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ANNIHILATION OF COHOMOLOGY AND
DECOMPOSITIONS OF DERIVED CATEGORIES

SRIKANTH B. IYENGAR and RYO TAKAHASHI

(communicated by J. Daniel Christensen)

Abstract
It is proved that an element r in the center of a coher-

ent ring Λ annihilates ExtnΛ(M,N), for some positive integer
n and all finitely presented Λ-modules M and N , if and only
if the bounded derived category of Λ is an extension of the
subcategory consisting of complexes annihilated by r and those
obtained as n-fold extensions of Λ. This has applications to
finiteness of dimension of derived categories.

1. Introduction

Let Λ be a right coherent ring, modΛ the category of finitely presented right Λ-
modules, and Db(Λ) its bounded derived category. The purpose of this note is to prove
the result below that reveals a close link between the existence of uniform annihilators
of Ext-modules, as modules over the center Λc of Λ, and a kind of decomposition of the
derived category. In the statement, G is the class of morphisms in Db(Λ) that induce
the zero map in cohomology, r is an element in Λc, and Db(Λ)r consists of complexes
X with rExt0Λ(X,X) = 0, while C ⋄D is the subcategory of complexes obtained as
extensions of complexes in C and D; see 2.1.

Theorem 1.1. Fix a non-negative integer n and an element r in Λc. The following
conditions on Db(Λ) are equivalent.

(1) rGn = 0;

(2) Db(Λ) = Db(Λ)r ⋄ {Λ}n ⋄ ;

(3) Db(Λ) = {Λ}n ⋄ ⋄Db(Λ)r.

When they hold, rExtnΛ(modΛ,modΛ) = 0. Conversely, the latter condition gives
r3G2n = 0.

This result is a consequence of Theorem 2.10, which applies to abelian categories
with enough projectives. In fact, the equivalence of conditions (1)–(3), and the proofs,
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carry over verbatim to generating projective classes in triangulated categories, in the
sense of Christensen [1]; with Ext as in Section 4 of op. cit., the entire statement
carries over.

Here is one application (see Corollary 2.12) of the theorem above: If r ∈ Λc is a
non-zerodivisor on Λ and satisfies rGn = 0, then there is an inequality

dimDb(Λ) ⩽ dimDb(Λ/rΛ) + n

concerning dimensions of the appropriate triangulated categories, in the sense of
Rouquier [4]. This inequality gives a way to deduce the finiteness of the dimension
of the derived category of Λ from that of the derived category of Λ/rΛ. The point is
that the ring Λ/rΛ is “smaller” than Λ; for example, the Krull dimension of (Λ/rΛ)

c

is strictly smaller than that of Λc. This approach is predicated on the existence of
non-zerodivisors that annihilate Ext-modules. For results in this direction, see [2,
Section 7].
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2. Decompositions

We deduce the statement in the Introduction from Theorem 2.10 below that con-
cerns derived categories of abelian categories.

Definition 2.1. Let T be a triangulated category, and Σ its suspension functor; soon
we will focus on the derived category of an abelian category.

Let C be a subcategory (always assumed to be full) of T. We write add(C) for the
smallest subcategory of T containing C and closed under finite direct sums, retracts,
and shifts. Given a subcategory D of T, the subcategory consisting of objects E that
appear in exact triangles of the form

C → E → D → ΣC with C ∈ C and D ∈ D

is denoted C ∗ D. It is convenient to introduce also the following notation:

C ⋄D := add(C ∗ D) .

It is a consequence of the octahedral axiom that there are equalities

(B ∗ C) ∗ D = B ∗ (C ∗ D) and (B ⋄C) ⋄D = B ⋄ (C ⋄D) .

In particular, we may denote them B ∗ C ∗ D and B ⋄C ⋄D, respectively.

Throughout the rest of this section, R will be a commutative ring.

Definition 2.2. An additive category A is said to be R-linear if for each A in A there
are homomorphisms of rings

ηA : R → EndA(A)

with the property that the action of R on HomA(A,B) induced by ηA and ηB coincide,
for all A,B in A. Said otherwise, HomA(A,B) is an R-module and this structure is
compatible with compositions in A.



ANNIHILATION OF COHOMOLOGY AND DECOMPOSITIONS OF DERIVED CATEGORIES233

Let A be an R-linear Abelian category. The category of complexes over A inherits
an R-linear structure, as does the bounded derived category, Db(A), of A. In either

case, the action is compatible with the suspension, in that the morphisms Σ(X
r−→ X)

and ΣX
r−→ ΣX coincide for all r ∈ R and complexes X. What is used repeatedly in

the sequel is that for any r ∈ R and morphism f : X → Y , in either category, there
is an induced commutative square

X
f

//

r

��

Y

r

��

X
f

// Y.

Henceforth, we assume that A has enough projective objects, and write proj A for
the corresponding subcategory. For ease of notation, we abbreviate

T := Db(A)

Pn := proj A ⋄ · · · ⋄ proj A︸ ︷︷ ︸
n copies

for each n ⩾ 0.

Recall that ghost in T is a morphism f : X → Y such that

HomT(Σ
nP, f) = 0 for all P in proj A and n ∈ Z.

In what follows, we write G for the class of ghosts; it is an ideal in T. For any integer
n, the ideal Gn consists of morphisms that are n-fold compositions of ghosts.

Remark 2.3. For each non-negative integer n, one has

HomT(P, g) = 0 for all P ∈ Pn and g ∈ Gn.

This is the well-known Ghost Lemma; for a proof, see, for example, [3, Theorem 3].

Remark 2.4. For each complex X in T and integer n ⩾ 1, there is an exact triangle

P
p−−→ X

q−−→ Y −→ ΣP

with P in Pn and q in Gn; one can get this, for instance, from the construction of
an Adams resolution of X; see [1, Section 4]. When X is in A, such a triangle exists
with Σ−nY in A.

Definition 2.5. For r ∈ R, let Tr denote the subcategory of T consisting of com-
plexes X such that the multiplication morphism X

r−→ X is zero in T; in other words,
r is in the kernel of the natural map R → EndT(X).

Remark 2.6. Let r, s be elements of R. In any exact triangle X → Y → Z → ΣX in
T, if X ∈ Tr and Z ∈ Ts, then Y ∈ Trs holds.

Indeed, this is a well-known argument (analogous to one for the Ghost Lemma)
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contained in the commutative diagram below:

Y

~~}
}
}
}

s

��

g
// Z

s

��

X
f

//

r

��

Y

r

��

g
// Z // ΣX

X
f

// Y.

The squares in the diagram are commutative by the definition of the R-action on T.
The morphism Y → X exists because gs = sg = 0; the second equality holds since Z

is in Ts. The morphism Y
rs−→ Y thus factors as Y → X

r−→ X
f−→ Y and hence is zero,

since X is in Tr.

In what follows, given a morphism f : X → Y of complexes over A, its mapping
cone is denoted cone(f); thus

cone(f)n := Y n
⊕

Xn+1 with differential

[
dY f
0 −dX

]
The canonical exact sequence of complexes

0 −→ Y −→ cone(f) −→ ΣX −→ 0

gives rise to an exact triangle X
f−→ Y → cone(f) → ΣX in T.

Remark 2.7. For r ∈ R and complex X over A, set X//r := cone(X
r−→ X). Observe

that X//r is in Tr, because the map[
0 0
1 0

]
: X//r −→ X//r

defines a homotopy between multiplication by r and the zero morphism.

Lemma 2.8. For each subcategory C of T and element r ∈ R there are inclusions

Tr ∗ C ⊆ C ∗ Tr2 and C ∗ Tr ⊆ Tr2 ∗ C .

Proof. We verify the first inclusion; the second one can be checked along the same
lines.

Fix an X in Tr ∗ C. Thus, there exist T ∈ Tr and C ∈ C and an exact triangle in
the top row of the following diagram:

T // X
f

// C
g

//

h

~~~
~
~
~

r

��

ΣT

r

��

X
f

// C
g

// ΣT.

The map h exists because gr = rg = 0, where the second equality holds because T
is in Tr. By the octahedral axiom, the factorization r = fh gives rise to an exact
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triangle

T −→ cone(h) −→ C//r −→

It follows from Remarks 2.6 and 2.7 that r2 annihilates cone(h). It remains to notice
the exact triangle C −→ X −→ cone(h) → ΣC.

Definition 2.9. For an element r ∈ R and an integer n ⩾ 0 we consider the following
four conditions on the triangulated category T := Db(A).

Dr,n T = Tr ⋄Pn , and Er,n rExtnA(A,A) = 0 ,

D′
r,n T = Pn ⋄Tr , and Gr,n rGn = 0 .

The statement from the introduction is a consequence of the following theorem.

Theorem 2.10. The following implications hold

D′
r,n ⇐⇒ Dr,n ⇐⇒ Gr,n =⇒ Er,n =⇒ Dr3,2n

Proof. (D′
r,n ⇒ Gr,n): Fix f : X → Y to be in Gn, and P

p−→ X
q−→ T → ΣP the exact

triangle provided by the hypothesis. Consider the commutative diagram below where
the morphism X → P is induced by the fact the qr = rq = 0, since T is in Tr.

X

||y
y
y
y

q
//

r
��

T

r
��

P
p

//

0 ""E
EE

EE
EE

X
q

//

f
��

T

Y.

It remains to note that the composition fp = 0, by Remark 2.3.

(Dr,n ⇒ Gr,n) can be verified by an argument analogous to the one above.

(Gr,n ⇒ D′
r,n) and (Gr,n ⇒ Dr,n): Fix X in T and P

p−−→ X
q−−→ Y → ΣP the

exact triangle from Remark 2.4. By hypothesis rq = 0, so the octahedral axiom
applied to the composition rq gives rises to an exact triangle

ΣP −→ Y
⊕

ΣX −→ Y//r → Σ2P .

It remains to recall that Y//r is in Tr, by Remark 2.7, so that property D′
r,n holds.

Applying the octahedral axiom to the map qr, which is also zero, shows that Dr,n

holds as well.

(Gr,n ⇒ Er,n): This holds because any morphism f : A → ΣnB, with A,B in A, is
in Gn; see Remarks 2.3 and 2.4.

(Er,n =⇒ Dr3,2n): For a start observe that A ⊆ Tr ⋄Pn; this follows by an argument
along the lines of the one for Gr,n ⇒ D′

r,n above. For a complex X over A let Z∗(X)
and B∗(X) denote the cycles and boundaries of X, respectively. There are canonical
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exact triangles

Z∗(X) −→ X −→ ΣB∗(X) −→ ΣZ∗(X)

B∗(X) −→ Z∗(X) −→ H∗(X) −→ ΣB∗(X).

As Z∗(X) and B∗(X) are in add(A), one gets the first of the following chain of
inclusions:

T ⊆ A ⋄A
⊆ (Tr ⋄Pn) ⋄ (Tr ⋄Pn)

⊆ Tr ⋄Tr2 ⋄Pn ⋄Pn

⊆ Tr3 ⋄P2n.

The third inclusion holds by the associativity of ⋄ and Lemma 2.8. The last one holds
by Remark 2.6 and the definition of the Pn. This is the desired implication.

Non-zerodivisors
Now let Λ be a right coherent ring and r ∈ Λc a non-unit element in the center

of Λ. The homomorphism of rings Λ → Λ/rΛ then induces, by restriction of scalars,
an exact functor of triangulated categories

Db(Λ/rΛ) −→ Db(Λ).

Evidently, its image lies in the subcategory Db(Λ)r.

Lemma 2.11. When r is a non-zerodivisor on Λ, the functor Db(Λ/rΛ) → Db(Λ)r
is dense up to direct summands.

Proof. Since r is a non-zerodivisor on Λ, the canonical map Λ//r → H0(Λ//r) ∼= Λ/rΛ
is a quasi-isomorphism in Db(Λ). This gives rise to an exact triangle

Λ
r−−→ Λ −→ Λ/rΛ −→ ΣΛ .

For any X ∈ Db(Λ)r, applying X ⊗L
Λ − yields an exact triangle

X
r−−→ X −→ X ⊗L

Λ (Λ/rΛ) −→ ΣX .

Since the first morphism in this triangle is zero, one gets an isomorphism

X ⊗L
Λ (Λ/rΛ) ∼= X ⊕ ΣX .

Note that X ⊗L
Λ (Λ/rΛ) is in the image of the functor Db(Λ/rΛ) → Db(Λ).

Dimension
Recall that the dimension of a triangulated category T, denoted dimT, is the least

non-negative integer d for which there exists an object G such that {G}(d+1) ⋄ = T;
see [4, Definition 3.2].

The result below justifies the inequality stated in the introduction. Recall that G
denotes the class of ghosts in Db(Λ).

Corollary 2.12. Let Λ be a right coherent ring. If r ∈ Λc is a non-zerodivisor on Λ
and satisfies rGn = 0 for some non-negative integer n, then there is an inequality

dimDb(Λ) ⩽ dimDb(Λ/rΛ) + n
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Proof. Part of the hypothesis is that Db(Λ) satisfies condition Gr,n, in the notation of
Theorem 2.10. Keeping in mind Lemma 2.11 and that projΛ = addΛ, op. cit. yields

Db(Λ) = Db(Λ/rΛ) ⋄ {Λ}n ⋄ .

We have identified Db(Λ/rΛ) with its image in Db(Λ). If for some complex F and
integer d one has Db(Λ/rΛ) = {F}(d+1) ⋄ , then the equality above yields

Db(Λ) = {F
⊕

Λ}(d+n+1) ⋄ .

This implies the desired inequality.
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