequence to compute the hom-spaces in 2’ and &’. To
construct the spectral sequence we filter the right-hand side of Equation 1 (with 2
respectively & in place of €’) by columns, i.e. by n. Let (V,d) + d,) denote any Hom
space in 2’ or &'. The filtration is bounded below and exhaustive for the direct sum
total complex V' and hence the associated spectral sequence

Ep, = Hypig(Gr,V) = Epo = Hyrg(V)

converges. Now Gr(V) = (V,d,) and the map induced by Q' is given by @ on all
the hom-spaces making up the right-hand side of Equation 1. Since @ induces
isomorphisms on hom-spaces, it induces isomorphisms on their direct sums and
tensor products and thus @’ induces an isomorphism on the E'-page of the spectral
sequences computing hom-spaces in 2’ and &”’. Hence Q' induces an isomorphism
on the E°°-page. For any pair of objects C,D in 2’ this gives an isomorphism
2'(C,D) = &'(QC,QD), so Q' induces quasi-isomorphisms on hom-spaces.
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Note that since .#(n—1) maps to & via Z all the hom-spaces involved in
computing &'(QC, QD) are indeed images of hom-spaces in 2. O

Lemma 2.4. The functor H' defined as above is a quasi-equivalence if H 1is.

Proof. Note that H' is quasi-essentially surjective if H is for the same reason that
Q' is.

To consider the effect of H' on mapping spaces we follow the same argument as
in the previous lemma. Now H only induces weak equivalences on hom-spaces, but
we know all hom-spaces are flat over k£ by assumption. Hence the tensor product in
Equation 1 preserves quasi-isomorphisms. So we have a quasi-isomorphism between
the E' pages of the spectral sequences and hence between E> pages, and H' induces
quasi-isomorphisms on hom-spaces. O

Remark 2.5. If k does not have flat dimension 0 then the conclusion is false. We
can adapt Example 2.11 in [9] to the case of dg-categories. Let k have positive
flat dimension; then there exists a pair of k-modules M, N with Tor¥ (M, N) # 0.
We will consider the k-algebra A =k @ M & N with trivial product M & N. Then
Tor]f(A,A) # 0. View A as a dg-algebra concentrated in degree 0 and take a free
resolution B of A. Next consider both A and B as dg-categories with one object.
They are quasi-equivalent. Now attach a free generator to A and to B by pushout
along the generating cofibration .#(—1) — 2(0). We then have A(z) ~ P, A®"
and B(y) ~€P,,5, B" (note that the tensor product here is the underived tensor

product over k). But since Hy(B ® B) = Tor¥(A, A) # 0 and A(z) is concentrated in
degree 0 the two pushouts are not quasi-equivalent, and dgCat,, is not left proper.
Hence the model category of dg-categories is left proper if and only if all dg-
categories are k-flat, i.e. if and only if £ has flat dimension 0, and equivalently if k is
von Neumann regular.
In [9] the existence of a proper model for simplicial k-algebras is proven. A similar
result for dg-categories is beyond the scope of this work.

2.2. Cellularity and combinatoriality

One of the main uses of properness is in constructing left Bousfield localizations.
The only additional assumption needed is that the model category is either cellular
or combinatorial. We now show that both are satisfied for dgCat.

Proposition 2.6. The two model category structures on dgCat are cellular.

Proof. Recall that a model category is cellular if it is cofibrantly generated with
generating cofibrations I and generating trivial cofibrations J such that the domains
and codomains of the elements of I are compact, the domains of the elements of J are
small relative to I, and the cofibrations are effective monomorphisms. See Chapter
10 of [3] for more details.

Left Bousfield localization preserves being cellular; see Theorem 4.1.1 of [3]. So it
is enough to show dgCat with the Dwyer-Kan model structure is cellular.

The domains and codomains of elements of I are categories with at most two
objects and perfect hom-spaces, so maps from these objects to relative I-complexes
factor through small subcomplexes. So domains and codomains of I are compact.
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Similarly the domains of the elements of J have two objects and perfect hom-
spaces. Hence taking maps from a domain of J commutes with filtered colimits. So
domains of J are small relative to I.

We are left to check that relative I-cell complexes, i.e. transfinite compositions of
pushouts of generating cofibrations, are effective monomorphisms, i.e. any relative
I-cell complex f: X — Y is the equalizer of Y = Y IIx Y. Note that we form the
pushout along a generating cofibration by attaching maps freely. If we form %’ and
%" from % by attaching maps freely then the equalizer will have the same objects
and the hom-spaces are given by considering morphisms of the pushout that are in
the image of both ¢’ and %”. But these are precisely the hom-spaces of & O

Definition 2.7. Let A be a regular cardinal. An object A in a category Z is A-
presentable if it is small with respect to A-filtered colimits, i.e. if for every A-filtered
colimit colim B; the map colim Hom(A, B;) — Hom(A, colim B;) is an isomorphism.
We say A is presentable if it is A-presentable for some A. A cocomplete category is
locally presentable if for some regular cardinal A it has a set .S of A-presentable objects
such that every object is a A-directed colimit of objects in S.

Definition 2.8. A model category is combinatorial if the underlying category is
locally presentable.

It is known that there exist combinatorial models for all cofibrantly generated
model categories under a large cardinal assumption, cf. [8]. We notice that this
assumption is not necessary for dgCat.

Proposition 2.9. The category dgCat is Quillen equivalent to a combinatorial
subcategory.

Proof. This follows immediately from the proof of the main theorem of [8]. Let 2
denote either of the two model structures on dgCat. Let S be the collection of objects
that are domains or codomains of the generating cofibrations and generating trivial
cofibrations. (See [15] for an explicit description.) Clearly S is a set. Let . denote the
full subcategory of 2 with objects S. Define 7g(X) to be the colimit of the forgetful
diagram (s — A) — s indexed by the overcategory . | A. Then an object A € 2 is
S-generated if it is isomorphic to ng(X).

Now by the proof of Theorem 1.1 in [8] the subcategory of S-generated objects of
2 is a model category Zs which is Quillen equivalent to the original one. Moreover,
by Proposition 3.1 of [8], Zs is locally presentable if every object in S is presentable.
But this is clear since the objects in S have finitely many objects and generating
morphisms. O

Remark 2.10. Note that Vopénka’s principle is not needed here since the objects of
S are presentable.

3. Simplicial resolutions of dg-categories

In this section we will construct explicit simplicial functorial resolutions € +— %,
in dgCat. Again, we can consider either model structure on dgCat.
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We first recall the basic definitions. Let A be the simplex category and consider
the constant diagram functor c: .4 — .#*" . Then a simplicial resolution M, for
M € # is a fibrant replacement for ¢M in the Reedy model structure on .2 .
(For a definition of the Reedy model structure, see for example Chapter 15 of [3].)
The dual notion is a cosimplicial resolution M®.

We recall two applications:

By using simplicial resolutions one can define mapping spaces with values in
Ho(sSet) for every model category, even if it is not a simplicial model category.
If ¢B — B is a simplicial resolution in .#Z2"" and QA a cofibrant replacement in .#
then Map(A, B) ~ Hom®*(QA, B) ~ R(Hom®(—, ¢c—)), where the right-hand side uses
the bifunctor Hom®: .#°P x .#2"" — Set™” that is defined levelwise.

Moreover, every homotopy category of a model category is tensored and cotensored
in Ho(sSet). In fact, .# can be turned into a simplicial category in the sense that
there is an enrichment given by the bifunctor Map and there is a tensor functor as
well as a cotensor or power functor, which can be constructed from the simplicial and
cosimplicial resolutions. The cotensor is constructed using the simplicial resolution
as follows: Let a simplicial resolution A, € .Z2"" and a simplicial set K be given.
Consider AK°P, the opposite of the category of simplices of K, with the natural
map v: AK°P — A° gending A[n] — K to [n]. We define AX = limaxor 4, to be
the image of A, under limo v*: €A™ — ¥AK"" 5 €. This can also be written as
AK = limy, ([T, An)-

3.1. The construction

Our construction is directly motivated by Simpson’s construction of the
globalization of a presheaf of dg-categories as a dg-category of Maurer—Cartan
elements; cf. section 5.4 of [10].

Remark 3.1. In fact, the construction of %, below corresponds to considering
the constant presheaf of dg-categories on a covering of |A™| by n+ 1 open sets
(corresponding to leaving out one of the faces).

Definition 3.2. Assume % is fibrant; replace fibrantly otherwise. Then %, is a dg-
category with objects given by pairs (E,n) where E is a collection Ey,...,E, €
Ob% and 7 is a collection of n; =n(I) € Hom,_,(E;,, E;,) for all multi-indices
I = (ig,...,4x) with 1 < k < n. The case k = 0 is subsumed by the differential on E.
(We interpret 7(i) = 0 where it comes up in computation.) These pairs must satisfy
the Maurer—Cartan condition: 7 + n? = 0, explained below. We also demand that
all n; € Hom(FE;, E;) are weak equivalences in €.

Remark 3.3. If we do not fibrantly replace, the construction gives a simplicial framing
on dgCat; see for example [3]. The simplicial resolution can then be viewed as
composing functorial fibrant replacement with the simplicial framing.

Let us spell out the Maurer—Cartan condition. Intuitively, n provides all the
comparison maps as well as homotopies between the different compositions. We define
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the differential
k—1 )
(6m) (i, - - - k) = d(n(io, ..., i) + (=D > (=1 nio, ..., ij,... i)
J=1

which lives in Hom, (FE;,, E;, ). We write 6 =d+ A. Here we define || = 1. The
product is:
k
(@omio,--rin) = > (=)W (i, ...,ix) onlio, .., i;)
j=0

Both definitions follow section 5.2 of [10], with some corrections to the signs. We
leave out the terms in d7 corresponding to leaving out iy and iy as they do not live
in the correct hom-spaces.

One can now check that Ad = —dA (and hence §% = 0) and we have the following
Leibniz rule:

8(¢on) = (—1)"(3¢) o + o (dn)
The same equation holds for the summands d and A. (The unusual sign appears

because of the backward notation for compositions.)

Ezample 3.4. For n=1 we have (6n+n%)o1 =d(no1) +0, the expected cycle
condition. For n = 2 we have for example
(01 +1*)o12 = d(no12) + 102 — M2 © nor € Hom, (Eo, Es)

So an element of %, is of the form (E,n) where E = (Ey, E1,E>) and n =
(M01,M02, M2; Mo13) satisfies dn +n? = 0, which comes out to dn;; =0 and dnoia =
—No2 + M12 © No1. This agrees with our intuition that 7912 is a homotopy from 714 o 791
to No2-

Morphisms from (E,n) to (F,¢) are given as follows.
Homy " ((E,n), (F,¢)) = {alio, ..., ir)}

where a(io,...,ix) € Hom,, . (F;, F;,). We write m = |a| for the degree of a
morphism. We have a differential d, » defined by

(dy.o(a))(i0, -, ig) = 6(a) + poa— (—1)aoy

where composition and differential are defined as above. The Maurer—Cartan
condition on 7 and ¢ together with the Leibniz rule ensures (dn,¢)2 =0.

Example 8.5. For example ¢ agrees with the path object in dgCat as constructed
in section 3 of [15]. Indeed, objects are homotopy invertible morphisms n: A — B
and morphisms from 7 to ¢ are given by triples (ag, a1, ap1) with differential

§: (ao,a1,ao1) = (dag, day,dagy + ¢ o ag — (—=1)14la; o)

Note that there are induced face and degeneracy maps. The maps in the simplex
category induce restriction functors 0;: 6, — %,—1 and inclusions o;: 6, = €nt1
that add an extra copy of E;, connected by the identity map to F;.

The replacement map ¢ : ¢€ — 6, is given by (o)™ in degree n.
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Before we embark on the somewhat technical proof that %, is a simplicial
resolution, we note the following application. We can extend the definitions of the
differentials and composition to functions defined on general simplices. (That is, we
replace “leaving out the é-th term” by the map induced by 0; etc.)

Proposition 3.6. Given a simplicial set K we can construct €% as the dg-category
with objects (E,n) where E € (0b€)X0 and n assigns to every k-simplex in Ky a
map in Hom,, ,(E(0fo), E(0,,.0)) satisfying the Maurer-Cartan equations. Hom-

spaces are defined similarly to hom-spaces in €.

Proof. This follows from the construction of €% = lima gor €a. All the copies of €,
corresponding to degenerate simplices are themselves degenerate. O

Remark 3.7. Note that this shows that the construction of Morita cohomology in [4]
as K + €% corresponds to oo-local systems as defined in [1].

Notation 3.8. Given an object or morphism a and a positive integer k we write ajy
for the collection of all a4, -

Proposition 3.9. The inclusion from the constant simplicial dg-category c¢€ to e
is a levelwise weak equivalence.

Proof. We have to check that the inclusion map ¢: ¢ — 6, is a quasi-equivalence.
Let us first show that ¢ induces weak equivalences on hom-complexes. We have to

show that Homean ((E,n), (£, ¢)) ~ Hom (E, F) when both 1 and ¢ are of the form

(1,0), i.e. the constituent morphisms in degree 0 are the identity and all others are 0.
Write (H,dp) := Hom(FE, F) and note that from the definitions we can write

Hom((F,0), (F,0)) ~ (H[1] ® /\<607 oesen), D)

Here the e; all have degree 1 and we identify H.e;, A --- A e;, with the a(io, ..., ).
The differential D is dy + t5-,, where the second term denotes contraction. This
complex is a resolution of (H,dy).

Next we show ¢ is quasi-essentially surjective, i.e. show that any object (E,n) is
equivalent to an object (Fy,(1,0)) where F, is of the form (Fp, ..., Fp).

We can deduce this if we can show that every (E,n) is equivalent to some (F,¢)
such that all compositions which agree up to homotopy by §¢ + ¢? = 0 agree strictly,
ie. ¢ = (¢)0],0), and that any such (F,(¢jo],0)) is equivalent to (Fy,(1,0)). The
second part of this is immediate: We define a map from (£, (1,0)) to (F, (¢[,0)) by
sending Fy to F; via ¢(0,7) = ¢(i — 1,7) - - (0, 1). Since all ¢(j,j + 1) are homotopy
invertible there is a homotopy inverse.

We will now show that any (F,n) is equivalent to (F,¢) where ¢ has no higher
homotopies. Let F' = E and let ¢(¢,5) =n(j —1,7)---n(i,i + 1). We may assume by
induction on n that all n(io, ... i) with iy <n are 0.

We define the homotopy equivalence H: (E,n) — (F, ¢) as follows:

H(i) =1,
H(ig,...,ix) = (=% n(io,...,ixg_1,n — 1,n) ifip =n and i, 1 #n — 1,
H(ig,...,ix) =0 otherwise.

And define H~ to be equal to H in degree 0 and —H in degree > 0.
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Then it is clear that H and H~ are inverses. Since H(ig,...,i,) is zero unless
i, = n there are no nontrivial compositions and the compositions 10 H(...) and
H~(...) o1 cancel in degrees greater than 0.

So it remains to show that dH = dH~ = 0 to show we have a genuine homotopy
equivalence.

We consider H first.

Putting together our definitions we find the following. Let us first assume i1 #
n — 1 and i, = n. To obtain the correct signs recall that |[H| =0 and |n| = |¢| = 1.

k—1
(dH)(ig, ... ir) = d(H(ig, - .., i) + Z(—l)jH(iO, gy in)

+ 3 (=1)¢(ij...in) 0 Hig,...,ij)

-

I
=}

J

H(ij,...,ik)O?](io,...7ij)

-

<
I
=

This simplifies to:
(dH)(io, .- -, ix) = (=1)" tdn(io,...,n = 1,n)
+ (=12 (=1nlio, - . yig, ... on—1,n)
J

+0— (71)]97277(2.17 s, — 17”) ° n(i(),il) —1o n(i()a cee 7ik)
=0

The last equality holds since the penultimate term is of the form
(=) (6n + n?)(ig, . .. ,ig_1,n — 1,n)

This becomes clear if we write 1(ig, ..., ix) = n(io, - . - ,1751, n) and observe that all
the other terms we expect in 6n -+ n? are 0.

The other cases are easier. If iy # n all terms in the differential are 0 and if
ix—1 =n — 1 and i, = n there are only two nonzero terms, which cancel.

When we consider dH ™~ the sign of the term 7(ig, ..., 4x) changes, as it now comes
from n o H and not H o 7. This cancels the effect of the sign of H (i) also changing by
a factor of —1. There are no other occurrences of the sign of H (i) unless k = 1 when
all but the last two terms are zero and the last two terms cancel. O

Proposition 3.10. The simplicial dg-category G is Reedy fibrant.

Proof. Write
N<n ‘= (nOa s 777/0-\11) = (77[0]7 s an[nfl])

Then M, (%) is a subcategory of %, whose objects are of the form (E,n<,). In
particular note that the Maurer—-Cartan condition holds on all indexing sets except
on (0,...,n). Similarly, morphisms are of the form s.,, where s is a morphism in %,.
This is easily seen to be the correct limit; see Proposition 3.6. We write n: 4, = M, %
for the functor forgetting 7y,
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It is immediate from the definition that there is a surjection on hom-spaces. So
it remains to check the lifting property for homotopy invertible maps. We will first
reduce to lifting contractions, as is done in the case of path objects in section 3 of [15].

Note that by assumption the dg-category ¥ is fibrant and hence has cones; cf.
section 2 of [15]. Then to see if a map h is homotopy invertible it suffices to check
that cone(h) is contractible.

So assume h: (E,N<,) = (F, ¢<y) is homotopy invertible in M, % with homotopy
inverse g and that (E, 7<) is in the image of &, under 7. First we need to check that
(F,¢<n) is also in the image of %,. It is enough to find ¢, such that 6¢ + ¢? =0
while we know that d¢.,, + ¢2<n = 0. In other words we are looking for ¢, such that
AP = (AP + &) )

We will first consider g(n) - (A¢ + ¢?)(0...n). Define po’ o to be poo minus
the term p(n)-o(---n). Then —o’ 0 = — oo if o is  or ¢. Note that d and A are
compatible with o’ just as with the usual product.

Then g(n)-¢(i...n)=(—go’ ¢ +nog—2>g)(i...n) and we can perform the
following computation, where we deduce the Maurer—Cartan condition in degree n
from the Maurer—Cartan conditions in lower degrees.

g(n) - (Ap+¢pog)=—A(go ¢) +A(nog) —Adg+ (—go' ¢ +nog—dg)o¢

—g0 (Ap+¢pod)+no(Ag+gog)—dgo ¢+ Anog+dAg
~go'dp—dgo' ¢+mnonog—mnodg+Anog
=d(go ¢) —dnog—nodyg

~ —d(nog)

~ (0

Z

Since dh(n) = 0 we deduce that h(n)g(n)(A¢ + ¢*) ~ 0 and it suffices to show that
(h(n)g(n) — 1) - (A¢ + ¢?) ~ 0. We know there exists K with dK = h(n)g(n) — 1 so
the desired homotopy follows if we can show that d(A¢ + ¢?) = 0. One may check
explicitly that d(A¢) = —A¢po ¢+ ¢ o Ag, using the fact that dp = —A¢ — ¢? in
degree less than n. Then we can use Maurer—Cartan in lower degrees again to deduce:

d(Ad + ¢°) = d(A¢) — (—Ap — ¢°) 0 ¢+ po (—Ap — ¢°)
=0

Thus we know the domain and codomain of i are in the image of m and we can
use surjectivity of hom-spaces to write h = w(H). Now it suffices to show that the
contraction of h lifts.

Let us assume we are given a contraction s<, of cone(h) = (G, v<n); we
have to find a contraction s of (G,7). By assumption we can write dy(s<,) =
(1,0,...,0,tp,) for some tp,. Now consider 0 = dyd+(s<n) = (0,...,0,dty, + 0). This
forces 5t[n] = dt[n] = 0. But now we know that dS[O] =1 and hence d: Si01t[n] 7 tn)
and (S(o], - - - » S[n—1]> $[0)t[n]) 1S @ contraction of (G, 7).

We deduce that H is contractible and the preimages of (E,n<,) and (F, ¢<,) are
indeed homotopy equivalent. O
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