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ON THE VANISHING OF CHARACTERISTIC NUMBERS

PING LI

(communicated by Dev P. Sinha)

Abstract
In this article we introduce the notion of pure type for Killing

vector fields on compact Riemannian and almost-Hermitian
manifolds and present an application of the celebrated Atiyah-
Bott-Singer localization formula for these Killing vector fields.
Our central result is that if a 4n-dimensional compact Rieman-
nian manifold has a Killing vector field of pure type such that
the dimension of its zero point set is less than n, then the van-
ishing statements for low-degree polynomials as given by the
Atiyah-Bott-Singer localization formula imply the vanishing of
Pontrjagin numbers of this manifold. An analogous result for
the Chern numbers of compact almost-Hermitian manifolds is
also established. The main strategy of our proof is to construct
a family of lower-degree polynomials originating from the mono-
mial symmetric polynomials.

1. Introduction

Unless otherwise stated, all the manifolds mentioned throughout this paper are
closed, connected, and oriented and we use superscripts to indicate the real dimen-
sions of the manifolds.

Given a smooth manifold X4n (resp. an almost-complex manifoldM2n), the corre-
sponding Pontrjagin numbers (resp. Chern numbers) are its basic numerical invariants
[10]. However, it is difficult to calculate these numbers directly from their definitions.
One remarkable result of Atiyah, Bott, and Singer [3], [1, §8] tells us that, ifX4n (resp.
M2n) admits a Killing vector field A (resp. a Killing vector field A which preserves
the almost-complex structure), we can reduce the calculation of these characteristic
numbers to the consideration of local information around zero(A), the zero point set
of A. When zero(A) consists of isolated points, this formula was first established by
Bott in [3] using a purely differential-geometric argument, which is now called Bott’s
residue formula. The general situation was established by Atiyah and Singer in [1,
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§8], which is a beautiful application of their general Lefschetz fixed point formula and
is now commonly called the Atiyah-Bott-Singer localization formula.

Taking a closer look at the precise statements of these two formulae, we see that
they provide more vanishing-type information for low-degree polynomials than just
a method of calculating the characteristic numbers (further details can be found in
Section 2). In fact, the author has exploited this observation in another article [5].
When zero(A) consists of isolated fixed points, the author used this “additional”
vanishing information to derive a lower bound for the cardinality of zero(A) in [5],
which can be in turn used to reprove and generalize some previously known results.

The starting point of the current article is to see to what extent this “additional”
vanishing-type information for low-degree polynomials can be used to determine the
whole structure of the localization formulae (Question 3.1). The main purpose of this
article is to show that, under some very special conditions, this is the case (Theo-
rem 3.2). Among these results, the central one is that if a compact 4n-dimensional
Riemannian manifold admits a Killing vector field of pure type (Definition 3.4) such
that the dimension of its zero point set is less than n, then all the Pontrjagin num-
bers of this manifold vanish. Since the vector field generating a semi-free circle action
is pure type by definition (further details can be found in Section 3.2), an immedi-
ate corollary is that all the Pontrjagin numbers of a 4n-dimensional compact smooth
manifold vanish if it is equipped with a semi-free circle action such that the dimension
of the fixed point set of this action is less than n.

The rest of this article is arranged as follows. In Section 2 we review the Atiyah-
Bott-Singer localization formulae for Riemannian and almost-Hermitian manifolds
respectively and, through this process, introduce some notation and symbols. Sec-
tion 3.1 contains the motivation and statement of our main result (Theorem 3.2),
Section 3.2 is devoted to some applications in geometry and topology, and some
remarks related to the main result and applications are presented in Section 3.3. We
first treat in Section 4 the proof for low-dimensional cases in order to introduce the
basic idea and to make the general proof in Section 6 more accessible. In Section 5
we review briefly some basic facts related to monomial symmetric polynomials and
establish a key algebraic lemma (Lemma 5.1), both of which are needed later in our
proof of Theorem 3.2. The proof of Theorem 3.2 itself will be presented in Section 6.
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2. Localization formulae

In this section, we recall the Atiyah-Bott-Singer localization formulae established
in [1, §8].
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Although Pontrjagin numbers only make sense for manifolds whose dimensions
are divisible by 4, this localization formula established in [1, §8] is still valid and
actually produces nontrivial results for all even-dimensional Riemannian manifolds
equipped with Killing vector fields (see Remark 2.2). Our main result in this paper,
Theorem 3.2, is also nontrivial for (4k + 2)-dimensional manifolds. For this reason
we consider 2n-dimensional Riemannian manifolds, pointing out where necessary the
special features which arise when n is even.

Suppose X2n is a compact Riemannian manifold and A is a Killing vector field
on X. This means that the actions of the one-parameter group (or flows) exp(tA)
generated by A are isometries of X. As is well-known, each connected component in
zero(A) is a compact smooth submanifold whose dimension is even. Let F = F 2r be
such a connected component. The normal bundle of F in X, which is denoted by
µ(F ), can be decomposed into a direct sum of n− r 2-dimensional subbundles

µ(F ) =
n−r⊕
i=1

L(F, λi), λi > 0, (2.1)

such that the eigenvalues of the skew-adjoint transformation induced by A on the
2-dimensional subbundle L(F, λi) are ±

√
−1λi. We can orient each L(F, λi) so that,

relative to an oriented basis, the skew-adjoint transformation is given by the matrix(
0 −λi
λi 0

)
.

Accordingly, µ(F ) can be oriented by the matrix

n−r⊕
i=1

(
0 −λi
λi 0

)
.

The orientations of X and µ(F ) induce an orientation of F and throughout the paper
we will use this orientation of F . Suppose that the total Pontrjagin classes of X and
F have the following formal decompositions:

p(X2n) = 1 + p1(X) + · · ·+ pn(X) =

n∏
i=1

(1 + x2i ),

p(F 2r) = 1 + p1(F ) + · · ·+ pr(F ) =

r∏
j=1

(1 + y2j ),

(2.2)

where these xi and yj are virtual 2-dimensional cohomology classes, i.e., the i-th
elementary symmetric polynomial of x21, . . . , x

2
n

(
resp. y21 , . . . , y

2
r

)
represents pi(X)(

resp. pi(F )
)
. Note that by our definition pi(X

2n) = 0
(
resp. pj(F

2r) = 0
)
provided

i > n
2 (resp. j > r

2 ). We use zi ∈ H2(F ;Z) (1 ⩽ i ⩽ n− r) to denote the Euler class
of the oriented 2-dimensional subbundle L(F, λi).

Let f(t1, . . . , tn) be a symmetric polynomial. We define a complex numberRf (X,A)
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as follows:

Rf (X,A) :=∑
F

⟨f
(
y21 , . . . , y

2
r , (
√
−1λ1 + z1)

2, . . . , (
√
−1λn−r + zn−r)

2
)
·
n−r∏
i=1

(
√
−1λi + zi)

−1, [F ]⟩,

(2.3)
where [F ] ∈ H2r(F ;Z) is the fundamental class determined by the orientation of F ,
⟨·, ·⟩ is the Kronecker pairing, and the sum is over all the connected components in
zero(A). Here (

√
−1λi + zi)

−1 is understood to be

(
√
−1λi + zi)

−1 =
1√
−1λi

(1 +
zi√
−1λi

)−1 :=
1√
−1λi

r∑
j=0

(− zi√
−1λi

)j

=
1√
−1λi

+
r∑

j=1

(−zi)j

(
√
−1λi)j+1

∈ H∗(F ;C).

(2.4)

This means, before being evaluated on the fundamental class [F ], the expression

f
(
y21 , . . . , y

2
r , (
√
−1λ1 + z1)

2, . . . , (
√
−1λn−r + zn−r)

2
)
·
n−r∏
i=1

(
√
−1λi + zi)

−1 (2.5)

on the right-hand side of (2.3) can be viewed as a polynomial in the variables y21 , . . . , y
2
r

and z1, . . . , zn−r and we are only concerned with its homogeneous part of degree r
if we assume that degree(yi) = degree(zi) := 1. We remind the reader that, although
f(t1, . . . , tn) itself is symmetric, (2.5) is only symmetric with respect to the virtual
cohomology classes y21 , . . . , y

2
r and so can be expressed in terms of Pontrjagin classes

via the formal decomposition formula (2.2). In general (2.5) is not symmetric with
respect to z1, . . . , zn−r as the eigenvalues λi may be different. Note that Rf (X,A) is
a priori a complex number.

With the above-mentioned notation understood, we have the following Atiyah-
Bott-Singer localization formula in the Riemannian case [1, p. 597, Theorem 8.11].

Theorem 2.1 (Localization formula, Riemannian case). Let f(t1, . . . , tn) be a sym-
metric polynomial whose degree is no more than n

2

(
degree(ti) := 1

)
. Then we have

Rf (X,A) =

{
0, degree(f) < n

2 ,
⟨f(x21, . . . , x2n), [X]⟩, degree(f) = n

2 .

Here [X] ∈ H2n(X;Z) is the fundamental class of X determined by its orientation.

Remark 2.2.

1. By definition, the Pontrjagin numbers of X2n all vanish unless n is even. Thus
⟨f(x21, . . . , x2n), [X]⟩ can be nonzero only if n is even. In [1, p. 597, Theorem
8.11], this result was only stated for 4k-dimensional manifolds, whose Pontrjagin
numbers were the main interest. However, its proof [1, 595–597], based on the
twisted version of the Atiyah-Singer G-signature theorem [1, p. 586, (6.19)], was
given for all even-dimensional manifolds.

2. Note that Rf (X,A) ≡ 0 if degree(f) < n
2 . So, as we have mentioned in Sec-

tion 1, this tells us more vanishing-type information rather than just a method



ON THE VANISHING OF CHARACTERISTIC NUMBERS 189

of calculating the Pontrjagin numbers of X2n when n is even. In particular,
it provides nontrivial results for the eigenvalues and characteristic classes of
zero(A) on X2n irrespective of the parity of n.

3. If the degree of f is larger than n
2 , the localization formula gives no information.

For almost-Hermitian manifolds, we have a similar localization formula. SupposeM
is a 2n-dimensional almost-Hermitian manifold, which means that M is an almost-
complex manifold with an almost-Hermitian metric, and A is a vector field which
preserves the almost-complex structure and the metric. Then each connected compo-
nent in zero(A) is an almost-Hermitian submanifold. Let F = F 2r be such a connected
component. The normal bundle of F , µ(F ), can be decomposed into a direct sum of
n− r complex line bundles

µ(F ) =

n−r⊕
i=1

L(F, λi), λi ∈ R− {0},

such that the eigenvalue of the skew-Hermitian transformation induced by A on the
complex line bundle L(F, λi) is

√
−1λi. Note that in this case M , F , and µ(F ) all

have canonical orientations from their corresponding complex structures. Suppose
that the total Chern classes of M and F have the following formal decompositions:

c(M2n) = 1 + c1(M) + · · ·+ cn(M) =
n∏

i=1

(1 + xi),

c(F 2r) = 1 + c1(F ) + · · ·+ cr(F ) =
r∏

j=1

(1 + yj),

(2.6)

i.e., the i-th elementary symmetric polynomial of x1, . . . , xn
(
resp. y1, . . . , yr

)
repre-

sents ci(M) (resp. ci(F )). We use zi ∈ H2(F ;Z) (1 ⩽ i ⩽ n− r) to denote the first
Chern class of the complex line bundle L(F, λi).

Let f(t1, . . . , tn) be a symmetric polynomial. We define a complex numberHf (M,A)
as follows:

Hf (M,A) :=∑
F

⟨f
(
y1, . . . , yr,

√
−1λ1 + z1, . . . ,

√
−1λn−r + zn−r

)
·
n−r∏
i=1

(
√
−1λi + zi)

−1, [F ]⟩.

(2.7)
Then we have the following Atiyah-Bott-Singer localization formula in the Hermitian
case [1, Proposition 8.13].

Theorem 2.3 (Localization formula, Hermitian case). Let f(t1, . . . , tn) be a sym-
metric polynomial whose degree is no more than n (degree(ti) := 1). Then we have

Hf (X,A) =

{
0, degree(f) < n,
⟨f(x1, . . . , xn), [M ]⟩, degree(f) = n.

Remark 2.4. The statement “Hf (X,A) = 0 if degree(f)< n
2 ” gives us more vanishing-

type information rather than just a method of calculating the Chern numbers of M(
cf. Remark 2.2, (2)

)
.
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3. Main result and applications

3.1. Our main result
According to the localization formulae, the conclusions that

Rf (X,A) ≡ 0 (resp. Hf (M,A) ≡ 0)

for those f whose degrees are smaller than n
2 (resp. n) provide us with many restric-

tions on the eigenvalues and characteristic classes of zero(A) and µ
(
zero(A)

)
.

In this paper, we are concerned with the following question.

Question 3.1. Under what conditions do

Rf (X,A) ≡ 0 (resp. Hf (M,A) ≡ 0)

for those f whose degrees are smaller than n
2 (resp. n) guarantee that

Rf (X,A) ≡ 0 (resp. Hf (M,A) ≡ 0)

for any symmetric polynomial f?

The main result of this article is the following theorem, which gives a sufficient
condition for a positive answer to Question 3.1.

Theorem 3.2.

1. In the Riemannian case, if all the eigenvalues λi over all the connected compo-
nents F are equal, i.e., there exists a positive real number λ such that∪

F

{λ1, . . . , λn−r} = {λ}, (3.1)

and dim zero(A) < n
2 , then

Rf (X
2n, A) ≡ 0, for any symmetric polynomial f(t1, . . . , tn).

2. In the Hermitian case, if all the eigenvalues λi over all the connected components
F are equal, i.e., there exists a nonzero real number λ such that∪

F

{λ1, . . . , λn−r} = {λ},

and dim zero(A) < 2
3n, then

Hf (M
2n, A) ≡ 0, for any symmetric polynomial f(t1, . . . , tn).

Here by dim zero(A) we mean the maximal real dimension of the connected compo-
nents in zero(A). In particular, under the restrictions above we have

Rf (X,A) ≡ 0 if degree(f) =
n

2
,

and

Hf (X,A) ≡ 0 if degree(f) = n.

Remark 3.3. Note that the polynomial f(t1, . . . , tn) in (2.3) and (2.7) is symmetric
and so each summand on the right-hand side of (2.3)

(
resp. (2.7)

)
is symmetric with

respect to those y2i (resp. yi), which are the characteristic classes of the connected
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component F via the formal decomposition formula (2.2)
(
resp. (2.6)

)
. Nevertheless,

this summand may not be symmetric with respect to those characteristic classes
zi of the normal bundle of F as the eigenvalues λi may be different. Partially due
to this reason these two expressions are difficult to deal with. However, under our
assumptions in Theorem 3.2 each summand is indeed symmetric with respect to those
zi and so we can make full use of the power of symmetric polynomial theory. This
is the underlying motivation for making the assumptions in Theorem 3.2 and its
advantage will be gradually clear in the next two sections.

3.2. Applications
Using the notation introduced before, we give the following definition.

Definition 3.4. A Killing vector field A on a Riemannian manifold X (resp. a Killing
vector field A on an almost-Hermitian manifold M preserving the almost-complex
structure) is called pure type if∪

F

{λ1, . . . , λn−r} = {λ}.

Given this definition, a direct consequence of Theorem 3.2 is the following result,
which provides an obstruction to the existence of certain pure type vector fields.

Proposition 3.5. If a Riemannian manifold X2n (resp. an almost-Hermitian mani-
fold M2n) admits a pure type Killing vector field A such that dim zero(A) < n

2 (resp.
dim zero(A) < 2

3n), then all the Pontrjagin numbers of X (resp. Chern numbers of
M) vanish.

Example 3.6. Let CPn be the n-dimensional complex projective space with homo-
geneous coordinates [z0, z1, . . . , zn], λ a nonzero real number, and n1 a nonnegative
integer which is less than n. Using these data we can define a one-parameter group
action ψt on CPn by

ψt : CPn −→ CPn,

[z0, z1, . . . , zn] 7−→ [e
√
−1tλz0, e

√
−1tλz1, . . . , e

√
−1tλzn1 , zn1+1, . . . , zn].

Let A be the vector field generating this ψt. Then

zero(A) = fixed point set of the action {ψt} = F1

⨿
F2,

where

F1 = {[z0, . . . , zn1 , 0, . . . , 0]} ∼= CPn1 , F2 = {[0, . . . , 0, zn1+1, . . . , zn]} ∼= CPn−n1−1.

This A is Killing with respect to the Fubini-Study metric and preserves the standard
complex structure on CPn. The eigenvalues of A on F1 (resp. F2) are −

√
−1λ (resp.√

−1λ) with multiplicity n− n1 (resp. n1 + 1) and so it is not pure type as a Killing
vector field on the Hermitian manifold CPn. However, if we ignore the complex struc-
ture and only view A as a Killing vector field on the Riemannian manifold CPn, A
is indeed pure type as the unique common positive eigenvalue is |λ|.

Note that dim zero(A) = 2 ·max{n1, n− n1 − 1} ⩾ n− 1, which is larger than n
2

if n ⩾ 3.
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When n = 2, whether n1 is 0 or 1, dim zero(A) = 1 > 1
2 , which does not satisfy

our assumption in Proposition 3.5. Note that the unique Pontrjagin number of CP 2

is 3, which is nonzero.
However, if we consider the 4-dimensional Riemannian manifold CP 1 × CP 1 with

the diagonal action ψt, the corresponding vector field consists of exactly four isolated
zeros and so dim zero(A) = 0 < 1

2 , which does satisfy the assumption in Proposi-
tion 3.5. Note that the unique Pontrjagin number of CP 1 × CP 1 is zero.

Clearly the example above can be extended to n copies (CP 1)n to obtain a pure
type vector field with 2n isolated zeros. Note that all the Pontrjagin numbers of
(CP 1)n vanish.

The condition of “pure type” in Definition 3.4 seems to be very strong, but in fact
any vector field on a smooth manifold which generates a semi-free circle action is
pure type. A circle action is called semi-free if it is free outside the fixed point set or,
equivalently, the isotropy subgroup of any point outside the fixed point set is trivial.
Given any smooth circle action on a smooth manifold X, since the circle is compact,
we can always choose a Riemannian metric on X such that this action is isometric
and thus the vector field which generates this circle action is Killing. Therefore the
fact that a vector field generating a semi-free circle action is pure type immediately
follows from the well-known fact that the weights (or exponents) of the representation
spaces induced by any semi-free circle action on the normal bundle of the fixed point
set are all 1. Indeed, if the n− r weights induced by a semi-free circle action on a 2r-
dimensional connected component of the fixed point set are m1, . . . ,mn−r, then in a
suitable neighborhood of this connected component the circle acts as in the following
model:

S1 × Cn −→ Cn,(
z, (z1, . . . , zn)

)
7−→ (z1, . . . , zr, z

m1 · zr+1, . . . , z
mn−r · zn).

Suppose some one among the weightsm1, . . . ,mn−r, saym1, is 2 or more. Then all the
m1-th roots of unity in S1 act as the identity on {(z1, . . . , zr, zr+1, 0, . . . , 0)} ∼= Cr+1,
contradicting the semi-freeness of the action.

Let ΩSO
∗ (resp. ΩO

∗ ) be the oriented (resp. unoriented) cobordism ring [10, p. 52–
53, p. 201]. It is well-known that a smooth manifold X represents a torsion element
in ΩSO

∗ (resp. X bounds), i.e., [X] = 0 ∈ ΩSO
∗ ⊗Q (resp. [X] = 0 ∈ ΩSO

∗ ), if and only
if all the Pontrjagin numbers (resp. all the Pontrjagin numbers and Stiefel-Whitney
numbers) of X vanish [10, p. 217]. It is also well-known that [X] = 0 ∈ ΩO

∗ if and only
if all the Stiefel-Whitney numbers of X vanish [10, p. 53]. The well-known 2

5 -Theorem
of Boardman [3] states that, ifXn admits an involution such that the dimension of the
fixed point set is less than 2

5n, then [X] = 0 ∈ ΩO
∗ . By using Bott’s residue formula,

Pantilie and Wood [11, Theorem 1.1] showed that if a smooth manifold admits a
semi-free circle action with isolated fixed points, then all the Pontrjagin numbers of
this manifold vanish. The author and Liu strengthened this result by showing that
in this case the manifold bounds [7, Theorem 1.6]. Now this result can be further
strengthened as in the following theorem, which can be viewed as an analogue of the
2
5 -Theorem in the case of semi-free circle actions.

Theorem 3.7. If a smooth manifold X2n admits a semi-free circle action such that
the dimension of the fixed point set is less than n

2 , then X bounds.
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Proof. First note that the fixed point set of this circle action is exactly the zero point
set of the vector field generated by this circle action. Thus Theorem 3.2 and our
assumption tell us that all the Pontrjagin numbers of X2n vanish. So it suffices to
show that all the Stiefel-Whitney numbers of X also vanish. We use g to denote the
involution of X determined by the semi-free circle action, i.e., g ←→ −1 ∈ S1. Let
XS1

(resp. Xg) be the fixed point set of the whole circle action (resp. the involution

g). Clearly XS1 ⊂ Xg. Since this circle action is semi-free, which means the isotropy

subgroup of any point outside XS1

is trivial, then XS1

= Xg. Consequently dimXg =
dimXS1

< n
2 . So the 2

5 -Theorem tells us that in this case [X] = 0 ∈ ΩO
∗ , i.e., all the

Stiefel-Whitney numbers of X vanish.

Remark 3.8.

1. This result indicates that in some sense examples of semi-free circle actions
with low-dimensional fixed point sets are very rare. Indeed, according to the
author’s best knowledge, the only existing examples of closed orientable mani-
folds admitting semi-free circle actions with low-dimensional fixed point sets are
homotopy spheres and their products (cf. [4, Chapter 6, §9] and the references
therein), which obviously bound.

2. The model described in Example 3.6 can also be used to construct examples of
semi-free circle actions with high-dimensional fixed point sets:

S1 × CPn −→ CPn,

(g, [z0, z1, . . . , zn]) 7−→ [g · z0, g · z1, . . . , g · zn1 , zn1+1, . . . , zn].

3.3. Further remarks
Compared to the upper bound 2

5dimX in Boardman’s theorem, the upper bound
1
4dimX in our Theorem 3.7 seems not to be sharp. So it would be interesting to find
out the sharp upper bound.

In [8], the author and Liu, by combining the Witten-Taubes-Bott rigidity theorem
and the Atiyah-Singer G-signature theorem, showed that if a spin manifold M2n

admits a prime circle action, which is defined by the authors in [8] and includes the
semi-free case, such that the dimension of the fixed point set is less than n, then the
indices of some twisted signature operators all vanish [8, Theorem 1.7, Corollary 1.8].
Note that the indices of these twisted signature operators are all linear combinations
of Pontrjagin numbers. So [8, Corollary 1.8] is a direct consequence of the current
article when the dimension of the fixed point set is less than one fourth of the manifold.

If an almost-complex manifold admits a semi-free circle action which preserves the
almost-complex structure, the weights of the normal bundle of the fixed point set with
respect to this action are 1 or −1. This means that, if an almost-complex manifold
admits a vector field which preserves the almost-complex structure and generates
a semi-free circle action, then using the notation in the previous section, we can
conclude that ∪

F

{λ1, . . . , λn−r} ⊂ {λ,−λ} (3.2)

for some nonzero real number λ. Indeed, if the Euler characteristics of the connected
components in zero(A) are all nonnegative (resp. nonpositive) and at least one of
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them is positive (resp. negative), the symbol “ ⊂ ” in (3.2) is actually “ = ”, which is
a corollary of [6, Theorem 1.1]. Thus Theorem 3.2 cannot be applied to the case of
almost-complex manifolds. In fact, in contrast to the smooth case, even if an almost-
complex manifold admits a semi-free circle action which preserves the almost-complex
structure and has only isolated fixed points, some Chern numbers of this almost-
complex manifold are nonzero (see Lemma 3.6 and the paragraph before Theorem
1.8 in [7]).

Evidently the statements of Theorems 2.1 and 2.3 can be reformulated as purely
algebraic results. In fact, we can replace the cohomologies of X (resp.M) and zero(A)
by some abstract graded ring and replace the Kronecker pairing ⟨·, ·⟩ by some abstract
evaluation map on the top-dimensional vector space of this graded ring. However, as
we have illustrated in the previous sections, any nontrivial answer to Question 3.1
may provide related applications to geometry and topology, and for this reason we
would like to draw more mathematicians’ attention to Theorems 2.1 and 2.3 and
Question 3.1.

4. Warm-up for the proof

As we will see in the next two sections, the proof of Theorem 3.2 relies heavily on
the manipulations of monomial symmetric polynomials and their variants defined in
Section 5. As this may distract the reader from the underlying idea of the proof, in
this “warm-up” section we illustrate it in the Riemannian case for dim zero(A) ⩽ 2 in
detail and then indicate how to deal with the case of dim zero(A) = 4. This will also
allow us to motivate the unified method which will be used in the general situation.

Lemma 4.1. Under the assumption (3.1), if r = 0, 1, or 2, the expression

⟨f
(
y21 , . . . , y

2
r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2
)
·
n−r∏
i=1

(
√
−1λ+ zi)

−1, [F 2r]⟩ (4.1)

has the form

1.

c0(f) · ϵ(F 0), (4.2)

where

c0(f) := (
√
−1λ)−n · f(−λ2, . . . ,−λ2)

and ϵ(F 0) := 1 if the orientation at the tangent space to F 0 agrees with that of
X2n and ϵ(F 0) := −1 otherwise;

2.

c1(f) · ⟨
n−1∑
i=1

zi, [F
2]⟩, (4.3)

where c1(f) is a complex number depending only on f ;
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3.

c2,1(f) · ⟨y21 + y22 , [F
4]⟩+c2,2(f) ·

⟨
n−2∑
i=1

z2i , [F
4]

⟩
+c2,3(f) ·

⟨ ∑
1⩽i<j⩽n−2

zizj , [F
4]

⟩
,

(4.4)
where c2,1(f), c2,2(f), and c2,3(f) are three complex numbers depending only
on f and y21 + y22 is the first Pontrjagin class of F 4 via the formal decomposition
formula (2.2).

Proof. (4.2) is obvious. We have explained in Remark 3.3 that under the assump-
tion (3.1) the expression f(· · · ) ·

∏
(· · · )−1 in (4.1) is symmetric with respect to

z1, . . . , zn−r as well as y21 , . . . , y
2
r . Note that when r = 1 or 2, in f(· · · ) ·

∏
(· · · )−1

we are only concerned with the homogeneous part of degree 1 or 2 respectively. This
gives (4.3) and (4.4).

We first treat the case of isolated zeros.

Example 4.2. The first part of Theorem 3.2 holds if dim zero(A) = 0.

Proof. Let ρ0 (resp. ρ1) denote the number of isolated zeros in zero(A) such that
ϵ(F 0) = 1

(
resp. ϵ(F 0) = −1

)
. Then Theorem 2.1 and (4.2) tell us that

c0(f) · (ρ0 − ρ1) = 0, if degree(f) <
n

2
. (4.5)

Taking f = 1 (i.e., degree(f) = 0) in (4.5) leads to ρ0 − ρ1 = 0 as c0(f) ̸= 0, which in
turn tells us that (4.5) holds for polynomials f of all degrees.

Remark 4.3. This case of isolated zeros has been done in [7, p. 444] when the vector
field A is generated by a semi-free circle action.

Next we treat the case of dim zero(A) = 2, which is slightly more complicated than
the example above.

Example 4.4. The first part of Theorem 3.2 holds if dim zero(A) = 2.

Proof. Let ρ0 (resp. ρ1) still denote the number of isolated zeros in zero(A) such that
ϵ(F 0) = 1

(
resp. ϵ(F 0) = −1

)
. Then Theorem 2.1, (4.2), and (4.3) say that

c0(f) · (ρ0 − ρ1) + c1(f) ·
∑
F 2

⟨
n−1∑
i=1

zi, [F
2]⟩ = 0, if degree(f) <

n

2
. (4.6)

Now it suffices to show, under the assumptions (4.6) and n ⩾ 5 (recall that in Theo-
rem 3.2 we need dim zero(A) < n

2 ), that

ρ0 − ρ1 =
∑
F 2

⟨
n−1∑
i=1

zi, [F
2]⟩ = 0.

Define

f0(t1, . . . , tn) = 1, f1(t1, . . . , tn) =

n∑
i=1

ti(ti + λ2).

Note that degree(f0) = 0 < n
2 and degree(f1) = 2 < n

2 as n ⩾ 5, which means f0 and
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f1 satisfy (4.6). Replacing f in (4.6) with f0 we have

c0(f0) · (ρ0 − ρ1) + c1(f0) ·
∑
F 2

⟨
n−1∑
i=1

zi, [F
2]⟩ = 0, c0(f0) ̸= 0. (4.7)

For f1 it is direct to verify that f1(−λ2, . . . ,−λ2) = 0 and thus c0(f1) = 0, and

f1
(
y21 , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−1)

2
)
·
n−1∏
i=1

(
√
−1λ+ zi)

−1

=
[
2(
√
−1λ)4−n ·

n−1∑
i

zi
]
+ higher degree monomials.

This means that the coefficient c1(f1) = 2(
√
−1λ)4−n ̸= 0. Replacing f in (4.6) with

f1 yields

c1(f1) ·
∑
F 2

⟨
n−1∑
i=1

zi, [F
2]⟩ = 0, c1(f1) ̸= 0. (4.8)

Combining (4.7) with (4.8) establishes the desired property.

From the example above we can see that the key point is to choose carefully a
symmetric polynomial f1 such that degree(f1) <

n
2 , c0(f1) = 0, and c1(f1) ̸= 0.

Similarly, for the case of dim zero(A) = 4, we are able to choose five symmetric
polynomials f0 = 1, f1, f2,1, f2,2, and f2,3 such that all their degrees are less than n

2
and the 5× 5 matrix

c0(f0) c0(f1) c0(f2,1) c0(f2,2) c0(f2,3)
c1(f0) c1(f1) c1(f2,1) c1(f2,2) c1(f2,3)
c2,1(f0) c2,1(f1) c2,1(f2,1) c2,1(f2,2) c2,1(f2,3)
c2,2(f0) c2,2(f1) c2,2(f2,2) c2,2(f2,2) c2,2(f2,3)
c2,3(f0) c2,3(f1) c2,3(f2,3) c2,3(f2,2) c2,3(f2,3)

 =


∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗


has nonzero diagonal entries. The former implies that these five polynomials satisfy
the equation

c0(f) · (ρ0 − ρ1) + c1(f) ·
∑
F 2

⟨
n−1∑
i=1

zi, [F
2]⟩+

3∑
i=1

[
c2,i(f) ·

∑
F 4

⟨· · · , [F 4]⟩
]
= 0. (4.9)

The latter means that, for these polynomials, the 5× 5 coefficient matrix in (4.9)
is nonsingular, which leads to what we need: if (4.2), (4.3), and (4.4) vanish for five
symmetric polynomials of low degrees, then they vanish for all symmetric polynomials.

As dim zero(A) increases, the number of terms we need to consider in Rf (X,A)
also increases, and so the problem becomes more and more complicated. For instance,
if r = 3 in (4.1), the symmetric polynomials involved are

(y21 + y22 + y23)
n−3∑
i=1

zi,
n−3∑
i=1

z3i ,
∑

z2i zj ,
∑

zizjzk.

An efficient method will be developed in the next section.
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5. Algebraic preliminaries

5.1. Partition and monomial symmetric polynomial
In this subsection we review briefly some basic facts on partitions and monomial

symmetric polynomials, which will be used in Section 6. A standard reference for this
material is [9, Chapter 1].

A partition µ is a finite sequence of positive integers (µ1, µ2, . . .) in non-increasing
order: µ1 ⩾ µ2 ⩾ · · · . The total number of parts in µ is called the length of µ and is
denoted by l(µ). Thus

µ = (µ1, µ2, . . . , µl(µ)), µ1 ⩾ µ2 ⩾ · · · ⩾ µl(µ) > 0.

The weight of µ, denoted by |µ|, is defined to be

|µ| :=
l(µ)∑
i=1

µi.

Let t1, . . . , tn be n variables and µ a partition of length l(µ) ⩽ n. We use
mµ(t1, . . . , tn) to denote the smallest symmetric polynomial in the variables t1, . . . , tn
that contains

tµ1

1 tµ2

2 · · · t
µl(µ)

l(µ) .

Example 5.1.

1.

m(1)(t1, t2, t3) = t1 + t2 + t3, m(2)(t1, t2, t3) = t21 + t22 + t23,

m(11)(t1, t2, t3) = t1t2 + t1t3 + t2t3,

m(3)(t1, t2, t3) = t31 + t32 + t33, m(111)(t1, t2, t3) = t1t2t3,

m(21)(t1, t2, t3) = t21(t2 + t3) + t22(t1 + t3) + t23(t1 + t2).

2. The i-th elementary symmetric polynomial of t1, . . . , tn is m(1,...,1)(t1, . . . , tn).

Using the language of symmetric polynomial theory,mµ(t1, . . . , tn) is themonomial
symmetric polynomial with respect to the partition µ [9, p. 18]. If we set the degrees
of t1, . . . , tn to be all 1, then mµ(t1, . . . , tn) is a homogeneous symmetric polynomial
of degree |µ| and it is well-known that the set

{mµ(t1, . . . , tn) | l(µ) ⩽ n, |µ| = k}

forms an additive basis of the vector space of homogeneous symmetric polynomials
of degree k

{f(t1, . . . , tn) | f is a homogeneous symmetric polynomial and degree(f) = k}.

More generally, given any generic polynomial g(t1, . . . , tn) ∈ C[t1, . . . , tn], we can
construct a related symmetric polynomial

∑
g(t1, . . . , tn) in C[t1, . . . , tn] as follows:∑

g(t1, . . . , tn) := the smallest symmetric polynomial containing g(t1, . . . , tn).

Here by “generic” we mean that for some very special cases this definition may
be ill-defined. For example,

∑
(t1 − t2) and

∑
(t1 + t2 − t3) are ill-defined unless we

define them to be zero.
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Example 5.2.

1.
∑
g(t1, . . . , tn) is well-defined if g(t1, . . . , tn) ∈ R[t1, . . . , tn] and all the signs

before the monomials in g(t1, . . . , tn) are positive. In particular, fµ(t1, . . . , tn)
and gµ(t1, . . . , tn) in (5.1) below are well-defined.

2. ∑
(t1 −

√
−1t2) = m(1)(t1, . . . , tn)−

√
−1m(1)(t1, . . . , tn)∑

(t21 + 2t2) = m(2)(t1, . . . , tn) + 2m(1)(t1, . . . , tn),∑
(t21t2 + t21t3) = m(21)(t1, . . . , tn).

3.
∑
g(t1, . . . , tn) = g(t1, . . . , tn) if g(t1, . . . , tn) itself is a symmetric polynomial.

4. If µ is a partition of length l(µ) ⩽ n, then∑
tµ1

1 tµ2

2 · · · t
µl(µ)

l(µ) = mµ(t1, . . . , tn).

5.2. A key lemma

With notation and symbols introduced in the subsection above understood, we
now establish the following key lemma related to monomial symmetric polynomials,
on which our proof of Theorem 3.2 relies.

Lemma 5.3. Let µ be a partition whose length l(µ) ⩽ n and λ a fixed nonzero posi-
tive constant. Using the notation introduced before Example 5.2, we define two sym-
metric polynomials in the variables t1, . . . , tn related to the partition µ as follows:

fµ(t1, . . . , tn) :=
∑( l(µ)∏

i=1

tµi

i (ti + λ2)2µi+1
)
,

gµ(t1, . . . , tn) :=
∑( l(µ)∏

i=1

t
[
µi
2 ]+1

i (ti + λ2)µi
)
,

(5.1)

where [x] denotes the largest integer less than or equal to x. We suppose that all the
variables y1, . . . , yn and z1, . . . , zn mentioned below have degree 1. Then for arbitrary
nonnegative integer r ⩽ n, these fµ and gµ satisfy

fµ
(
y21 , . . . , y

2
r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2
)

=

{
c1(µ) ·mµ(y

2
1 , . . . , y

2
r) + higher degree monomials, if l(µ) ⩽ r,

sum of some monomials whose degrees are all larger than 2|µ|, if l(µ) > r,
(5.2)

and

gµ
(
y21 , . . . , y

2
r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2
)

=

{
c2(µ) ·mµ(z1, . . . , zn−r) + higher degree monomials, if l(µ) ⩽ n− r,
sum of some monomials whose degrees are all larger than |µ|, if l(µ) > n− r,

(5.3)
where c1(µ) and c2(µ) are two nonzero constants depending on µ. In particular, we
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have

the minimum of the degrees of the monomials in fµ
(
y21 , . . . , (

√
−1λ+ zn−r)

2
)
⩾ 2|µ|,

the minimum of the degrees of the monomials in gµ
(
y21 , . . . , (

√
−1λ+ zn−r)

2
)
⩾ |µ|.
(5.4)

Remark 5.4.

1. If r = 0 or n, (5.2) is understood to be fµ
(
(
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn)

2
)
or

fµ(y
2
1 , . . . , y

2
n). (5.3) is treated similarly.

2. The significance of the definitions of fµ and fν , and of properties (5.2) and (5.3),
will become clear in Lemma 6.1 in the next section.

Proof. Suppose y and z are two variables with the same degree 1. First note that

tµi

i (ti + λ2)2µi+1
∣∣
ti=y2 = λ4µi+2 · y2µi + higher degree monomials, (5.5)

tµi

i (ti + λ2)2µi+1
∣∣
ti=(

√
−1λ+z)2

=
√
−1 · 22µi+1 · λ4µi+1 · z2µi+1

+ higher degree monomials.
(5.6)

This means that the lowest degree of the monomials in (5.5) is 2µi and therefore is
strictly smaller than 2µi + 1, the lowest degree of the monomials in (5.6). So among
all the choices

{t1, . . . , tl(u)} ⊂ {y21 , . . . , y2r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2},

the minimum of the lowest degrees in
∏l(µ)

i=1 t
µi

i (ti + λ2)2µi+1 can be attained exactly
when we choose as many y21 , . . . , y

2
r for t1, . . . , tl(µ) as possible.

If l(µ) ⩽ r, we can choose {t1, . . . , tl(u)} = {y21 , . . . , y2l(µ)} and thus

fµ
(
y21 , . . . , y

2
r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2
)

=
∑l(µ)∏

i=1

λ4µi+2 · y2µi + higher degree monomials


= λ4|µ|+2l(µ) ·mµ(y

2
1 , . . . , y

2
r) + higher degree monomials.

If l(µ) > r, at least one of t1, . . . , tl(µ) must belong to {(
√
−1λ+ z1)

2, . . . , (
√
−1λ+

zn−r)
2} and so the lowest degree is larger than 2l(µ). This completes the proof of

(5.2).

Similarly,

t
[
νi
2 ]+1

i (ti + λ2)νi
∣∣
ti=y2 = λ2νi · y2[

νi
2 ]+2 + higher degree monomials,

t
[
νi
2 ]+1

i (ti+λ
2)νi

∣∣
ti=(

√
−1λ+z)2

=2νi · (
√
−1λ)νi+2[

νi
2 ]+2 ·zνi+higher degree monomials.

For any positive integer νi, we have 2[ νi

2 ] + 2 > νi. Thus a similar analysis to that
above yields (5.3).
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6. Proof of the main result

Here we only give a detailed proof for the first part of Theorem 3.2. The proof of
the second part is similar and technically easier and so we indicate only the minor
differences after the proof of the first one.

We divide the proof into two steps.

The first step is to simplify the expression Rf (X,A) under the assumption (3.1).

6.1. Simplification of the expression Rf (X,A)

Suppose we have the assumption (3.1). Then, for any symmetric polynomial
f(t1, . . . , tn) and any connected component F 2r in zero(A), the corresponding expres-
sion

f
(
y21 , . . . , y

2
r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2
)
·
n−r∏
i=1

(
√
−1λ+ zi)

−1

in Rf (X,A) can be viewed as a polynomial function of the variables y2i and zj , which
is symmetric with respect to both y21 , . . . , y

2
r and z1, . . . , zn−r, and so can be written

in terms of monomial symmetric polynomials introduced in Section 5 as follows:

f
(
y21 , . . . , y

2
r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2
)
·
n−r∏
i=1

(
√
−1λ+ zi)

−1

=
∑

2|µ|+|ν|=r
l(µ)⩽r,l(ν)⩽n−r

c(f, r, µ, ν) ·mµ(y
2
1 , . . . , y

2
r) ·mν(z1, . . . , zn−r)

+ (sum of monomials whose degrees are not equal to r),

where c(f, r, µ, ν) are constants depending on f , r, and the partitions µ and ν.

Therefore, for arbitrarily fixed f and r, we have

∑
F⊂zero(A)
dimF=2r

⟨f
(
y21 , . . . , y

2
r , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r)

2
)
·
n−r∏
i=1

(
√
−1λ+ zi)

−1, [F ]⟩

=
∑

F⊂zero(A)
dimF=2r

∑
2|µ|+|ν|=r

l(µ)⩽r,l(ν)⩽n−r

⟨c(f, r, µ, ν) ·mµ(y
2
1 , . . . , y

2
r) ·mν(z1, . . . , zn−r), [F ]⟩

=
∑

2|µ|+|ν|=r
l(µ)⩽r,l(ν)⩽n−r

∑
F⊂zero(A)
dimF=2r

⟨c(f, r, µ, ν) ·mµ(y
2
1 , . . . , y

2
r) ·mν(z1, . . . , zn−r), [F ]⟩

=:
∑

2|µ|+|ν|=r
l(µ)⩽r,l(ν)⩽n−r

c(f, r, µ, ν) ·mµmν [F
2r].

Here we simplify the notation by setting∑
F⊂zero(A)
dimF=2r

⟨mµ(y
2
1 , . . . , y

2
r) ·mν(z1, . . . , zn−r), [F ]⟩ =: mµmν [F

2r].
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Set

2r0 := min
F⊂zero(A)

dimF, 2r1 := max
F⊂zero(A)

dimF = dim zero(A)

and, for each r0 ⩽ r ⩽ r1, we define

T (r) := {(µ, ν)
∣∣ 2|µ|+ |ν| = r, l(µ) ⩽ r, l(ν) ⩽ n− r}. (6.1)

So Rf (X,A) can now be written as follows:

Rf (X,A) =

r1∑
r=r0

∑
(µ,ν)∈T (r)

c(f, r, µ, ν) ·mµmν [F
2r]. (6.2)

Therefore, in order to establish Theorem 3.2, it suffices to show that

mµmν [F
2r] = 0, for all pairs (µ, ν) ∈

∪
r0⩽r⩽r1

T (r). (6.3)

This completes the first step.

6.2. Completion of the proof

Our second step is to make full use of the key Lemma 5.3 established in Section 5.
More precisely, we have the following lemma, which explains the reason for defining
the two symmetric polynomials fµ and gν and proving the facts (5.2) and (5.3) in
Lemma 5.3.

Lemma 6.1. We associate to each pair (µ, ν) ∈ T (r) (r0 ⩽ r ⩽ r1) a symmetric poly-
nomial f(µ,ν)(t1, . . . , tn) as follows:

f(µ,ν)(t1, . . . , tn) := fµ(t1, . . . , tn) · gν(t1, . . . , tn),

where fµ and gν are defined in (5.1). Then this f(µ,ν)(t1, . . . , tn) has the following
two properties.

1. If each of t1, . . . , tn has the same degree 1, then

degree
(
f(µ,ν)(t1, . . . , tn)

)
⩽ 4|µ|+ 2|ν| = 2r. (6.4)

2. For an arbitrarily chosen pair (µ, ν) ∈ T (r) and connected component F 2r̃ ⊂
zero(A), if (as before) we denote by y1, . . . , yr̃ and z1, . . . , zn−r̃ the corresponding
characteristic classes of F 2r̃, then we have⟨

f(µ,ν)(y
2
1 , . . . , y

2
r̃ , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r̃)

2
)∏n−r̃

i=1 (
√
−1λ+ zi)

, [F 2r̃]

⟩

=

{
0, if r̃ < r,
c(µ, ν) · ⟨mµ(y

2
1 , . . . , y

2
r) ·mν(z1, . . . , zn−r), [F

2r]⟩, if r̃ = r,

(6.5)

where c(µ, ν) is a nonzero complex number depending only on µ and ν.

Proof. We first recall from (6.1) that (µ, ν) ∈ T (r) means 2|µ|+ |ν| = r, l(µ) ⩽ r, and
l(ν) ⩽ n− r.
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For (6.4), by definition (5.1) we have

degree
(
f(µ,ν)(t1, . . . , tn)

)
= 3|µ|+ l(µ) + |ν|+ l(ν) +

l(ν)∑
i=1

[
νi
2
].

Note that

l(µ) ⩽ |µ| and l(ν) +

l(ν)∑
i=1

[
νi
2
] ⩽ |ν|.

Hence

degree
(
f(µ,ν)(t1, . . . , tn)

)
⩽ 4|µ|+ 2|ν| = 2r.

(6.5) is a direct consequence of Lemma 5.3. Indeed, from (5.4) we obtain

fµ(y
2
1 , . . . , y

2
r̃ , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r̃)

2
)
∈

⊕
j⩾2|µ|

H2j(F 2r̃;C),

gν(y
2
1 , . . . , y

2
r̃ , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r̃)

2
)
∈

⊕
j⩾|ν|

H2j(F 2r̃;C),

and thus

f(µ,ν)(y
2
1 , . . . , y

2
r̃ , (
√
−1λ+ z1)

2, . . . , (
√
−1λ+ zn−r̃)

2
)
·
n−r̃∏
i=1

(
√
−1λ+ zi)

−1

∈
⊕

j⩾(2|µ|+|ν|)

H2j(F 2r̃;C) =
⊕
j⩾r

H2j(F 2r̃;C), (2|µ|+ |ν| = r),

which vanishes if r̃ < r. If r̃ = r, applying the facts that l(µ) ⩽ r and l(ν) ⩽ n− r to
(5.2) and (5.3) yields the desired result.

We can now complete the proof of the first part in Theorem 3.2 by establishing
(6.3).

Lemma 6.2. Under the assumptions of (1) in Theorem 3.2 we have

mµmν [F
2r] = 0, for all pairs (µ, ν) ∈

∪
r0⩽r⩽r1

T (r).

Consequently the first part of Theorem 3.2 holds.

Proof. Suppose dim zero(A) < n
2 as in the assumptions of Theorem 3.2. For each pair

(µ, ν) ∈ T (r) (r0 ⩽ r ⩽ r1), we know from (6.4) that

degree
(
f(µ,ν)(t1, . . . , tn)

)
⩽ 2r ⩽ 2r1 = dim zero(A) <

n

2
.

This, together with the localization theorem 2.1, yields

Rf(µ,ν)
(X,A) = 0, for all pairs (µ, ν) ∈

∪
r0⩽r⩽r1

T (r). (6.6)

Applying each pair (µ, ν) ∈ T (r1) to (6.6), together with (6.5), we deduce that

c(µ, ν) ·mµmν [F
2r1 ] = 0, for all pairs (µ, ν) ∈ T (r1). (6.7)

Applying each pair (µ, ν) ∈ T (r) with r0 ⩽ r ⩽ r1 − 1 to (6.6), together with (6.5),
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we deduce that

c(µ, ν) ·mµmν [F
2r] + (linear combination of the forms mµmν [F

2r̃] with r̃ > r) = 0,
(6.8)

for all pairs (µ, ν) ∈
∪

r0⩽r⩽r1−1

T (r).

The facts c(µ, ν) ̸= 0 for all pairs (µ, ν) imply that, under some suitable order,
the coefficient matrix of the equations (6.7) and (6.8) is lower triangular and with
nonzero diagonal entries and so is nonsingular. This means

mµmν [F
2r] = 0, for all pairs (µ, ν) ∈

∪
r0⩽r⩽r1

T (r).

6.3. The proof of the second part in Theorem 3.2
The proof of the second part in Theorem 3.2 is similar but easier to deal with due

to the simpler form of its expression. We know from the above analysis that its proof
can be reduced to showing that∑

F⊂zero(A)
dimF=2r

⟨mµ(y1, . . . , yr) ·mν(z1, . . . , zn−r), [F ]⟩ = 0

for any pair (µ, ν) ∈
∪

r0⩽r⩽r1

{(µ, ν)
∣∣ |µ|+ |ν| = r, l(µ) ⩽ r, l(ν) ⩽ n− r}.

Similarly, we need to construct a symmetric polynomial g(µ,ν)(t1, . . . , tn) as follows:

g(µ,ν)(t1, . . . , tn)

:=
∑

tµ1

1 (t1 −
√
−1λ)µ1+1tµ2

2 (t2 −
√
−1λ)µ2+1 · · · tµl(µ)

l(µ) (tl(µ) −
√
−1λ)µl(µ)+1

·
∑

tν1+1
1 (t1 −

√
−1λ)ν1tν2+1

2 (t2 −
√
−1λ)ν2 · · · tνl(ν)+1

l(ν) (tl(ν) −
√
−1λ)µl(ν) ,

which satisfies

g(µ,ν)(y1, . . . , yr,
√
−1λ+ z1, . . . ,

√
−1λ+ zn−r)

= c(µ, ν) ·mµ(y1, . . . , yr) ·mν(z1, . . . , zn−r) + higher degree terms,

with c(µ, ν) ̸= 0.
Also under our assumption that dim zero(A) < 2

3n, we have

deg
(
g(µ,ν)(t1, . . . , tn)

)
= 2|µ|+ l(µ) + 2|ν|+ l(ν)

⩽ 3(|µ|+ |ν|) = 3r ⩽ 3

2
dim zero(A) < n.

The resulting proof is exactly the same as that in the first part.
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