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HOMOLOGY OPERATIONS IN SYMMETRIC HOMOLOGY

SHAUN V. AULT

(communicated by Donald M. Davis)

Abstract
The symmetric homology of a unital associative algebra A

over a commutative ground ring k, denoted HS∗(A), is defined
using derived functors and the symmetric bar construction of
Fiedorowicz. In this paper we show that HS∗(A) admits homol-
ogy operations and a Pontryagin product structure making
HS∗(A) an associative commutative graded algebra. This is
done by finding an explicit E∞ structure on the standard chain
groups that compute symmetric homology.

1. Introduction

The purpose of this paper is to define an E∞ structure on the standard chain groups
that compute symmetric homology of a unital associative algebra. The construction
makes use of the fact that the symmetric category ∆S+ (that is, ∆S with an initial
object appended) is permutative, a property not shared by the simplicial category
∆ nor the cyclic category ∆C, even if initial objects are appended. Such structure
may facilitate computations of symmetric homology, which in turn may shed light on
related functor homology theories.

The notion of symmetric homology was introduced under the broader context of
crossed simplicial groups (CSGs) by Fiedorowicz and Loday in [13]. Some important
properties and results were developed in the preprints of Fiedorowicz [12] and Ault
and Fiedorowicz [2], as well as in the author’s thesis, a portion of which has been pub-
lished [1]. Symmetric homology can be thought of as an analog to cyclic homology,
in which the symmetric groups play the role that the cyclic groups do in the latter.
The usefulness of cyclic (co)homology in noncommutative geometry and K-theory is
well established (see, for example, [9, 6, 7]). It becomes natural to examine general-
izations such as symmetric homology in order to better understand cyclic homology
itself. Moreover, these generalizations are important in their own right. For example,
there are interesting links between symmetric homology and Γ-homology and related
theories through the identification of ∆S with the category of noncommutative sets,
F(as) (see §2.3). Furthermore, symmetric homology is related to stable homotopy
theory in the following way: if G is a group, the symmetric homology of the group
ring k[G] is isomorphic to H∗(ΩΩ

∞S∞(BG); k) [12, 1].
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This paper, together with [1], is intended to supplant the unpublished preprints of
Fiedorowicz [12] and Ault and Fiedorowicz [2].

1.1. Symmetric homology
We begin by recalling some of the notations and definitions regarding symmetric

homology found in [1]. Let A be a unital associative algebra over a commutative
ground ring k, and let k-Mod be the category of (left) k-modules. Let ∆S be the
category whose objects are the sets [n] = {0, 1, 2, . . . , n} for n > 0 and whose mor-
phisms [n]→ [m] are pairs (φ, γ) such that φ is a nondecreasing set map [n]→ [m]
(that is, φ ∈ ∆([n], [m])), and γ ∈ Σop

n+1 (the opposite of the symmetric group). The
category ∆S is the structure category of the symmetric CSG [13, 18]. Briefly, a CSG
is a sequence of groups {Gn}n>0 together with a structure category ∆G such that

• ∆G contains the simplicial category ∆ as subcategory,

• Aut∆G([n]) = Gop
n , and

• Each morphism of ∆G has unique decomposition into φ ◦ γ, which we denote
by the pair (φ, γ), with φ ∈ ∆ and γ ∈ Gn for some n.

Composition in ∆G is defined by (φ, γ) ◦ (ψ, δ) = (φ ◦ ψγ , γψ · δ) for the appropri-
ate morphisms ψγ of ∆ and γψ ∈ Gop. As implied by the notation, a single dot
(·) is used for multiplication in Gop; however, it is convenient to regard the group
elements as living in G so that we typically do the multiplication “the right way”
when writing the morphism: (φ, γ) ◦ (ψ, δ) = (φψγ , δγψ). See [13, 1] for more details
and notational conventions. Observe that both ∆ and the cyclic category ∆C are
examples of structure categories of CSGs, the former having trivial automorphism
groups and the latter having Aut∆C([n]) = Cop

n+1 = Cn+1, the cyclic group of order
n+ 1. Using an appropriate bar construction, one may define a homology theory
associated to a CSG. Indeed, the cyclic bar construction of Loday [18], a contravari-
ant functor Bcyc∗ A : ∆C → k-Mod, defines the cyclic homology of the algebra A
via HC∗(A) = Tor∆C

op

∗ (k,Bcyc∗ A) = Tor∆C∗ (Bcyc∗ A, k), where k is the trivial cyclic k-
module, that is, k[n] = k for all n > 0 and kα = id for all morphisms α. Fiedorowicz
and Loday [13] found that any definition of symmetric homology using a contravari-
ant bar construction results in a trivial theory—that is, if M is a ∆Sop-module, then
Tor∆S∗ (M, k) = H∗(M), the homology of the underlyling simplicial module. On the
other hand, Fiedorowicz [12] discovered that a covariant bar construction, rather than
a contravariant one, yields an interesting nontrivial theory of symmetric homology;

Bsym∗ A : ∆S → k-Mod,

Bsym∗ A[n] = Bsymn A
def
= A⊗(n+1).

The functor Bsym∗ A is referred to as Csym(A) in [18]. It is sufficient to define Bsym∗ A
on γ ∈ Σop

n+1 and φ ∈ ∆([n], [m]). We often refer to the morphism Bsym∗ Aα as evalu-
ation at α.

Bsym∗ Aγ : A⊗(n+1) −→ A⊗(n+1)

a0 ⊗ a1 ⊗ · · · ⊗ an 7→ aγ(0) ⊗ aγ(1) ⊗ · · · ⊗ aγ(n).

Bsym∗ Aφ : A⊗(n+1) −→ A⊗(m+1)

a0 ⊗ a1 ⊗ · · · ⊗ an 7→ b0 ⊗ b1 ⊗ · · · ⊗ bm,
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where

bi =
∏

aj∈φ−1(i)

aj (product taken in order of increasing indices).

We define the symmetric homology of any ∆S-module M by HS∗(M) =
Tor∆S∗ (k,M), in which k is the trivial ∆Sop-module. For any unital associative alge-
bra A, Bsym∗ A is a ∆S-module, and so we define the symmetric homology of A as
follows:

HS∗(A)
def
= Tor∆S∗ (k,Bsym∗ A) .

It is advantageous to enlarge ∆S by adding an initial object [−1] ∈ ∆S+. Define the
extended symmetric bar construction, B

sym+

∗ A, by B
sym+

n A = Bsymn A for n > 0 and
B
sym+

−1 A = k. Evaluation at the unique morphism [−1]→ [n] sends 1 ∈ k to 1⊗(n+1).
The author has shown [1] that symmetric homology also can be computed using ∆S+.
In (1), k is the trivial ∆Sop

+ -module:

HS∗(A) ∼= Tor∆S+

∗

(
k,B

sym+

∗ A
)
. (1)

We may use a standard resolution based on under-categories to compute the Tor
groups. Recall, for a small category C there is a contravariant functor − \ C from
C to Cat (the category of small categories), which takes an object c to the under-
category c \ C ; in other words, − \ C is a C op-category. Using the notation NC for
the nerve of a small category C , and the useful notation of Gabriel and Zisman [14],
a simplicial k-module whose homology is exactly HS∗(A) is written and defined as
follows:

C∗(∆S+, B
sym+

∗ A)
def
= k [N(− \∆S+)]⊗∆S+

B
sym+

∗ A. (2)

That is,

HS∗(A) ∼= H∗(C∗(∆S+, B
sym+

∗ A)).

2. Preliminaries

2.1. Notational conventions
With an eye towards readability, we use the following notational conventions:

1. Tuple of n items: m
def
= (m1,m2, . . . ,mn). Each element mi may be a number

or an element of some set as context dictates. The number of elements, n, is
suppressed in the notation, though it will always be clear what n is by context.

2. “Single-variable” function applied to a tuple: If f : M → N and m ∈Mn, then

f(m)
def
= (f(m1), f(m2), . . . , f(mn)) ∈ N

n.

3. “Multi-variable” function applied to a tuple: If f : Mp → Nq, then we simply
write the image of m ∈Mp under f as f(m) ∈ Nq.

4. Permutation applied to a tuple: If σ ∈ Σn, then

σm
def
= (mσ−1(1), . . . ,mσ−1(n)).

This convention ensures that Σn acts on the left of m.
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5. Block permutation: If σ ∈ Σn, then σk = σk1,...,kn ∈ Σk1+···+kn represents the
block transformation of blocks of sizes k1, k2, . . . kn (where each ki ∈ N ∪ {0}).
For example, (1, 2)2,3 = (1, 4, 2, 5, 3).

6. Inter-block permutation: If σi ∈ Σki for each i = 1, 2, . . . , n, then σ1 ⊕ · · · ⊕ σn ∈
Σk1+···+kn represents the permutation of block i by σi while retaining the orig-
inal order of the blocks. For example, (1, 2)⊕ (1, 2, 3) = (1, 2)(3, 4, 5).

7. Products of tuples: Suppose ci are objects of a category C with an associative

binary operation ⊙. Then c⊙
def
= c1 ⊙ c2 ⊙ · · · ⊙ cn. Moreover, if σ ∈ Σn, then

σc⊙
def
= cσ−1(1) ⊙ · · · ⊙ cσ−1(n).

8. If there is a specified left action of Σn on a setX, then the notation σ • x denotes
the image of x ∈ X under the action of σ ∈ Σn. The same notation is used for
right actions, only written the opposite way around: x • σ. This notation is
chosen so that there is a clear distinction between the similar notations σc⊙

and σ • c⊙.

2.2. Monoid algebras and the functor T
Let Mon be the category of monoids and monoid homomorphisms (here, we mean

ordinary monoids in sets). For a given monoid M , we define the extended symmetric
bar construction

Bsym+M : ∆S+ →Mon,

Bsym+M [n]
def
= Mn+1.

Here, Mn is the cartesian product of n copies of M , and M0 = {()}, a set containing
just the empty tuple. Now let us define a similar notation as that of (2) for simplicial
monoids. If F is a ∆S+-monoid (i.e., F : ∆S+ →Mon is a functor) then let

C(∆S+, F )
def
= N(− \∆S+)×∆S+

F.

We define the symmetric homology (with coefficients in k) of the monoid M by

HS∗(M)
def
= H∗(k[C(∆S+, B

sym+M)]).

See [1, §5.2], for more details on the symmetric bar construction for monoids.

Remark 2.1. We will generally use the notation 〈f,m〉 in place of B
sym+

∗ Mf(m) to
denote evaluation of f at m. Because B

sym+

∗ M is functorial, the evaluation map
satisfies the useful property

〈fg,m〉 =
〈
f, 〈g,m〉

〉
. (3)

Similarly, for a0 ⊗ · · · ⊗ an ∈ A
⊗(n+1), we may write 〈f, a0 ⊗ · · · ⊗ an〉 in place of

B
sym+

∗ Af(a0 ⊗ · · · ⊗ an).

Let T be the functor from Mon to the category of small categories defined by
sending a monoid M to the category TM whose objects are finite sequences of ele-
ments of M , including the empty sequence, (). Morphisms of TM consist of pairs
(f,m) such that m = (m1, . . . ,mp) ∈M

p and f : [p− 1]→ [q − 1] is a morphism of
∆S+. The source and target of such a pair are m and 〈f,m〉, respectively. When the
source and target are clear, we simply use f to denote the morphism. The functor
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T sends a monoid morphism ψ : M → N to the functor T ψ : TM → T N that maps
m ∈Mp to ψ(m) ∈ Np.

Lemma 2.2. TM is a permutative category.

Proof. Define the product on objects by concatenation:

(m1, . . . ,mp)⊙ (n1, . . . , nq)
def
= (m1, . . . ,mp, n1, . . . , nq).

Since ∆S+ is permutative [1], we can use the product of ∆S+ to define products of
morphisms in TM . Associativity is strict, since it is induced by the associativity of
⊙ in ∆S+. The empty sequence, (), is a strict unit. The symmetry transformation is
defined on objects by block transposition.

2.3. The category of noncommutative sets
There is an interpretation of the morphisms of ∆S+ as formal tensors, which

provides an interesting connection to the category F(as), the category of noncommu-
tative sets [23, 24, 26]. The objects of F(as) are the finite sets m = {1, 2, 3, . . . ,m}
for m > 1. A morphism λ of F(as) is a set map λ : m→ n together with a specified
total ordering <λ on each preimage set λ−1(i), 1 6 i 6 n.

Let X = {x0, x1, x2, x3, . . .} be a set of formal indeterminates, and consider the
free monoid, X⋆, generated by X. Define the tensor representation of a morphism
f ∈ ∆S+([n], [m]) as the image of (x0, x1, . . . , xn) under Bsym+X⋆f . Typically, a
morphism whose tensor representation is (y0, y1, . . . , ym) (in which each yi is a pos-
sibly empty monomial in the indeterminates xj) will be written y0 ⊗ y1 ⊗ · · · ⊗ ym,
hence the terminology. The correspondence sending a morphism to its tensor rep-
resentation is one-to-one by uniqueness of decomposition of ∆S+ morphisms into a
∆+ morphism, which determines the number of factors in each monomial yi, and a
permutation, which determines the total order of the indices.

Example 2.3. Let φ ∈ ∆+([2], [1]) be the map sending i 7→ i for i = 0, 1, and 2 7→ 1.
Let γ = (0, 1, 2) ∈ Σ3. The tensor represenatation of (φ, γ) is (x1, x2x0), or x1 ⊗ x2x0.

Tensor notation provides the link to F(as).

Proposition 2.4. There is an isomorphism of categories F : ∆S → F(as).

Proof. The functor F takes [n] to n+ 1 for each n > 0. Let f : [n]→ [m] be a mor-
phism in ∆S and write f = (y0, y1, . . . , ym) in tensor notation. Then F (f) = λ, where
λ is the set function such that λ(j) = i ⇔ xj−1 appears as a factor in yi−1, while
the total ordering <λ on λ−1(i) is induced by the ordering of factors in yi−1, that is,
if yi−1 = xj1−1xj2−1 · · ·xjk−1, then j1 <λ< j2 <λ · · · <λ jk. Bijectivity of F is clear,
and verifying that F is indeed a functor is left to the reader.

Remark 2.5. If we denote by F(as)+ the category F(as) enlarged by the initial object
0 = ∅, then Prop. 2.4 implies ∆S+

∼= F(as)+.

There are tantalizing links among symmetric homology, cyclic homology and the
so-called Γ-homology theories of Alan Robinson and Sarah Whitehouse and related
Γ(as) and F(as) homologies, theories that have been much studied recently [27,
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28, 29, 26, 24]. Pirashvili and Richter [24] identify the cyclic homology of any

F(as)-module G with TorF(as)
∗ (b,G), where b is the cokernel of a certain map of

F(as)op-modules. We shall interpret this statement using ∆S presently. Define for
each m > 0 the projective ∆Sop-module

(∆S)m
def
= k [∆S(−, [m])] , (4)

so in particular, for any n > 0, (∆S)m([n]) is the free k-module generated by the
set ∆S([n], [m]). The covariant version (∆S)m is defined analogously, but we have
no need for it in this paper. In light of Prop. 2.4, we may interpret Pirashvili and
Richter’s result thus: HC∗(G) ∼= Tor∆S∗ (b,G), where b fits into the exact sequence

(∆S)1 (∆S)0 b 0,
η

and η is defined on morphisms f : [m]→ [1] by η(f) = x0x1 ◦ f − x1x0 ◦ f . When G =
Bsym∗ A, one finds the cyclic homology of the symmetric bar construction,HC∗(B

sym
∗ A),

which coincides with the cyclic homology of A, as Loday’s cyclic bar construction [18],
Bcyc∗ A, is the restriction of Bsym∗ A under the inclusion of categories, ∆C →֒ ∆S, and
the duality isomorphism, ∆Cop ∼= ∆C. Indeed, we have a chain of isomorphisms,

HC∗(A) = HC∗(B
cycA) ∼= HC∗(B

sym
∗ A) ∼= Tor∆S∗ (b,Bsym∗ A).

2.4. Homotopy-everything operads

Let S be the symmetric groupoid, which has as objects n for n > 0 and whose only
morphisms are the permutations σ : n→ n. Thus, Sop ∼= Aut∆S+, via the map σ 7→
(id, σ). Here, AutC is the subcategory of C containing the same objects and only the
automorphisms of C . Therefore, any ∆S+ object is naturally an Sop object. Present
in the early work of Boardman and Vogt, and developed later by May and others,
is the concept of homotopy-everything, or E∞, operad [5, 21, 19]. As our operads
will be defined in various categories, not just topological spaces, it is important to
clearly define certain concepts. Let C be a small symmetric monoidal category with
unit object 1. Suppose there is a model structure [25, 16] on C (although we only
need the notion of equivalences, not (co)fibrations). We define an E∞ operad in C to
be a functor P : Sop → C , with structure maps satisfying the standard commutative
diagrams of an operad, such that each component P(n) is equivalent (in the model
structure) to 1. We also require the symmetric group action on each P(n) to be
free. We are primarily interested in operads in the category of small categories (Cat),

whose model structure is induced by the nerve functor, and in simplicial sets (Set∆
op

),

simplicial k-modules (k-Mod∆op

), and non-negatively-graded k-complexes (Ch+
• )—

each with the standard model structure.

Example 2.6. May’s little ∞-cubes operad C∞ is E∞ in the category of topological
spaces.

Example 2.7. Let DCat denote the operad in Cat defined by DCat(m) = EΣm. That
is, the objects of DCat(m) are the elements of the symmetric group on m letters,
and for each pair of objects (σ, τ), there is a unique morphism τσ−1 from σ to τ .
The structure map in DCat is the family of functors DCat(m)×DCat(k1)× · · · ×
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DCat(km) −→ DCat(k), where k =
∑
i ki, defined on objects by:

(σ, τ1, . . . , τm) 7→ σk · (τ1 ⊕ · · · ⊕ τm).

The action of Σop
m on objects of DCat(m) is given by right multiplication of group

elements. Since each EΣm has free Σm action and is a contractible category, the
operad is E∞.

Remark 2.8. The notation DCat is related to the notation used in May [21, 22]. May

uses Σ̃m for DCat(m) and defines the related operad D in the category of spaces as

the geometric realization of the nerve of Σ̃. The nerve of DCat is generally known in
the literature as the Barratt–Eccles operad (see [3], where the notation for NDCat is
Γ, not to be confused with the Γ of Γ-homology!). We denote by DMod the associated
E∞ operad in the category of simplicial k-modules defined by DMod(m) = E∗Σm
(the standard bar resolution of k by free k[Σm]-modules), and the Moore complex
(that is, the complex of normalized chains [15]) of DMod(m) by DCh

+
•
(m).

2.5. Operad-algebras

By operad-algebra, we mean an algebra over an operad in the usual sense (as in [19,
II.1.4]), in which the algebra lies in the same underlying category as the operad acting
on it. As an example, if C is a permutative category, then BC is naturally an E∞-
space [22] (that is, an E∞ algebra in Top). In fact, C is itself an E∞ algebra in Cat.
It is useful to regard a permutative C explicitly as DCat-algebra according to the
structure map θ of diagram (5). Here, fi : Ci → Di for each i = 1, 2, . . . ,m, and the
map Tτσ−1 permutes the components according to the permutation τσ−1 using the
symmetry transformation and strict associativity of the monoidal product ⊙ of C .

(σ,C1, . . . , Cm) σC⊙

σD⊙

(τ,D1, . . . , Dm) τD⊙

θ

τσ−1
×f

σf⊙

∼= T
τσ−1

θ

(5)

3. Operad structure within symmetric homology

3.1. Monoid algebras

In order to produce an E∞ structure for the simplicial module that computes
symmetric homology, we first have to work at the level of monoids and simplicial
sets.

Lemma 3.1. LetM be a monoid. C(∆S+, B
sym+M) has the structure of E∞ algebra

in the category of simplicial sets.

Proof. Consider TM , as in §2.2. A typical i-simplex of NTM has the form

〈fi · · · f2f1,m〉
fi
←− · · ·

f3
←− 〈f2f1,m〉

f2
←− 〈f1,m〉

f1
←−m, (6)
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in which m = (m0,m1, . . . ,mn). Expression (6) can be rewritten uniquely as an ele-
ment of Mn+1 together with an element (i-simplex) of N∆S+,

(
[ni]

fi
← · · ·

f3
← [n2]

f2
← [n1]

f1
← [n] , m

)
, (7)

which in turn is uniquely identified with an element of C(∆S+, B
sym+M),

(
[ni]

fi
← · · ·

f3
← [n2]

f2
← [n1]

f1
← [n]

id
← [n] , m

)
. (8)

Thus, (6)–(8) define a map LM : NTM → C(∆S+, B
sym+M).

On the other hand, a typical element of C(∆S+, B
sym+M) may not a priori have

an identity morphism [n]→ [n] as the “incoming morphism,” but by using ∆S+-
equivariance, we can always express the element in the desired form:
(
[ni]

fi
← · · ·

f2
← [n1]

f1
← [n]

f0
← [n′] , m′

)
=
(
[ni]

fi
← · · ·

f2
← [n1]

f1
← [n]

id
← [n] , 〈f0,m

′〉
)
.

(9)
This element is identified with the following i-simplex of NTM :

〈fi · · · f0,m
′〉

fi
←− · · ·

f2
←− 〈f1f0,m

′〉
f1
←− 〈f0,m

′〉. (10)

Thus, (9)–(10) define a map RM : C(∆S+, B
sym+M)→ NTM .

Clearly, LM and RM are simplicial maps that are inverse of one another and the
isomorphism follows:

C(∆S+, B
sym+M) ∼= NTM.

By Lemma 2.2, TM is permutative. Since the nerve functor N is symmetric
monoidal, the DCat-algebra structure of diagram (5) is induced to the level of sim-
plicial sets. This implies that NTM , and hence also C(∆S+, B

sym+M), is an E∞

algebra.

Remark 3.2. The fact that neither ∆+ nor ∆C+ are permutative categories implies
that the proof of Lemma 3.1 does not extend to simplicial or cyclic homology. How-
ever, it is interesting to see that in certain special cases, there does seem to be way
to define a Dyer–Lashoff structure on cyclic homology [4].

Remark 3.3. The proof of Lemma 3.1 unfortunately does not extend directly to arbi-
trary algebras. Indeed this is a serious obstruction to Theorem 8 of [2]! Presently,
we do not have a way to prove that HS∗(A) ∼= H∗(B(D,T,A)) (as [2] claims), where
D is the monad associated to the operad DMod and T is the functor that takes a
k-module to its tensor algebra. The author suspects that the isomorphism is false for
arbitrary algebras.

3.2. A structure map

For each m > 0, set

F(m)
def
= [m− 1] \∆S+. (11)

Equation (11) defines F as a ∆Sop
+ category via [n] 7→ F(n+ 1), and hence also as an

S category. Precompose the duality functor Sop → S sending σ 7→ σ−1 to define F as
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an Sop category. Because of the many “reversals” wrapped up in this definition, it is
important to show the details. For each m > 0, there is a right Σm action on F(m),

(φ, γ) • σ
def
= (φ, γ) ◦ (id, σ−1) (12)

= (φ, σ−1γ). (13)

There is also a left Σn action on each set ∆S+ ([m− 1], [n− 1]):

τ • (φ, γ)
def
= (id, τ−1) ◦ (φ, γ)

= (φ(τ
−1), γ(τ−1)φ),

and the two actions commute in the sense that

τ • (f • σ) = (τ • f) • σ.

Let m, j1, j2, . . . , jm > 0 and j =
∑
js. Assume morphisms fi, gi of ∆S+, for 1 6

i 6 m, have specified sources and targets: [ji − 1]
fi
→ [pi − 1]

gi
→ [qi − 1]. Define a fam-

ily of maps,

µ = µm,j1,...,jm : DCat(m)×
m∏

s=1

F(js) −→ F(j),

on objects by

µ(σ, f1, f2, . . . , fm)
def
= σp • f

⊙. (14)

Define µ on morphisms by the following diagram

(σ, f1, . . . , fm) σp • f
⊙

f⊙

gf⊙

(τ, g1f1, . . . , gmfm) τq • gf
⊙

τσ−1
×g

µ

(σp)
−1

g⊙

τq

µ

The effect is simply “untwisting” by block permutation, applying the morphisms
gi in the natural order, then “retwisting” by the appropriate block permutation.
Functoriality of µ is clear. We show in § 3.3 that the maps µ define a left operad-
module structure (over DCat) on F (the reader is referred to [19] for the definition
of operad-module).

3.3. Operad-module structure of F .
Consider the set of formal indeterminates X = {x1, x2, . . .} and the free monoid

X⋆ as defined in §2.3. In this section, we prove that T X⋆ is isomorphic, as a category,
to a certain category built from F . We then use this isomorphism to prove that F
admits the structure of operad-module over DCat.
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Since F is an Sop object, there is a right action of the symmetric group Σm on
F(m) for each m > 0; recall Eqns. (12)–(13). There is a left action of Σm on Xm

by permutation, σ • x = σx =
(
xσ−1(1), . . . , xσ−1(m)

)
. Thus, the fibered product of

categories can be formed, F(m)×Σm
Xm. Here, X is taken to be a discrete category.

For a set {Ci} of small categories whose object sets are pairwise disjoint, we use
the notation

⋃
i Ci to represent the category whose object set is

⋃
iObCi and whose

morphisms only those morphisms in MorCi for each i. This is, of course, a particular
realization of the coproduct of a set of small categories.

Lemma 3.4. There is an isomorphism of categories

e :
⋃

m>0

(F(m)×Σm
Xm)→ T X⋆

via the evaluation map e defined by e(f,x)
def
= 〈f,x〉.

Proof. We must show that the evaluation functor

F(m)×Xm → T X⋆

(f,x) 7→ 〈f,x〉

factors through the canonical projection F(m)×Xm → F(m)×Σm
Xm. Let f be

a ∆S+ morphism and write f = φ ◦ γ with φ a morphism of ∆+ and γ ∈ Σop
m . By

unique factorization in ∆S+, the pair is unique to f . Let x ∈ Xm, and let σ ∈ Σm.
Observe that Property (3) is used to “transfer” the permutation from the left to the
right:

〈f • σ,x〉 = 〈φ ◦ σ−1γ,x〉

=
〈
φ, 〈σ−1γ,x〉

〉

= 〈φ, γ−1σx〉

=
〈
φ, 〈γ, σx〉

〉

= 〈φ ◦ γ, σx〉

= 〈f, σ • x〉.

There is also a map (on objects) in the reverse direction, defined by

(y1, y2, . . . , yn) 7→ (φ, xi1 , xi2 , . . . , xim),

where each yi is a possibly empty monomial in the indeterminates xj , such that
y1y2 · · · yn = xi1xi2 · · ·xim ∈ X

⋆, and φ is the ∆+ morphism such that φ(j − 1) =
j′ − 1⇔ xij appears as a factor in yj′ . Whereas the map e has the effect of multiplying
certain groups of indeterminates together, the reverse map factors the monomials
completely, which can be done uniquely since X⋆ is a free monoid. The two maps are
inverse to one another, making e bijective on objects.

We have yet to define e on morphisms. Observe that since Xm is discrete, the
morphisms of F(m)×Σm

Xm all have the form g × idxi1
× · · · × idxim

. The functor e
simply maps this morphism to g as interpreted in T X⋆, as the following commutative
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diagram illustrates:

(f,x) 〈f,x〉

(gf,x) 〈gf,x〉.

e

g×id g

e

It is straightforward to check that e is fully faithful, and so e is an isomorphism of
categories as claimed.

For the remainder of this section, we prove that the family of maps µ defined in §3.2
give F the structure of an operad-module over DCat. Fix integers m, j1, j2, · · · , jm >

0, and let j =
∑
js. In this section x = (x1, x2, . . . , xj). We will need to partition x

into chunks of sizes j1, j2, . . . , js. To that end, define for each s,

x1 = (x1, . . . , xj1),

xs = (xj1+···+js−1+1, . . . , xj1+···+js), for s > 1.

For each number s = 1, 2, . . . ,m, let as be the inclusion functor

as : F(js) −→ F(js)×Σjs
Xjs ,

f 7→ (f,xs).

We also require a similar functor,

a : F(j) −→ F(j)×Σj
Xj ,

f 7→ (f,x) .

Consider the functor (in which a = a1 × · · · × am)

ã
def
= id× a : DCat(m)×

m∏

s=1

F(js) −→ DCat(m)×
m∏

s=1

(
F(js)×Σjs

Xjs
)
. (15)

For any number i > 0, let bi be the inclusion of categories:

bi : F(i)×Σi
Xi −→

⋃

i>0

F(i)×Σi
Xi.

Define b̃ analogously to (15):

b̃
def
= id×b : DCat(m)×

m∏

s=1

(
F(js)×Σjs

Xjs
)
−→ DCat(m)×



⋃

i>0

(
F(i)×Σi

Xi
)


m

.

Now, by Lemma 3.4, there is an isomorphism

ẽ
def
= id× em : DCat(m)×



⋃

i>0

(
F(i)×Σi

Xi
)


m

∼=
−→ DCat(m)× (T X⋆)

m
.

Consider the following diagram. The top row is the map µ of Eq. (14), and the bottom
row is the operad-algebra structure map for T X⋆, which comes from the DCat-algebra
structure of this permutative category (see Lemma 2.2).
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DCat(m)×
m∏

s=1

F(js) F(j)

DCat(m)×
m∏

s=1

(
F(js)×Σjs

Xjs
)

F(j)×Σj
Xj

DCat(m)×



⋃

i>0

(
F(i)×Σi

Xi
)


m

⋃

i>0

(
F(i)×Σi

Xi
)

DCat(m)× (T X⋆)
m T X⋆

µ

ã a

b̃ bj

ẽ e

θ

(16)

Diagram (16) commutes if we can show that θẽb̃ã = ebjaµ. Let w = (σ, f1, . . . , fm) ∈
DCat(m)×

∏m
s=1 F(js) be arbitrary. First follow the element w down the left column

and across the bottom of diagram (16).

(σ, f1, . . . , fm)

(σ, (f1,x1), . . . , (fm,xm))

(σ, 〈f1,x1〉, . . . , 〈fm,xm〉) 〈fσ−1(1),xσ−1(1)〉 ⊙ · · · ⊙ 〈fσ−1(m),xσ−1(m)〉.

b̃ã

ẽ

θ

Now follow the element w across the top and down the right column of diagram (16).
Assume the codomain of fi is [pi − 1] for each i 6 m.

(σ, f1, . . . , fm) σp • f
⊙

(σp • f
⊙,x)

〈σp • f
⊙,x〉.

µ

bja

e

(17)

Now since x = (x1, . . . ,xm), the bottom right element in diagram (17) may be sim-
plified thus:

〈σp • f
⊙,x〉 =

〈
(id, σ−1

p ) ◦ f⊙, (x1, . . . ,xm)
〉

=
〈
(id, σ−1

p )〈f⊙, (x1, . . . ,xm)〉
〉

=
〈
(id, σ−1

p ), 〈f1,x1〉 ⊙ · · · ⊙ 〈fm,xm〉
〉

= 〈fσ−1(1),xσ−1(1)〉 ⊙ · · · ⊙ 〈fσ−1(m),xσ−1(m)〉.
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Using diagram (16), we find that µ is an operad-module structure map. Associativity
is induced by the associativity condition of the algebra structure map θ (because
both ebja and ẽb̃ã are injective). It is trivial to verify the left unit condition (note
that there is no corresponding right unit condition in an operad-module structure).
We include the routine check that verifies the equivariance condition on the level
of objects. Assume fi ∈ F(ji) (for 1 6 i 6 m) have specified sources and targets,

[ji − 1]
fi
→ [pi − 1]. Recall, the symmetric group acts on the right.

Equivariance A:

(σ, f) (σ, τ f)

(στ, f) στp • τ f
⊙

(στ)p • f
⊙ στp • τ f

⊙ • τj

id×Tτ

τ×id µ

µ τj

Equivariance B:

(σ, f) σp • f
⊙

(σ, f1 • τ1, . . . , fm • τm)

σp • ((f1 • τ1)⊙ · · · ⊙ (fm • τm)) σp • f
⊙ • (τ1 ⊕ · · · ⊕ τm)

µ

id×τ1×···×τm

τ1⊕···⊕τm

µ

Remark 3.5. It can be verified that F is in fact a pseudo-operad. The details are left
to the reader, as this result will not be used in the present paper. Recall from [19]
that a pseudo-operad is a “non-unitary” operad. The structure maps are defined by
the composition

F(m)×
m∏

s=1

F(js) DCat(m)×
m∏

s=1

F(js) F(j1 + · · ·+ jm),
π×id µ

where π : F(m)→DCat(m) is the projection functor defined by π(φ, γ) = γ−1. Indeed,
π defines an isomorphism of the subcategory Aut ([m− 1] \∆S+) onto DCat(m). Note
that F is not a full operad, since it fails the right-unit condition.

We shall denote the associated simplicial k-module F̃
def
= k[N(− \∆S+)].

Corollary 3.6. There is a DMod-module structure on F̃ .

Proof. The DCat-module structure of F gets induced via the chain of symmetric
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monoidal functors

Cat Set∆
op

k-Mod∆op

.N k[−]

3.4. Operad-algebra structure

In this subsection we use the operad-module structure defined in §3.3 to induce a
related operad-algebra structure. Let us first recall a fact of operad theory:

Proposition 3.7. Suppose (C ,⊕,⊙) is a cocomplete distributive symmetric monoidal
category, P is an operad in C , L is a left P-module, and Z ∈ ObjC . Then

L 〈Z〉
def
=
⊕

m>0

L (m)⊙Σm
Z⊙m

admits the structure of a P-algebra.

Remark 3.8. The notation L 〈Z〉 appears in Kapranov and Manin [17] (where they
use it in the category of vector spaces). The concept is also present in [19] as the
Schur functor of an operad ([19, Def 1.24]).

Lemma 3.9. The simplicial k-module F̃ ⊗Aut∆S+
B
sym+

∗ A admits the structure of
an E∞ algebra.

Proof. One may identify

F̃ ⊗Aut∆S+
B
sym+

∗ A =
⊕

n>0

F̃(n)⊗Σn
A⊗n = F̃〈A〉.

The result then follows directly from Cor. 3.6 and Prop. 3.7.

In what follows, denote CA∗

def
==C∗(∆S+, B

sym+

∗ A), the simplicial k-module defined
in Eqn. (2). Note that

CA∗ = F̃ ⊗∆S+
B
sym+

∗ A.

The inclusion Aut∆S+ →֒ ∆S+ induces a quotient map Q : F̃ 〈A〉 → CA∗.

Lemma 3.10. The DMod-algebra structure on F̃ ⊗Aut∆S+
B
sym+

∗ A induces a DMod-
algebra structure on CA∗, which implies that CA∗ is an E∞ algebra in the category
of simplicial k-modules.

Proof. Let ν be the structure map implied by Lemma 3.9 (which is ultimately induced
by the structure map µ of § 3.2):

ν : DMod(n)⊗Σn

(
F̃〈A〉

)⊗n
−→ F̃〈A〉.

We will show that ν remains well defined upon passing to the quotient, as illustrated
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in the following diagram:

DMod(n)⊗Σn
F̃〈A〉⊗n F̃〈A〉

DMod(n)⊗Σn
(CA∗)

⊗n
CA∗

ν

id⊗Q⊗n
Q

ν

(18)

It suffices to check that the structure is well defined in degree 0, because the face
and degeneracy maps are induced by compositions and evaluations of ∆S+ mor-
phisms. A generator of DMod(n)⊗Σn

(CA∗)
⊗n in degree 0 has the following form:

σ ⊗ (g1f1 ⊗ V1)⊗ · · · ⊗ (gnfn ⊗ Vn) , (19)

where σ ∈ Σn, fi, gi (1 6 i 6 n) are morphisms of ∆S+ with specified sources and tar-

gets, [mi − 1]
fi
→ [pi − 1]

gi
→ [qi − 1], and Vi ∈ A

⊗mi . The map ν sends the element (19)
to (σq • gf

⊙)⊗ (V1 ⊗ · · · ⊗ Vn). On the other hand, element (19) is equal (under ∆S+-
equivariance) to

σ ⊗ (g1 ⊗ 〈f1, V1〉)⊗ · · · ⊗ (gn ⊗ 〈fn, Vn〉), (20)

and ν sends (20) to

(σq • g
⊙)⊗ (〈f1, V1〉 ⊗ · · · ⊗ 〈fn, Vn〉) = (σq • g

⊙)⊗ 〈f⊙, V1 ⊗ · · · ⊗ Vn〉

= (σq • gf
⊙)⊗ (V1 ⊗ · · · ⊗ Vn).

Theorem 3.11. When the ground ring k = Fp for a prime p, symmetric homology
HS∗(A) admits Dyer–Lashof homology operations.

Proof. This is an immediate result of Lemma 3.10 and the fact that HS∗(A) is the
homology of CA∗. The reader is referred to Dyer and Lashof [10], May [20], or
Chapter I of [8] for details on constructing the operations on any E∞ algebra.

4. Product structure

4.1. Pontryagin product

There is a well-defined graded-commutative product on the graded k-module,
{HSi(A)}i>0.

Theorem 4.1. HS∗(A) admits a Pontryagin product, giving it the structure of asso-
ciative, graded commutative algebra.

Proof. This follows directly from Lemma 3.10. The product is defined by

(CA∗)⊗ (CA∗) →֒ DMod(2)⊗Σ2
(CA∗)

⊗2 ν
→ (CA∗)

x⊗ y 7→ c⊗ (x⊗ y) 7→ ν(c⊗ (x⊗ y)),

where ν is defined in diagram (18) and c ∈ DMod(2) is a generator as a free k-
module.
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Corollary 4.2. Let A be a unital associative k-algebra. If the ideal generated by the
commutator submodule is equal to the entire algebra (i.e. ([A,A]) = A), then HS∗(A)
is trivial in all degrees.

Proof. HS0(A) = A/ ([A,A]), soHS0(A) is trivial. Now for any x ∈ HSq(A), we have
x = 1 · x = 0 · x.

Remark 4.3. It was pointed out in [1] that symmetric homology fails to preserve
Morita equivalence. Corollary 4.2 shows the failure in a big way: HS∗ (Mn(A)) is
trivial if n > 1.

Proposition 4.4. When restricted to HS0(A)⊗HS0(A)→ HS0(A), the Pontrya-
gin product is the standard algebra multiplication map A/ ([A,A])⊗A/ ([A,A])→
A/ ([A,A]).

Proof. Examine the first few terms of the sequence, 0← CA0
d1← CA1. It is straight-

forward to verify that d1 collapses the generators in degree 0 to those of the form
([0]← [0])⊗ a via the iterated multiplication map A⊗n → A.

4.2. Explicit HS0(A)-module structure of HS1(A)
The main result of this subsection is a concrete computation of the Pontryagin

product HS0(A)⊗HS1(A)→ HS1(A). We shall need to induce the DMod-algebra
structure of CA∗ to the level of complexes in order to transfer the E∞ structure across
a chain equivalence. This step is trivial, as the “chains” functor of the Dold–Kan
correspondence is lax monoidal. However, we must remember to use the shuffle map
when making computations at the chain level. Let CA• denote the Moore complex
of CA∗.

Lemma 4.5. The DMod-algebra structure on CA∗ induces a DCh
+
•
-algebra structure

on CA•.

We shall also need some machinery from [1, §§10–11]. For each n > −1, define
the projective ∆Sop

+ -module (∆S+)n as in (4). The following sequence is a partial
resolution of k by projective ∆Sop

+ -modules:

k (∆S+)0 (∆S+)2 (∆S+)3 ⊕ (∆S+)0,
ǫ δ (α,β)

(21)

in which ǫ(f) = 1 for any morphism f : [n]→ [0], δ(f) = (x0x1x2) ◦ f − (x2x1x0) ◦ f ,

α(f) = (x0x1 ⊗ x2 ⊗ x3) ◦ f + (x3 ⊗ x2x0 ⊗ x1) ◦ f + (x1x2x0 ⊗ 1⊗ x3) ◦ f
+(x3 ⊗ x1x2 ⊗ x0) ◦ f,

and β(f) = (1⊗ x0 ⊗ 1) ◦ f . Thus, there is a small partial chain complex that com-
putes HSi(A) for i = 0, 1,

0 A A⊗3 A⊗4 ⊕A,
∂1 ∂2 (22)

in which

∂1(a⊗ b⊗ c) = abc− cba

∂2(a⊗ b⊗ c⊗ d, e) = ab⊗ c⊗ d+ d⊗ ca⊗ b+ bca⊗ 1⊗ d+ d⊗ bc⊗ a+ 1⊗ e⊗ 1.

If a ∈ A, denote by [a] the corresponding element of HS0(A), and if a⊗ b⊗ c ∈ A⊗3,
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denote by [a⊗ b⊗ c] the corresponding element of HS1(A).
Our first goal is to set up an explicit equivalence between the partial complex (22)

and CA•, at least up to degree 1, and then use the equivalence to give a concrete
formula for the product structure. In diagram (23), the differential d is induced from
the simplicial face maps. Below, we define and discuss the maps Fi and Gi for i = 0, 1.

0 A A⊗3 A⊗4 ⊕A

0 CA0 CA1 CA2

F0

∂1

F1

∂2

G0

d1

G1

d2

(23)

For each m > −1, let πm : [m]→ [0] be the unique order-perserving ∆S+ morphism,
and ρm : [m]→ [0] be the unique order-reversing ∆S+ morphism. For convenience,
let a = a0 ⊗ · · · ⊗ an stand for an arbitrary element of A⊗(n+1). We define the maps
F0 and G0 as follows:

F0(a)
def
=
(
[0]

id
← [0]

)
⊗ a

G0

((
[m]

f
← [n]

)
⊗ a
)
def
= 〈πmf,a〉.

Observe that G0F0(a) = a. To show F0G0 ≃ id, define a homotopy map:

h0 : CA0 → CA1(
[m]

f
← [n]

)
⊗ a 7→

(
[0]

πm← [m]
f
← [n]

)
⊗ a

Observe that

d1h0

((
[m]

f
← [n]

)
⊗ a
)
=
((

[0]
πmf
← [n]

)
⊗ a
)
−
((

[m]
f
← [n]

)
⊗ a
)

=
((

[0]
id
← [0]

)
⊗ 〈πmf,a〉

)
−
((

[m]
f
← [n]

)
⊗ a
)

= (F0G0 − id)
((

[m]
f
← [n]

)
⊗ a
)
.

Next, define F1:

F1(a⊗ b⊗ c)
def
=
[(

[0]
π2← [2]

id
← [2]

)
−
(
[0]

ρ2
← [2]

id
← [2]

)]
⊗ (a⊗ b⊗ c).

The maps F0, F1 are compatible with the differentials, as illustrated by a diagram-
chase:

abc− bca a⊗ b⊗ c

[(
[0]

π2← [2]
id
← [2]

)
−
(
[0]

ρ2
← [2]

id
← [2]

)]
⊗ (a⊗ b⊗ c)

(
[0]

id
← [0]

)
⊗ (abc− bca)

[(
[0]

π2← [0]
)
−
(
[0]

ρ2
← [0]

)]
⊗ (a⊗ b⊗ c)

F0

∂1

F1

d1

Defining G1 is a bit trickier. For each n > 0, construct a quiver G̃n as follows: The
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vertices of G̃n are permutations of {0, 1, . . . , n}. The edges of G̃n are in one-to-one
correspondence with the elements of ∆S+([n], [2]). For any f : [n]→ [m], write f =

(φ(f), γ(f)) for the unique ∆S+ factorization. Now each f labels an edge in G̃n whose
source is the permuation γ(f) = γ(π2f) and whose target is γ(ρ2f). For example, in

G̃5, the morphism x3x1 ⊗ x4 ⊗ x0x5 (written in tensor notation) labels an edge from

vertex “31405” to vertex “05431.” Let Gn be a maximal subtree of G̃n. Note that Gn is
connected, which is a result of the fact that k ← (∆S+)0([n])← (∆S+)2([n]) is exact
for all n > 0 (see (21) and [1, Lemma 79]). The purpose of Gn is to record ways in
which one permutation may be converted to any other by way of block permutations
of no more than three blocks at a time.

Example 4.6. G2 may be chosen to be the graph on vertices 01 and 10 with a single
edge 01→ 10 labeled by x0 ⊗ x1 ⊗ 1. See Figures 1 and 2 for further examples (for
brevity in the diagrams, we may write morphisms of ∆S+ in tensor notation using
the symbols a = x0, b = x1, c = x2, d = x3, etc.).

012

201

120

210 102

021

a
b
⊗

c
⊗

1

a⊗ b⊗ c
a
⊗

b
c
⊗

1

c
b
⊗

a
⊗

1

c⊗ ba⊗ 1

Figure 1: One possible choice of G2

Consider a typical element ([p]
g
← [m]

f
← [n])⊗ a ∈ CA2. There is a unique path

from γ(gf) to γ(f) in Gn. Let Path(gf, f) be the set of edge labels, each taken to
be positive or negative depending on the direction of the arrow as one proceeds
from γ(gf) to γ(f) in the tree (positive if with the arrow; negative if against it). If
γ(gf) = γ(f), then Path(gf, f) = ∅. Define G1 : CA1 → A⊗3 thus:

G1

(
([p]

g
← [m]

f
← [n])⊗ a

)
=

∑

e∈Path(gf,f)

〈e,a〉.

Note that the choice of maximal subtree Gn for each n must be made once and not
changed, as different choices for subtree will affect the definition of G1.

Example 4.7. Let f = 1⊗ x2 ⊗ x0 ⊗ 1⊗ x1: [2]→ [4] and g = x3 ⊗ x2x0 ⊗ 1⊗ x1x4:
[4]→ [3]. Then gf = 1⊗ x0 ⊗ 1⊗ x2x1, and γ(gf) = 021 is the “start” node, while
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2013 1032 0312 2103 0213

2130 3012 2310 3102 1023

2031 3120 0123 2301 1302

3021 1230 3201 1320 0132

0231 1203 0321 3210

a
⊗
bc
d
⊗
1

a⊗ bc⊗ d

a
b
⊗

c
⊗

d
a
⊗

b
⊗

c
d

a
bc
⊗
d
⊗
1

dca⊗ b⊗ 1

ad⊗ b⊗ c

db⊗ ca⊗ 1

c⊗ dba⊗ 1

c
⊗
d
⊗
ba

c
⊗

d
b
⊗

a
d
⊗

c
a
⊗

b

d
⊗
a
b
⊗
c

da⊗ b⊗ c

ab⊗ cd⊗ 1

b
⊗

c
d
⊗

a

b⊗ c⊗ da

cd
⊗
a
⊗
b

c⊗ da⊗ b

c
⊗
d
⊗
a
b

a
⊗

b
⊗

d
c

d
⊗
b
⊗
a
c

b⊗ c⊗ ad

Figure 2: One possible choice of G3

γ(f) = 201 is the “end” node. We use Figure 1 to determine the path.

G1

(
([3]

g
← [4]

f
← [2])⊗ (a⊗ b⊗ c)

)
= −cb⊗ a⊗ 1− a⊗ b⊗ c+ ab⊗ c⊗ 1.

The maps G0, G1 are also compatible with the differentials, as we verify below,

G0d1

(
([p]

g
← [m]

f
← [n])⊗ a

)
= 〈πpgf,a〉 − 〈πmf,a〉.

∂1G1

(
([p]

g
← [m]

f
← [n])⊗ a

)
= ∂1

(
∑

e

〈e,a〉

)

=
∑

e

(〈π2e,a〉 − 〈ρ2e,a〉) .

The sum telescopes so that only the start and end vertices of the path remain:
〈πpgf,a〉 − 〈πmf,a〉.

Using G2 as in Figure 1, we find that G1F1 = id. The verification is provided below
(here, a = a⊗ b⊗ c, and observe that γ(ρ2) = “210” in Figure 1, so Path(ρ2, id) =
{−(a⊗ b⊗ c)}).
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G1F1(a) = G1

((
[0]

π2← [2]
id
← [2]

)
⊗ a
)
−G1

((
[0]

ρ2
← [2]

id
← [2]

)
⊗ a
)

=
∑

e∈Path(π2,id)

〈e,a〉 −
∑

e∈Path(ρ2,id)

〈e,a〉

= 0− (−(a⊗ b⊗ c))

= a.

Finally, we set up a homotopy map h1 : CA1 → CA2 to show that F1G1 ≃ id.

CA0 CA1 CA2

h0

F1G1

d1

h1

d2

At this point, it is helpful to use an abbreviated notation for i-chains of CA•:

(gi, . . . , g1, f,a)
def
= ([mi]

gi
← · · ·

g1
← [m1]

f
← [n])⊗ a. (24)

Of course, ∆S+-equivariance still applies; in particular, the element (24) is equal to

(gi, . . . , g1, id, 〈f,a〉). Let (g, f,a) ∈ CA1 be as above, that is, [p]
g
← [m]

f
← [n] is a

sequence of ∆S+ morphisms.

F1G1(g, f,a) =
∑

e∈Path(gf,f)

[(π2, id, 〈e,a〉)− (ρ2, id, 〈e,a〉)] (25)

=
∑

e∈Path(gf,f)

[(π2, e,a)− (ρ2, e,a)] . (26)

h0d1(g, f,a) = (πp, gf,a)− (πm, f,a). (27)

We define h1 by

h1 : (g, f,a) 7→ (πm, f, id,a)− (πpg, f, id,a)− (πp, g, f,a)

+
∑

e∈Path(gf,f)

[(π2, e, id,a)− (ρ2, e, id,a)] . (28)

Then a tedious but straighforward calculation shows that F1G1 − id = d2h1 + h0d1.
Some details are shown below, as d2 is applied to the various terms that comprise the
right-hand side of (28).

d2 : (πm, f, id,a) 7→ (πm, f,a)− (πmf, id,a) + (f, id,a). (29)

d2 : (πpg, f, id,a) 7→ (πpg, f,a)− (πpgf, id,a) + (f, id,a). (30)

d2 : (πp, g, f,a) 7→ (πp, gf,a)− (πpg, f,a) + (g, f,a). (31)

d2 : (π2, e, id,a) 7→ (π2, e,a)− (π2e, id,a) + (e, id,a). (32)

d2 : (ρ2, e, id,a) 7→ (ρ2, e,a)− (ρ2e, id,a) + (e, id,a). (33)

In view of (28) and (29)–(33), and after many cancellations,

d2h1(g, f,a) = (πm, f,a)− (πp, gf,a)− (g, f,a) +
∑

e

[(π2, e,a)− (ρ2, e,a)] ,

which is the same as (cf. Eqns. (26) and (27))

(−h0d1 − id + F1G1)(g, f,a).
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Proposition 4.8. For a unital associative algebra A over commutative ground ring
k, HS1(A) is a left HS0(A)-module, via

[a] • [b⊗ c⊗ d] = [ab⊗ c⊗ d]− [b⊗ ca⊗ d] + [b⊗ c⊗ ad].

Moreover, there is a right module structure,

[b⊗ c⊗ d] • [a] = [ba⊗ c⊗ d]− [b⊗ ac⊗ d] + [b⊗ c⊗ da],

and the two actions agree in the sense that [a] • [b⊗ c⊗ d] = [b⊗ c⊗ d] • [a].

Remark 4.9. This module structure was first discovered on the chain level before
the Pontryagin product was discovered. Below is the explicit derivation using Theo-
rem 4.1.

Proof. Let w, x, y, z ∈ A, so that w represents a 0-chain and x⊗ y ⊗ z represents a 1-
chain in the partial sequence (22) used to computeHS∗(A). Consider idΣ2

∈ DCh
+
•
(2),

and let F∗ and G∗ be the chain equivalences developed above. Note that in line (34),
morphisms of ∆S+ are written in tensor notation.

idΣ2
⊗ (a)⊗ (b⊗ c⊗ d)

id⊗F⊗2
∗7→ idΣ2

⊗ (id[0], a)⊗
(
(π2, id[2], b⊗ c⊗ d)− (ρ2, id[2], b⊗ c⊗ d)

)

ν
7→

[
(id[0] ⊙ π2, id[3])− (id[0] ⊙ ρ2, id[3])

]
⊗ (a⊗ b⊗ c⊗ d)

=
[
(x0 ⊗ x1x2x3, id[3])− (x0 ⊗ x3x2x1, id[3])

]
⊗ (a⊗ b⊗ c⊗ d) (34)

G17→ b⊗ c⊗ ad+ d⊗ ca⊗ b+ ab⊗ c⊗ d

Finally, using the sign relation (see [1, §10]), we have equality in HS1(A):

[b⊗ c⊗ ad] + [d⊗ ca⊗ b] + [ab⊗ c⊗ d] = [ab⊗ c⊗ d]− [b⊗ ca⊗ d] + [b⊗ c⊗ ad].

The product HS1(A)⊗HS0(A)→ HS1(A) can be found explicitly in a similar man-
ner. The fact that the two products agree follows from the observation that their
difference is a boundary.

Remark 4.10. Theoretically, if the resolution (21) could be extended further, then
one could extend the maps Fi and Gi to higher degrees in order to study the product
structure of HS∗(A). However, this tedious “nuts-and-bolts” approach does not seem
to offer best ratio of payoff in exchange for the work put in.

4.3. Computed results
Using GAP, the following explicit computations of the HS0(A)-module structure on

HS1(A) were made for some Z-algebras. Note in each case below, HS0(A) = A since
A is commutative.

A HS1(A | Z) HS0(A)–module structure
Z[t]/(t2) Z/2Z⊕ Z/2Z Generated by u with 2u = 0
Z[t]/(t3) Z/2Z⊕ Z/2Z Generated by u with 2u = 0 and t2u = 0
Z[t]/(t4) (Z/2Z)4 Generated by u with 2u = 0
Z[C2] Z/2Z⊕ Z/2Z Generated by u with 2u = 0
Z[C3] 0
Z[C4] (Z/2Z)4 Generated by u with 2u = 0
Z[C5] 0
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