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BOUSFIELD LATTICES OF NON-NOETHERIAN RINGS:
SOME QUOTIENTS AND PRODUCTS

F. LUKE WOLCOTT
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Abstract

In the context of a well generated tensor triangulated cate-
gory, Section 3 investigates the relationship between the Bous-
field lattice of a quotient and quotients of the Bousfield lattice.
In Section 4 we develop a general framework to study the Bous-
field lattice of the derived category of a commutative or graded-
commutative ring, using derived functors induced by extension
of scalars. Section 5 applies this work to extend results of Dwyer
and Palmieri to new non-Noetherian rings.

1. Introduction

Let R be a commutative ring and consider the unbounded derived category D(R)
of right R-modules. Given an object X € D(R), define the Bousfield class (X) of X
to be {W € D(R) | W ®% X = 0}. Order Bousfield classes by reverse inclusion, so
(0) is the minimum and (R) is the maximum. It is known that there is a set of such
Bousfield classes. The join of any set {(X,)} is the class (], Xa), and the meet of
a set of classes is the join of all the lower bounds. The collection of Bousfield classes
thus forms a lattice, called the Bousfield lattice BL(D(R)).

A full subcategory of D(R) is localizing if it is closed under triangles and arbitrary
coproducts. Thus every Bousfield class is a localizing subcategory. A result of Nee-
man’s [Nee92] shows that when R is Noetherian, every localizing subcategory is a
Bousfield lattice, and this lattice is isomorphic to the lattice of subsets of the prime
spectrum Spec R.

The case of a non-Noetherian ring is much less understood. Given a ring k, fix
n; > 1 and define

k[xl,x27x3,...]
(]t xh?, 252, ...)]

A =

and give A, a grading by setting deg(x;) = 2°. Consider the unbounded derived cate-
gory D(Ay) of right graded Ag-modules; objects in D(Ay) are bi-graded. Dwyer and
Palmieri [DPO08] studied the Bousfield lattice of this category, when k is a countable
field (see Example 2.16 below for more details). The initial motivation for the present
work was to extend their main results to the case where k = Z,). We have done this
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fairly completely, and in the process developed tools that apply in much more general
settings.

Our most general results apply to the Bousfield lattice of any well generated tensor
triangulated category, and appear in Section 3. Iyengar and Krause [IK13] recently
showed that a well generated tensor triangulated category has a set of Bousfield
classes, and thus a Bousfield lattice. Note that compactly generated tensor triangu-
lated categories are well generated, and in particular those generated by the tensor
unit are. For simplicity in this introduction, suppose T is a tensor triangulated cat-
egory generated by the tensor unit 1; this includes the case of the derived category
of a ring, but also the stable homotopy category and the stable module category of a
p-group. Let - A - denote the tensor product, and -V - denote the join.

The results of Section 3 concern the relationship between the quotient of a lattice
and the lattice of a quotient. Given Z € T, consider the Verdier quotient T/(Z); this
is well generated because (Z) is. The quotient functor 7: T — T/(Z) induces a well-
defined, order-preserving map of lattices w: BL(T) — BL(T/(Z)), where (X) — (7X).

Given Z € T, define a(Z) to be the join of all classes (Y') such that (Z AY) = (0).
For any class (X) € BL(T), define (X)] to be the collection of classes less than or
equal to (X). In Definition 2.19 we give a notion of quotient lattice. Our first result
is the following, which is proven as Proposition 3.2 below.

Proposition 1.1. Let (Z) be any Bousfield class in BL(T). Then 7 induces an onto
lattice join-morphism with trivial kernel

7: BL(T)/(a(2))} — BL(T/(2)).

In this context, we say a class (X) is complemented if (X) V a(X) = (1). The
sub-poset of complemented classes is denoted BA(T).

Corollary 1.2. If (Z) is complemented then the above map is an isomorphism of
lattices.

This is proven in Corollary 3.3. We also consider the sub-poset DL(T) of classes
(X) such that (X A X) = (X). The following is proven as Proposition 3.5 below.

Proposition 1.3. If (Z) is an element of DL(T) but is not complemented, then the
map in Proposition 3.2 is not an isomorphism. This happens in the stable homotopy
category and in D(Ay), where k is a countable field.

These results rely in part on an interesting observation that we have been unable to
find in the literature. Call an object X € T square-zero if X is nonzero but X A X = 0.
In Corollary 2.9 we prove the following.

Corollary 1.4. There are no square-zero objects in T if and only if

BL = DL = BA.

Section 4 specializes to look at functors between derived categories of rings. A ring
map f: R — S induces a functor f,: Mod-R — Mod-S, via extension of scalars, and
the forgetful functor f* is a right adjoint. This carries to the level of chain complexes,



BOUSFIELD LATTICES OF NON-NOETHERIAN RINGS 207

and we get an adjoint pair of derived functors on derived categories
fo: D(R) = D(S): f°.

These functors induce maps between lattices, where fo(X) = (feX) and f*(Y) =
(f*Y’), which preserve order and arbitrary joins.

First we investigate the behavior of the sub-posets BA and DL under f, and f*. Let
(M) be the join of all classes (Y) with fo(Y) = (0). Abbreviate BL(D(R)) to BL(R)
or BLg, and likewise for BA and DL. Our most general statement is the following,
which is proven as Proposition 4.15 below.

Proposition 1.5. Suppose fof*(X) = (X) for all (X). The following hold.
1. The map fo sends DL onto DLg, and the map f*® injects DLg into DLg.
2. The map fo sends BARr onto BAg, and if (f*S)V (M) = (R) then f* injects
BAg into BAg.
Next we establish maps between various quotients and lattices.

f.

BL(R) BL(S)

|

BL(R)/ (M)} — =~ BLID(R)/(f*5))

We show (M) = a(f*S), and so Corollary 3.3 implies that the map (x) is an
isomorphism when (f*S) V (My) = (R). Theorem 4.18 states that the map (}) exists
and is an isomorphism when f, f*(X) = (X) for all (X).

Finally, Section 5 applies the results of the previous two sections. Let g: Az, —
Ap, be the obvious projection, and let h: Az, — Ag be inclusion. These maps give
the derived functors and lattice maps, as above. The map go has (geg*X) = (X) for
all (X) (Proposition 5.3), and so the diagram above becomes the following.

BL(Az,,) = ~ BL(Ar,)

—

BL(Az,, )/ (h*Ag)) BL(D(Az,,)/(9°Ar,))

1R

Theorem 5.14 gives a splitting of the Bousfield lattice of Az, as the product lattice
(9°Ar, )] x (h*Ag). Combining this with other results, we conclude the following.
Let loc(X) denote the smallest localizing subcategory containing X.

Corollary 1.6. The functors ge and he induce lattice isomorphisms
BL(Az,,) = BL(Ar,) x BL(loc(h*Ag)),
DL(Az,,) = DL(Ag,) x DL(loc(h®Ag)),
BA(Az,,) = BA(Ar,) x BA(loc(h*Ag)),
where (X) — (go(X), (X Ah*Ag)) .
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This is proven in Corollaries 5.17 and 5.18. As immediate corollaries to this, we get
that the cardinality of BL(Az,,,) is 22° (Corollary 5.19) and that, unlike in BL(Ag, ),
in BL(Az,,) there is no nonzero minimum Bousfield class (Proposition 5.4).

Section 2 contains background on Bousfield lattices and gives examples. With the
exception of Proposition 2.7 and its corollaries, and our treatment of Bousfield lattices
of proper subcategories, the contents are not new. The results of Sections 3-5 are new,
unless cited.
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2. Background on Bousfield lattices

In this section we review the definition and basic properties of Bousfield classes and
the Bousfield lattice, and outline some of what is known about the Bousfield lattice
in several examples. Most of the following general properties of Bousfield classes
were first established by Bousfield [Bou79a, Bou79b] in the context of the stable
homotopy category. Further work was done in [Rav84, HPS97, HP99,1K13]. Our
lattice theory reference is [Bir79]. We will work in the context of a well generated
tensor triangulated category, which we now define.

Definition 2.1. [Kralo, §6.3] Let T be a triangulated category which admits arbi-
trary coproducts and fix a regular cardinal a. An object X in T is called a-small if
every morphism X — [[,.;Y; in T factors through [[, ., Y; for some subset J C I
with card(J) < «. The triangulated category T is called a-well generated if it is per-
fectly generated by a set of a-small objects (see [Kralo0, §5.1]). And T is called well
generated if it is S-well generated for some regular cardinal 5.

A category is Wo-well generated if and only if it is compactly generated. A tri-
angulated category is tensor triangulated if it has a symmetric monoidal product,
which we will denote - A -, that is compatible with the triangulation, is exact in both
variables, and commutes with arbitrary coproducts [HPS97, App. A]. Let ¥ denote
the shift. We will denote the tensor unit by 1, and do not assume that 1 is compact.

Definition 2.2. Let X be an object in T.
1. A full subcategory S C T is thick if it is closed under triangles and retracts.

2. The smallest thick subcategory containing X is denoted th(X); this is also called
the thick subcategory generated by X.

3. A full subcategory S C T is localizing if it is closed under triangles, retracts,
and arbitrary coproducts.

4. A full subcategory S C T is a tensorideal if X € SandY € Timplies X AY € S.

5. The smallest localizing subcategory containing X is denoted loc(X); this is also
called the localizing subcategory generated by X .
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Note that if T = loc(1), then every localizing subcategory S C T is a tensor ideal.
Indeed, for X € Sand Y € loc(1), then X AY € loc(X A1) =loc(X) CS.

Henceforth, let T denote a well generated tensor triangulated category, or a well
generated localizing tensor ideal of a tensor triangulated category. In the former case,
of course we have 1€ T. However, in the latter case we may have 1¢ T, and this
introduces new subtleties in the structure of the Bousfield lattice.

Definition 2.3. Let W, X, and Y be objects in T.
1. We say W is X-acyclic if WA X = 0.
2. The collection of X-acyclics is denoted (X) and called the Bousfield class of X.
3. We say X and Y are Bousfield equivalent if they have the same acyclics.

There is a partial ordering on Bousfield classes, given by reverse inclusion. So we
say

(X)y < (Y)ifandonlyif WAY =0 = WAX=0).

Note that (0) is the minimum class under this ordering. When 1 € T, then (X) =
(0) implies X = 0. The join of a set of classes {(X,)}aca is given by

\/(Xa)<HXa>.

a€cA acA

It was recently shown in [IK13, Thm. 3.1] that in a well generated tensor tri-
angulated category there is always a set of Bousfield classes. Their proof applies as
well to the setting of a well generated localizing tensor ideal of a tensor triangulated
category. We can define the meet (denoted A) of any set of classes {(X,)} to be the
join of all the lower bounds; this join is over a set, and a nonempty set because (0) is
the minimum.

A partially ordered set with finite joins and meets is called a lattice. A lattice with
arbitrary joins and meets is complete. The collection of Bousfield classes of T is thus
a complete lattice, called the Bousfield lattice, and denoted BL.

In any complete lattice there is also a maximum element (Max), given by joining
all elements. When 1€ T, then clearly (Max) = (1) = {0}. On the other hand, see
Remark 2.12.

Given any well generated localizing tensor ideal S C T, we can consider the Bous-
field lattice BL(S). Some care is necessary, since for X € S, the Bousfield class (X)
in BL(S)is {W eS| XAW =0}. If X, Y €S have (X) < (Y) in BL(S), it does not
necessarily follow that (X) < (Y) in BL(T). However, see Lemmas 5.11 and 5.12.

The tensor product gives another operation on Bousfield classes,

(X)N{Y)=(XAY).
We always have (X) A (Y) < (X) A (V).
Definition 2.4. Define the following.

1. Define DL = {(X) € BL with (X) = (X A X)}.

2. A Bousfield class (X) is called complemented if there exists a class (X°¢) such
that (X) A (X¢) = (0) and (X)) V (X¢) = (Max). Call (X¢) a complement of (X).
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3. Define BA to be the collection of Bousfield classes in DL that are complemented
and have a complement in DL.

When the category needs to be specified, we will write BLt, DLy, and BAy, or
BL(T), etc. In the case where T = D(R) is the derived category of a ring, we will use
the notation BLg, DLy, and BAg, or BL(R), etc. instead.

The sub-poset DL C BL is closed under arbitrary joins, and under the tensor oper-
ation, but not under meets; the meet in BL of two elements of DL may not be in DL.
However, when we restrict to DL, the meet is given by tensoring: if (X),(Y), (Z) € DL
have (Z) < (X) and (Z) < (Y), then (Z) =(ZANZ) < (X AY), so (X AY) is the
greatest lower bound. A lattice is called distributive if meets distribute across finite
joins (equivalently if joins distribute across finite meets; see [Bir79, 1.6, Thm. 9]); it is
a frame if meets distribute across arbitrary joins. Since the tensor product commutes
with arbitrary coproducts, DL is a frame.

In general, a complemented class may have multiple complements. When 1€ T,
every complemented class is in DL, because then (Max) = (1) and we have

(X) = (X A1) = (X) A ((X) V(X)) = ((X) A (X)) V ((X) A {XG)) = (X AX).

Furthermore, if (X) € BA then (X) has a unique complement in DL. Indeed, if
(X°),(X¢c) € DL are two complements, then since the meet is given by tensoring, we
have

(X€) = (XY A ((X) V(X)) = (X9 A ((X) V(X)) = (X) A (X,

and likewise (X¢) = (X¢) A (X¢).

Omne can check that BA is a sublattice of DL (i.e. is closed under finite joins and
meets), with (X VY)¢) = (X)A(Y°) and (X AY)¢) = (X V(Y. In general,
however, BA is not closed under infinite joins. A Boolean algebra is a distributive
lattice in which every element is complemented; thus BA is a Boolean algebra, and
this explains the notation.

We can use the tensor product to define another operation on Bousfield classes.

Definition 2.5. For any Bousfield class (Z) in the Bousfield lattice BL, define the
complementation operator a(—) to be

az)y=\/ (V).

(YAZ)=(0)

The complementation operator was first considered by Bousfield [Bou79a], and
later by Hovey and Palmieri [HP99], in the stable homotopy category. Note that the
definition requires knowing there is a set of Bousfield classes. They prove the following
properties of a(—) in that context, but the proof is formal and applies in any well
generated tensor triangulated category, or any well generated localizing tensor ideal
of such a category.

Lemma 2.6. [HP99, Lemma 2.3] The complementation operator a(—) has the fol-
lowing properties.

1. (E) < a(X) if and only if (E) A (X) = (0).
2. a(—) is order-reversing: (X) < (Y) if and only if a(X) > o(Y).
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3. a(X) = (X).

Note that we always have (X) A a(X) = (0) and (X) V a(X) < (Max). If (X) € DL,
then a(X) is not necessarily in DL. If (X) is complemented, with some comple-
ment (X°), then (X) is also complemented by a(X). This is because, by the lemma,
(X)) A (X€) = (0) implies (X°) < a(X), and thus (Max) = (X) V (X°) < (X) V a(X).
It follows that if 1 € T and (X) € BA, then a(X) is in DL and is the unique comple-
ment of (X).

We briefly mention a surprising but simple result using complementation, which
we have been unable to find in the literature. Call an object X € T square-zero if X
is nonzero but X A X = 0.

Proposition 2.7. Assume 1 € T. If there are no square-zero objects in T, then every
object is complemented.

Proof. Let X € T be arbitrary. It suffices to show that (X) V a(X) > (Max). Suppose
Y has (Y) A (X)=(0) and (Y) Aa(X) = (0). Part (1) of Lemma 2.6 implies that
(Y) < (X), and from this we conclude that Y AY = 0. Our assumption forces Y =0
so (Y) A (Max) = (0). Thus (X) is complemented by a(X). O

Corollary 2.8. Assume 1€ T. If DL = BL, then BA = DL = BL.

Corollary 2.9. Assume 1€ T. There are no square-zero objects in T if and only if

BA = DL = BL.

2.1. Subcategories and quotient categories

Well generated categories behave well under taking subcategories and quotients.
A localizing subcategory S C T is well generated if and only if S = loc(X) for some
X € T [IK13, Rmk. 2.2]. Note that every Bousfield class is a localizing subcategory,
and in fact a tensor ideal.

Lemma 2.10. Every Bousfield class (Z) C T is well generated. Thus for all Z € T,
there exists an element aZ € T such that (Z) = loc(aZ).

Proof. This follows from Proposition 2.1 in [IK13], since (Z) is the kernel of the
exact coproduct-preserving functor F = (—=AZ): T = T. O

Lemma 2.11. For any Z € T, we have (aZ) = a(Z).

Proof. Because aZ € (Z), Lemma 2.6 implies that (aZ) < a(Z). If (Y) has (Y A Z) =
(0), then Y € (Z) = loc(aZ). It follows that (Y') < (aZ). Therefore a{Z) < (aZ) and
equality holds. O

Remark 2.12. If S C T is a well generated localizing tensor ideal, then S = loc(X)
for some X € T, and in this case (Max) in BL(S) is (X). This is because Y € loc(X)
always implies (Y) < (X).

If S C T is any localizing tensor ideal, we can form the Verdier quotient T/S. This
category has a tensor triangulated structure induced by that on T, such that the
quotient functor 7: T — T/S is exact, and 7(11) = Iy/s. If S is well generated, then
so is T/S, by [Nee01, Cor. 4.4.3] or [Kral0, Thm. 7.2.1]. This also implies that T/S
has Hom sets.
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2.2. Examples
Next we survey several examples of categories and their Bousfield lattices.

Ezample 2.13. Let R be a commutative ring, or a graded-commutative ring. Let D(R)
denote the unbounded derived category of right R-modules, or of right graded R-
modules (with degree-preserving maps). If R is graded, we think of objects in D(R) as
bi-graded; in either case we assume the differential decreases the chain degree by one.
Then D(R) is a tensor triangulated category, with the product A A B = A ®% B given
by the left derived tensor product [HPS97, §9.3]. The tensor unit is the module R
thought of as a complex concentrated in degree zero. Furthermore, D(R) = loc(R), so
D(R) is compactly generated, hence well generated. When R is graded, this is meant
in the multigraded sense discussed in [HPS97, §1.3], and we follow the conventions
of [DPO08, §2]. See also [DS13]. The Bousfield lattice of D(R) is well-understood when
R is Noetherian; see the next example. When R is non-Noetherian our understanding
of the Bousfield lattice is limited to several specific rings; see Example 2.16.

Ezample 2.14. Iyengar and Krause [IK13] investigate the Bousfield lattice of a com-
pactly generated tensor triangulated category that is stratified by the action of a
graded Noetherian ring R. This general setting, developed in [BIK08, BIK11], build-
ing on [Nee92, BCR97, HPS97], includes the unbounded derived category of a com-
mutative Noetherian ring; the stable module category StMod(kG) of a finite group,
where the characteristic of k£ divides the order of the group, and then also the homo-
topy category K (Inj kG) of complexes of injectives; and DG modules over a formal
commutative DG algebra with a Noetherian cohomology ring. They show that in
such a category the Bousfield lattice is isomorphic to the lattice of subsets of the
homogeneous prime spectrum of R, and BA = DL = BL. In the case of a commuta-
tive Noetherian ring R, D(R) is stratified by R, and so BLp is isomorphic to the
lattice of subsets of Spec R. The isomorphism is given in terms of support.

Ezample 2.15. The (p-local) stable homotopy category S is a tensor triangulated
category, with the product the smash product, and the unit the (p-local) sphere
spectrum S°. Since S = loc(S?), this category is well generated. Bousfield [Bou79a]
showed that the class of every finite spectrum is in BA, the class of every ring spectrum
is in DL, but for example the class of HZ is in DL but not in BA. He also showed that
the Brown-Comenetz dual 15° of the sphere has 5% A IS = 0, so DL C BL. Hovey
and Palmieri [HP99] study finer structure of the Bousfield lattice of this category.

Ezxample 2.16. Fix a countable field k and integers n; > 1, and consider the ring

klx1,za,...]
(2], 252,...)]
with the x; graded so that A is graded-connected and finite-dimensional in each
degree. Let D(A) be the derived category of graded A-modules; objects in D(A) are
bigraded. Neeman [Nee00] first considered such a ring (with n; = i), showing the
Bousfield lattice is large, although the homogeneous prime spectrum is trivial. Dwyer
and Palmieri [DPO08] examine the Bousfield lattice of D(A) in depth. They show the
Bousfield lattice has cardinality exactly 22",

Let TA = Homj (A, k) be the graded vector-space dual of A. This is a A-module,
and we consider it as an object of D(A) concentrated at chain degree zero. The

A:
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module TA plays an important role in [DP08]. One computation gives IA A TA = 0,
so DLy € BLj. This is relevant, because it implies that there is no Noetherian ring
that stratifies D(A).

Furthermore, (IA) is a minimum nonzero Bousfield class: Corollary 7.3 in [DP O8]
shows that for any non-zero E in D(A), we have that (IA) < (E). This implies that
BA, is trivial, i.e. the only complemented pair is (0) and (A) = (1) (see Prop. 5.4).

We mention one more difference among the Bousfield lattices in these examples.
One can easily check that every Bousfield class is a localizing subcategory. Hovey and
Palmieri [HP99, Conj. 9.1] conjecture that the converse holds in the stable homo-
topy category, but no progress has been made on this question. In a category that is
stratified by the action of a Noetherian ring, it is indeed the case that every localizing
subcategory is a Bousfield class [IK13, Cor. 4.5]. On the other hand, Greg Steven-
son [Steld], working in the unbounded derived category of a non-Noetherian ring
(specifically any absolutely flat ring which is not semi-artinian), recently exhibited a
localizing subcategory that is not a Bousfield class.

2.3. Some (more) lattice theory.

Here we recall some terminology and facts from lattice theory that we will need;
our reference is [Bir79]. A sub-poset K of a lattice L is a subset of L along with the
induced partial ordering. A sub-poset K of a lattice L is a sublattice if it is closed
under finite joins and meets.

If K and L are lattices, a set map F: K — L is a join-morphism if it is order-
preserving (so x < y implies Fx < Fy) and preserves binary joins. A lattice morphism
is a join-morphism that also preserves binary meets. A lattice isomorphism is a lattice
morphism that is a set bijection and has an order-preserving inverse.

We do not assume that a join-morphism preserves minimum or maximum elements.
Nor do we assume that a join-morphism between Bousfield lattices will commute with
the tensor product operation (X) A (V).

Note that if F'is a bijection with inverse G, and both F and G are join-morphisms
that preserve arbitrary joins, then they preserve binary meets so F is a lattice iso-
morphism.

Any poset can be thought of as a category, where x < y if and only if there is
a (unique) morphism from z to y. Joins are colimits and meets are limits. Then a
complete lattice corresponds to a category that is complete and cocomplete in the
categorical sense.

Definition 2.17. For any element a in a lattice L, define al = {z € L | z < a} and
at ={z € L | x > a}. Note that these are both sublattices of L.

Definition 2.18. A nonempty subset J of a complete lattice L is an ideal if it is
closed under finite joins, and a € J and x € L with < a implies « € J. An ideal is
complete if it is closed under arbitrary joins. Note that al is an ideal, for all a € L.
An ideal J is principal if J = al for some a € L. Note that an ideal J is principal if
and only if it is complete.

Definition 2.19. Given a principal ideal J of a complete lattice L, and a,b € L, we
say a = b (mod J), and write [a] = [b], if a V ¢ = bV ¢ for some ¢ € J. The equivalence
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classes under this equivalence relation, with the ordering, join, and meet induced by
L, form a complete lattice L/J, called the quotient lattice. The quotient map L — L/J
sending x — [z] is a lattice epimorphism.

It is not hard to show that if J = al is a principal ideal in a complete lattice L,
then [z] = [y] in L/J if and only if 2 V a = y V a. Every quotient of a complete lattice
by a principal ideal is isomorphic to a sublattice: for all a € L, there is an isomorphism
of lattices L/al = af, given by [z] = z V a.

Definition 2.20. Given lattices K and L, the product lattice is defined as the set
product K x L, with (a,b) < (¢,d) precisely when a < ¢ and b < d, and joins and
meets defined termwise. One can check that, for example, 0 x L is a principal ideal
in K x L, and there is a lattice isomorphism (K x L)/(0 x L) = K.

3. Lattices and quotients

In this section we give some results comparing the quotient of a Bousfield lattice to
the Bousfield lattice of a quotient. Again, let T be a well generated tensor triangulated
category, or a well generated localizing tensor ideal of such a category. Let Z be an
element of T, and consider the Verdier quotient T/(Z) and quotient functor 7: T —

T/(Z).

Lemma 3.1. The functor © induces an onto join-morphism of lattices that preserves
arbitrary joins,

m: BL(T) = BL(T/(Z)), where (X) — (nX).

Proof. We will show that if X, Y € T have (X) < (Y) in BlLy, then (7 X) < (7Y) in
BL(T/(Z)). This will show that 7 is order-preserving, and by symmetry will also
show that 7 is well-defined. Take W € T/(Z) with W A 7Y = 0. Take W in T so
7W = W. The tensor structure on T/(Z) is such that 7(W AY) = aW AxY =0, so
we have W AY € (Z), ie. W AY AZ=0. Then (W A Z) A X =0, by hypothesis, so
7(W A X) = 0. This shows that W A 7X = 0.

Since 7 commutes with arbitrary coproducts, it commutes with arbitrary joins. O

Proposition 3.2. Assume 1€ T. Let (Z) be any Bousfield class in BLy. Then w
induces an onto join-morphism of lattices that preserves arbitrary joins,

7: BL7/(a(2))L — BL(T/(Z)),
such that if T[(X)] = (0), then [(X)] = [(0)].

Proof. First we show that 7 is order-preserving. Suppose (X) < (V) in BLt/(a(Z)){;
this is equivalent to assuming (X) V a(Z) < (V) V a(Z). We want to show that (7 X) <
(rY) in BL(T/{Z)). Take W € T/(Z) with W A7Y =0, and let W €T be such
that 7W = W. Then 0 = 1W A 7Y = 1(WAY),so WAY € (Z) and WAY A Z =
WAZANY =0.

Since (Z) A a(Z) = (0), we also have (W A Z) A a(Z) = (0). Our assumption then
implies that (W A Z) A X = 0. Therefore W A X € (Z), which says that 0 = w(W A
X)=WArX.
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Thus 7 is order-preserving, and hence well-defined. It is clearly onto and preserves
joins.

Now suppose 7[(X)] = (0). Then (7 X) = (0), so X € (Z), i.e. X ANZ =0. Using
Lemma 2.6 this implies that (X) < a(Z), so [(X)] = [(0)]. O

To be a lattice isomorphism, 7 must have an order-preserving inverse. In the
remainder of this section, we will give examples of when this does and does not
happen.

Corollary 3.3. Let (Z) and (Z°) be a pair of complemented classes in BLt, and
assume that 1 € T. Then 7 induces a lattice isomorphism

7 BLy/(Z°) ] — BL(T/(Z)).

Proof. Recall that 1€ T implies that complements are unique and (Z¢) = a(Z). We
claim that ¥((w X)) = [(X)] is a well-defined, order-preserving inverse to 7. Thus we
wish to show that if (7 X) < (7Y, then (X) V (Z¢) < (Y) V (Z°¢). By symmetry, this
will also show that v is well-defined; by inspection, then, it is an inverse to 7.
Take W € Twith W € (Y)V(Z¢). Then WAY =0,so WAY ANZ =0,ie (WA
Y) € (Z). This says that 7(W AY) =0 in T/(Z), so W A 7Y = 0. By hypothesis,
this means 7W A 7 X = 0, which working backwards, implies that W A X A Z = 0.
On the other hand, we also know that W A Z¢ =0, s0o W A X A Z¢ = 0. Therefore
(WAX)e(Z)v{(Z% = (Max) = (1),s0 WA X =0. Thus W € (X V Z°) as desired.
U

For example, if L: T — T is a smashing localization functor with colocalization C,
and 1 € T, then (L1) and (C1) are a complemented pair. This result relates the Bous-
field lattice of T to the Bousfield lattice of the L-local category, which is equivalent
to T/(L1). See also [IK13, Prop. 6.12].

Corollary 3.4. Suppose BLr = DLt. Then for every Bousfield class (Z), the functor
7 induces a lattice isomorphism

7: BLr/(a(2))} — BL(T/(2)).

Proof. This follows immediately from Corollaries 2.8 and 3.3 if 1€ T, but we will
prove it more generally. As in the last proof, we claim that ¢¥((7 X)) = [(X)] is a
well-defined, order-preserving inverse to 7. Suppose (7X) < (7Y); it suffices to show
that (X) Va(Z) <(Y) Va(Z).

Take W € T with W € (Y) V a(Z). As in the last proof, W AY = 0 implies W A
XANZ=0. Then (W) Aa(Z) = (0) implies (W) < (Z), by Lemma 2.6. Therefore
(WAX)e (W).Since BLt = DLy, wehave X € (W AW) = (W), s0 WA X = 0and
this concludes the proof. O

The previous two corollaries apply when T is a stratified category, as discussed in
Example 2.14. The next result, however, shows that 7 fails to be an isomorphism in
both the stable homotopy category and the category D(A).

Proposition 3.5. Assume 1€ T. Suppose (Z) in BLt is an element of DLT\BAT.
Then the map induced by w in Proposition 3.2 is not an isomorphism. This happens
in both the stable homotopy category and D(A).
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Proof. Since (Z) ¢ BAT, we know (Z) V a(Z) < (1). We will show that (7Z) = (r1)
in BL(T/(2)), but [(2)] # [(1)] in BLr/(a(Z))..

Since 7 is order-preserving, we know that (7Z) < (r1). We must show (rZ) >
(w1). Suppose W € T/(Z) has W A wZ = 0. Choose W € T such that 7W = W. Then

(W NZ)=0, so W AZAZ=0. This says We (Z AN Z), and by hypothesis (Z A
Z) =(Z), so WA Z =0. Therefore W =W Al1€ (Z) and x(W AL =W Axl=0
in T/(Z). This shows (1) = (nZ).

By assumption, (Z) is such that (Z) V a(Z) < (1). But (1) = (1) V a(Z), so (Z) V
a{Z) < (1) Va(Z) and thus [(Z)] < [(1)] in BLt/(a{Z))l.

In the p-local stable homotopy category, we can take (Z) = (HF,). The spectrum
HF, is a ring spectrum, and Bousfield [Bou79a] shows that the Bousfield class of
any ring spectrum is in the distributive lattice. Let I.S° be the Brown-Comenetz
dual of the sphere. Then Lemma 7.1 in [HP99] shows that IS° A HF, =0, and
(IS% < (HF,) so (IS°) A a(HF,) = (0) by Lemma 2.6 above. This shows that 15° €
(HF,) V a(HF,), and hence (HF,) V a(HF,) < (S°).

In the category D(A) of Example 2.16, we can take (Z) = (k). The class (k) is in
DLa because k is a ring object. The dual IA of A has IAA k=0 [DP08, Cor. 4.12]
and (IA) < (k) [DPO8, Lemma 4.8], so (IA) A a(k) = (0). Thus we have that TA €
(k) V a(k) < (A). O

4. Ring maps and the Bousfield lattice

4.1. Ring maps and derived categories

In this section, we’ll establish basic facts about morphisms of Bousfield lattices
induced by ring maps, laying the groundwork for the results in Section 5.

WARNING: The results of this section hold in an ungraded or a graded
setting, and we will be ambiguous with notation. Thuslet f: R — S be either a
ring homomorphism between two commutative rings, or a graded ring homomorphism
between two graded-commutative rings. Let Mod-R denote either the category of
right R-modules, or the category of right graded R-modules (with degree-preserving
maps). Let D(R) denote either the unbounded derived category of R-modules, or the
unbounded derived category of graded R-modules; in the latter case, the objects of
D(R) are bigraded, and we follow the conventions in [DP08, §2].

In either case we will use the standard model structure on the category Ch(R) =
Ch(Mod-R) of unbounded chain complexes. The weak equivalences are quasi-
isomorphisms, the fibrations are dimensionwise surjections, and the cofibrations are
dimensionwise injections with cofibrant cokernels. The cofibrant objects are the com-
plexes that can be written as an increasing union of subcomplexes such that the
associated quotients are complexes of projectives with zero differentials. Every object
is fibrant. See [Hov99, §2.3] or [HPS97, §9.3] for more details.

A ring map f: R — S induces a functor on module categories f.: Mod-R — Mod-
S, via extension of scalars, where f,(M)= M ®r S. This induces a functor f,:
Ch(R) — Ch(S) on chain complexes. The forgetful functor f*: Mod-S — Mod-R
induces a functor f*: Ch(S) — Ch(R), and f, and f* are adjoints.

Definition 4.1. Let f, be the left derived functor fo = Lf. = L(— ®r S): D(R) —
D(S). Let f* = Rf*: D(S) — D(R) be the right derived functor of the forgetful
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functor.

Lemma 4.2. The derived functors fo and f® exist and form a Quillen adjoint pair;
fe is the left adjoint and f*® is the right adjoint.

Proof. Since f, is left adjoint to f*, by [DS95, Rmk. 9.8] it suffices to show that f*
preserves fibrations and trivial fibrations. Since fibrations are degreewise surjections,
this is immediate. O

The functor f, is exact (i.e. sends exact triangles to exact triangles), has fo(R) = 5,
and fo(X AY) = foX A foY (see [HPS97, Thm. 9.3.1] and note that they consider
both the ungraded and graded settings). Since it is a left adjoint, it commutes with
coproducts. Since every object is fibrant, we have f*(X) = f*(X) for all X, so f* is
exact and commutes with coproducts and products.

Remark 4.3. Take z € Ry, and consider the morphism R = R in D(R). Applying f.
to this, we get

(f.(R) f@) f.(R)) - (R 9r S 2 Rog S)

- <R®R51%>R®RS> - (s@s).

The following lemma, called the projection formula and proved in [Wei94] for
bounded-below complexes, will be used frequently.

Lemma 4.4. (Projection Formula) For all objects A in D(R) and B in D(S), we
have

F(feANDB) = AN f*B.

Proof. Recall that we can compute the derived tensor product - A- by taking a cofi-
brant replacement in either factor. Let QX represent a choice of cofibrant replacement
for a complex X.

Since every object is fibrant, we have

FP(feANB) = f*(feANB) = f*(Q(feA) ©s B).

To compute f, A we use a cofibrant replacement QA of A. Since f is left Quillen,
it preserves cofibrant objects. Thus Q(feA) = Q(f«(QA)) = f.(QA).
At the module level, for M € Mod-R and N € Mod-S, we have

[T (fe(M) ©s N) = [ (M ®r S) ©s N) = M @g f*(N),
and this extends to the level of chain complexes, to give

f*(feANB) = f*(f+(QA) @5 B) = QA®Rr f*(B) = AN f*B.

Corollary 4.5. For all objects A in D(R) and B in D(S),
feAANB =0 if and only if AN f*B = 0.
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4.2. Induced maps on Bousfield lattices

Here we show that the functors f, and f® induce maps between the Bousfield
lattices of D(R) and D(S). If we consider a Bousfield class (X) as the localizing
subcategory of X-acyclics, then we can map this to fo((X)) as a subcollection in
D(S); however, in general fo({X)) will not be triangulated. Instead we make the
following definitions.

Definition 4.6. Define a map fo: BLr — BLg by (X) — (feX). Also, define a map
f®: BLs = BLg by (X) — (f*X). For the rest of this document, fo(X) and f*(X)
will mean (f¢X) and (f*X).

Proposition 4.7. Both f, and f® induce join-morphisms on Bousfield lattices that
commute with arbitrary joins.

Proof. First we show that (V) < (X) implies (f*Y) < (f*X). Suppose (Y) < (X)
and W A f*X = 0. Then Corollary 4.5 implies foW A X =0. Thus ffW AY =0,
and W A f°Y = 0.

This implies that if (V) = (X), then (f°Y) = (f*X), so f* is well-defined and
order-preserving.

Now suppose (Y) < (X) and f¢X AW = 0. Then from Corollary 4.5, X A f*W =
0,50 Y A f*W = 0, which implies foY A W = 0. Therefore f, is order-preserving and
well-defined. Both f, and f® commute with coproducts on the object level, and hence
with arbitrary joins at the level of Bousfield classes. O

Note that fo commutes with the tensor operation, fo((X AY)) = (feX) A (foY),
but in general f® does not. See Lemma 4.13, however.

Recall from Section 2 that since R € D(R), (Max) = (R) in BLg, and every com-
plemented class in BLg is in DLg. Furthermore, complements are unique, and are
given by the complementation operator a(—).

Lemma 4.8. The functor fo maps DLy into DLg, and BAR into BAg. If (X) in BAg
has complement (X°¢), then (foeX) has complement (fe(X°)).

Proof. H (Y) = (Y AY), then (fY) = (foY A foY).
If (X) has (X)V (X =(R) and (X) A (X)) =(0), then (feX)V (fo(X€)) =
(foR) = (S) and (fe X) A (fo(X€)) = (0), s0 ((fe X)) = (fe(X?)). 0

We will strengthen and extend this lemma in the next subsection, under additional
hypotheses. Next we describe a useful quotient of BLg.

Definition 4.9. Fix J; to be the image of Kerf, in BLg; in other words Jy =
{{X) | fo(X) = (0)}. Also define

(Mp) =\ ().

(Y)eJy

Proposition 4.10. The subposet Jy is a principal ideal in BLp with Jp = (My)l,
and fe induces a lattice join-morphism that preserves arbitrary joins,

ﬁ: BLR/Jf — BLs,
where fo(X) = (foX).
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Proof. Suppose (Y) < (X) and (feX) = (0). Then (foY) < (foX), so (foY) = (0)
and Jy is a lattice ideal. Every (X) in J; has (X) < (My), so Jr C (My)]. And since
fo(My) =0, if (X) < (My) then (X) € Jy. Therefore J; = (My)] is principal.

To get an induced map on the quotient lattice, we need to know that if [(X)] =
[(Y)], then fo(X) = fo(Y). Since (X) and (Y) are equivalent if and only if (X)V
(Mj) = (V) V (M), and {faMy) = (0), we get

(JoX) = (e X) V (foeMy) = fo((X) V(M) = (feY) V (feMy) = (foY).
Thus f, is well-defined. It is order and join-preserving since f, is. O

Remark 4.11. Note that for any object X in D(R), the projection formula implies
foX =0ifand only if X A f*S = 0, which is true if and only if (X) < (M). Therefore
by definition (M) = a(f*S), and thus also (f*S) = a(My).

Proposition 4.12. If (f*S) Vv (M) = (R), then the quotient functor w: D(R) —
D(R)/{f*S) induces a lattice isomorphism

7: BLr/Js — BL(D(R)/(f*S)).

Proof. This follows easily from Remark 4.11 and Corollary 3.3, and the fact that
Jp = (Mg)l. O

We don’t have a general criteria for when to expect (f*S) vV (M) = (R) to hold. It
holds when BLr = DLg, thanks to Corollary 2.8. This is the case if R is Noetherian,
for example. On the other hand, consider the ring A from Example 2.16, and let
f: A — k be projection onto the degree zero piece. Then (f*S) V (M) = (k) V a(k),
and as shown in the proof of Proposition 3.5, this is strictly less than (A).

4.3. Maps f: R — S satisfying f, f*(X) = (X) for all X

In this subsection we assume the map f: R — S satisfies fo f*(X) = (X) for all X.
In Section 5 we show that this condition holds for the specific map of non-Noetherian
rings ge: Az, — AF,.

Lemma 4.13. The following are equivalent:

1. fof*(X) = (X) for all (X),
2. f*WAf*X =0 if and only if f*(W A X) =0,
5 FAY AX) = (f*Y) A (X,

Proof. For (1) & (2), note that WA fof*X =0iff f* WA f*X =0,and WAX =0
iff f*(W A X) = 0.

For (1) < (3), note that WA f*(Y AX)=0iff W A(Y AX) =0 iff (fW A
Y)AX =0, and WA f*XAfY =0 iff (fWASfX)AY =0 iff (W AY)A
(fof*X) = 0. O

This is a good setting in which to consider the behavior of the sub-posets BA and
DL under f, and f°.

Lemma 4.14. Suppose fof*(X) = (X) for all (X). Then the map f°® sends BAg
into BAR if and only if (f*S) V (M) = (R). If this is the case, and (X) € BAg has
complement (X°), then (f*X) € BAr has complement (f*(X°)) V (Mjy).
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Proof. If f* injects BAg into BAg, then since (0) and (S) are a complemented pair
in BAg, the class (f*S) is complemented in BAg. Its complement must be a(f*S),
which is (My) by Remark 4.11.

For the converse, suppose that (f*S) VvV (My) = (R). Now suppose (X) € BAp(g),
so (X) VvV (X°) = (S) and (X) A (X¢) = (0). This implies (f*X) V (f*(X°)) = (f*S)
and (f*X) A (f*(X°)) = (0), using Lemma 4.13.

We calculate that

(2 X) v (f* (X)) V(M) = (f*S) vV (My) = (R).
Also, we have
(FX)N((fHX)) VA Mp)) = ((f*X) A (X)) V(X)) A (M)

= (0) v ((f*X) A (M) = (0).
The last equality follows from the fact that f* is order preserving and (X) < (5)
for all (X)), so (f*S) A (My) = (0) implies (f*X) A (My) = (0) for all X in D(S).
This shows that the complement of (f*X) is (f*(X¢)) V (My). O

Proposition 4.15. Suppose fo f*(X) = (X) for all (X). The following hold.
1. The map fo sends DL onto DLg, and the map f*® injects DLg into DLg.

2. The map fo sends BAg onto BAg, and if (f*S)V (My) = (R) then f* injects
BAS nto BAR

Proof. Lemma 4.13 implies that if (Y) = (Y AY), then (f*Y) = (f*Y A f*Y), so f*
sends DLg to DLy and is injective by hypothesis. The rest follows from Lemma 4.8,
Lemma 4.14, and the fact that f, is surjective and f* is injective. O

This is also a good setting in which to consider poset adjoints. As a poset map,
because f® preserves joins on Blg, it has a poset map right adjoint r: BLgr — BLg;
see [HP99, Lemma 3.5]. We know

r(Y) = \/{{X) | f*(X) < ()}, and
X)) < (YY) if and only if (X) < r(Y).

Proposition 4.16. If ff*(X) = (X) for all (X), then fo(X) =1r(X) for all {(X),
50

(f*X) <{Y) if and only if (X) < (foY).

Proof. First suppose that (f*X) < (Y) and W A foY = 0 for some W. Then Corol-
lary 4.5 implies f*W AY =0, so f*W A f*X = 0. It follows from Lemma 4.13 that
fPWVAX)=0,s0o WAX =0.

For the other direction, if (X) < (foY), then (f*X) < (f*fY). In general we
always have (f®fsY) < (Y). Indeed, an object W has W A f*f,Y =0 iff fW A
foY =0iff fu(WAY)=0,s0 WAY =0 implies WA (f*feY) =0.

This immediately implies that \/ {(X) | f*(X) < (Y)} < fo(Y). And the fact that
fo{feY) <(Y) gives (foY) < V{(X) | f*(X) <(Y)}. m
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The BL operation f, also preserves arbitrary joins, so it has a poset map right
adjoint. On the object level, we know that f® is right adjoint to f,, and so it is
natural to ask if f® is the right poset adjoint of f,.

Proposition 4.17. Assume fof*(X) = (X) for all X. Then on the level of Bousfield
classes, we have

(foX) < (V) = (X) <(f7Y),

but the forward direction need not hold.

Proof. First suppose (X) < (f°Y)and W AY = 0. Then f*(W AY') = 0, which using
Lemma 4.13 means f*W A f*Y =0,s0 f*W A X =0, and W A fo X =0.

On the other hand, suppose (feX) < (Y) and W A f°Y = 0. Then feW AY =0,
foW A foX =0, and fo(WW A X) = 0. At the BL level, this does not necessarily mean
W A X =0. (Take, for example, Y =0, W = R, and X any object such that foX =
0.) O

We end this section with another lattice isomorphism.

Theorem 4.18. Suppose fof*(X) = (X) for all (X). There is a lattice isomorphism
¢: BL(D(R)/(f*S)) — BLs,
given by ¢(X) = (foX), where 7X = X

Proof. Recall that 7: D(R) — D(R)/{f*S) is the canonical projection. First we sup-
pose that (X),(Y) in BL(D(R)/(f*S)) have (X) < (Y), and will show that then
#(X) < ¢(Y). Fix a choice of X and Y such that 7X = X and 7Y =Y.

Take W € D(S) such that W A f,Y = 0. We wish to show that W A fo X = 0.
Corollary 4.5 implies that f*W AY = 0. So

O:W(f'W/\?) =af*WARY =7f*WAY.

By hypothesis, this implies that 7 f*W A X = 0. Thus 7w (f*W A X)=0,and f*WA
Xe (f*S), so fWA XA feS = = 0. Again the projection formula implies that
fo(fSWAX)=0, 50 fof WA foX = 0. Since we're assuming (fo f*W) = (W), we
conclude that WA f.f( = 0, as desired.

This shows that ¢ is order-preserving. By symmetry, it also shows that ¢ is well-
defined, independent of choice of representative or preimage.

The map ¢ is surjective by assumption: given (V) € BLg, we get ¢(rf°Y) =
(Fof*Y) = (V). o S

For injectivity, suppose (feX) = (foY). We will show (7X) < (7Y), and injec-
tivity follows by symmetry. Suppose W € D(R)/(f*S) has W A7Y = 0. Choose
W so aW =W. Then n(WAY)=0,s0 WAY A f*S=0, and 0= fo(WAY) =
fW ALY

By hypothesis, this implies that 0 = f.W AfoX = fo(WAX),soWAXA[fS =
0. This says that 0 = 7W A 7X = W A7 X, and we conclude that ¢ is injective.

The inverse of ¢ is clearly given by ¢~ ( Yy = (rf°Y), and both ¢ and ¢~! com-
mute with arbitrary joins. O
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5. Non-noetherian rings

Here we will investigate maps between several graded non-Noetherian rings. All
rings and modules in this section are graded, and objects in derived cate-
gories are bigraded.

Definition 5.1. Fix a prime p.
1. For ¢ > 1, fix integers n; > 1 and set

@[.’,El,l’g, . ]

_ Lol ] _ Fplzg, 23, ] Qlzy,29,...]
(x5, ..0)

Ay =—"" "~ Ap =

S S e N e L
Grade the x; so that AZ(P), Ap,, and Ag are graded-connected and finitely
generated in each module degree, for example by setting deg(x;) = 2°.

and AQ =

2. Fixg: Ag,, — Az(p)/pAZ(p) = Ap, to be the projection map, and fix h: Az, <
Ag to be the inclusion.

3. Let go: D(Az,,) — D(Ar,) and he: D(Az ) — D(Ag) be the induced functors
on unbounded derived categories of chain complexes of graded modules, as in
Section 2. Let g®* and h® denote their corresponding right adjoints.

Remark 5.2. Note that g*Ar, can be represented in D(Az, ) by the chain complex
(~~~~>O~>AZ<I)) LAZ(M %0%~-~).
Furthermore, ¢g®Ap, fits into the exact triangle AZ@) AN AZ(p) — g*Ap, in D(AZ<p)).

Proposition 5.3. For all X in D(Ar,), we have geg*X = X & X X. Therefore
th(geg® X) = th(X) and (geg®* X) = (X).

Proof. Using geAz, = Ap,, and Remarks 4.3 and 5.2, we see that geg®Ar, in D(Ar,)
is

(--~—>O—>AFPL>AFP—>O—>-~-),

which is just Ap, © XAp,.

Next consider the small complexes, which are those in th(Ar, ). Let X be a cofibrant
representative for an arbitrary element of th(Ar,); then X is a bounded complex of
finitely generated projective Ap, -modules.

Since A, is a local ring, projectives are free. Thus X has the form
e — HA]FP g HA]FP i> HA]FP & HA]FP — 0.
I3 I I Io

Each differential is a direct sum of maps Ar, — Ap,, which we can think of as
elements of Ay, .
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Since every object is fibrant, ¢g* X = ¢* X, and this is the complex

dy do
5 le AZ(m } Hh AZ(p) } Hlo AZ(m >0

® Sp b bp b ©p

T Hls AZ(TJ) FA HI2 AZ(P) R Hh AZ(?) s HIO AZ(p) 0.

Here d; is a direct sum of maps Az(p) — Az, that correspond to preimages via
g: Az, — A, of the elements of Ap, comprising d;, chosen in a compatible way. We
claim that this complex is cofibrant. First note that it is the cofiber in Ch(Az,) of

w B W, where W is the complex

da dy do
S H AZ<p> H AZ(@) H AZ(m H Azm — 0.
I I I Io

Since X is cofibrant, so is W. For X is an increasing union of complexes, such that
the associated quotients are complexes of free Ar, -modules with zero differentials. By
replacing each A, with Az, and each map, thought of as an element of Ag,, with its
preimage via g (in a compatible way), we construct W as such an increasing union.
Since W is cofibrant, so is g* X.

Therefore we can compute ge(g°X) = go(¢*X) = ¢9+(¢*X). But ¢g.(W) = X, and
g(p) = 0, so this gives a map g¢(¢g*X) — X @ XX that is an isomorphism. Note that
this map is functorial in X.

The case of a general object in D(Ap,) follows immediately, since every object is a
homotopy colimit of objects in th(Ag,), and g, and g* are both exact and commute
with coproducts. O

This proposition allows us to apply all the results of Section 4.3 to the case
e : D(Az(p)) — D(A]Fp).

Next, we point out an important difference between D(Az, ) and D(Ap,). Recall
from Example 2.16 that BA(Ap,) is trivial, and the module (/Ap,) is a minimum
nonzero Bousfield class. The latter fact plays a significant role in [DPOS].

Recall that, given a self-map X 4 Xin any derived category D(R), the homotopy
colimit is called the telescope f~'X. More explicitly, f~'X is the cofiber of the map

]_[i>0 X; ﬂ) Hi>0 X;, where X; = X for all ¢ and the map sends each summand
X; = Xi ][ Xi41 by (1= f)(z) = (x,—f(x)). This is a minimal weak colimit (see
e.g. [HPS97, Prop. 2.2.4]), so for all n we have

H(f)
)

Hy(f71X) 2 lm(H,(X) = Ho(X) = ---).

Proposition 5.4. The classes (g*Ar,) and (h*Ag) form a complemented pair in
BA(Az,,). Thus there is no minimum nonzero Bousfield class in BL(Az, ).

Proof. Consider the self-map Az, N Az, in D(Az, ). The telescope p‘lAZ(p) is
quasi-isomorphic to a module concentrated in chain degree zero, with zeroth homology
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the AZ(p) -module

. P ~ Qlz1, 22, .. .] _
lng (Az,,, =+ Az, =) = @ha,.) e

Thus we can identify p’lAZ(p) with h*Ag. As noted above, the cofiber of the map

AZ(p) BRI AZ(p) is g*Ap,. In this situation of a telescope and cofiber, it is well-known
that (g*Ar,) V (h*Ag) = (Az,); see for example [HPS97, Prop. 3.6.9].

To compute g®*Ar, A h®Ag, we use the chain complex description of g®*Ap, given
in Remark 5.2, and find that g*Ar, A h®Aq is represented by

("‘—>0—>AQL>AQ—>O—>"'),

which is zero in D(AZ(p)).

Therefore the classes (g*Ar,) and (h®Ag) form a nontrivial complemented pair
in BA(Az,,). Suppose (Z) were a minimum nonzero Bousfield class. Then (Z) <
<g.A[Fp>, (Z) < <h.AQ>, and Q.A]Fp A h®*Ag = 0 imply (Z) A <g.AIF,, V h.AQ> = 0. This
would force Z = 0. d

The subcategory th(g®Ar,) is a thick subcategory of compact objects in D(Az,, ).
It is clearly nonzero, and the inclusion th(g®Ap,) C th(Az, ) is proper. Indeed, if
th(g®Ar,) = th(Az,,) then we would have (g°Ar,) = (Az,,), which contradicts
g.AIFp Ah*Ag = 0.

Definition 5.5. Let L: D(Az,, ) — D(Az, ) be finite localization away from
th(g®°Ar,). Let C' denote the corresponding colocalization; thus for each X there
is an exact triangle CX — X — LX.

See [HPS97, Ch. 3] or [Kral0] for a discussion of Bousfield localization. Recall
that we say an object X is L-acyclic if L(X) = 0, and L-local if it is in the essential
image of L.

Definition 5.6. The inclusion Z,) <> Q induces a morphism Az, — h*Ag in
D(Az,, ). Let I be the fiber of this map, so F' — Az, — h*Ag is an exact triangle
in D(Az(p) )

Lemma 5.7. In D(Az, ), the object ¥ F is quasi-isomorphic to the Az, -module
Ag/ AZ(p) concentrated in degree zero.

Proof. This is a straightforward calculation using the long exact sequence in homol-
ogy. O

Proposition 5.8. The localization functor L is smashing, with LAz, = h*Aq and
CAz,, = F. It has the following acyclics and locals.

L-acyclics = loc(g*Ar,) = (h*Ag) = (LAz ) = (M),
L-locals = loc(h*Ag) = (¢*Ar,) = (CAz,,) = (M) = (F).
Proof. All finite localizations are smashing localizations, which means LX = LAz, A

X. Thus the L-acyclics are precisely (LAz,, ). Finite localization away from th(g®Ag,)
means also that the L-acyclics are loc(g®Ar, ).
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Next we show that the L-acyclics are the same as (h®*Ag). Suppose X is L-acyclic.
Then X € loc(g®AF, ). Since g*Ag, A h®*Ag = 0, this implies that X A h*Ag = 0. Con-
versely, suppose that X A h®*Ag = 0. Then

(X Ag*Ap,) V(X ANR*Ag) = (X AAz,,) = (X),

so (X A g®*Ar,) = (X) and (X) < (g°Ap,). Since g°*Ap, € loc(9*Ar,) is L-acyclic, we
have LAZ(p) N g*Ar, =0, so LAZ(m AX =LX =0, and X is L-acyclic.

With any smashing localization, the classes (L1) and (C'1) are a complemented pair,
where 1 is the tensor unit. Furthermore, the L-locals are precisely (C1). Thus in the
present context, since L: D(Az ) — D(Az,, ) is smashing and (LAz ) = (h*Ag) is
complemented by (g°Ar,), we see that the L-locals (CAz ) are precisely (g°Ap, ).

From Remark 4.11 we know that a(g®*Ar,) = (M,). But Proposition 5.4 shows
that (g°Ap,) is complemented by (h®Ag), so a(g®Ar,) = (h*Aq). Likewise, (¢°Ar,) =
(Mp).

Next we will show that F'Ah®*Ag =0 in D(Az, ). From Lemma 5.7, this is true
if and only if (Ag/Az,,) A h®Ag = 0in D(Az ). As in the proof of Proposition 5.4,
we can identify h®Ag with the telescope p*IAZ@), so in D(Az(m) there is an exact
triangle

@Azm =5 @ Az, — h*Aqg.

Applying (Ag/Az,,)A- to this, we see that (Ag/Az,,) A h®Ag is the telescope
p1(Ag /Az,,). This has zero homology away from degree zero, and its degree zero
homology also vanishes because p € AZ(p) so the direct limit has all zero maps. There-
fore F A h®*Ag = 0, and F' is L-acyclic.

From the triangle F' — Az — h®Aq, we get a triangle

LAZ(p) ANF — LAZ(p) — LAZ(p) A h.AQ.

Since LAZ(p) ANF =0, LAZ(p) & LAZ(p) A h®Aq. Since h*Aq € (¢°Ar,), it is L-local
and LAz, Ah®Ag = h*Aq. Therefore LAz, = h®Ag. The exact triangle CAz, —
AZ<p) — LAZ(p) then forces CAZ(p) = F.

It only remains to show that the L-locals are given by loc(h®Ag). But with a smash-
ing localization, the L-locals always form a localizing subcategory, and in addition
when T = loc(1) we always have L-locals = loc(L1). O

The last two propositions show that (9°Ar,) V (M,) = (Az,,) in BL(Az,,), so
Lemma 4.14 and Propositions 4.12 and 4.15 apply in full to this setting.

Recall that J, = {(X) € BL(Az,) | ge(X) = (0)}. The next theorem shows that
the lattice map in Proposition 4.10 becomes an isomorphism.

Theorem 5.9. The functor go induces a lattice isomorphism
Jo: BL(AZ(p>)/Jg — BL(A]FP),
with inverse g°.

Proof. Proposition 4.10 showed that J, = (My)] = (h*Ag)] is a principal ideal, and
Je is a join-morphism. We know ¢®: (Y') — [(¢°Y")] is a join-morphism, and must only
check these are inverses.

Proposition 5.3 shows that Geg®(X) = (geg®*X) = (X) for all (X).
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As noted earlier, we always have (g®g.Y) < (Y) for all (Y). To prove [¢°Ge(Y)] =
[(Y)], it remains to show that (g°g.Y) V (My) > (Y) V (M) for all (Y).

So take W with W A g°¢eY =0, and W € (M) = (h*Ag). From the last propo-
sition we get that W is L-acyclic, so W A LAz, = 0. But then WAY A LAz =0,
so W AY is also L-acyclic.

Now W A g*geY = 0 implies geW A goY = go (W AY) = 0,50 W AY A g*Ap, = 0.
Using the last proposition, this says that W A'Y is L-local.

Any object that is both acyclic and local with respect to a localization functor
must be zero, because there are no nonzero morphisms from an acyclic to a local
object. So we conclude that W AY = 0, and therefore W € (Y) V (M,). O

Our next goal is to show that this is actually a splitting of lattices. Toward this
end, we prove some slightly more general statements. Assume that T = loc(1). Let
l: T— T be a smashing localization. Define cl by the exact triangle ¢l — 1 — [1.
Then for every X € T we have [X 2 [1A X, and an exact triangle c1A X — X —
1A X. Tt follows that the l-acyclics are precisely (I1) = loc(c1), and the I-locals are
(c1) = loc(11).

Let i.: loc(cl) — T and 4;: loc(I1) — T denote the inclusions.

Definition 5.10. Given a localizing subcategory S C T, let
BL(T)|s = {(X) € BLt | X € S} C BL(T).
But note that (X) = (Y) and X € S does not imply ¥ € S in general.

Lemma 5.11. The inclusions i, and i; induce join-morphisms on Bousfield lattices
that preserve arbitrary joins.

ic: BL(loc(cl)) — BL(T), where i.(X) = (i.X) = (X), and
i;: BL(loc(11)) — BL(T), where i)(Y) = (,Y) = (Y).

Proof. Take XY € loc(cl) such that (X) < (Y) in BL(loc(cl)). Now suppose W €
T has WAY =0. Then WAclIAY =0. But W Acl € loc(1 A cl) =loc(cl), so by
hypothesis we have W A cl A X =0. Thus W A X € {cl) is I-local.

Since X € loc(cl), it is l-acyclic, and W A X is also l-acyclic. Any object that is
both acyclic and local must be zero, so W A X = 0 as desired. Therefore i, induces
an order-preserving and well-defined map on Bousfield lattices. Coproducts in both
loc(cl) and T are given by degreewise direct sums of modules. So i, preserves arbitrary
coproducts on the object level, and thus arbitrary joins on the level of Bousfield
classes.

A similar argument shows the same for i;. O

This lemma does not generalize to arbitrary localizing subcategory inclusions, but
we do have the following lemma, which is easy to prove.

Lemma 5.12. Ifi: S — T is the inclusion of a localizing tensor ideal, and induces a
join-morphism on Bousfield lattices, then BL(S) = BL(T)|s.
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Proposition 5.13. The following hold.
BL(loc(c1)) = BL(T)|jo¢(c1) = (D)), and

BL(loc(11)) = BL(T) ety = (11)1-

Proof. The isomorphisms on the left come from Lemmas 5.11 and 5.12. For the
equalities on the right, we need to know that for all X € T we have (X) < (cl) if
and only if X € loc(cl), and (X) < (11) if and only if X € loc({1). It is always the
case that X € loc(Y") implies (X) < (V). If (X) < (11), then since c1 A l1 = 0 we have
X € {c1) = loc(I1). Similarly, if (X) < (c1), then X € (I1) = loc(c1). O

Theorem 5.14. There is a lattice isomorphism

©: BL(T) = BU(Dloe(et) X BL(T)lioc(ut) where
D(X) = ((X Ael), (X ALT)).
The inverse is given by ®': ((X),(Y)) — (X) V (V).
Proof. Note that X A Z € loc(1A Z) = loc(Z) for any Z. It’s clear that both ® and
®’ are lattice join-morphisms. We compute &'®(X) as
(X Ael) VX AT = (X)) A ({cl) v (1) = (X) A (1) = (X).

On the other hand, for X € loc(cl) = (I1) and Y € loc({1) = (cl), we can compute
PO'((X),(Y)) as

(X VY) A Leh), (X VY) A(IT) = ((X),(Y)),

because X is [-acyclic and Y is [-local. O

Remark 5.15. Most of Lemma 5.11, Proposition 5.13, and Theorem 5.14 are con-
tained, in less detail, in Proposition 6.12 and Lemma 6.13 of [IK13].

We now apply these general results to our specific context. Recall that in Proposi-
tion 5.8 we constructed a smashing localization functor on D(Az, ). Let ig:
loc(g*Ar,) — D(Az,,,) and is: loc(h*Ag) — D(Az,,) denote the inclusions.
Corollary 5.16. The functor ge induces a lattice isomorphism

ge: BL(loc(g°Ag,)) — BL(Ag,), with (X) — (geX).

Proof. This follows by combining Propositions 5.8 and 5.13, Theorems 5.9 and 5.14,
and the fact that J, = (h®*Ag)] = BL(loc(h*Ag)).

BL(loc(g*Ar,)) x BL(loc(h*Ag))
0 x BL(loc(h*Ag))

BL(loc(g*Ax,)) = > BL(Az,,)/Jy 5 BL(As,).

O
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Corollary 5.17. The functors ge and he induce a lattice isomorphism
BL(Az,,) = BL(Ar,) x BL(loc(h*Ag)), where

(X) = (g0(X), (X A B*Ag)).-
The inverse is given by

(Y),(2)) = g*(Y) V (inZ).
Proof. This is an application of Theorem 5.14, along with the observation that

9o(X N g°Ar,) = (96 X) A (9eg°Ar,) = (90 X) A (AF,) = (9o X).
O

Corollary 5.18. The isomorphism in Corollary 5.17 induces a splitting of the dis-
tributive lattices and Boolean algebras

DL(Az,,) = DL(AF,) x DL(loc(h*Ag)),
BA(Az,,) = BA(Ar,) x BA(loc(h*Ag)).

Proof. Much of this follows from Proposition 4.15. First consider the distributive
lattice. If (X) € DL(Az,,), then
(X AR AQ) AN (X ANRh*Ag) = (X AX AR*Ag Ah*Ag) = (X A h*Ag),
because h® maps DL(Ag) into DL(Az, ).
If we consider (Y') € DL(AF,) and (Z) € DL(loc(h®Aq)), then (¢g°Y’) and (i, Z) are
both in DL(Az, ), so their join is as well.
Now consider the Boolean algebra. Recall that the maximum Bousfield class of

BL(loc(h®Ag)) is (h®*Ag), and it is to this that we require complements to join. Taking
(X) € BA(Az,, ), with complement (X¢), we compute

(X ANR*Ag) A (X AR*Ag) = (0), and
(X Ah*Ag) V(XA K*Ag) = (Az,,) A (h*Ag) = (h*Ag).

If we take (Y) € BA(Ap,), then Proposition 4.15 implies (g*Y’) € BA(Az,, ). For
(Z) € BA(loc(h*Ag)), with complement (Z°¢) there, one can show that (i, Z) is com-
plemented in BL(Az, ), with complement (in(Z¢))V (g°Ar,). Therefore (g°Y)V
<ZhZ> S BA(AZ(p>). O

Corollary 5.19. The Bousfield lattice of D(Az,, ) has cardinality 92",

Proof. Corollary B in [DPO08] states that the Bousfield lattice of D(Ap,) has cardi-
nality 22%, so BL(Az,, ) is at least as large. However, Az, is countable, so [DPO1,
Thm. 1.2] implies that BL(Az,,) has cardinality at most 22" O
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