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Abstract
Let S be a commutative ring with topologically noetherian

spectrum, and let R be the absolutely flat approximation of S.
We prove that subsets of the spectrum of R parametrise the
localising subcategories of D(R). Moreover, we prove the tele-
scope conjecture holds for D(R). We also consider unbounded
derived categories of absolutely flat rings that are not semi-
artinian and exhibit a localising subcategory that is not a Bous-
field class and a cohomological Bousfield class that is not a
Bousfield class.

1. Introduction

Given a commutative noetherian ring S, the structure of the unbounded derived
category D(S) and its full subcategory of compact objects Dperf(S) is very well under-
stood. By a result of Hopkins and Neeman [Nee92] the lattice of thick subcategories
of Dperf(S) is isomorphic to the lattice of specialisation closed subsets of SpecS. Nee-
man proves in [Nee92, Theorem 2.8] that when one passes to D(S) this extends to a
lattice isomorphism between arbitrary subsets of SpecS and localising subcategories
of D(S).

Now suppose S is commutative but not noetherian. Then, by work of Thomason
[Tho97, Theorem 3.15], the classification of thick subcategories of Dperf(S) is still
valid; there is a lattice isomorphism between thick subcategories of Dperf(S) and
Thomason subsets of SpecS i.e., those subsets that can be written as unions of
closed subsets with quasi-compact complements. However, we are almost completely
ignorant concerning the structure of D(S); we do not even know if the collection of
localising subcategories forms a set rather than a proper class. Some partial results,
indicating the possible complexity of the lattice of localising subcategories, have been
obtained by Neeman [Nee00] and then in later work of Dwyer and Palmieri [DP08]
for graded non-noetherian truncated polynomial rings.

In this work we consider the situation for a commutative absolutely flat ring R—
i.e., R is commutative, reduced, and zero dimensional. Such rings are also called von
Neumann regular rings, but, we will favour the “geometric” name and not use this
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terminology. We observe two starkly contrasting ways in which the derived category
of such a ring can behave. If R is not semi-artinian, we show in Theorem 4.8 that
the residue fields of R do not generate the derived category, and as a corollary we
exhibit a localising subcategory that cannot be realised as the kernel of tensoring by
any object of D(R) (Corollary 4.10). This gives a counterexample to the analogue of
a conjecture of Hovey and Palmieri [HP99, Conjecture 9.1] (concerning the stable
homotopy category) in the setting of derived categories of rings. In a similar vein we
give in Corollary 4.12 an example of a cohomological Bousfield class that is not a
Bousfield class (this terminology is explained in Definition 4.9).

On the other hand, suppose S is a commutative ring with topologically noetherian
spectrum. The absolutely flat approximation of S is an absolutely flat ring Sabs

together with a morphism S −→ Sabs through which all other morphisms from S to
an absolutely flat ring factor. We prove in Theorem 4.23 that Neeman’s classification
is valid for D(Sabs): there is a set of localising subcategories, and the lattice they form
is isomorphic to the powerset of SpecSabs. Furthermore, every localising subcategory
of D(Sabs) is the kernel of tensoring with a module (Corollary 4.24) and the telescope
conjecture holds (see Definition 4.17 and Theorem 4.25).

Now let us very briefly sketch the contents of the paper. Section 2 contains abstract
results on tensor triangular geometry and support theory. More specifically, after some
brief recollections on supports, we prove some results concerning the behaviour of
supports under exact monoidal functors (Section 2.2) and give a topological restriction
on the supports of quotients by smashing subcategories (Section 2.3); if the reader is
mainly interested in the results concerning derived categories, she can safely skip or
refer back to this section. Section 3 contains some preliminary material on absolutely
flat rings and absolutely flat approximations. The main results concerning derived
categories are proved in Section 4.
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2. Some tensor triangular abstract nonsense

2.1. Preliminaries

We begin by briefly discussing some notions and notation that we will use through-
out. We assume some familiarity with the subject matter; for further details and def-
initions the interested reader should consult [Bal05] and [BF11]. Let (K,⊗,1) be an
essentially small rigid tensor triangulated category; i.e., K is a triangulated category
with a compatible closed symmetric monoidal structure and for every k, l ∈ K the
natural map

hom(k,1)⊗ l −→ hom(k, l)

is an isomorphism, where 1 is the unit object and hom(−,−) is the internal hom.
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Following [Bal05], we associate to K its spectrum SpcK. We recall that

SpcK = {P ⊊ K | P is prime}.

Here P is prime if P is a proper thick tensor ideal of K such that whenever k ⊗ l ∈ P,
for k, l ∈ K, we have k ∈ P or l ∈ P. The Zariski topology on SpcK is given by the
basis of closed subsets

{supp k = {P ∈ SpcK | k /∈ P} | k ∈ K}.

This topology makes SpcK into a spectral space; i.e., SpcK is quasi-compact, T0, every
irreducible closed subset of SpcK has a (necessarily unique) generic point, and the
collection of quasi-compact open subsets of SpcK is closed under finite intersections
and gives a basis of open subsets for the Zariski topology. Before proceeding, let us
recall a few notions and facts about spectral spaces that will be needed in the sequel.
Suppose X and Y are spectral spaces. A spectral map, or morphism of spectral spaces,
is a continuous map f : X −→ Y such that the preimage of any open quasi-compact
subset of Y under f is again quasi-compact. We say a subset V of X is Thomason if
V can be written as a union of closed subsets of X each of which has quasi-compact
complement. It is immediate that given a spectral map f : X −→ Y the preimage of a
Thomason subset of Y is again Thomason. We will also need to consider the following
refinement of the topology on a spectral space.

Definition 2.1. Let X be a spectral space. We denote by Xcon the set X equipped
with the constructible topology, which is given by taking the quasi-compact open
subsets of X and their complements as a subbasis of open sets.

A subset Z of X that is closed in the constructible topology is called procon-
structible.

The topology on Xcon is also known as the patch topology; for instance, this is
the terminology used in [Hoc69]. It is again a spectral space and is Hausdorff. We
can characterise those subspaces of a spectral space X that are again spectral with
spectral inclusion in terms of the constructible topology. Indeed, a subset Z of X is
proconstructible if and only if Z, endowed with the subspace topology, is spectral and
the inclusion Z −→ X is a spectral map. Further details and references concerning
spectral spaces can be found, for instance, in [Tre06, Section 2].

Given another essentially small rigid tensor triangulated category K′ and an exact
monoidal functor F : K −→ K′, there is an induced continuous map

SpcF : SpcK′ −→ SpcK

given by sending P ∈ SpcK′ to its preimage F−1P under F . The map SpcF is spec-
tral.

We also recall there is, by [Bal05, Theorem 4.10], a bijection between Thomason
subsets of SpcK and thick tensor ideals of K sending a Thomason subset V to the
ideal KV of all objects whose support is contained in V.

Now suppose (S,⊗,1) is a rigidly-compactly generated tensor triangulated cate-
gory; i.e., S is a compactly generated triangulated category with a compatible closed
symmetric monoidal structure such that the compact objects Sc form a rigid tensor
triangulated subcategory. We denote, for V ⊆ SpcSc a Thomason subset, by ΓVS the
localising ideal generated by Sc

V , the thick ideal of compact objects supported on V.
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The subcategory ΓVS is a smashing subcategory of S, and the corresponding Rickard
idempotents, giving rise to the acyclisation and localisation functors with respect to
ΓVS, will be denoted by ΓV1 and LV1, respectively.

Given x ∈ SpcSc, we, as usual, set V(x) = {x} and

Z(x) = {y | x /∈ V(y)}.

A point x of SpcSc is said to be visible if there exist Thomason subsets V,W
of SpcSc such that V \ (V ∩W) = {x}. This is not the same definition as given in
[BF11]; cf. Remark 4.3 for further details. In this case we set

Γx1 = ΓV1⊗ LW1

and recall from [BF11, Corollary 7.5] that up to isomorphism Γx1 does not depend
on the choice of V and W.

Remark 2.2. With notation as above we can always choose W = Z(x). Indeed, Z(x)
is always Thomason (by virtue of being the support of the prime ideal of Sc corre-
sponding to the point x), and x /∈ W combined with the fact that W is specialisation
closed implies W ⊆ Z(x).

Denoting by VisSc the set of visible points in SpcSc, we define the big support of
X ∈ S to be

SuppX = {x ∈ VisSc | Γx1⊗X ̸= 0}.

The big support is a subset of VisSc, which can be a proper subset of SpcSc.
Thus we cannot in general have, for s ∈ Sc, an equality between supp s and Supp s.
However, no information is lost in the sense that the big support of a compact object
determines the usual support.

Lemma 2.3. Let s be a compact object of S. Then there is an equality

Supp s = supp s ∩VisSc.

Proof. Using Remark 2.2, one can mimic the proof of [BF11, Proposition 7.17].

Proposition 2.4. Let s be a compact object of S. Then there is an equality

Supp s = supp s.

Proof. Let x be a point of supp s \VisSc. By the lemma it is sufficient to show there
is a visible point of supp s specialising to x. As supp s is a closed subspace of SpcSc,
it is a spectral space in its own right. Thus x is a specialisation of a point y ∈ supp s
that is minimal with respect to specialisation in supp s. To complete the argument it
is sufficient to show that y is visible. This is the case since supp s is Thomason and
supp s \ Z(y) = {y} by minimality of y with respect to specialisation in supp s.

Thus there is no real danger of confusing supp and Supp at the level of compact
objects, so we will generally refer to the big support simply as the support and write
supp for both. Of course, the reader may just instead assume that all points of the
spectra we consider are visible—this will be the case in our applications.
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2.2. Pullbacks of Rickard idempotents
Wenowprove some facts concerning the behaviour of supports for rigidly-compactly

generated tensor triangulated categories with respect to exact monoidal functors. The
results are essentially what one would expect in analogy with the case of compact
objects. The material in this section is used in Section 2.3 and, more concretely, in
Section 4.2 to identify the images of certain Rickard idempotents under derived base
change along maps of rings.

We are interested in the following setup: S and T are rigidly-compactly generated
tensor triangulated categories and F : S −→ T is a coproduct and compact object
preserving monoidal functor. We denote the right adjoint of F , which exists by Brown
representability, by G. We note that G necessarily preserves coproducts; see, for
instance, [Nee96, Theorem 5.1]. We want to consider what F does to the Rickard
idempotents of [BF11]; our setup is modelled on the situation of pulling back along a
quasi-compact quasi-separated map of schemes. Our results extend those in Section 8
of [Ste13] to situations more general than localisations.

Notation 2.5. Given a class of objects M in S, we will denote by ⟨M⟩ and ⟨M⟩⊗
the smallest localising subcategory and the smallest localising ideal containing M ,
respectively.

In situations where we wish to distinguish via notation, rather than context, in
which category a tensor product is being taken we will use subscripts—e.g., ⊗S or
⊗T —to be completely clear, and similarly for the support and tensor units.

Let us denote by F c the restriction of F to compacts, i.e.,

F c : Sc −→ T c,

which exists by assumption. We obtain a spectral (i.e., quasi-compact) map of spectral
spaces

Spc(F c) = f : Spc T c −→ SpcSc,

and we know, by [Bal05, Proposition 3.6], that suppFs = f−1 supp s for all s ∈ Sc.
In particular, Fs = 0 if and only if f−1 supp s = ∅.

As f : Spc T c −→ SpcSc is spectral, f−1 sends Thomason subsets to Thomason
subsets. This leads to the following observation.

Lemma 2.6. Let V be a Thomason subset of SpcSc. There are equalities of localising
ideals of T

⟨FΓVS⟩⊗ = ⟨FSc
V⟩⊗ = Γf−1VT .

Proof. The first equality is easily checked—for instance, it follows from [Ste13,
Lemma 3.8]. We prove the second equality. It is clear from the formula

suppFs = f−1 supp s

for s ∈ Sc that FSc
V ⊆ T c

f−1V and so ⟨FSc
V⟩⊗ ⊆ Γf−1VT . In fact, one even sees from

the support formula that suppFSc
V = f−1V. By Balmer’s classification result [Bal05,

Theorem 4.10] we thus deduce that the smallest localising tensor ideal containing FSc
V

contains T c
f−1V and hence contains Γf−1VT .
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Proposition 2.7. Let V be a Thomason subset of SpcSc. Then there are natural
isomorphisms of Rickard idempotents

F (ΓV1S) ∼= Γf−1V1T and F (LV1S) ∼= Lf−1V1T .

Proof. The idempotent ΓV1S comes equipped with a morphism ΓV1S
ε−→ 1S giving

the counit of the adjunction corresponding to the acyclisation functor with respect
to ΓVS. Applying the monoidal functor F yields a morphism

ε′ = (F (ΓV1S)
F (ε)−→ F (1S)

∼−→ 1T ).

Tensoring with this map yields a natural transformation, which we also denote by ε′,
with component ε′X at X ∈ T given by F (ΓV1S)⊗X −→ X. We consider the full
subcategory M of T defined as follows:

M = {X ∈ T | ε′X is an isomorphism}.

By naturality of ε′ and its compatibility with coproducts and suspension, we deduce
immediately that M is a localising subcategory of T . Moreover, given X ∈ M and
Y ∈ T , commutativity of the square

F (ΓV1S)⊗ (X ⊗ Y )
ε′X⊗Y //

≀
��

X ⊗ Y

(F (ΓV1S)⊗X)⊗ Y
ε′X⊗Y

// X ⊗ Y

shows that M is a tensor ideal. Since F is monoidal, we have F (ΓVS) ⊆ M and so
by the lemma Γf−1VT ⊆ M. Thus

F (ΓV1S) ∼= Γf−1V1T ⊗ F (ΓV1S) ∼= Γf−1V1T ,

and the corresponding isomorphism for the localisation functors follows from unique-
ness of localisation triangles.

Corollary 2.8. Let V be a Thomason subset of SpcSc. Then

suppF (ΓV1S) = f−1V ∩Vis T c and suppF (LV1S) = f−1(SpcSc \ V) ∩Vis T c.

Proposition 2.9. Let y be a visible point of SpcSc. Then

suppF (Γy1S) = f−1(y) ∩Vis T c.

Moreover, F (Γy1S) is zero if and only if the fibre over y is empty.

Proof. As y is visible, we can find Thomason subsets V and W of SpcSc defining
Γy1S ; i.e., our subsets satisfy V \W = {y} and Γy1S = ΓV1S ⊗ LW1S . Since F is
monoidal, we see, using Proposition 2.7,

F (Γy1S) ∼= F (ΓV1S)⊗ F (LW1S) ∼= Γf−1V1T ⊗ Lf−1W1T .

Applying the above Corollary and [Ste13, Proposition 5.7(4)] then yields the desired
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equality

suppF (Γy1S) = f−1V ∩ (Spc T c \ f−1W) ∩Vis T c = f−1(y) ∩Vis T c.

It follows that F (Γy1S) is non-zero iff the fibre over y is non-empty. Indeed, F (Γy1S)
is non-zero if and only if

Γf−1V1T ⊗ Lf−1W1T ̸= 0 i.e. f−1V ⊈ f−1W,

which occurs precisely when f−1(y) ̸= ∅.

Remark 2.10. Notice that in the special case f−1(y) = x the point x is also visible
and we have an isomorphism

F (Γy1S) ∼= Γx1T .

2.3. Spectra and smashing localisations
We now make some observations concerning the spectra of quotients by smashing

ideals. Our point is to illustrate that there is a support-theoretic obstruction to being
the right orthogonal of a smashing ideal; the results here form the basis for verifying
the telescope conjecture for certain rings in Section 4.2.

Let T be a rigidly-compactly generated tensor triangulated category, let S be a
smashing ideal of T , and denote by S⊥ the right orthogonal of S—i.e.,

S⊥ = {B ∈ T | Hom(A,B) = 0 ∀ A ∈ S}.

We recall there is an associated localisation sequence

S
I∗ //oo
I!

T
J∗

//oo
J∗

S⊥ ,

where S is a localising tensor ideal of T and I ! preserves coproducts. It follows that
J∗ also preserves coproducts and S⊥ is also a localising tensor ideal of T . The reader
may consult [BF11] for further details.

We thus see that S⊥ is a compactly generated tensor triangulated category and
J∗ is an exact monoidal functor that sends compact objects to compact objects.
Moreover, there are tensor idempotents ΓS1 and LS1 such that

ΓS1⊗ (−) ∼= I∗I
! and LS1⊗ (−) ∼= J∗J

∗.

Let us denote the restriction of J∗ to compacts by j∗ : T c −→ (S⊥)c, and let us denote
the associated spectral map by

j : Spc(S⊥)c −→ Spc T c.

By [Kra05, Theorem 11.1] the functor j∗ is essentially surjective up to direct
summands. As an immediate consequence we deduce the following lemma.

Lemma 2.11. The map j : Spc(S⊥)c −→ Spc T c is injective.

Proof. This is essentially [Bal05, Corollary 3.8]—weakening essential surjectivity to
essential surjectivity up to summands does no harm; one just needs to close under
summands as well as isomorphisms in the argument given there.
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In order to simplify the discussion, and since it is enough for our intended applica-
tion, we will assume every point of Spc T c is visible. Combining the last lemma with
Remark 2.10, we see every point of Spc(S⊥)c is also visible.

We now identify the image of the map j as a set.

Lemma 2.12. There is an equality of sets

im j = suppS⊥.

Proof. Let x be a point of Spc T c. We have x ∈ suppS⊥ if and only if there is an
X ∈ S⊥ such that Γx1T ⊗X is non-zero. As Y ∼= LS1T ⊗ Y for all Y ∈ S⊥, we see
there exists such an X if and only if LS1T ⊗ Γx1T is non-zero—i.e., J∗Γx1T ̸= 0.
We proved in Proposition 2.9 that J∗Γx1T ̸= 0 if and only if j−1(x) is non-empty.

Tracing through this chain of equivalent statements, we find that x ∈ suppS⊥ if
and only if there is a y ∈ Spc(S⊥)c such that j(y) = x, which is precisely what we
have claimed.

Lemma 2.13. The map j, viewed as a morphism to suppS⊥ with the subspace topol-
ogy, is closed and is thus a homeomorphism.

Proof. It is, of course, sufficient to check j is closed on a basis of closed subsets for
Spc(S⊥)c, and so we may reduce to considering the supports of compact objects.
Given a ∈ (S⊥)c, we will show there is a b ∈ T c satisfying

j(supp a) = supp b ∩ suppS⊥.

We may assume by replacing a, if necessary, by a⊕ Σa that there is a b ∈ T c with
j∗b = a (using [Nee01, Proposition 4.5.11]); we note making this replacement does
not change the support.

We then just need to observe the following series of equalities:

j(supp a) = {j(P) | P ∈ Spc(S⊥)c and a /∈ P}
= {(j∗)−1P | P ∈ Spc(S⊥)c and j∗b /∈ P}
= {(j∗)−1P | P ∈ Spc(S⊥)c and b /∈ (j∗)−1P}
= {Q ∈ suppS⊥ | b /∈ Q}
= supp b ∩ suppS⊥.

The main result of this section is stated in terms of the constructible topology on
a spectral space (see Definition 2.1).

Proposition 2.14. Let T be a rigidly-compactly generated tensor triangulated cate-
gory such that every point of Spc T c is visible. Given any smashing tensor ideal S of
T , the subset suppS⊥ is proconstructible in Spc T c.

Proof. By the last lemma we know suppS⊥ with the subspace topology is homeo-
morphic to Spc(S⊥)c. Thus suppS⊥ is a spectral space and the inclusion of suppS⊥
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into Spc T c is spectral. The inclusion thus induces a spectral map

(suppS⊥)con −→ (Spc T c)con,

which is again a homeomorphism onto its image. As (Spc T c)con is Hausdorff and
(suppS⊥)con is a quasi-compact subset, it is closed in (Spc T c)con; i.e., it is procon-
structible in Spc T c.

3. Preliminaries on absolutely flat rings

Before beginning our study of derived categories it seems prudent to provide some
brief recollections on the class of rings with which we will be concerned. Throughout,
all of our rings are assumed to be commutative and unital.

Definition 3.1. Let R be a commutative ring with unit. We say R is absolutely flat
(also known as von Neumann regular) if for every r ∈ R there exists some x ∈ R
satisfying

r = r2x.

Absolutely flat rings arise naturally when studying the constructible topology on
spectral spaces. As we shall see below, one can functorially associate to a ring S an
absolutely flat ring R with the property that SpecR is naturally homeomorphic to
SpecS endowed with the constructible topology.

From now on R denotes a commutative absolutely flat ring. We will assume R is
not noetherian. One deduces easily from the commutativity of R that for every r ∈ R
there is a unique x ∈ R such that r = r2x and x = x2r. We call x the weak inverse
of r.

We now collect some standard characterisations of commutative absolutely flat
rings; we will, in general, use these properties without reference to the proposition.

Proposition 3.2. For a ring R the following are equivalent:

(i) R is absolutely flat;

(ii) R is reduced and has Krull dimension 0;

(iii) every localization of R at a prime ideal is a field;

(iv) R is a subring of a product of fields, namely,

R ⊆
∏

p∈SpecR

k(p) =: R′,

where k(p) is the residue field at p, and R is closed under weak inverses in R′;

(v) every simple R-module is injective;

(vi) every R-module is flat.

Proof. The equivalence of (i), (ii), and (vi) together with the implication (i) implies
(iii) can be found, for instance, in [Sta14, Tag 092F]. The equivalence of (i) and
(v) is a result of Kaplansky; for a proof the reader can consult [MV73]. Finally, the
equivalence of (i) and (iv) is straightforward.
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The spectrum of R, SpecR, is a zero-dimensional, Hausdorff, totally disconnected
spectral space. We wish to say a little more about it. The first two lemmas are
essentially trivialities and are in fact valid for the constructible topology on any
spectral space.

Lemma 3.3. A subset Z ⊆ SpecR is closed if and only if it quasi-compact.

Proof. This is immediate from the fact that SpecR is Hausdorff.

Lemma 3.4. A subset V ⊆ SpecR is Thomason if and only if it is open.

Proof. Let U be a quasi-compact open subset of SpecR. Then, by the last lemma, U
is also closed, and its complement, by virtue of being closed, is also quasi-compact;
i.e., both U and its complement are closed Thomason subsets. As SpecR is spectral,
the subset V is open if and only if it is a union of quasi-compact open subsets of
SpecR. But we have just shown this is precisely the same thing as being a union of
closed subsets with quasi-compact complement, i.e., as being Thomason.

Lemma 3.5. The spectrum of R is infinite; i.e., | SpecR| ⩾ ℵ0.

Proof. Suppose | SpecR| < ℵ0 so R has finitely many prime ideals p1, . . . , pn. Then
R is, by Proposition 3.2, a subring of S = k(p1)× · · · × k(pn). Clearly S is noetherian
and module finite over R, so by the Eakin–Nagata theorem R is noetherian (hence
isomorphic to S), which is a contradiction.

Lemma 3.6. The spectrum of R is not a noetherian topological space.

Proof. By the last lemma SpecR has infinitely many points. Thus, since it is quasi-
compact, SpecR cannot be discrete. So there is a point p ∈ SpecR with {p} not open.
Thus SpecR \ {p} is open but not closed and hence not quasi-compact by Lemma 3.3.
This demonstrates that SpecR is not noetherian.

Remark 3.7. The proof of the lemma exhibits a point of SpecR that is not a Thoma-
son subset.

We conclude by reminding the reader that one can functorially associate to any
commutative ring S an absolutely flat ring Sabs. Let CRing denote the category of
commutative unital rings, and let CRingabs denote the full subcategory of absolutely
flat rings.

Theorem 3.8 ([Oli67a, Proposition 5]). The inclusion CRingabs −→ CRing admits
a left adjoint

(−)abs : CRing −→ CRingabs.

Given a ring S, the unit of adjunction η : S −→ Sabs induces a bijection of sets

SpecSabs −→ SpecS

and isomorphisms (Sabs)P ∼= k(η−1P ) for all P ∈ SpecSabs. Furthermore, there is a
homeomorphism

SpecSabs ∼−→ (SpecS)con,

i.e., Sabs realises the constructible topology on SpecS (see Definition 2.1).
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Given a ring S, one can explicitly construct Sabs as

Sabs = S[xs | s ∈ S]/(s2xs − s, x2
ss− xs | s ∈ S).

Example 3.9. Suppose we take for S the ring Z of integers. Then it is an entertaining
exercise to check that, using the above recipe, one can describe R = Zabs as the
subring of the product of the residue fields of Z defined by certain congruences. To
be precise, S is the subring of Q×

∏
p Fp, where p runs over all primes, consisting

of those sequences {aQ, aFp}p such that there is an N ∈ Q satisfying NaQ ∈ Z and
aQ ≡ aFp modulo p for all p ∤ N .

4. Derived categories of absolutely flat rings

Throughout this section R is again a non-noetherian absolutely flat ring. As usual,
D(R) denotes the unbounded derived category of R, and Dperf denotes (R) the full
subcategory of perfect complexes. For a prime ideal p of R we denote by k(p) the
residue field at p. We recall that D(R) is a rigidly-compactly generated tensor trian-
gulated category with a monoidal model (i.e., there is a symmetric monoidal model
category whose homotopy category is D(R)), the subcategory Dperf(R) is the full
subcategory of compact objects in D(R), and by a theorem of Thomason [Tho97]

SpcDperf(R) ∼= SpecR.

For X ∈ D(R) we set

supphX = {p ∈ SpecR | X ⊗ k(p) ̸= 0}.

Since R is absolutely flat, there is no need to derive the tensor product, although, in
any case, Rp

∼= k(p). Thus supphX is the set of primes p such that Xp is not acyclic.
This observation immediately yields the following lemma.

Lemma 4.1. An object X of D(R) is zero if and only if supphX = ∅—i.e., if and
only if X ⊗ k(p) ∼= 0 for all p ∈ SpecR.

We now connect this support with Balmer’s support on the compact objects and
with the corresponding Rickard idempotents.

Lemma 4.2. For every p ∈ SpecR the subset Z(p) = SpecR \ {p} is Thomason and
the corresponding Rickard idempotent LZ(p)R is canonically isomorphic to k(p). The
resulting localisation corresponds to the fully faithful inclusion of D(Rp) = D(k(p)) in
D(R).

Proof. It is standard that Z(p) is Thomason (it is also immediate from Lemma 3.4).
For the second claim consider the adjunction

D(R)
Rp⊗− //oo D(Rp),

given by base change and restriction of scalars. As the restriction functor is fully
faithful, this is in fact a localisation, and one easily identifies the kernel of Rp ⊗−
with ΓZ(p)D(R). Thus we have an equivalence D(Rp) ∼= LZ(p)D(R), which in turn
yields an isomorphism LZ(p)R ∼= Rp = k(p).
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Thus, even though there are points that are not Thomason subsets, every point
of SpcDperf(R) is visible via SpecR \ Z(p) = {p}. So we can associate to every point
p a coproduct-preserving endofunctor Γp. Here Γp is just (yet) another notation for
k(p)⊗ (−),

ΓpR = ΓSpecRLZ(p)R ∼= k(p), (1)

but it is a conceptually helpful one. We see the support theory defined as in [BF11],
which we have studied in Section 2, agrees with the homological support supph. From
this point onward we will just write suppX for these coinciding notions of the support
of an object X of D(R).

Remark 4.3. We feel it is worth reiterating that this example shows there can exist
points whose closure is not Thomason but which are visible and thus have associated
idempotents. This shows the definition of visible point, as given in [Ste13] (and here
in Section 2), is more general than the one in [BF11].

We now investigate D(R) and, in particular, this support theory with a view toward
comparison with rigidly-compactly generated tensor triangulated categories whose
compact objects have noetherian spectrum (as considered in [BIK11] and [Ste13]).
More specifically, we consider the analogues of the results of Neeman [Nee92], namely,
the classification of localising subcategories and the telescope conjecture. It turns out
that there is a dichotomy—the derived category either behaves very differently (and
somewhat mysteriously) or behaves exactly as in the noetherian case where it is
possible to completely understand the localising subcategories.

We begin with a few general statements that are essentially standard.

Lemma 4.4. For each p ∈ SpecR the localising subcategory ⟨k(p)⟩ is minimal in
D(R), i.e., it has no proper non-trivial localising subcategories.

Proof. As in Lemma 4.2, we can identify ⟨k(p)⟩ with D(k(p)). Since k(p) is a field,
every object of D(k(p)) is a sum of suspensions of k(p). As localising subcategories are
closed under splitting idempotents, we see that any non-zero localising subcategory
of D(k(p)) must be the whole category.

The next lemma can be found, in a slightly more general form, as [BN93, Lemma
2.17] and already appears in the work of Foxby [Fox79].

Lemma 4.5. Let X be an object of D(R). Then for p ∈ SpecR the object X ⊗ k(p)
is isomorphic to a coproduct of suspensions of k(p).

From these two lemmas we deduce the following result.

Lemma 4.6. There is a bijection between SpecR and the minimal non-zero localising
subcategories of D(R) given by sending p to the localising subcategory ⟨k(p)⟩ of D(R).

Proof. Lemma 4.4 associates a non-zero minimal localising subcategory to each p ∈
SpecR. It remains to show that these are precisely the non-zero minimal localising
subcategories. Suppose then that L is non-zero, localising, and minimal in D(R). Let
X ∈ L be a non-zero object. Since, by Lemma 4.1, the support detects vanishing of
objects, there is a p ∈ SpecR with X ⊗ k(p) non-zero. As every localising subcat-
egory of D(R) is tensor closed, Lemma 4.5 implies k(p) ∈ L and hence ⟨k(p)⟩ ⊆ L.
Minimality of L then forces this to be an equality.
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4.1. Rings behaving badly
So far this actually seems very promising: the reader might hope that, since we

have a seemingly well-behaved support theory and know the minimal localising sub-
categories, we can describe the collection of all localising subcategories in terms of
SpecR. The next result should extinguish this hope, at least at our current level of
generality. The reader who prefers the good news first should skip to Section 4.2.

Definition 4.7. Let S be a ring (not necessarily absolutely flat). We say S is semi-
artinian if every non-zero homomorphic image of S, in the category of S-modules,
contains a simple submodule.

An S-module M is said to be superdecomposable if it admits no non-zero indecom-
posable direct summands.

Theorem 4.8. Let R be an absolutely flat ring that is not semi-artinian. Then the
residue fields do not generate D(R)—i.e,

⟨k(p) | p ∈ SpecR⟩ ⊊ D(R).

Proof. By a result of Trlifaj [Trl96] there exists a superdecomposable injective R-
module E. We claim E is right orthogonal to each k(p). As E is injective, the only
other possibility is that Hom(k(p), E) is non-zero. But if there were a non-zero map
k(p) −→ E, then, since the residue fields are simple, it would have to be a monomor-
phism. The module k(p) is injective (see Proposition 3.2), so this morphism would
then split and exhibit k(p) as an indecomposable direct summand of E, contra-
dicting the superdecomposability of E. Thus Hom(k(p),ΣiE) vanishes for all i ∈ Z;
i.e., E lies in the right orthogonal of ⟨k(p) | p ∈ SpecR⟩. In particular, E cannot
lie in ⟨k(p) | p ∈ SpecR⟩, proving this subcategory is properly contained in D(R) as
claimed.

Combining this with Lemma 4.6, we see, when R is not semi-artinian, the minimal
localising subcategories of D(R) do not generate it. In other words, the local-to-global
principle (see [Ste13, Definition 6.1]) fails.

There are several conjectures, originating from the study of the stable homotopy
category, concerning the lattice of localising subcategories. These conjectures make
sense in any rigidly-compactly generated tensor triangulated category, and trying
to resolve them in other settings can hopefully provide intuition for the original
conjectures. The theorem allows us to give counterexamples to the derived category
analogues of two such conjectures.

Definition 4.9. A localising subcategory L of D(R) is a Bousfield class if there is an
X ∈ D(R) such that

L = {Y ∈ D(R) | X ⊗ Y ∼= 0} = ker(X ⊗ (−)).

The localising subcategory L is a cohomological Bousfield class if there is anX ∈ D(R)
such that

L = {Y ∈ D(R) | Hom(Y,ΣiX) = 0 ∀i ∈ Z} = ⊥X.

One calls ker(X ⊗ (−)) the Bousfield class of X and ⊥X the cohomological Bousfield
class of X.
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Corollary 4.10. Let R be an absolutely flat ring that is not semi-artinian. Then
D(R) admits a localising subcategory that is not a Bousfield class.

Proof. By the theorem L = ⟨k(p) | p ∈ SpecR⟩ is a proper localising subcategory of
D(R). In particular, it is not the Bousfield class of 0. As the support detects vanishing
by Lemma 4.1, the Bousfield class of any non-zero X ∈ D(R) fails to contain some
k(p). Thus L cannot be a Bousfield class.

Remark 4.11. This gives a counterexample to the analogue of [HP99, Conjecture 9.1]
for the derived category of a ring.

Corollary 4.12. Let R be an absolutely flat ring that is not semi-artinian. Then
D(R) admits a cohomological Bousfield class that is not a Bousfield class.

Proof. As in the proof of the theorem there is, by [Trl96], a superdecomposable
injective E and

⟨k(p) | p ∈ SpecR⟩ ⊆ ⊥E.

It is clear that ⊥E is a proper localising subcategory of D(R) and so, by Lemma 4.1,
⊥E cannot be a Bousfield class as in the argument proving the last Corollary.

Remark 4.13. This gives a counterexample to the analogue of [Hov95, Conjecture 1.2]
for the derived category of a ring.

Example 4.14. Let Λ be an infinite index set, and for each λ ∈ Λ let kλ be a field.
The ring

R =
∏
λ∈Λ

kλ

is absolutely flat. By [CS96, Lemma 1] it is not semi-artinian, and so the theorem and
both corollaries apply. In particular, the non-zero minimal localising subcategories of
D(R) do not generate D(R).

4.2. Some good behaviour
We now use the abstract nonsense of Section 2 to show that for a certain class of

absolutely flat rings one does not observe the same interesting behaviour as in the
last section.

Let S be a commutative unital ring such that SpecS is a noetherian topological
space—for instance, S could be a noetherian ring. Since SpecS is noetherian, every
point of SpcDperf(S) ∼= SpecS is visible. Set R = Sabs, and denote by f : S −→ R
the canonical map (see Theorem 3.8 for details). Our first aim is to prove that SpecS
being noetherian implies D(R) is generated by the residue fields of R.

The first lemma we need is just an application of our general nonsense to the
exact, monoidal, and compact object preserving functor Lf∗ : D(S) −→ D(R) given
by taking the left derived functor of f∗ = R⊗S (−).

Lemma 4.15. Let p ∈ SpecS, and denote by P the unique point of SpecR such that
f−1P = p. Then

Lf∗(ΓpS) ∼= k(P ).
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Proof. As in the statement let p be a point of SpecS, and let P be the corresponding
point of SpecR. We are in the situation of Section 2, so we may apply Proposition 2.7
to obtain isomorphisms

Lf∗(ΓpS) = Lf∗(ΓV(p)S ⊗ LZ(p)S)
∼= Lf∗(ΓV(p)S)⊗ Lf∗(LZ(p)S)
∼= Γf−1V(p)R⊗ Lf−1Z(p)R.

As f is a bijection, we have

f−1V(p) \ f−1Z(p) = {P}.

This yields isomorphisms

Γf−1V(p)R⊗ Lf−1Z(p)R ∼= ΓPR ∼= k(P ),

the first by the independence of ΓPR on the subsets used to define it (see [BF11,
Corollary 7.5]) and the second by the observation of equation (1), completing the
proof.

Remark 4.16. Assuming the spectrum of S is noetherian is not essential for the lemma
provided one corrects the statement by considering only visible points (i.e., the points
for which the statement makes sense).

It seems appropriate at this point to briefly remark on actions of tensor trian-
gulated categories as studied in [Ste13] since we will use some of the language of
tensor actions in the sequel. Let (T ,⊗,1) be a rigidly-compactly generated tensor
triangulated category, and let K be a compactly generated triangulated category. A
left action of T on K is a functor

∗ : T × K −→ K

that is exact in each variable, i.e., for all X ∈ T and A ∈ K the functors X ∗ (−) and
(−) ∗A are exact, together with natural isomorphisms

aX,Y,A : (X ⊗ Y ) ∗A ∼−→ X ∗ (Y ∗A)

and

lA : 1 ∗A ∼−→ A

for all X,Y ∈ T , A ∈ K, compatible with the exactness of (−) ∗ (−) and satisfying
associativity and unitality constraints. For example T acts on itself in a natural way
via its monoidal structure.

In such a situation one has a theory of supports for objects of K with values in
Spc T , the spectrum of T . More precisely, one defines for A ∈ K

suppA = {x ∈ Spc T | Γx1 ∗A ̸= 0},

where Γx1T is as in Section 2.1. The hope is that, provided one has a good under-
standing of T , one can use this notion of support to obtain information on the local-
ising subcategories of K. The main technical tool in this regard is the local-to-global
principle; as the name suggests, it allows one to reduce the classification of localis-
ing subcategories of K to studying localising subcategories in the essential images of
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tensoring with the Γx1. We say the local-to-global principle holds for the action ∗ of
T on K if for each A in K

⟨A⟩∗ = ⟨ΓxA | x ∈ Spc T c⟩∗,

where ⟨A⟩∗ and ⟨ΓxA | x ∈ Spc T c⟩∗ are the smallest localizing subcategories of K
containing A or the ΓxA, respectively, and closed under the action of T . If T is
generated by 1, then any localising subcategory of K is automatically closed under
the action ([Ste13, Lemma 3.13]), and so one can just take the smallest localising
subcategories containing the given sets of objects.

While we are giving definitions, let us take this opportunity to clarify what we
mean by the telescope conjecture and introduce a version relative to an action.

Definition 4.17. Let K be a compactly generated triangulated category. We say the
telescope conjecture holds for K if every smashing subcategory of K is generated by
objects that are compact in K.

Now suppose T is a rigidly-compactly generated tensor triangulated category that
acts on K. We say the relative telescope conjecture holds for K with respect to the
action of T if every smashing S ⊆ K that is closed under the action of T is generated
by compact objects of K.

Continuing on after this aside, we now we invoke the hypothesis that SpecS is
noetherian. As we have mentioned earlier, D(S) is always a rigidly-compactly gener-
ated tensor triangulated category with a monoidal model, and, by a result of Thoma-
son [Tho97], SpcDperf(S) is canonically homeomorphic to SpecS. Thus, as SpecS
is noetherian, we may apply [Ste13, Theorem 6.9]: the local-to-global principle holds
for the action of D(S) on itself and the support detects vanishing. In particular, we
have equalities

D(S) = ⟨S⟩ = ⟨ΓpS | p ∈ SpecS⟩. (2)

Combined with the lemma, this has the following consequence.

Proposition 4.18. The derived category D(R) is generated by the residue fields of
R—i.e.,

D(R) = ⟨k(P ) | P ∈ SpecR⟩.

Proof. By (2) S can be built from the ΓpS, so by a standard argument

R ∼= Lf∗S ∈ ⟨Lf∗(ΓpS) | p ∈ SpecS⟩.

Applying the last lemma, this says R lies in the localising subcategory ⟨k(P ) | P ∈
SpecR⟩. This proves the proposition as any localising subcategory of D(R) containing
R must be all of D(R).

Corollary 4.19. If S is a ring with noetherian spectrum, then R = Sabs is semi-
artinian.

Proof. We have proved in Theorem 4.8 that if R is not semi-artinian then the residue
fields do not generate D(R), so, given the proposition, R had better be semi-artinian.
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In fact, we could have proved the proposition by more general methods. The
monoidal functor Lf∗ furnishes us with an action of D(S) on D(R) as defined in
[Ste13]. As we have noted above [Ste13, Theorem 6.9] guarantees this action sat-
isfies the local-to-global principle. Furthermore, we have shown in Lemma 4.15 that
for p ∈ SpecS ∼= SpcDperf(S) the object ΓpS acts on D(R) as k(P ) where P is the
corresponding point of SpecR. Thus the support obtained from the action of D(S)
on D(R) agrees with the homological support on D(R). This essentially proves the
following lemma.

Lemma 4.20. The homological support on D(R) satisfies the local-to-global prin-
ciple—i.e., for A ∈ D(R)

⟨A⟩ = ⟨k(P ) | P ∈ suppA⟩.

Remark 4.21. This demonstrates that, at least in special situations, one can use the
action of some associated tensor triangulated category, for which the local-to-global
principle is known, in order to obtain the local-to-global principle for the category of
interest.

Remark 4.22. At this juncture it is worth making explicit that we are not in an
entirely satisfactory situation: we have shown that the local-to-global principle does
not hold for non-semi-artinian absolutely flat rings and holds for certain semi-artinian
absolutely flat rings, but have made no statements concerning general semi-artinian
absolutely flat rings (there are certainly examples not covered by our current hypoth-
esis). It turns out that the local-to-global principle holds for any semi-artinian abso-
lutely flat ring, not just those we are currently considering, via a general argument
making no use of an auxiliary noetherian ring. This result will appear, as a result of
more general considerations, in future work.

From Lemma 4.20 we deduce a classification theorem for localising subcategories
of D(R).

Theorem 4.23. Let S be a ring with noetherian spectrum, and set R = Sabs. There
is an order-preserving bijection{

subsets of SpecR
} τ //

oo
σ

{
localising subcategories of D(R)

}
,

where for a localising subcategory L and a subset W ⊆ SpecR we set

σ(L) = {P ∈ SpecR | k(P )⊗ L ≠ 0} and τ(W ) = ⟨k(P ) | P ∈ W ⟩.

Proof. The map τ is a split monomorphism with left inverse σ by [Ste13, Proposi-
tion 6.3]. Thus to prove the result we just need to observe that

τσ(L) = τ({P ∈ SpecR | k(P )⊗ L ≠ 0})
= ⟨k(P ) | k(P )⊗ L ̸= 0⟩,

which is precisely L: τσ(L) ⊆ L is immediate as every localising subcategory of D(R)
is a ⊗-ideal and L ⊆ τσ(L) is a straightforward consequence of Lemma 4.20.
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Thus Neeman’s classification [Nee92] extends to the absolutely flat approxima-
tions of rings with noetherian spectrum. As a consequence, we see that, in contrast
with the counterexample of Corollary 4.10, all the localising subcategories of such a
ring are Bousfield classes.

Corollary 4.24. Let R be as in the theorem. Every localising subcategory of D(R)
is a Bousfield class. More precisely, given a subset W ⊆ SpecR with complement V
there is an equality

τ(W ) = ker(
⊕
P∈V

k(P )⊗−).

Proof. We have

σ(ker(
⊕
P∈V

k(P )⊗−)) = {Q ∈ SpecR | k(Q)⊗ ker(
⊕
P∈V

k(P )⊗−) ̸= 0}

= SpecR \ V
= W.

Thus, invoking the theorem, we have τ(W ) = ker(
⊕

P∈V k(P )⊗−), as claimed.

Given our classification result, it is natural to ask if we can settle the telescope
conjecture in this setting. That it holds is an easy consequence of the formal results
we have proved in Section 2.3.

Theorem 4.25. Let S be a ring with noetherian spectrum, and set R = Sabs. The
telescope conjecture holds for D(R).

Proof. Suppose S is a smashing subcategory of D(R), and let S⊥ be its right orthog-
onal, which is also a localising subcategory. By the theorem S and S⊥ are determined
by the subsets σ(S) and σ(S⊥) of SpecR. One can easily check

σS = SpecR \ σS⊥

(cf. [Ste13, Lemma 7.13]). By Proposition 2.14 the subset σS⊥ is proconstructible
in SpecR and hence is closed as SpecR is already equipped with the constructible
topology. Thus σS is open and hence Thomason by Lemma 3.4. This shows S is
compactly generated as, again using the theorem, we have

S = τ(σS) = ΓσSD(R) = ⟨Dperf
σS (R)⟩.

4.3. Absolutely flat schemes
We indicate here how to extend the results we have obtained in Section 4.2 to the

analogous class of schemes. This involves no extra work, as the formalism of tensor
actions allows us to deduce global results affine locally.

Given a scheme X, one can globalise Theorem 3.8 (see [Oli67b]) to obtain a
universal map of schemes Xabs −→ X where Xabs is an absolutely flat scheme; i.e.,
Xabs admits an open affine cover by the spectra of absolutely flat rings. For any open
affine subscheme SpecS of X, its preimage in Xabs is just SpecSabs.
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Theorem 4.26. Let X be a topologically noetherian scheme. The action of D(X) (or
D(Xabs)) on D(Xabs) gives an order-preserving bijection{

subsets of Xabs
} τ //

oo
σ

{
localising ideals of D(Xabs)

}
,

where for a localising ideal L and a subset W ⊆ Xabs we set

σ(L) = {x ∈ Xabs | k(x)⊗ L ̸= 0} and τ(W ) = ⟨k(x) | x ∈ W ⟩⊗.

Proof. Given Theorem 4.23, one just chooses an open affine cover of Xabs and applies
[Ste13, Theorem 8.11].

Theorem 4.27. Let X be a topologically noetherian scheme. The relative telescope
conjecture holds for the action of D(Xabs) on itself; i.e., every smashing tensor ideal
of D(Xabs) is generated by objects of Dperf(Xabs).

Proof. Again this follows from the result in the affine case, namely, Theorem 4.25.
One chooses an open affine cover for Xabs and applies [BF11, Theorem 6.6].
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