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COHOMOLOGY OF ALGEBRAS OVER WEAK HOPF ALGEBRAS
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(communicated by Claude Cibils)

Abstract
In this paper we present the Sweedler cohomology for a
cocommutative weak Hopf algebra H. We show that the sec-
ond cohomology group classifies completely weak crossed prod-
ucts, having a common preunit, of H with a commutative left
H-module algebra A.

1. Introduction

In [15] Sweedler introduced the cohomology of a cocommutative Hopf algebra
H with coefficients in a commutative H-module algebra A. We will denote it as
Sweedler cohomology H,,, (H®, A), where ¢4 is a fixed action of H over A. Two
interesting examples are the following: If H is the group algebra kG of a group G and
A is an admissible kG-module, the Sweedler cohomology H¢ , (kG, A) is canonically
isomorphic to the group cohomology of G in the multiplicative group of invertible
elements of A. If H is the enveloping algebra UL of a Lie algebra L, for ¢ > 1, the
Sweedler cohomology H, ; L(UL, A) is canonically isomorphic to the Lie cohomology
of L in the underlying vector space of A. Also, in [15] we can find an interesting
interpretation of Hf, L(H, A) in terms of extensions: this cohomology group classifies
the group of equivalence classes of cleft extensions, i.e., classes of equivalent crossed
products determined by a 2-cocycle. This result was extended by Doi [5], proving
that, in the non-commutative case, there exists a bijection between the isomorphism
classes of H-cleft extensions B of A and equivalence classes of crossed systems for
H over A. If H is cocommutative, the equivalence is described by HiZ(A) (H,Z(A)),
where Z(A) is the center of A.

With the recent rise of weak Hopf algebras, introduced by Béhm, Nill, and Szla-
chéanyi [3], the notion of crossed product can be adapted to the weak setting. In
the Hopf algebra world, crossed products appear as a generalization of semi-direct
products of groups to the context of Hopf algebras and are closely connected with
cleft extensions and Galois extensions of Hopf algebras [2]. In [4] Brzezinski gave an
interesting approach that generalizes several types of crossed products, even the ones
given for braided Hopf algebras by Majid [12] and Guccione and Guccione [8]. On the
other hand, in [10] we can find a general and categorical theory, the theory of wreath
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products, which contains as a particular instance the crossed structures presented by
Brzezinski.

The key to extending the crossed product constructions presented in the previous
paragraph to the weak setting is the use of idempotent morphisms combined with the
ideas given in [4]. In [1] the authors defined a product on A® V, for an algebra A
and an object V' both living in a strict monoidal category C where every idempotent
splits. In order to obtain that product we must consider two morphisms 1/1{3 Ve
A=AV and ot : V@V — A® V that satisfy some twisted-like and cocycle-like
conditions. Associated to these morphisms it is possible to define an idempotent
morphism Vgy : A®V — A® V and the image of V 45y inherits the associative
product from A ® V. In order to define a unit for Im(V a5y ), and hence to obtain
an algebra structure, we require the existence of a preunit v: K - A® V. In [6] we
can find a characterization of weak crossed products with a preunit as associative
products on A ® V that are morphisms of left A-modules with preunit. Finally, it
is convenient to observe that, if the preunit is a unit, the idempotent becomes the
identity and we recover the classical examples of the Hopf algebra setting. The theory
presented in [1, 6] contains as a particular instance the one developed by Brzeziriski
in [4]. There are many other examples of this theory, such as the theory of wreath
products presented in [10] and the weak crossed products for weak bialgebras given
n [14]. Recently, in [7] we proved that partial crossed products [13] are particular
instances of weak crossed products.

Then, if in the Hopf algebra setting the second cohomology group classifies crossed
products of H with a commutative left H-module algebra A, what about the weak set-
ting? The answer to this question is the main motivation of this paper. More precisely,
we show that if H is a cocommutative weak Hopf algebra and A is a commutative left
H-module algebra, all the weak crossed products defined in A ® H with a common
preunit can be described by the second cohomology group of a new cohomology that
we call the Sweedler cohomology of a weak Hopf algebra with coefficients in A.

The paper is organized as follows: In Section 2, after recalling the basic properties of
weak Hopf algebras, we introduce the notion of weak H-module algebra and define the
cosimplicial complex Reg, , (H*®, A) for a cocommutative weak Hopf algebra H and a
commutative left H-module algebra A. Then, we introduce the Sweedler cohomology
of H with coefficients in A as the one defined by the associated cochain complex. In
section 3 we present the results about the characterization of weak crossed products
induced by morphisms ¢ € Reg, ,(H 2 A), proving that the twisted and the cocycle
conditions of the general theory of weak crossed products can be reduced to twisted
2-cocycle conditions for the morphism o. Also, in this section we introduce the normal
condition that permits us to obtain a preunit in the weak crossed product induced
by the morphism o. Finally, in section 4 we obtain the main result of this paper that
assures the following: There is a bijective correspondence between Hi L(H,A) and
the equivalence classes of weak crossed products of A ®, H, where « : HQ H — A
satisfies the 2-cocycle and the normal conditions.

2. The Sweedler cohomology in a weak setting

From now on C denotes a strict symmetric category with tensor product denoted by
® and unit object K. With ¢ we will denote the natural isomorphism of symmetry, and
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we also assume that C has equalizers. Then, under these conditions, every idempotent
morphism q : Y — Y splits, i.e., there exist an object Z and morphisms i : Z — Y and
p:Y — Z such that ¢ =io0p and poi =idz. We denote the class of objects of C by
|C|, and for each object M € |C|, we denote the identity morphism by idp; : M — M.
For simplicity of notation, given objects M, N, P in C and a morphism f: M — N,
we write P® f for idp ® f and f ® P for f ® idp.

We want to point out that there is no loss of generality in assuming that C is strict,
because by Theorem 3.5 of [9] (this result implies Mac Lane’s coherence theorem) we
know that every monoidal category is monoidally equivalent to a strict one usually
denoted by C*'". Then the results proved in this paper hold for every non-strict
monoidal category with equalizers.

We assume that the reader is familiar with the notion of algebra, coalgebra, mod-
ule, and comodule in a monoidal setting. For an algebra in C, A= (A,na,ua),
na : K — A denotes the unit and ps: A® A — A the product. If A, B are alge-
bras in C, the object A ® B is an algebra in C where nagp = na @ np and pagp =
(a @ pp)o (A® cp,a ® B). Similarly, for a coalgebra D = (D,ep,dp),ep: D — K
denotes the counit and dp : D — D ® D the coproduct. When D, E are coalgebras
in C, dpgr = (D®cp,r®FE)o(dp ®dg) is the coproduct of the coalgebra D @ F
and epgr = €p ®ep its counit. In this paper all algebras are associative and all
coalgebras coassociative.

If A is an algebra, B is a coalgebra, and o : B — A, 8 : B — A are morphisms, we
define the convolution product by a A = pa o (a® ) 0 dp.

By weak Hopf algebras we understand the objects introduced in [3] as a general-
ization of ordinary Hopf algebras. Here we recall the definition of these objects in the
symmetric monoidal setting.

Definition 2.1. A weak Hopf algebra H is an object in C with an algebra structure
(H,nu,pm) and a coalgebra structure (H,ep,dy) such that the following axioms
hold:
(al) 6w opn = (p @ pu) o dueH.
(a2) egopmo(pp ® H) = (en ®em) o (uy ® pu) o (H ® 6y ® H)
= (5H ®€H) o (,LLH ®,UH) o (H® (CH,H O5H) ®H).
=H & (paocyn)@H)o 0y @0y)o (g @ nu).
(a4) There exists a morphism Ay : H — H in C (called the antipode of H) satisfying
(ad-1) idg AN g = ((egopg)®H)o(H®chypy)o ((0gony)® H),
(a4-2) Ag Nidy = (HQ (egopum))o(cun®H)o(H® (dgonu)),
(a4—3) Ag Nidg AN = Ag.
Remark 2.2. If H is a weak Hopf algebra in C, the antipode Ay is unique, antimulti-
plicative, and anticomultiplicative, and leaves the unit and the counit invariant:

Agopmg =proAg @Ag)ocam, Omgolg=camro(Ag®Ag)ody, (1)
AHONH =MNH, EHOAH =EH. (2)
If we define the morphisms I1% (target), II£ (source), ﬁz, and ﬁ,’ﬁ by

I = ((eg opn) ® H) o (H @ cpu) o (6u onm) @ H),
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I = (H® (eg o pn)) o (can @ H)o (H® (5 onm)),
—L
Iy =H®&Enoun))o (6 onu)® H),

Ty = (e o pn) @ H) o (H & (61 0 nar)),

it is straightforward to show (see [3]) that they are idempotent and IIL, ITE satisfy
the equalities

0k =idg Ag, TR =g Aidg, T ATE =10%, TOEATE =TI%. (3)
Moreover,

Mol =1, N olly =T, il =1, foll; =1f, (4)
IO, ollh =T}, Mol =18, Tpollh =1k, Mpoll=T. (5)
For the target and source morphisms we have the following identities:

5 o ppro(HRT,) =T o ppy, TR o ppr o (T @ H) = TR o py, (6)

(HoIE) oy oIl =6 o1lh, (IIE ® H) o6y o IE = 65 o TIE, (7)
pr o (H @) = (g o pr) © H) o (H® ) o (O @ H), (8)
(H®Ig) ooy = (uu @ H) o (H @ i) o (6m o nur) © H), (9)
pr o (I ®@ H) = (H @ (e o pnr)) o (em @ H) o (H ® ) (10)
(I © H) 06y = (H @ pgr) o (cum @ H) o (H ® (65 © nir)) (11)

o (M ® H) = (e o pr) ® H) o (H @ 651), (12)
i o (H @ Tg) = (H @ (g 0 ) © (0 @ H), (13)
([, ® H)ody = (H® ) o (61 o n) @ H), (14)
(H @ Tl) 00 = (i @ H) o (H & (3u 0 111)), (15)

Finally, if H is (co)commutative we have that Ay is an isomorphism and A;;* = Ag.

Example 2.3. As group algebras and their duals are natural examples of Hopf alge-
bras, groupoid algebras and their duals provide examples of weak Hopf algebras.
Recall that a groupoid G is simply a small category in which every morphism is an
isomorphism. In this example, we consider finite groupoids, i.e., groupoids with a
finite number of objects. The set of objects of G will be denoted by Gy and the set of
morphisms by G;. The identity morphism on x € G will also be denoted by id,, and
for a morphism o : x — y in G; we write s(o) and (o), respectively, for the source
and the target of o.
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Let G be a groupoid, and let R be a commutative ring. The groupoid algebra is

the direct product
RG = €P Ro,
ceGy

with the product of two morphisms being equal to their composition if the latter is
defined and 0 otherwise, i.e., o.1 = o o7 if s(o) =t(7) and o.7 =0 if s(o) # ¢(7).
The unit element is 1rq = ZazeGo id;. Then RG is a cocommutative weak Hopf
algebra, with coproduct dgg, counit erg, and antipode Arg given by the formulas
Src(0) =0 ® 0, erg(o) =1, and Agg(o) = o~ . For the weak Hopf algebra RG the
target and source morphisms are, respectively, 15 (o) = idy () HE (o) = idg ().

Definition 2.4. Let H be a weak Hopf algebra. We will say that A is a weak left
H-module algebra if there exists a morphism ¢4 : H ® A — A satisfying.

(b1) pao(nu® A) =ida,

(b2) pao(H®@pa)=pao(pa®@pa)o(HRcga®A)o(dg®@A® A),

(b3) wao (g ®@na)=pac(H® (pac(H®@na))),

and any of the following equivalent conditions holds:

(b4) pao (I ®A) =pao((pao(H@na)® A).

(b5) pao (Ml @A) = paocano((pao(Hona)® A).
(b6) @ao (Il @na) = a0 (HQna).
(b7) a0 (g ®na) = pao (H®na).

If we replace (b3) by

(b3-1) pao(un ® A) = pac (HRpa),
we will say that (A, p4) is a left H-module algebra.

Remark 2.5. Let H be a weak Hopf algebra. For n > 1, we denote by H™ the n-fold
tensor power H ® --- ® H. By H° we denote the unit object of C, i.e., H® = K.

Ifn>2 my denoteb the morphism m%, : H" — H defined by m?, = py and by
my =m?% o (H® ug), - ,my =miy to(H" 2 ® uy) for k > 2. Note that by the
associativity of pg we have m%, = m7 o (ug ® H”fz)

Let (A, pa) be a weak left H-module algebra and n = 1. With ¢7 we will denote
the morphism ¢% : H" ® A — A defined as ¢} = p4 and ¢ = ps0 (H® ¢y~ .
If n > 1, we have that w4 0 (m} @na) = % o (H" ' ® (pa o (H ®@na)) holds. In
what follows, we denote the morphism @4 o (m}; ® na) by u, and the morphism
wao(H®na) by ui. Note that, by (b3) of Definition 2.4, for n > 2, the equality

=% o (H" ! ®uy) holds.

Finally, with dy» we denote the coproduct defined for the coalgebra H™. Then
Spn = Oprgpn—r = Opn—kgpk, for k€ {1,...,n—1}.

Proposition 2.6. Let H be a cocommutative weak Hopf algebra. The following iden-
tities hold:

(i) dp oTlk, = (L, @ T1L,) 0 6 for I € {L, R}.

(i) I}, @ H)odgollfy = (H®1I})ody oI}y =g o1}, for I,J € {L, R}.
(ii) (g @ H)ody opm = (g @ pw)o (0g @ H).
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. R R
(iv) (H®Ilg)odnopn = (ug ®@1lf) o (H® dn).

Proof. First note that if H is cocommutative, 1%, = ﬁ; for I € {L, R}. The proof
for (i) with I = L follows by

(5H0Hf{ = pagH °© (05 ® (0g 0o Ag)) o0y
= ,U/H®HO(6H® (CH,H o()\H ®)\H)06H)) 06H

where the first equality follows by (al) of Definition 2.1, the second by the anti-
multiplicative property of Ap, and the third one relies on the naturality of ¢, the
coassociativity of 0y, and the cocommutativity of H.

The proof for I = R is similar.

Note that, by (i) and the idempotent property of II%;, we have (ii) for I = J. If
I=L and J =R, by (4) we have

(s ® H) 0 6 o I = (T} o T1) @ ITR) 0 65y = (I o Thyy) @ 11E) 0 6y
= (M @TIE) 06y = (E @ TIE) 0 65y = 6y o TIE.

The proof for I = R and J = L is similar. On the other hand, by the usual argu-
ments, we get (iii):

(g ® H) o 8y 0y = (I @ H) 0.8y 0 = (H @ pg) © (8 0 1) © purr)
= (T ® pr) o (0 © H) = (L @ pupr) o (0 @ H).

The proof of equality (iv) follows a similar pattern and we leave the details to the
reader. O

Proposition 2.7. Let H be a cocommutative weak Hopf algebra. The following iden-
tities hold:
(Z) 6H2 O(SH = (6H ®6H) O(SH.
(ZZ) (5H7L+1 o (Hl ®6H ®Hn_i_1) = (Hz ®6H ®Hn_1 X (SH ®Hn—i_1) 06H77.
forn>=2andic{0,---,n—1}.
(iii) dpn o (H' @ UL, @ H* 1) = (Hio UL @ H" ' @Il @ H" 1) o §yn
forT e {L,R},n>2andic{0,---,n—1}.
(iv) Spn+r o (H' @ (I @ H) 0 dpy) @ H' 1) ,
=(H'®@ (UL @ H)ody)@ H" ' @ (I}, ® H) 0 dy) @ H" 1) o dpyn
forT e {L,R}, n>2andic {0,---,n—1}.
(v) Opn+1 0 (H'® (H®1L) o dy) @ HM 171 ‘
=(H'® (HeIlj)ody) @ H" '@ (H®1}y) 0 dy) @ H" "~ 1) 0 dpn
forT e {L,R},n>2andic{0,---,n—1}.

Proof. Assertion (i) follows by the coassociativity of éi and the cocommutativity of
H. The proof for (ii) can be obtained using (i) and mathematical induction. Also, by
this method and Proposition 2.6 we obtain (iii), (iv), and (v). O

Remark 2.8. If H is a weak Hopf algebra, we denote by Hj the object such that
pr oty =tdm,, where i1, pr, are the injection and the projection associated to the
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target morphism I1%. If H is cocommutative, by Proposition 2.6(i) we have that Hy, is
a coalgebra and the morphisms iy, py, are coalgebra morphisms for 0y, = (pr, ® pr) ©
dgoip and ey, =ep oir. Therefore, dy, opr = (prL ®pr) o0 and e, opr, =ep.

Proposition 2.9. Let H be a weak Hopf algebra. Then if n > 3 the following equality
holds:

(Hifl ®,L‘H ®Hn7i71 ®Hi71 ®,UJH ®H’n7i71)05H” _ 6Hn—1 O(Hi71 ®,L‘H ®Hn7i71),

(16)
forallie{l,--- ,n—1}.

Proof. First note that, by (al) of Definition 2.1, we have that (ug ® ug)odyz =
Sg o pr- Then, using this identity, we obtain (ug @ H" ? @ ug @ H""2) o dgn =
Spm—1 0 (ug ® H"2) and, as a consequence, (16) holds. O

Proposition 2.10. Let H be a weak Hopf algebra. The following identity holds for
n>=2:

6Hom%=(mz®m%)o(5,qn. (17)
Proof. Asin the previous proposition we proceed by induction. Obviously the equality

(17) holds for n = 2. If we assume that it is true for n = k, so it is for n = k + 1 because

(mlg @ mig™) 0 dgres = (g o (mfy ® H)) @ (ug o (mfy @ H))) 0 dpran

= pren © (M @ miy) 0 0)) @ 0n) = 0p o pur © (mlfy @ H) = Sz o miy™.
O

Proposition 2.11. Let H be a weak Hopf algebra, and let (A, p4) be a weak left
H-module algebra. Then, if n > 1, the equality

Uy A Up = Uy, (18)
holds.

Proof. If n>2, by (17) and (b2) of Definition 2.4 we obtain (18). If n =1, the
equality follows from (b2). O

Definition 2.12. Let H be a cocommutative weak Hopf algebra, and let (A, p4)
be a weak left H-module algebra. For n > 1, with Reg,,(H", A) we will denote the
set of morphisms o : H" — A such that there exists a morphism o= : H" — A (the
convolution inverse of o) satisfying the following equalities:
(cl) oAt =0" Ao = uy,.
(c2) oNocTt Ao =0.
(€3) ot AoAno L =01,

We denote by Reg,,(Hr,A) the set of morphisms g : Hy — A such that there
exists a morphism g~!: Hy — A (the convolution inverse of g) satisfying

1 1

ghg =g " Ag=wo, gAg " Ag=yg, g AgAg T =g,

where ug = uj oir,. Then, by (b7) of the definition of weak H-module algebra, we
have uy = ug o pr..



348 J.N. ALONSO ALVAREZ, J.M. FERNANDEZ VILABOA AND R. GONZALEZ RODRIGUEZ

Proposition 2.13. Let H be a cocommutative weak Hopf algebra and let (A, ) be a
weak left H-module algebra. Then for all o € Reg,,(H" ™!, A) the following equalities
hold:

(i) co(H'® (Il @ H)ody) @ H* 1) =0 o (H' ®@ny ® H"™%) for all i in the
set {0,...,n—1}.
(i) oo (H" 1@ (H®IE)ody)) =00 (H" @ng).
Proof. First note that if o € Reg,,, (H" ™!, A), by Proposition 2.7(iv) and the equality
H%I Aidyg = idg, we obtain that
oco(H @ (I ® H)ody) ® H" ') € Reg,, (H", A)

with inverse 0! o (H! @ ((I14 ® H) 0 ) ® H"~*~1). Moreover, by the naturally of
¢ and the equality (9), we obtain (i). The proof for (ii) is similar using (11) and we
leave the details to the reader. O

Remark 2.14. Let H be a cocommutative weak Hopf algebra, and let (A,p4) be
a weak left H-module algebra. Then uy € Reg,,(Hpr,A), u, € Reg,,(H", A) and
the sets Reg,,(Hr,A), Reg,,(H™, A) are groups with neutral elements u and
Up, respectively. Also, if A is commutative, then we have that Reg,,(Hr,A) and
Reg,, (H™, A) are abelian groups.

If (A, pa) is a left H-module algebra, the groups Reg,, (Hr,A), Reg,,(H",A),
n > 1 are the objects of a cosimplicial complex of groups with coface operators defined
by

Ooi : Regy, (Hr,A) — Reg,,(H,A), i<{0,1}

B0,0(9) = pao (H® (gopr o1If)) o 6u, do1(9) =gopr,
On-1, : Regy,(H* ', A) = Reg,,(H", A), k>2, i€{0,1,--- ,k}
vao(H®o), i=0
Or-1:(0) =L oo (H 1 ®@uy @ H-171), ie{l,---,k—1}
oo (H*2® (ugo (H®IL))), i=F,
and codegeneracy operators defined by s10 : Reg,,(H, A) = Reg,, (Hr, A),
s1,0(h) =hoig,
and sgi1, : Regy, (H*1, A) — Reg,,(H* A), k>1, i€ {0,1,---,k}
Skt1,i(0) =00 (H' @1y @ Hk_z)
The morphism 0y, is a well-defined group morphism because

00,0(9) N Oo,0(f)
= piao((pao(H® (goprollf}))) ® (pao (H® (foprollf))))odyz0dn
= pao(H&((gopr o) A(fopr ollf))) o dn
=pao(H® (((gopr) A(fopr)) ollf)) odn
= 0,09 N f)s

where the first equality follows by Proposition 2.7(i), the second one by the naturality
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of ¢ and (b2) of Definition 2.4, the third one by (i) of Proposition 2.6, and in the last
one was used that py, is a coalgebra morphism (see Remark 2.8).

Using that py, is a coalgebra morphism, we obtain that 8y, is a group morphism.
Moreover, by (b2) of Definition 2.4, (al) of Definition 2.1, Proposition 2.9, and Propo-
sition 2.6(i), we have that dy_1; are well-defined group morphisms for k > 1.

On the other hand, by Proposition 2.6(i) we have that s ¢ is a group morphism, and
by Propositions 2.6 and 2.13 we obtain that s;1,; are well-defined group morphisms
for k > 1.

We have the cosimplicial identities from the following: For j =1, by Proposi-
tion 2.6(iv) and the condition of left H-module algebra for A, we have 01,1(00,0(g)) =
01,0(00,0(g)). Moreover, if H is cocommutative, 1%, = ﬁIL{ and as a consequence 115 o
£ = I14. Then by Proposition 2.6(i) and (iv) and the properties of left H-module
algebra we get 1 2(00,0(g)) = 91,0(90,1(g)). Also, by (6) we obtain that 01 2(9,1(g)) =
01,1(01,0(9))- In a similar way, by the associativity of ppr, O j 0 Op—1,; = Ok 0 Op—1,j—1
holds for j > i and k > 1.

On the other hand, trivially sy_1j 0 Sk = Sk—1, © Sk,j+1,7 = ¢ Moreover, it is
easy to show that s1,0(00.0(9)) = 9 = 51,0(00,1(g))- Also, we have s20(01,0(h)) =h =
52,0(01,1(h)), $2,0(01,2(h)) = hoIlf = 8y 1(s1,0(h)),

52,1(01,0(h)) = pa o (H® (holl oIIff)) 0 65 = do,0(s1,0(h)),
and s2.1(01,1(h)) = h = s2.1(d12(h)) because 11 o ng = ny.
Finally, for £ > 2, the identities
Ok—1,i © Sk,j—1, <]
Skt1,5 © Okyi = § WReg, , (aF,4), =], i=j+1
Ok—1,i-108k, 1>j+1
follow as in the Hopf algebra setting.
k41
Let DZZA = Ok,o N\ 5‘,;% ARERWAY alg k1421 be the coboundary morphisms of the cochain
complex

D? Dl D2
Regy, (Hp, A) =3 Reg,,(H,A) =3 Reg,,(H* A) -5 ...
k+1

Dk-1 Dk D
- A Reg,,(H*, A) =3 Reg,,(H*, A) =4 ...
associated to the cosimplicial complex Reg,,(H*®, A).

Then, when (A, ¢.4) is a commutative left H-module algebra, (Reg,, (H*, A), D¢, )
is a cosimplicial complex in the category of abelian groups that gives the Sweedler
cohomology of H in (A, p4). The kth group will be defined by

K er(DfZ A)
Im(D31)
for k> 1 and Ker(DY ) for k = 0. We will denote it by H’;A (H, A).
The normalized cochain subcomplex of (Reg, , (H®, A), D3, ) is defined by

k
R (1, 4) = () Ker(on 1),
=0
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Reg;jA (Hp,A) = Reg,,(Hr,A)

and DET the restriction of D to Regf (H*®, A).

We have that (Reg}, (H®, A), D3) is a subcomplex of (Reg, ,(H®, A), D ) and
the injection map induces an isomorphism of cohomology (see [11] for the dual result).
Note that

Reg;fA(H, A) = Ker(s1,0) = {h € Reg,,(H,A); hoir =up}
and
Reg}, (H?, A) = Ker(sz0) N Ker(ss,1)
= {0 € Regy,(H*,A); 0o (ny ® H) = 0o (H@nu) = w1 }.
The following proposition gives another characterization of the morphisms in the

group Reg} (H,A).

Proposition 2.15. Let H be a weak Hopf algebra, and let (A, p4) be a weak left
H-module algebra. If h : H — A is a morphism satisfying

AAR =h " *Ah=u;, hAh *Ah=h, h'AMAR I =h"1,
the following equalities are equivalent:
(i) honm =na.
(i) hollk = u;.
Proof. The assertion (ii) = (i) follows by h o ng = h o Il o ng = uy o ng = na. Now
we get (i) = (ii) because
holll = (ug Ah)ollh
= [A O U2®h)O(H®CH,H)O((5HO77H)®H%{)
=pao(pa®@h)o(H®@cha)o ((dgonm) @ur)
—L
pa®@h)o(lly @cha)o((0n ony) @ ur)
(Haocaao(uy®A))@h)o(H@cha)o ((0n o) ®u)

:/’LAO
:/‘LAO
= Uuz.

~ o~ o~ o~

The first equality follows by the properties of ki, the second one by the naturality of
c and the coassociativity of dy and (8), the third one by (b3) and (b6) of Definition 2.4,
the fourth one by (14), the fifth one by (b5) of Definition 2.4, and the last one by the
properties of h and (ii). O

Remark 2.16. Note that as a consequence of Proposition 2.15:

Reg;fA(H,A) ={h € Reg,,(H,A); hong =na}.

3. Weak crossed products for weak Hopf algebras

In the first paragraphs of this section we recall some basic facts about the general
theory of weak crossed products in C introduced in [6] particularized for a weak Hopf
algebra H.
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Let A be an algebra, and let H be a weak Hopf algebra in C. Suppose that there
exists a morphism ¢f : H ® A — A ® H such that the following equality holds:

(ha ® H) o (A® ¢jp) o (i ® A) = jr o (H ® pa). (19)
As a consequence of (19), the morphism Vagy : A® H - A® H defined by
Vagn = (na® H) o (A ¢j) o (A® H @na) (20)

is idempotent. Moreover, it satisfies Vagn o (ta @ H) = (ua @ H) 0 (A® Vagn),
i.e., Vagn is a left A-module morphism (see Lemma 3.1 of [6]) for the regular action
Vapg = pa® H. With AX H, ipagg : AXH — A® H, and pagyg : AQ H — A X
H we denote the object, the injection, and the projection associated to the factoriza-
tion of V ogp. Finally, if wfl satisfies (19), the following identities hold:

(MA(g)H)o(A@w‘;})o(VA@H@A): (HA®H)°(A®w?I)
= Vagn o (ua® H) o (A bp).

From now on we consider quadruples Ay = (4, H, 1/11‘3, Jl‘f}), where A is an algebra,

H an object, ¥4 : H® A — A® H a morphism satisfiying (19), and o4y : H ® H —
A ® H a morphism in C.
We say that Ay = (A, H,#, 04) satisfies the twisted condition if

(NA®H)O(A®¢}3)°(U§®A):(MA®H)°(A®U§)O(¢§®H)O(H®w%))
22

(21)

and that the cocycle condition holds if
(ma®H)o(A®oy)o (o @ H) = (pa®H)o(A@ o) o (b ® H) o (H @ o).
(23)
Note that, if Ay = (A, H, wfl, a}‘}) satisfies the twisted condition, in Proposition
3.4 of [6] we prove that
(na®H)o(A®og) o (¥5; © H) o (H® Vagn)

4
Vs o (ia ® H) o (A© o) o (6 & H), 2D

Vagn o (pa® H) o (A®ofy) o (Vagn ® H) = Vagm o (pa® H)o (A® ogy).
(25)
Then, if V4w 0 04y = 0y, we obtain
(ha® H)o(A®of) o (@ H)o(H® Vagn)=(na® H) o (AR afp) o (v @ H),
(26)
(1a® H)o (A aft) o (Vagn ® H) = (ua © H) o (A® ofy). (27)

In what follows, and taking into account (22) and (23), we will consider without
loss of generality that V g m © Ufl = Uf} holds for all quadruples Ay = (A, H, 1/)%, U}f})
(see Proposition 3.7 of [6]).

For Ay = (A, H, ¢4, 04) define the associated product

pagh = (pa® H) o (na®ofp) o (A® Y @ H), (28)
and let pax g be the restriction of pagy to A X H, i.e.,

HAxH = PAgH © fagH © (lagH @ tagH).- (29)

If the twisted and the cocycle conditions hold, the product pagp is associative and
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normalized with respect to Vagy (i.e., Vagn o tagn = tagn = tagH © (Vagy ®
Vagr)) and, by the definition of pagm, the equality pagn o (Vagn @ AQ H) =
tagm holds and therefore pagm o (A® H ® Vagn) = ftagn- Due to the normality
condition, pax g is associative as well (Proposition 2.5 of [6]). Hence we have the
following definition:

Definition 3.1. If Ay = (A, H, ¥, o) satisfies (22) and (23), we say that the pair
(A® H, pagm) is a weak crossed product.

The next natural question that arises at this point is if it is possible to endow
A x H with a unit, and hence with an algebra structure. As we recall in [6], in order
to do that we need to use the notion of preunit to obtain an unit in A x H. In our
setting, if A is an algebra, H an object in C, and magp is an associative product
defined in A ® H, a preunit v : K — A ® H is a morphism satisfying

Maga (AR HQV)=magno(V @A H)=magno(A® H® (magn o (v v))).
(30)
As we have shown in [6], if (A ® H, pagm) is a weak crossed product with a preunit

v such that the equalities

(ha®H)o(A® o) o (Yip @ H) o (H®v) = Vagpg o (na ® H), (31)
(La® H)o(A®op)o(v®H)=Vagno(na® H), (32)
(ha®@H)o(A® ) o (v® A) = (ua® H) o (A® V) 33)

hold, then A x H is an algebra with the product defined in (29) and unit naxpg =
pA®H oV.

Definition 3.2. Let H be a weak Hopf algebra, let (A4, ¢ 4) be a weak left H-module
algebra, and let 0 : H ® H — A be a morphism. We define the morphisms 1/1}3 TH®
A—-A®H andoy :HRH - AR H by i = (pa®@ H)o (H®cg.a)o (0g ® A)
and 04y = (0 @ fugr) 0 Sppe.

Proposition 3.3. Let H be a weak Hopf algebra, and let (A, o) be a weak left H-
module algebra. The morphism 14 defined above satisfies (19). As a consequence, the
morphism ¥V agm, defined in (20), is an idempotent and the following equalities hold:

Vagn = ((nao (A®u1)) @ H) o (AR dp), (34)
ILLAO(U1®<,0A)O(5H®A):<,0A, (35)

(Ba ® H) o (ur ® 957) 0 (0 @ A) = ¥y, (36)

(A®em) oy o (H®na) = ui, (37)

(na ® H) o (u1 @ ca)o (0n @ A) = (pa ® H) o (A@ cp,a) o (Vf; 0 (H®na)) ® A),
(38)

(A®en)oVagn = paoc (A®ur), (39)

(A®dg)oVagy = (Vaga @ H) o (AR dn). (40)

Proof. First note that, by the naturality of ¢, the coassociativity of dg, and (b2)

of Definition (2.4), we obtain that 14} satisfies (19). As a consequence, Vg g is an
idempotent and (34), (37), and (39) follow easily from the definition of ¥4. On the
other hand, (35) follows by (34) and (b2) of Definition 2.4. Analogously, by (b2) of
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Definition 2.4 we obtain (36). Finally, the equality (40) follows from (34) and the
coassociativity of dg, and (38) is an easy consequence of the naturality of c. O

Proposition 3.4. Let H be a weak Hopf algebra, let (A, ) be a weak left H-module
algebra, and let o : H® H — A be a morphism. The morphism Uﬁ introduced in

Definition 3.2 satisfies the following identity:
(A®bu) o ofs = (o @ ) 0 by (41)

Proof. The proof is an easy consequence of (al) of Definition 2.1, the coassociativity
of 0, and the naturality of c. O

Proposition 3.5. Let H be a cocommutative weak Hopf algebra, let (A, ¢a) be a
weak left H-module algebra, and let o € Regy, , (H?, A). The morphism 01‘3 introduced
in Definition 3.2 satisfies the following identities:

(i) Vaguoop =oj

(i) (A®eg)ooly =o0.
Proof. By Proposition 3.4 and the properties of o, we have that

Vagn o ofp = ((nao (A®u1)) ® H) o (A®dy) o ogy
=((pao(A@w)) @ H)o (05 @ pr) 00z = (0 Ao~ " No) @ pw) 0 bz = oy,

(ii) follows by (39) and (i) because

(A®6H)oof1 = (A®£H)OVA®H00§ :,uAO(A®u1)oafI =0cAuy=o0. O
Remark 3.6. Let H be a cocommutative weak Hopf algebra, let (A4, ¢ 4) be a weak left
H-module algebra, and let o € Reg,, (H?, A). Note that, by Propositions 3.3, 3.4,
and 3.5, we have a quadruple Ay = (A, H, ¥4, 04) such that 14 satisfies (19) and
VagH © Ufl = Ufl.
Definition 3.7. Let H be a cocommutative weak Hopf algebra, let (A, v 4) be a weak
left H-module algebra, and let o € Reg,, (H?, A). We say that o satisfies the twisted
condition if

puao((paoc(H®epa)@A)o(HRH®caa)o (HRH®0o)ody2) @A)
= pao(A®pa)o(of ® A).

(42)
If
02,3(0) NOa1(0) = O2,0(0) A D2.2(0) (43)
holds, we will say that o satisfies the 2-cocycle condition.
Remark 3.8. For a weak Hopf algebra H, the idempotent morphisms
Qfon = ((cnopn) ®HRH)0odpgn : H® H — H® H, (44)
QFon=HH® (cgopun))oduen  HOH - H® H (45)

satisfy the identities
o = ((pr o (H@ 1)) © H) o (H @ 8pr), (46)
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Vo = (H © (pu o (I @ H)) o (0 @ H). (47)
By (al) of Definition 2.1 we obtain that
HH © QILJQ@H = HHO Qg@H = HH, (48)

and it is easy to show that, if we consider the left-right H-module actions and the left-
right H-comodule coactions pggy = g @ H, ¢ggn = H @ ug, ogen = 0y @ H,
pren = H®dg on H® H, we have that QILLI®H is a morphism of left and right H-
modules and right H-comodules and Q§® g is amorphism of left and right H-modules
and left H-comodules. Moreover, if H is cocommutative it is an easy exercise to prove
that Qf{® = (2%@ g and the following equalities hold:

SHen °Uey = (H®H @ Qjgy) 0 dnen = (Qjey ® H® H) o dgen.  (49)
As a consequence,
Swem o Uen = Qen @ Vren) © Onsn- (50)
Then, if H is cocommutative, we will denote the morphism QF . , by Q3.
Proposition 3.9. Let H be a cocommutative weak Hopf algebra, let (A, p4) be a
weak left H-module algebra, and let o € Reg,,(H?, A). The following identities hold:
(i) 00Q% =o0.
(ii) o 0 Q2 = aih.
(iii) (A®Q%)o(ca@H) = (0 ® H)o (H®Q%).
(iv) O23(c) = (0 ®ep)o (H®Q%).
Proof. To prove (i) we first show that ug o Q% = uy. Indeed, by (48) we have
uz 0 gy = a0 (1m0 Q) ®14) = a0 (1 @ 1a) = .
Then (i) holds because, by (49), we obtain
o=0cNo Ao =pao(ua®c)ody: =pso((uz00%)®@0c)ody:
=pao(ua®0)odpg200y =(ANo ' ANa)o Q3 =000Q3.

By (49) and the properties of (i) we have o4 0 Q% = ((0 0 Q%) ® ) 0 Sz = 0.
Then (ii) holds.

Using that Q% is a morphism of left H-comodules and H-modules, we obtain (iii).
Finally, (iv) is a consequence of (46). O

Proposition 3.10. Let H be a cocommutative weak Hopf algebra, let (A, ) be a
weak left H-module algebra, and let o € Reg,,(H?, A). Then o satisfies the 2-cocycle
condition if and only if the equality

pac(A®o)o (o @ H) =pao(A®0o)o (Wi ® H)o (H®ofy) (51)
holds.
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Proof. The proof follows from the following facts: First, note that

8273(0')/\8271(0') = ILLAO(((U®€H)O(H@Q%))@(O’O(MH@H)))O(SH?.
=pao(A®a)o(of @ H)o(H® Q)
— a0 (A (00 0)) o (oft © H)
= pao(A®o)o (o ® H),

where the first equality follows by Proposition 3.9(iv), the second one by the properties
of ey and by Proposition 3.9(iii), and the last one by Proposition 3.9(i).

On the other hand, by the naturality of ¢ we obtain that
02,0(0) N D22(0) = pa o (A® o) o (g ® H) o (H @ o7),

and this finishes the proof. O

Remark 3.11. Note that, if (A,¢4) is a commutative left H-module algebra, the
2-cocycle condition means that o € Ker(D?2 ). Also, we have ofj = cap o7 for

7f1 = (g ® 0) 0 62 Therefore, if (A, p4) is a commutative left H-module algebra,
the twisted condition holds for all o € Reg,, (H?, A).

Theorem 3.12. Let H be a cocommutative weak Hopf algebra, let (A,pa) be a
weak left H-module algebra, and let o € Reg,,(H?, A). The morphism o satisfies
the twisted condition (42) if and only if Ag = (A, H,%,04), where V5, ot are
associated to o as in Definition 3.2, satisfies the twisted condition (22).

Proof. If Ap satisfies the twisted condition (22), composing with A ® ey and using
Proposition 3.5(ii), we obtain that o satisfies the twisted condition (42). Conversely,
assume that o satisfies the twisted condition (42). Then

(ha®H)o(A®og)o (Y5 © H) o (H ® i)
=(A@pum)o(cra®@H)o(H® (nao (A pa)o (o @A) @ H)
O(H®H®H®CH7A)O(5H®5H®A)
=(pa®@ H) o (A®Pj) o (o) @ A).

The first equality follows by the naturality of ¢, the cocommutativity of H, the
coassociativity of g7, and by the twisted condition for ¢. The second one is a conse-
quence of the naturality of ¢ and (al) of Definition (2.1). Therefore Ay satisfies the
twisted condition (22). O

Theorem 3.13. Let H be a cocommutative weak Hopf algebra,let (A, ) be a weak
left H-module algebra, and let o € Reg,,(H?, A). The morphism o satisfies the 2-
cocycle condition (51) if and only if Ay = (A, H, i, 08), where ¢4, o4 are associ-
ated to o as in Definition 3.2, satisfies the cocycle condition (23).

Proof. If Ap satisfies the cocycle condition (23), composing with A ® e, and using
Proposition 3.5(ii), we obtain that o satisfies the 2-cocycle condition (51). Conversely,
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assume that o satisfies the 2-cocycle condition (43). Then

(ha® H)o (A ofy)o (viy @ H) o (H® o)
=(pa®H)o(A® o ®py)o (Vi ®cpy @H) o (H®cya®H®H)
© (0r ® (074 ® ar) 0 6112))
= ((nao(A®a)o(of @ H)) ® (ug o (H @ py))) o dps
= (na® H) o (A® oy) o (o3 ® H).
The first equality follows by the naturality of ¢, the coassociativity of dp, and
Proposition 3.4; the second one follows by the naturality of ¢, the associativity of pp,

and by the 2-cocycle condition (51). Finally, the last one follows by the naturality of
¢, the associativity of ug, and Proposition 3.4. O

Remark 3.14. By Theorems 3.12 and 3.13 and applying the general theory of weak
crossed products, we have the following: If o € Reg,, , (H?, A) satisfies the twisted con-
dition (42) (equivalently (51)) and the 2-cocycle condition (43), the quadruple Ay
defined in Remark 3.6 satisfies the twisted and the cocycle conditions (22) and (23)
and therefore the induced product is associative. Conversely, by Theorem 3.11 of [6],
we obtain that, if the product induced by the quadruple Ay defined in Remark 3.6 is
associative, Ay satisfies the twisted and the cocycle condition and, by Theorems 3.12
and 3.13, o satisfies the twisted condition (42) and the 2-cocycle condition (43) (equiv-
alently (51)).

Definition 3.15. Let H be a cocommutative weak Hopf algebra, let (A, p4) be a
weak left H-module algebra, and let o € Reg,,, (H?, A). We say that o satisfies the
normal condition if

co(np@H)=0c0(H®nyg)=u, (52)
ie, 0 € Reg}, (H?, A).

Theorem 3.16. Let H be a cocommutative weak Hopf algebra, let (A, @) be a weak
left H-module algebra, and let o € Reg,,(H?, A). Let Ay = (A, H,v3,04) be the
quadruple with ng, let afl be defined as in Definition 3.2, and assume that Ay satis-
fies the twisted and the cocycle conditions (22) and (23). Thenv = V agm o (Na @ np)
is a preunit for the weak crossed product associated to Ay if and only if

ofpo(mu @ H)=ofy o (H@ng) =Vagn o (na® H). (53)
Proof. By Theorem 3.11 of [6], to prove the result we only need to show that (31),
(32), and (33) hold for v = Vagm o (na ® ng) if and only if o4t o (ng @ H) = o4y o
(H®nm) = Vagm o (na ® H). Indeed, v satisfies (31) if and only if o4 o (H @ ngr) =
Vagn © (na ® H) because
(pa® H)o (A® o) (vig ® H) o (H D)
= (pa®H)o (A ag)o (Y @ H) o (H® (1 0 (nr @14)))
= Vagn o 0ogy o (H @ np)
= ofy o (H@nm).
The first equality follows by the definition of V 445, the second one by the twisted
condition, and the last one by Proposition 3.5(ii).
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Also, v satisfies (32) if and only if 0 o (ng ® H) = Vagu o (na ® H) because by
(27) we have (ua ® H) o (A® o) o (v® H) = o4y o (ng @ H). Finally, (33) is always
true because, by (21), we obtain (ua ® H)o (A®Ya)o (v ® A) = a0 (ng @ A).

O

Corollary 3.17. Let H be a cocommutative weak Hopf algebra, let (A, p4) be a weak
left H-module algebra, and let o € Reg,,(H?, A). Let Ay = (A, H,¢3,04) be the
quadruple with wﬁ, U?I defined as in Definition 3.2, and assume that Ay satisfies
the twisted and the cocycle conditions (22) and (23). Then v =V agn o (Na Q@ npg) is
a preunit for the weak crossed product associated to Ay if and only if o satisfies the
normal condition (52).

Proof. f v =V agn o (na @ ng) is a preunit for the weak crossed product associated
to Ay, by Theorem 3.16 we have (53). Then, composing with (A ® ey) and using
Proposition 3.5(ii), we obtain (52). Conversely, if (52) holds, by (14) and Proposi-
tion 2.13(i) we have 04 o (ng ® H) = Vagw o (na ® H). On the other hand by (11)
and (ii) of Proposition 2.13 we obtain o4 o (H ® n) = Vagm o (na @ H). O

Corollary 3.18. Let H be a cocommutative weak Hopf algebra, let (A, p4) be a weak
left H-module algebra, and let o € Reg,,(H?, A). Let Ay = (A, H,¢3,04) be the
quadruple with w}f}, o defined as in Definition 3.2, and let pagm be the associated
product defined in (28). Then the following statements are equivalent:

(i) The product pagm s associative with preunit v =NV agm o (Na @ ni) and nor-
malized with respect to V ag -

(i) The morphism o satisfies the twisted condition (42), the 2-cocycle condition (43)
(equivalently (51)), and the normal condition (52).

Proof. The proof is an easy consequence of Theorem 3.11 of [6], Theorems 3.12,
and 3.13, and Corollary 3.17. O

Remark 3.19. Let H be a cocommutative weak Hopf algebra, and let (A, p4) be
a weak left H-module algebra. From now on we will denote by A®, H=(A®
H, pag. ) the weak crossed product, with preunit v = Vagm o (14 ® ng), defined
by a morphism 7 in Reg,, (H?, A) satisfying the twisted condition, the 2-cocycle
condition, and the normal condition. The associated algebra will be denoted by

Ax; H=(AXxH,nax H, A%, H)-

Finally, the associated quadruple Az will be denoted by Ag , and o4 by Uf]ﬂ_.

Remark 3.20. Let H be a cocommutative weak Hopf algebra, and let (A,p4) be
a weak left H-module algebra. Let o € Reg,,(H?, A) be a morphism satisfying
the twisted condition (42), the 2-cocycle condition (43), and the normal condition
(52). Then the weak crossed product A ®, H = (A® H, iag,m) with preunit v =
Vagm © (na ® ng) defined previously is a particular instance of the weak crossed
products introduced in [6]. Also, it is a particular case of the ones used in [14],
where these crossed structures were studied in a category of modules over a com-
mutative ring without requiring cocommutativity of H and using weak measurings
(see Definition 3.2 of [14]). To prove this assertion we will show that the condi-
tions presented in Lemma 3.8 and Theorem 3.9 of [14] are completely fulfilled. First,
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note that, if (A, p4) is a weak left H-module algebra, then ¢4 is a weak measuring.
The idempotent morphism Q45 related with the preunit v is the morphism V 4gn
because, by (27) and (53), Qagn = Vagm. Moreover, in the category of modules
over an associative, commutative, unital ring, the normalized condition implies that
Im(pag,n) CIm(Vagn).

On the other hand, the left action defined in Lemma 3.8 of [14] is ¢4 and the
morphism defined in Lemma 3.8 of [14] is 0. Then the equalities (a) and (b) of
Lemma 3.8 of [14] hold because the first one is the definition of ¥} and the second
one is a consequence of (27) and the definition of o4;. Therefore, we have that pagw ©
pag,H = (Hag,H @ H) 0 pagngagnm holds where pagr = A® dg and

pasteAsH = (AQH®AR®H @ pr)o (A® H® cyagn @ H) o (pagn ® pagh)-

Although pagmeagm is not counital, we say that pag, r is H-colinear as in Lemma
3.8 of [14]. Then we obtain that o satisfies the equality (1) of [14]:

oo ((nu o (H®TG)) @ H) = 00 (H@ (p o (Mg @ H))).
Finally, for the preunit v = Vagn © (14 ® ng), by (34) and (9) the equality
(A by)ov = (As (Ho 1Y) oby)) ov
holds (i.e., the equality (4) of [14] is true in our setting).

4. Equivalent weak crossed products and H}, (H, A)

The aim of this section is to give necessary and sufficient conditions for two weak
crossed products, A ®, H and A ®3 H, to be equivalent in the cocommutative setting.
To define a good notion of equivalence we need the definition of right H-comodule
algebra for a weak Hopf algebra H.

Definition 4.1. Let H be a weak bialgebra, and let (B, pg) be an algebra that is also
a right H-comodule such that upem o (05 ® pr) = pp © up holds. The object (B, pg)
is called a right H-comodule algebra if one of the following equivalent conditions holds:

(d1) (pp®@ H)oppong = (B® (o cuu) @ H)o((ppons)® (0 onm)).
(d2) (pp@ H)opponp = (B®@un @ H)o ((ppons)® (0m onm)).

(d3) (BeTg)opp = (up® H)o (B (pponp)).

(d4) (B M) opp = ((ppocpp) @ H)o(B® (ppong)).

(d5) (B@Tly) o ps ons = ps o ns.

(d6) (B®1lj) o pponp = pponp.

Proposition 4.2. Let H be a cocommutative weak Hopf algebra, let (A, v 4) be a weak
left H-module algebra, and let o € Reg;fA(Hz,A) that satisfies the twisted condition
(42) and the 2-cocycle condition (43) (equivalently (51)). Then the algebra A xo H =
(AX H,nax, H,bax, H) s a Tight H-comodule algebra for the coaction

PAxH = (PA@H ®H) o (A®5H> OCTAQH -
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Proof. First note that (A X, H,pax,m) is a right H-comodule because

(AX H®€eH) 0 pax,.H = PAgH © Aol = idAxH

and, by (40) and the coassociativity of dp,

(Pax o @ H)opax,u = (Pagn @ H@ H)o (A® ((6g ® H)odn)) oiagn
= (AX H®5H)OPA><QH-

On the other hand,

H(Ax o H)2H O (PAxH @ PAX H)
= (paxu @ H)o (pag.u@pu)o (AQHQA®cyuy @ H)
C(ARH®@cga®@HQH)o (AR 0n)otagn) @ (AR ) 0iagm))
= (paxn @ H) o (ua® H@ H) o (ua® (A®dy)oofp)) o (A vy © H)
o(iagH ®iagH)
= PAXH O HAX H >
where the first equality follows by the normalized condition for pag, m, the second
one by the naturality of ¢, by the coassociativity of dy, and by (41), and the last one
by (40).
Finally, by (40) and (9), we obtain that
(Axq H®IY) 0 pax,m oNaxe = Paxa @) o (na ® (6g onu))
(paxn @ H) o (na @ (6m °nm))
= PAxHOCNAXxH- O

Definition 4.3. Let H be a cocommutative weak Hopf algebra, let (A,p4) be a
weak left H-module algebra, and let o, 5 € ReggA(Hz,A) that satisfy the twisted
condition (42) and the 2-cocycle condition (43) (equivalently (51)). Let A ®, H and
A ®p H be the weak crossed products associated to o and 3. We say that A ®, H
and A ®g H are equivalent if there is an isomorphism of left A-modules and right
H-comodule algebras wqg: A xq H =+ Axg H.

Remark 4.4. Let H be a weak Hopf algebra, and let (A4,¢4) be a weak left H-
module algebra. Let I': A® H — A ® H be a morphism of left A-modules and right
H-comodules for the regular action psgn = pa ® H and coaction pagy = A® dg.
Then

Foma®H)=(A®eg ®H)opagnoloma®H)=(fr®H)odu,  (54)
where fr = (A®eg) ol o(na ® H). As a consequence,
I'=(pa®H)o(A® (o (na®H))) = ((pac(A® fr)) @ H)o(A®dm). (55)

If f: H— Ais amorphism and we define I'y : AQ H - A® H by I'y = ((na o
(AR f)) ® H)o (A®dn), it is clear that I'y is a morphism of left A-modules and
right H-comodules such that fr, = f. Also, 'y, =" and then there is a bijection
®: sHoml (A® H A® H) — Home(H, A) defined by ®(I') = fr with inverse the
morphism ®~!(f) =T's. Note that ®~!(u;) =Ty, = Vagn.

Then it is easy to show that I',T" € sHom¥ (A® H, A ® H) satisfy

(el) ToI"=T"0oT = Vgu,
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(e2) ToIoI' =T, and
(e3) Mol oIV =T,
if and only if for the morphism fr there exists a morphism f 1 such that

@) feAfet=frl A fr=mu,
(ii) frAfo' A fr= fr,and
(iil) friAfeAfit =t

Indeed, if I, T' € sHomH (A ® H, A ® H) satisfies (el)-(e3) define fr' by fr'! = fr.
Conversely, if for fr we have a morphism fr ! satisfying (i)-(iii), define T by T’ =
I

fr

As a consequence, if H is cocommutative, I' € s Hom (A ® H, A® H) satisfies
(el)—(e3) if and only if ®(I') = fr € Reg,, (H, A). Conversely, f € Reg,,(H,A) if
and only if ®~!(f) = I'y satisfies (el)—(e3).

Theorem 4.5. Let H be a cocommutative weak Hopf algebra, let (A, p4) be a weak
left H-module algebra, and let a, 5 € Reg;fA (H?, A) that satisfy the twisted condition
(42) and the 2-cocycle condition (43) (equivalently (51)). The weak crossed products
associated to « and [ are equivalent if and only if there exist multiplicative and
preunit-preserving morphisms I',TV € sHomH (A® H, A® H) satisfying (el)—(e3).

Proof. Assume that A ®, H and A ®3 H are equivalent. Thus there exists an isomor-
phism of left A-modules and right H-comodule algebras wqag: A xo H = A x5 H.
Define T" and TV by

['=iAgH ©Wap0opags, I =iagmow, ;0 PpasH.
Then
Fol' =isgH ©Wa,3°PARH © iAgH © w;j@ °pagH = VAgH:
and
Mol =iaen ow;’lﬁ O PAQH ©TAQH © Wa,5 O PAoH = V AQH-
Also,

oI’ ol =Vagpol =T, I"olol'=Vagpol’ =T,
and therefore (el)—(e3) hold.

The morphism I' is multiplicative because wq g is an algebra morphism, and, in
a similar way, using that wglﬁ is multiplicative, it is possible to prove that I is
multiplicative.

On the other hand, I' preserve the preunit because

lov=1iagH 0Wa,s°NAx.H = tAQH O NAxzH = V-

By the same arguments, we obtain that IV o v =T".
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Using (el), (e2), and the left A-linearity of wq, g, we have

paga ©(A®T) = pagn o (A® (Vagn o))
=Vaguno(pa® H)o(A®T)
= iAgH O PAx,H O (AR wa,p) 0 (AR pagH)
= 1AQH © Wa,3 © PAx.H © (AR DAgH)
=To(ua®H)o(A®VagnH)
=T oVaguo(ua® H)
=Lopagn.

Similarly, by (el), (e3), and the left A-linearity of wglﬁ we obtain that I” is a
morphism of left A-modules.

Finally, T' is a morphism of right H-comodules by (40) and the right H-comodule
morphism property of wq, 5. Indeed,

paca o' = (iaga ® H) 0 paAx 1 ©Wa,p © PAQH
= ((lagn owa,p) @ H) 0 pax, mopagn = ('@ H)o (A®dy)oVagn
=((ToVagu)@H)o (A®dg) =T @H)opagn-

By a similar calculation we obtain that I is a morphism of right H-comodules.

Conversely, assume that there exist multiplicative and preunit-preserving mor-
phisms I',T" € sHom¥ (A® H, A ® H) satisfying (el)—(e3) of the previous remark.
Define

Wa,8 =PasH ol 0iagn,  w,3=pagm ol cisgm.
Then, by (el), (e2), and (e3), we have
Wy s 0 Was = pagn oI o Vagm ol oiagn
= paga o' ol 0ciagn = Pagn © Vagh ©tags = idaxw
and

1 ;.
Wa,B O W, =pagg ol oVagrm ol" otaeny
;. . .
=pagr ol ol ctagn = pagr ©VagH 0lagn = tdaxH,

which proves that w,, g is an isomorphism.

Moreover, using that IT' preserves the preunit v = Vg o (14 ® ng), we have
Wa,8 O NAx H = PAeH O L' 0V =pagn oV =NaxzH
and, by the multiplicative property of I', we obtain

PAxsH © (Wa,p ® Wa,p) = PasH © HassH © (I @) o (iagn @ iagm)
=pagr oL o pag.u o (iagH @ iAgH) = Wa,p © hAx H-

Therefore, wq, g is an isomorphism of algebras.
On the other hand, using (el), (e2), and the property of left A-module morphism
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of I', we have

Paxst © (A®Wa,8) = pagn © (ha ® H) o (A® (Vagn oT oiagm))

= pagn © (pa ® H) o (A® (I'ciagn))

= pagr ol o(ua® H)o (A®iagn)

=paga oL oVagr o (ta @ H) 0 (AQ iagH) = Wa,8 O PAX H:
and this proves that wq, g is a morphism of left A-modules.

Finally, using similar arguments and the property of right H-comodule morphism
of I', we obtain that w, g is a morphism of right H-comodules because

PAxzH © Wa,p = (pagr @ H)o (A®dg)oVagum ol oiagy
= (pagr @ H) o pagym ol ciagn
= (pagu oT) @ H) 0 pag. 1 ©iagH
= (((pA@)HOFOvA@H) ®H)OPA®QHOZ'A®H
= (Wa,s @ H) 0 pax,u- O]

Remark 4.6. By the previous theorem, the notion of equivalent crossed products is
the one used in [14] in a category of modules over a commutative ring. Following the
terminology used in [14], the pair of morphisms fr and fp !is an example of gauge
transformation. Also, this notion is a generalization of the one that we can find in
the Hopf algebra world (see [5, 8]).

The following results, Theorem 4.7, and Corollary 4.8 will be used in Theorem 4.9
to obtain the meaning of the notion of equivalence between two weak crossed products
in terms of morphisms of Reg,, (H, A). Note that this characterization is the key to
prove the main result of this section, i.e., Theorem 4.11.

Theorem 4.7. Let I' and fr be as in Remark 4.4 and such that
FOVA®H:VA®HOF:F. (56)

Under the hypothesis of Theorem 4.5, I' is a multiplicative morphism that preserves
the preunit v =V agm o (na @ ngr) if and only if the following equalities hold:

pagH ol'ov =pagnov (57)

prao (A® fr)otpfy = pao (fr ®pa)o (6g ® A) (58)

pa0(A® fr)oot, MAO(NA®5)O(A®1/)}3®H)°(((fr®H)°5H)®((fr®H)°5(H)))-
59

Moreover, if I' preserves the preunit, we have that
fronm =na. (60)

Proof. Assume that I' is a multiplicative morphism that preserves the preunit. Then
(57) follows easily and, by (56), we have

FO(A@HH):VA®HO(A®ﬂH). (61)
On the other hand, the multiplicative condition for I' implies that
Fopag,mo(ma®H®@A@nH) = pagsao (T @) o(na® H® AR nH).
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Equivalently,

To(pa®H)o(A® (g, 0 (H®nm))) oy
= (pa®H)o(na®opy )0 (A @ H)o (Do (na®H))® (To(A®nw)).

By the normal condition for a we have
Ot © (H®nm) = Vags o (na ® H), (63)
and then the upper side of (62) is equal to I' o 14 For the lower side of (62),

(ha®H)o (pa@0jy ) 0 (A g ® H) o (T o (na @ H)) ® (T o (A®nx))
= (pa®@ H) o (fr @ ((na® H)o (A®ofy )0 (Vi © H)
o(H® (Vagn o (A®ng))))) o (6r ® A)
= (na® H)o (fr @ ((na® H) o (A® 0 5) 0 (Y57 ® H) o (H® A®11)))
o(dg ® A)
— (4 ® H) o (fr @ (4 ® H) 0 (A& (Vagi o (na @ H))))) o (H @ v
o(dg ® A)
= (pa®@ H) o (fr @¢g) o (6n ® A),
where the first equality follows by (54) and (61), the second one by (26), the third

one by (63), and the fourth one by the properties of Vg
Thus, (62) is equivalent to

Tovyfy = (pa®H)o (fr @vg)o (6u ® A), (64)

and then composing in both sides with A ® e, we get (58).
Also, the multiplicative condition for I" implies the following:

Topag,ro(Na®@H@NA®@H) = pag,no (T ®T)o(na®@H®na® H).
Equivalently,

To(pa®H)o(A®cf,) o (Vagm o (na® H)) ® H)
= (na®@ H) o (na ®ofrg) o (A®@ ¢ @ H)o (Do (na® H))® (Lo (na® H)).

Therefore, by (27) and (54) we obtain that the previous equality is equivalent to

Loofre = (a®H)o(ua®0g g)0(A®y @ H)o((fr@H)ody)® ((fr©H)odpy)).
(65)

Composing in both sides with A ® ey and using (iii) of Proposition 3.5, we obtain
(59).

Conversely, assume that (57), (58) and (59) hold. Then 'ov =V ggoTlov =
Vagm ov = v and I preserves the preunit. Moreover, to prove that I" is multiplicative
we first show that, if (58) holds, then (64) holds and similarly for (59) and (65).

Indeed:

Loyf = ((nao(A® fr)) ® H) o (A®dn) o iy
= (pao(A@ fr)ovpy) @ H) o (H®cpa)o (6 @ A)
= ((pae (fr®pa)o(bn @A) @ H)o (H®cy,.a)o (6u @A)
= (na @ H) o (fr @) o (0 @ A).

The first equality follows by (55), the second and the last ones by the coassociativity
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of dy, and the third one by (58).

Poofa=(uao(A® fr) ® H)o(A®dn) oo,
=((pao(A® fr) oot ,) ® pum) o dm>
=((nac(pa®@p)o(A0v @ H)o(froH)odn) @ (fr@H) odn)) @puw) 0du>
=(pa@H)o(pa®of g)o(Avyi@H)o(fr@H)ody) @ ((fr @ H)odm)).
The first equality follows by (55), the second one by (41), the third one by (59)
and the last one by the definition of 1&}3, the naturality of ¢ and the coassociativity
of 6H.
Then,
Lo piagan = (a0 (A fr) @ H) o (1ta @ 611) 0 (jia ® 0 ) 0 (A® 0} @ H)
= (pa ® H) o (ua ® oy 5) o (1a @ ((pa ® H) o (fr © ¢5)
°o(0n ® A)) ® H) o (A® ¢ @ ((fr ® H) 0 0p))
= (pa®@ H)o(ua®ogg)o(A® (T o((pa® H)o (AR y)
oW ®A))@H)o(A® H@A® ((fr ® H) o dp))
=(pa@H)o(A@ pa @ H)o (A® A®ofjg) 0 (A® (Tovy) ® H)
(AR H®T)
= (na®H)o(A®pa®@ H) o (A® A® 0j 4)
o(A® (pa® H)o (fr ®vj) o (op ® A)) @ H)o (A@ H@T)
= MA@gHO(F®F)'
The first equality follows by (55), the second one by the associativity of u4 and
by (65), the third and the fifth ones by (64) and the left A-linearity of T', the fourth

one by (19), and the last one by the associativity of p4.
Finally, (60) follows by

Jronmg =(A®ep)olona®@ny) =(A®eg)ol oVagr o (na ®@ng)
:(A®EH)OFOV:(A®5H)OV:77A. O

Corollary 4.8. Under the hypothesis of Theorem 4.7, if (58) holds, (59) is equivalent
to

pao(A® fr)oofy,=[pao((pao(H® fr))® fr)o(H®chm)o (6yg @ H)| A B
(66)

Then, if fr € Reg,,(H,A), we obtain that (59) is equivalent to
aAOr1(fr) = 010(fr) NOi2(fr) AB. (67)

Proof. Trivially, if (66) holds, by (58), the naturality of ¢, and the coassociativity of
dm, we obtain (59). On the other hand, if (58) holds, we have that (64) holds and
then if we assume (59), using (55), the definition of 4}, the naturality of ¢, and the
coassociativity of dg, then

a0 (A® fr)oot = pao(na®B)o A0y @ H)o ((fr @ H)ody) @ ((fr® H)odp))
= pac(A®pB)o((Foyy)® H)o(H® ((fr @ H)odn))
=pac(A®@B)o(nac(A® fr) @ H)o(A®dn)) o) @ H)
o(H® ((fr® H)odm))
= [pao((pac(H @ fr)) @ fr)o(H @ cuu)o(0n @ H)| A B.
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Finally, it is obvious that ps o (A® fr)o aﬁ,’a =aA01,1(fr) and, by (49) and
B o2 = 3, we have

O o(fr)NOr12(fr)ANB=[nac((pac(H® fr)) @ fr)o(H Qcup)o 0y @ H)] /25)
68
O

Theorem 4.9. Under the hypothesis of Theorem 4.5, the weak crossed products A @,
H and A®g H, associated to o and B, are equivalent if and only if there exists
f € Reg}, (H, A) such that the equalities (58) and (67) hold.

Proof. 1If the weak crossed products A ®, H and A ®g H are equivalent, then by
Theorem 4.5 there exist multiplicative and preunit-preserving morphisms
D,V € asHom# (A® H, A® H) satisfying (el)—(e3). Then, by Remark 4.4,
fr € Reg,, (H, A), and by Theorem 4.7, the equalities (58) and fr o ng = 14 hold.
Finally, by Corollary 4.8 we get (67). Conversely, let f € Reg:g (H, A), with inverse
7% Then, I'y and I'4-1 are morphisms of left A-modules and right H-comodules
satisfying (el)—(e3) and preserving the preunit v = Vgm0 (14 ® ngr). Indeed, by
(14) and Proposition 2.15(iii), we have I'y o v = v. Similarly, I'y-1 o v = v. By The-
orem 4.7 and Corollary 4.8, I' is multiplicative and wy g = pagr ©I'f 0 tagn is an
H-comodule algebra isomorphism with inverse w;g =pagn ol'j-1 0iagy. Then,
I'y-1 is multiplicative and, by Theorem 4.5, A ®, H and A ®g H are equivalent. [J

Remark 4.10. Note that, if H is a cocommutative weak Hopf algebra, (A, p4) is a
weak left H-module algebra, and f : H — A a morphism, the equality (58) is always
true if A is commutative. Then, if (4,¢4) is a left H-module algebra, the equiva-
lence between two weak crossed products A ®, H and A ®g H is determined by the
inclusion of f in Reg}, (H,A) and the equality (67). In this case, (67) is equivalent
to saying that a A 8~ € Im(Dj").

Theorem 4.11. Let H be a cocommutative weak Hopf algebra, and let (A, p4) be a
commutative left H-module algebra. Then there is a bijective correspondence between
HiA (H, A) and the equivalence classes of weak crossed products of A ®, H where « :
H® H — A satisfies the 2-cocycle condition (43)(equivalently (51)) and the normal
condition (52).

Proof. First note that HZ, (H, A) is isomorphic to HZ' (H, A). Then it suffices to
prove the result for H2% (H, A). Let o, § € Reg}, (H?, A) satisfy the 2-cocycle condi-
tion (43) (in the commutative case the twisted condition is always satisfied). If A ®, H
and A ®g H are equivalent, by the previous Remark, a A 871 € Im(Di,Jg). Then «
and (3 are in the same class in H2'(H, A). Conversely, if [o] = [8] in H ! (H, A), o
and 3 satisfy (67), i.e., a AS~1 =D (f), for f € Reg}, (H, A). Then, if T'f is the
morphism defined in Remark 4.4, we have that I'; satisfies (57), because, using that
f € Reg},(H, A),

=L
pagro L'pov=paguo(f®H)odyony =pagu o ((folly)® H)odyonu
=pagu o ((follf) @ H) o by onu = pagn © (u1 ® H) 06 0Ny = pagu o v.
In a similar way, B Aa~' = DUt (f7') and T'y-1 satisfies (57). Then, by Theo-

rem 4.7, I'y and I'y-1 are multiplicative morphisms of left A-modules and right H-
comodules preserving the preunit and satisfying (el)—(e3). Therefore, by Theorem 4.5,
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we obtain that A ®, H and A ®3 H are equivalent weak crossed products. O

Example 4.12. Let G be a finite groupoid, and let F be a field. Let

FG = @Fa

oeGq

be the groupoid algebra defined in Example 2.3. If G is finite, FG is a finite cocom-
mutative weak Hopf algebra. Then GF = (FG)* is a commutative weak Hopf algebra

defined by
GF = P Ff,
ceGy

with < f,,7 >= 0, . The algebra structure is given by the formulas

fa-f'r = 60,Tf07 1c]p = %F(lw) = Z faa

oeGy

and the coalgebra structure is

0e(fo) = Z fr® fro, €al Z agfo) = Z az fu,

t(o)=t(T) oeGy z€Go

where f, denotes the morphism f;q, and a, denotes its coeflicient. The antipode is
giving by A, (fs) = fo-1. The algebra GT is a left FG-module algebra with action

Por (w & fﬁ) - 5S(w),s(0')faw*1-
Let G be the groupoid with Gy = {x,y} and
Gy = {idy,idy, 0 : v — y,0 iy — a}.

Then {id,,id,,o,07 '} is a basis for FG and {f, fy, f+, fo—1} is a basis for GF. The
neutral element of RegcjcF (FG, GF) is the morphism u; = ¢, o (FG ® 1, ) such that

Ul(ldw) = UI(U_l) = fo+ fo, ul(idy) = UI(U) = fy + fo-1.
Moreover, h € 1’:5(31]:;(;F (FG, GF) if and only if
h(@da:> = f:r + f07 h(zdy> = fy + fa*la h(O’) = afy + bf(r*% h(a_l) = wa + dfa
with a, b, ¢,d € F*. Therefore, the inverse of h is the morphism h~! such that

hil(ldfb) :fr+fdv hil(idy) :fy+fa_1a hil(a) :ailfyﬂ_bilfa_lv

h71(0—71> = cilf:ﬁ + dilfda
and, as a consequence, Reg;‘cF (FG, GF) is isomorphic to the group F* x F* x F* x F*.

To compute D;ZF (h) it is enough to obtain the images of all elements w ® 7 such
that t(w) = s(7) because, if t(w) # s(7), dlw® 7) =0 for all ¢ € Regj;cw (FG?, GF).
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Then we have the following:
DY (h)(id, @ idy) = DX (h)(idy @ 0~Y) = DY (W)(o~" @ idy) = fu + .
Dyt (h)(idy ®idy) = Dyt (h)(idy ® 0) = Dyt (h)(o @ids) = fy + fo-1,
D;‘;F (h) (o ® o™ 1) = adf, + befy-1, D;,ZF (h)(c7! @ o) = bef, + adf,.
The neutral element of Regfp'aLF (FG?,GF) is uz = ¢4y © (FG @ up). Then

us(idy ®id,) = us(id, @ 07') = ug(07 ' @ idy) =us(07 ' @) = fu + fo,
us(idy @ idy) = uz(idy ® 0) = us(o ®idy) = uz(c @ o=1) = f, + f,-1.
Thus, h € Ker(Di,zF) if and only if d = a=!, ¢ = b~!. Hence the groups Ker(D}DZF)
and Im(Di,‘gF) are isomorphic to F* x F*. Moreover, ¢ € Reg;‘GF (FG?,GF) if and
only if
Hidy ® idy) = Plidy ® 071) = $(0™! @ idy) = fa + fo,
P(idy @ idy) = P(idy ® 0) = ¢(0 ®idy) = fy + fo-1,
plo®a™t) =mfy+nfo-r, ot ®0o) =pfo+afs
with m, n, p,q € F*. The inverse of ¢ is the morphism ¢! defined by
¢~ (idy @ idy) = ¢7(idy @ 071) = 707! ®idy) = fu + [o,
¢ (idy ®idy) = ¢~ (idy ® 0) = o7 (o ®idy) = fy + for,
o Moo ) =m  fy +n"l fou, oo @wao)=p o+ q o
Then Reg;fcF (FG?,GF) is isomorphic to the group F* x F* x F* x F* and ¢ €
Im(Di;;F) if and only if m = g and n = p. In this case Di;;F (h) = ¢ for h defined by
Bidy) = o+ for hlidy) = fy+ for, B(0) =mfy+ fomr, h(o™0) = fu+nls.
Let ¢ be in Regsa (FG?,GF). As in the previous case, to compute Di‘c“m (¢) we

need only to obtain the images of w ® T ® 7 satisfying s(w) = ¢(7) and s(7) = ().
Then,

D2 (9)(id, ®idy @ idy) = o) (id, @ id, © 071) = D%t (¢)(id, @ 0! @ id,)
¢)(idy @0t ®0o) = D2+ ( P) (o ®id, ®id,)
(¢)( 1®id,®0) = D?;(’;F( ) (o' ® o ®idy)
—h+h
Dt (¢)(idy @ idy @ idy) = DZF ()(idy ® idy @ 0) = D2 ($)(idy @ 0 @ id,)
:D?pz (¢)(idy ® o ® 0~ 1)*Di;(¢)(a®zdm®zdz)
= D! (¢)(0 ®idy ® 0~!) = DFt (¢)(0 @ 0! @ idy)
- fy+fa 1,
DZf () o@o t®a)=qm™ ' fy +pn fo,
DIt () o' @o@o ) =np T fo +mg fo

Per

L
L

2
<p
2
Lp
2

Therefore, ¢ € Ker(Di‘;F) if and only if m = ¢ and n = f and then Ker(Di;) =
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Im(Di,ZW). This implies that H"Qacw (FG, GF) = {1}. As a consequence, all weak crossed
products GF ®, FG are equivalent.
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