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Abstract
We introduce ramified coverings of small categories, and

we prove three properties of the notion: the Riemann-Hurwitz
formula holds for a ramified covering of finite categories, the
zeta function of B divides that of Ẽ for a ramified covering
P̃ : Ẽ → B of finite categories, and the nerve of a d-fold ramified
covering of small categories is also a simplicial d-fold ramified
covering.

1. Introduction

A covering is an interesting and important tool in algebraic topology. For exam-
ple, a covering space is used for computing fundamental groups; furthermore, there
exists an analogy between Galois theory and covering space theory (see, for example,
[Hat02] and [May99]). A covering space should be called an “unramified covering.”
A ramified covering for topological spaces has been defined by Smith [Smi83] and
Dold [Dol86], and a well-known example for ramified coverings is the one for Rie-
mann surfaces. Ramified coverings for Riemann surfaces have important properties;
for example, the Riemann-Hurwitz formula that states a relationship between the
Euler characteristic of a total space and base space.

In this paper, we define a ramified covering of small categories. An unramified
covering of small categories has already been defined, and several authors have studied
it. Bridson and Haefliger presented many important properties of unramified coverings
in [BH99]; for example, the monodromy theorem and the path lifting theorem. May
studied unramified coverings of groupoids [May99]. Tanaka defined a model structure
on the category of small categories, called the one-type model structure [Tan13]. An
unramified covering is a fibration in the sense of the one-type model structure. Cibils
and MacQuarrie studied Galois coverings of small categories [CM].

In this paper, we show that ramified coverings of small categories have several
desirable properties.

The first result is an analogue of the Riemann-Hurwitz formula for Riemann sur-
faces (Theorem 2.5). For a ramified covering p : X̃ → X of Riemann surfaces under
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certain conditions, the following formula is popularly recognized as the Riemann-
Hurwitz formula:

χ(X̃) = d · χ(X)− V,

where d is the degree of p, χ is the Euler characteristic of Riemann surfaces, and

V =
∑
x̃∈X̃

(e(x̃)− 1).

Here, e(x̃) is the ramification number of p at x̃.

The Euler characteristic for categories has varying definitions. Leinster defined the
Euler characteristic of a finite category in [Lei08], which is the first Euler character-
istic for categories. Later, several authors defined the Euler characteristic: the series
Euler characteristic by Berger-Leinster [BL08], the L2-Euler characteristic by Fiore-
Lück-Sauer [FLS11], the extended L2-Euler characteristic [NogB], and the Euler
characteristic of N-filtered acyclic categories by the author [Nog11]. See [NogB] for
relationships among them. In this paper, we only prove that the Riemann-Hurwitz
formula holds for the series Euler characteristic. Accordingly, Theorems 5.30 and
5.37 of [FLS11] are analogues for unramified coverings of groupoids, isofibrations,
and the L2-Euler characteristic, and Proposition 2.8 of [Lei08] is an analogue for
Grothendieck fibrations and Leinster’s Euler characteristic of a finite category. More-
over, the graph-theoretic analogue of the Riemann-Hurwitz formula is considered in
[BN09].

The second result indicates that for a ramified covering of finite categories P̃ : Ẽ→B,
the zeta function of B divides that of Ẽ (Theorem 2.6). This is a generalization of
Theorem 4.5 of [NogA]. The graph-theoretic analogue of this result is also considered
in [MM10], [ST96], and [Ter11].

This result is a categorical analogue of the Dedekind conjecture that states that if
K1 and K2 are number fields and K1 ⊂ K2, then the Dedekind zeta function of K1

divides that of K2. A covering of small categories is an analogy of Galois theory. The
fundamental theorem of Galois theory states that if K/F is a finite Galois extension,
the set of intermediate fields of K and F is naturally bijective to the set of subgroups
of the Galois group Gal(K/F ):

K oo // {e}
∩

L oo 1:1 // Gal(K/L)

∩
F oo // Gal(K/F ).

For a covering of small categories P̂ : Ê → B, where Ê is the universal covering of B,
the set of the isomorphism classes of intermediate coverings of P̃ is bijective to the
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set of subgroups of the fundamental group π1(B):

Ê

P̂

��

��

oo // {e}
∩

E

��

oo 1:1 // H∩
F oo // π1(B)

(see Corollary 2.24 of [Tan13]). We have the correspondences

coverings ↔ extension of fields

π1 ↔ Galois groups

intermediate coverings ↔ intermediate fields.

...
...

From the above diagrams, we can conclude that the relationship between zeta func-
tions and coverings of small categories is an analogue of the Dedekind conjecture.

For an unramified covering P : E → B, it is known that N∗(P ) is a simplicial
covering [GZ67], where N∗ is the nerve functor from the category of small categories
to the category of simplicial sets. The third result indicates that for a d-fold ramified
covering P̃ of small categories, N∗(P̃ ) is also a simplicial d-fold ramified covering

[AP08, Theorem 2.8]. As a consequence, we show that the classifying space BP̃ is a
d-fold ramified covering in the sense of Dold [Dol86].
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2. Ramified coverings of small categories

2.1. Notation and terminology

Before we introduce a ramified covering of small categories, let us recall unramified
coverings of small categories (p. 579 of [BH99], Definition 3.1 of [CM], Definition
2.8 of [Tan13]).

Let C be a small category. For an object x of C, let S(x) be the set of morphisms
of C whose source is x:

S(x) = {f : x → ∗ ∈ Mor(C)},

and T (x) be the set of morphisms of C whose target is x:

T (x) = {g : ∗ → x ∈ Mor(C)}.

A category C is connected if C is a nonempty category and there exists a zig-zag
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sequence of morphisms in C

x
f1 // x1 x2

f3 //f2oo · · · y
fnoo

for any objects x and y of C. We do not need to consider the direction of the last
morphism fn since we can insert an identity morphism into the sequence.

A functor P : E → B is an unramified covering if B is connected and the following
two restrictions of P are bijections for any object x of E:

P : S(x) −→ S(P (x))

P : T (x) −→ T (P (x)).

It is easy to show that our definition of unramified coverings is equivalent to the
definition of coverings in [Tan13]. This condition is an analogue of the condition of
an unramified covering of graphs (see [ST96]).

2.2. Definition
Definition 2.1. Let P : E → B be an unramified covering. An equivalence relation ∼
on the set of objects Ob(E) is called for ramifications of P if the following conditions
are satisfied:

1. If x ∼ y, then x and y belong to the same fiber

P−1(b) = {z ∈ Ob(E) | P (z) = b}

for some object b of B.

2. If x ∼ y and x ̸= y, then S(x) = {1x}, S(y) = {1y} or T (x) = {1x}, T (y) = {1y}.

Definition 2.2. Suppose that P : E → B is an umramified covering and ∼ is an
equivalence relation for ramifications of P . Define a category Ẽ as follows: The set of
objects of Ẽ is Ob(E)/ ∼. For objects [x] and [y] of Ẽ, define

HomẼ([x], [y]) =
⨿

x0∈[x], y0∈[y]

HomE(x0, y0).

The composition of E naturally induces that of Ẽ.
Define a functor P̃ : Ẽ → B by P̃ ([x]) = P (x) for any object [x] of Ẽ and P̃ (f) =

P (f) for any morphism f of Ẽ. We call P̃ the ramified covering of P by ∼.

For an object [x] of Ẽ, we define the ramification number of [x] by its cardinality.
It is clear that there exists the following bijection:∪

[y]∈P̃−1(b)

[y] ∼= P−1(b)

for an object b of B. Define the degree of P̃ by the cardinality of P−1(b). Since P is
an unramified covering and B is connected, this definition does not depend on the
choice of b.

For a natural number d, P̃ is d-fold if deg P̃ = d.

Example 2.3. We introduce two simple examples.
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1. An unramified covering is a ramified covering of itself by the trivial equivalence
relation.

2. Let E be the category

x1
f1 // y1

x2
f2 // y2

x3
f3 // y3.

Let B = a
f // b. Define a functor P : E → B by P (fi) = f for any i. Then

P is an unramified covering. Define an equivalence relation for ramifications of
P by x1 ∼ x2 and y1 ∼ y2 ∼ y3. Then Ẽ is the category

[x1]
f1 //

f2

// [y1].

[x3]

f3

==zzzzzzzz

The ramification numbers of [x1], [x3], and [y1] are two, one, and three, respec-
tively.

2.3. Proof of main theorem

In this subsection, we present the proof of our main theorem.

Throughout this section, P̃ : Ẽ → B is a ramified covering of an unramified cover-
ing P : E → B by an equivalence relation for ramifications ∼ of P .

For a small category C, let Nn(C) be the set of chains of morphisms in C of
length n:

Nn(C) = { (x0
f1 // x1

f2 // · · ·
fn // xn) in C},

and let Nn(C) be the set of nondegenerate chains of morphisms in C of length n:

Nn(C) = { (x0
f1 // x1

f2 // · · ·
fn // xn) in C | fi ̸= 1}.

The difference between them is that one of them uses identity morphisms whereas
the other does not. For n = 0, we set N0(C) = N0(C) = Ob(C).

Lemma 2.4. Suppose that the categories E and B are finite. Then we obtain the
following results.

1. For any n ⩾ 1,

#Nn(Ẽ) = #Nn(E).
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2. For any n ⩾ 0,

#Nn(Ẽ) = #Nn(E)− V,

where

V =
∑

[x]∈Ob(Ẽ)

(#[x]− 1).

Proof. For

f = [x0]
f1 // [x1]

f2 // · · ·
fn // [xn]

of Nn(Ẽ), each [xi] is a one-point set for 1 ⩽ i ⩽ n− 1, and f1 and fn belong to
HomE(x

′
0, x1) and HomE(xn−1, x

′
n) for some objects x′

0 and x′
n of E, respectively.

Define φn : Nn(Ẽ) → Nn(E) by

φn(f) = x′
0

f1 // x1
f2 // · · ·

fn // x′
n.

Then it is clear that φn is a bijection.

When n = 0, the second result is clear. If n ⩾ 1, the first result and Lemma 2.10
of [NogA] imply the second result.

A finite category C has series Euler characteristic if we can substitute t = −1 in
the rational function

sum(adj(I − (AC − I)t))

|I − (AC − I)t|
,

where I is the unit matrix, AC is the adjacency matrix of C, sum(·) denotes the
summation of all the entries of the matrix, and adj(M) is the adjugate matrix of a
matrix M [BL08]. In this case, the series Euler characteristic χ∑(C) of C is defined
by the value of the rational function at t = −1. The rational function is the analytic
continuation of the power series

∑∞
n=0 #Nn(C)tn (Theorem 2.2 of [BL08]).

Theorem 2.5 (Riemann-Hurwitz for finite categories). Suppose that P̃ is a d-fold

ramified covering of finite categories. Then Ẽ has series Euler characteristic if and
only if B has series Euler characteristic. In this case,

χ∑(Ẽ) = d · χ∑(B)− V,

where

V =
∑

[x]∈Ob(Ẽ)

(#[x]− 1).

Proof. By Lemma 2.4, we have

∞∑
n=0

#Nn(Ẽ)tn =

( ∞∑
n=0

#Nn(E)tn

)
− V.

Hence, Ẽ has series Euler characteristic if and only if E has series Euler characteristic.
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In this case, we have

χ∑(Ẽ) = χ∑(E)− V.

Proposition 4.10 of [NogA] completes this proof.

Let C be a finite category. Then the zeta function ζC(z) of C is defined by

ζC(z) = exp

( ∞∑
n=1

#Nn(C)

n
zn

)
(see [NogA]). This function belongs to the power series ring Q[[z]]. If one prefers,
the zeta function can be considered as a function of a complex variable by choosing
z to be a sufficiently small complex number.

Theorem 2.6. Suppose that P̃ is a d-fold ramified covering of finite categories. Then
we have

ζẼ(z) = ζB(z)
d(1− z)V .

Proof. By Lemma 2.4, we have

ζẼ(z) = exp

( ∞∑
n=1

#Nn(Ẽ)

n
zn

)

= exp

( ∞∑
n=1

#Nn(E)

n
zn − V

∞∑
n=1

1

n
zn

)
= ζE(z) exp(V log(1− z))

= ζE(z)(1− z)V .

Note that
∑∞

n=1
1
nz

n = − log(1− z). Theorem 4.5 of [NogA] completes this proof.

Let us recall the definition of simplicial ramified coverings [AP08]. A simplicial set
X consists of a graded set {Xn}n⩾0, face operators ∂i : Xn → Xn−1, and degeneracy
operators si : Xn → Xn−1 for 0 ⩽ i ⩽ n, which satisfy the simplicial relations (see
[May92]). Let p : X → Y be a map of simplicial sets. We say that p is a simplicial
d-fold ramified covering map if the following hold:

1. For each n, pn : Xn → Yn has finite fibers.

2. The restricted function ∂i|p−1
n (y) : p

−1
n (y) → p−1

n−1(∂i(y)) is surjective for all i.

3. There is a family of multiplicity functions µn : Xn → N, such that

(a) For all y of Yn, one has
∑

x∈p−1
n (y) µn(x) = d.

(b) µn+1 ◦ si = µn.

(c) For all y of Yn and x of p−1
n (y), one has µn−1(∂i(x)) =

∑l
α=1 µn(xα), where

{x1, . . . , xl} = (∂i)
−1(∂i(x)) ∩ p−1

n (y).

Next, let us recall the nerve of a small category C and its classifying space BC.
The nerve N∗(C) of C is a simplicial set that consists of the graded set {Nn(C)}n⩾0,
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the face operators ∂i

∂i : Nn(C) → Nn−1(C) (n ⩾ 1, 0 ⩽ i ⩽ n),

and the degeneracy operators si

si : Nn(C) → Nn+1(C) (n ⩾ 0, 0 ⩽ i ⩽ n).

The maps are defined by

∂i(f1, . . . , fn) =


(f2, . . . , fn) if i = 0

(f1, . . . , fi+1 ◦ fi, . . . , fn) if 1 ⩽ i ⩽ n− 1

(f1, . . . , fn−1) if i = n

and

si(f1, . . . , fn) =

{
(1s(f1), f1, . . . , fn) if i = 0

(f1, . . . , fi, 1t(fi), fi+1, . . . , fn) if 1 ⩽ i ⩽ n.

The classifying space BC of C is the geometric realization of the simplicial set N∗(C)
(see p. 55 of [May92]).

For a functor F : C → D between small categories, define a simplicial map

N∗(F ) : N∗(C) → N∗(D)

by

Nn(F )((f1, . . . , fn)) = (F (f1), . . . , F (fn))

for any n ⩾ 0 and (f1, . . . , fn) of Nn(C). The nerve functor and the geometric real-
ization functor induce a continuous map BF : BC → BD.

Let X be a simplicial set. For x of Xn, the geometric dimension of x is defined as
follows: If x do not belong to the images of the degeneracy operators si : Xn−1 → Xn

for 0 ⩽ i ⩽ n− 1, the geometric dimension of x is n; otherwise it is defined by the
smallest k such that there exist y of Xk and i1, i2, . . . , in−k such that

si1 ◦ si2 ◦ · · · ◦ sin−k
(y) = x.

The geometric dimension of x is denoted by g.dimx.

Theorem 2.7. Suppose that P̃ : Ẽ → B is a d-fold ramified covering. Then the nerve
N∗(P̃ ) : N∗(Ẽ) → N∗(B) is a simplicial d-fold ramified covering.

Proof. For any n ⩾ 0 and g of Nn(B), we have

#Nn(P̃ )−1(g) =

{
d if g.dim(g) ̸= 0

#P−1(b)/ ∼ if g.dim(g) = 0 and (s0)
n(b) = g.

(1)

Hence, condition 1 is satisfied.
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Next, consider the following diagram:

Nn(P )−1(g)

Qn

��

∂i|Nn(P )−1(g) // Nn−1(P )−1(∂i(g))

Qn−1

��
Nn(P̃ )−1(g)

∂i|Nn(P̃ )−1(g) // Nn−1(P̃ )−1(∂i(g)),

where P is the unramified covering and Qn and Qn−1 are the natural projections. If
∂i|Nn(P )−1(g) is surjective, then ∂i|Nn(P̃ )−1(g) is also surjective; therefore, condition 2 is

satisfied. Given an element f ofNn−1(P )−1(∂i(g)), we have the following commutative
diagram:

∆[n− 1]
f //

� _

δi

��

N∗(E)

N∗(P )

��
∆[n]

g
// N∗(B),

where δi is the ith coface inclusion. Since N∗(P ) is a fibration and δi is a trivial
cofibration in the Quillen model structure of the category of simplicial sets, there
exists a lifting f̃ : ∆[n] → N∗(E). Namely, there exists f̃ of Nn(P )−1(g) such that
∂i(f̃) = f . Hence, ∂i|Nn(P )−1(g) is a surjection.

Define µn : Nn(Ẽ) → N by

µn(f) =

{
1 if g.dim(f) ̸= 0

#[x] if g.dim(f) = 0 and (s0)
n([x]) = f

for any f of Nn(Ẽ) and n ⩾ 0. By equality (1), condition 3(a) is satisfied. Moreover,

it is clear that condition 3(b) is also satisfied. For f of Nn(P̃ )−1(g), if

f = [x]
1 // · · · 1 // [x]

f // [y] and i = n

or

f = [y]
f // [x]

1 // · · · 1 // [x] and i = 0,

where f is a nonidentity morphism, then we have

#(∂i)
−1(∂i(f)) ∩Nn(P̃ )−1(g) = #[x].

Hence, the equality in condition 3(c) holds. In other cases, the map ∂i|Nn(P̃ )−1(g) is

a bijection; therefore, it is easy to show that the equality holds. Hence, N∗(P̃ ) is a
simplicial d-fold ramified covering.

Corollary 2.8. Suppose that the functor P̃ : Ẽ → B is a d-fold ramified covering.
Then the map BP̃ is a d-fold ramified covering.

Proof. Theorems 2.7 and 4.2 of [AP08] imply this result.
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