
Homology, Homotopy and Applications, vol. 16(1), 2014, pp.167–177

KEI MODULES AND UNORIENTED LINK INVARIANTS

MICHAEL GRIER and SAM NELSON

(communicated by Ronald Brown)

Abstract
We define invariants of unoriented knots and links by enhanc-

ing the integral kei counting invariant ΦZ
X(K) for a finite kei X

using representations of the kei algebra, ZK [X], a quotient of the
quandle algebra Z[X] defined by Andruskiewitsch and Graña.
We give an example that demonstrates that the enhanced invari-
ant is stronger than the unenhanced kei counting invariant. As
an application, we use a quandle module over the Takasaki
kei on Z3 which is not a ZK [X]-module to detect the non-
invertibility of a virtual knot.

1. Introduction

In [10], Mituhisa Takaski introduced an algebraic structure known as kei (or 圭
in the original kanji). In [7] this same structure was reintroduced under the name
involutory quandle, a special case of a more general algebraic structure related to
oriented knots known as quandles. These algebraic structures can be understood as
arising from the unoriented and oriented Reidemeister moves respectively via a certain
labeling scheme, encoding knot structures in algebra.

In [1], an associative algebra Z[X] was defined for every finite quandle X; in [3] a
geometric interpretation of Z[X] was given, with generators representing coefficients
of “beads” indexed by quandle labelings of arcs, with relations defined from the
Reidemeister moves. Representations of Z[X], known as quandle modules, were used
to define new invariants of oriented knots and links in [3]. In [8] a modification of
Z[X] for finite racks (a generalization of quandles to the case of blackboard-framed
isotopy) was used to define invariants of framed and unframed oriented knots and
links.

In this paper we define a modification of the quandle algebra we call the kei algebra
ZK [X] and use it to extend the invariants defined in [8] to unoriented knots and links.
The paper is organized as follows. In section 2 we review the basics of kei and the
kei counting invariant. In section 3 we define the kei algebra and kei modules. In
section 4 we define the kei module enhanced counting invariant. As an application,
we use a module over Z[X] for a kei X which is not a ZK [X]-module to detect the
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non-invertibility of a virtual knot. In section 5 we collect a few questions for future
research.

2. Kei

Kei or involutory quandles were introduced by Mituhisa Takasaki in 1945 [10] and
later reintroduced independently by David Joyce and S.V. Matveev in the early 1980s
[7, 9].

Definition 2.1. A kei or involutory quandle is a set X with a binary operation .
satisfying for all x, y, z ∈ X

(i) x . x = x,

(ii) (x . y) . y = x, and

(iii) (x . y) . z = (x . z) . (y . z).

Example 2.2. Let X be any abelian group regarded as a Z-module. Then X is a kei
under the operation

x . y = 2y − x.

Such a kei is known as a Takasaki kei. If X ∼= Zn then X is often denoted as Rn in
the knot theory literature, known as the dihedral quandle on n elements. Rn can also
be understood as the set of reflections of a regular n-gon.

Example 2.3. Let X be any module over Z[t]/(t2 − 1). Then X is a kei known as an
Alexander kei under the operation

x . y = tx+ (1− t)y.

A Takasaki kei is an Alexander kei with t = −1.

Example 2.4. Let L be an unoriented link diagram and let A = {a1, . . . , an} be a set
of generators corresponding bijectively with the set of arcs of L. The Fundamental
Kei of L, FK(L), is defined in the following way. First, let W (L) be the set of kei
words in A, defined recursively by the rules

• a ∈ A ⇒ a ∈ W (L) and

• x, y ∈ W (L) ⇒ x . y ∈ W (L).

Then the free kei on A is the set of equivalence classes of kei words in A under the
equivalence relation generated by relations of the forms

• x . x ∼ x,

• (x . y) . y ∼ x, and

• (x . y) . z ∼ (x . z) . (y . z)

for all x, y, z ∈ W (L). The free kei is a kei under the operation [x] . [y] = [x . y]. Now,
at each crossing in L, we have a crossing relation given by z = x . y where y is the
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overcrossing arc and x and z are the undercrossing arcs. That is, we have

Then the fundamental kei of L, FK(L), is the set of equivalence classes of free kei
elements modulo the crossing relations of L, or equivalently FK(L) is the set of
equivalence classes of kei words in A modulo the equivalence relation determined by
the crossing relations together with the free kei relations.

It is convenient to describe a finite kei X = {x1, . . . , xn} with a matrix encoding
the operation table of X, i.e. a matrix MX whose (i, j) entry is k where xk = xi . xj .
For example, the Takasaki kei on Z3 has matrix

MX =

 1 3 2
3 2 1
2 1 3


where we set x1 = 1, x2 = 2, and x3 = 3 = 0.

As with groups and other algebraic structures, we have the following standard
notions:

Definition 2.5. Let X and Y be kei.

• A map f : X → Y is a kei homomorphism if for all x, x′ ∈ X we have f(x . x′) =
f(x) . f(x′).

• A subset Y ⊂ X which is itself a kei under the kei operation . of X is a subkei
of X. It is easy to check that Y ⊂ X is a subkei if and only if Y is closed under
..

For defining invariants of unoriented links, we have the following well-known result:

Theorem 2.6. If L and L′ are ambient isotopic unoriented links, then there is an
isomorphism of kei φ : FK(L) → FK(L′). For any finite kei X, the sets of homo-
morphisms Hom(FK(L), X) and Hom(FK(L′), X) are finite and there is an induced
bijection φ∗ : Hom(FK(L), X) → Hom(FK(L′), X). In particular, the cardinality of
the set of rack homomorphisms ΦZ

X(L) = |Hom(FK(L), X)| is a non-negative integer-
valued invariant of unoriented links known as the integral kei counting invariant.

A kei homomorphism f : FK(L) → X can be represented as a labeling of the arcs
of L with elements of X satisfying the crossing relations at every crossing—such a
labeling defines a unique homomorphism, and every f ∈ Hom(FK(L), X) can be so
represented.

Example 2.7. We can use the kei counting invariant to see that the trefoil knot 31
is nontrivially knotted. Let X be the Takasaki kei on Z3; we have x . y = 2y − x =
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2y + 2x. The crossing relations in 31 give us the system of linear equations

z = 2x+ 2y
y = 2z + 2x
x = 2x+ 2y

→

 2 2 2
2 2 2
2 2 2

 →

 1 1 1
0 0 0
0 0 0


and the solution space is two-dimensional, giving us a total of ΦZ

X(31) = 9 solutions.
Since ΦZ

X(Unknot) = 3, the integral kei counting invariant detects the knottedness of
the trefoil.

Remark 2.8. Replacing the second kei axiom with the alternative axiom

(ii′) There exists a second operation .−1 satisfying

(x . y) .−1 y = x = (x .−1 y) . y

for all x, y ∈ X

yields an algebraic object known as a quandle, which is the oriented analog of kei.
Labeling oriented links according to the signed crossing conditions

defines homomorphisms from the fundamental quandle of the link L into X; the
integral quandle counting invariant ΦZ

X(L) is then an invariant of oriented links.

3. Kei algebras and modules

Let X be a finite kei. We would like to define an associative algebra on X generated
by “beads” such that secondary labelings of X-labeled link diagrams by beads are
preserved by Reidemeister moves. Specifically, at a crossing in a link diagram with
arcs labeled x, y and x . y, we define the following relationship between the beads a,
b, and c:

c = tx,ya+ sx,yb.
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The kei algebra of X, ZK [X], is the quotient of the polynomial algebra Z[tx,y, sx,y]
by the ideal I required to obtain invariance under unoriented Reidemeister moves.

First, we note that the bead relationship above also requires that

a = tx.y,yc+ sx.y,yb;

together these imply

a = tx,ytx.y,ya+ (tx,ysx.y,y + sx,y)b,

which yields

tx,ytx.y,y = 1 and tx,ysx.y,y + sx,y = 0. (1)

From the Reidemeister I move, we must have tx,x + sx,x = 1:

a = tx,xa+ sx,xa (2)

The Reidemeister II move yields conditions equivalent to equation (1):

c = tx,ya+ sx,yb
a = tx.y,yc+ sx.y,yb

⇒ a = tx.y,ytx,ya+ (tx.y,ysx,y + sx.y,y)b
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The Reidemeister III move yields the defining equations for the original rack alge-
bra Z[X] from [1], comparing coefficients on bead e:

∼

tx.y,ztx,y = tx.z,y.ztx,z, tx.y,zsx,y = sx.z,y.zty,z (3)

and sx.y,z = sx.z,y.zsy,z + tx.z,y.zsx,z.

Definition 3.1. Let X be a finite kei. The kei algebra ZK [X] of X is the quotient
of the polynomial algebra Z[tx,y, sx,y] for all x, y ∈ X by the ideal I generated by all
elements of the forms

• tx,ysx.y,y + sx,y • tx,ytx.y,y − 1
• tx,x + sx,x − 1 • tx.y,ztx,y − tx.z,y.ztx,z
• tx.y,zsx,y − sx.z,y.zty,z • sx.y,z − sx.z,y.zsy,z − tx.z,y.zsx,z

for all x, y, z ∈ X. A ZK [X]-module or just anX-module is a representation of ZK [X],
i.e. an abelian group A with a family of automorphisms tx,y : A → A and endomor-
phisms sx,y : A → A such that each of the bulleted maps listed above are zero.

We can now define the kei algebra of a finite kei X.

Example 3.2. Let X be a kei. Any ring R becomes a ZK [X]-module by choosing
invertible elements tx,y and elements sx,y for x, y ∈ X satisfying the conditions (1),
(2), and (3). In particular, if X = {x1, x2, . . . , xn} is a finite kei, we can specify a
ZK [X]-module structure on R with an n× 2n block matrix

MR =


t1,1 t1,2 . . . t1,n s1,1 s1,2 . . . s1,n
t2,1 t2,2 . . . t2,n s2,1 s2,2 . . . s2,n
...

...
. . .

...
...

...
. . .

...
tn,1 tn,2 . . . tn,n sn,1 sn,2 . . . sn,n


such that the entries satisfy the conditions (1), (2), and (3) above.

Remark 3.3. The quandle algebra defined in [1] is the quotient of the polynomial alge-
bra Z[t±1

x,y, sx,y] by the ideal generated by the relations coming from the Reidemeister
I and III moves, i.e.,

• tx,x + sx,x − 1
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• tx.y,ztx,y − tx.z,y.ztx,z,

• tx.y,zsx,y − sx.z,y.zty,z,

• sx.y,z − sx.z,y.zsy,z − tx.z,y.zsx,z,

with the type II move condition handled by the bead labeling rule below.

The kei algebra ZK [X] is a quotient of the quandle algebra by the additional relations

tx,ysx.y,y + sx,y and 1− tx,ytx.y,y.

Example 3.4. For a specific instance of the type of kei module defined in example 3.2,
let X be the 3-element Takasaki kei with kei matrix

MX =

 1 3 2
3 2 1
2 1 3


and let the ring R = Z5. Our python computations indicate that there are 48 ZK [X]-
module structures on R, including for instance

MR =

 4 1 3 2 4 1
3 4 2 3 2 3
2 1 4 4 1 2

 .

Remark 3.5. For a given kei X, the set of ZK [X]-modules over a given ring R is a
subset of the set of Z[X]-modules, and can be a proper subset depending on R, since
a Z[X]-module satisfies the conditions in equations (1) and (3) but not necessarily
those of equation (2). For instance, our python computations reveal a total of 32
Z[X]-modules on the kei X and ring R in example 3.4 which are not ZK [X]-modules,
including for instance

MR =

 2 1 2 4 2 3
1 2 2 2 4 3
4 4 2 4 4 4

 .

The invariants defined in the next section associated with such modules are invariants
of oriented links but not invariants of unoriented links.

Example 3.6. Another important example of a ZK [X] module is the fundamental
ZK [X]-module of an X-labeled link. Let L be an unoriented link with a labeling
f : FK(L) → X by a kei X. On each arc of L, we place a bead; the set of crossing
relations then determines a presentation for a ZK [X]-module, denoted Zf [X], which



174 MICHAEL GRIER and SAM NELSON

we can represent concretely with a coefficient matrix of the resulting homogeneous
system of linear equations. For instance, let X be the kei with matrix

MX =

 1 1 2
2 2 1
3 3 3

 ;

then the (4,2)-torus link with the X-labeling below has fundamental Zk[X]-module
presented by the matrix MZf [X]:

MZf [X] =


t13 s13 −1 0
0 t32 s32 −1

−1 0 t23 s23
s31 −1 0 t31

.

4. Kei module enhancements of the counting invariant

We can now define invariants of unoriented knots and links using kei modules. The
idea is to use the set of homomorphisms g : Zf [X] → R from the fundamental kei
module of an X-labeled diagram L to the kei module R as a signature for each kei
homomorphism f : FK(L) → X.

Definition 4.1. Let L be an unoriented knot or link, X a finite kei, and R a finite
ZK [X]-module. The kei module enhanced multiset invariant of L associated to X and
R is the multiset of cardinalities of the sets of Zk[X]-module homomorphisms, i.e.,

ΦK,M
X,R (L) =

{
|HomZK [X](Zf [X], R)| : f ∈ Hom(FK(L), X)

}
.

Taking the generating function of this multiset gives us a polynomial-form invariant
for easy comparison: the kei module enhanced invariant of L with respect to X and
R is

ΦK
X,R(L) =

∑
f∈Hom(FK(L),X)

u|HomZK [X](Zf [X],R)|.

By construction, we have the following:

Theorem 4.2. If L and L′ are ambient isotopic unoriented links, X is a finite kei,
and R is a ZK [X]-module, then ΦK,M

X,R (L) = ΦK,M
X,R (L′) and ΦK

X,R(L) = ΦK
X,R(L

′).

Remark 4.3. If R is not finite, we can replace the cardinality |HomZK [X](Zf [X], R)|
with the rank of the ZK [X]-module HomZK [X](Zf [X], R).

To compute ΦK
X,R, for each kei labeling f : FK(L) → X of L by X, we first obtain

the matrix for Zf [X], replace each tx,y and sx,y with its value in R, and solve the
resulting system of equations to obtain the contributions to ΦK

X,R for f .

Example 4.4. Let L be the figure eight knot 41 and let X and R be the kei and kei
module on Z5 from example 3.4. The set of X-labelings of L includes only constant



KEI MODULES AND UNORIENTED LINK INVARIANTS 175

labelings, i.e. every arc is labeled with a 1, 2, or 3. For example, the constant labeling
with every arc labeled 1 yields the listed Zf [X]-presentation matrix:

MZf [X] =


t11 −1 s11 0
0 s11 t11 −1

−1 0 t11 s11
s11 t11 0 −1



Replacing the txy and sx,y with their values in R and row-reducing over Z5, we obtain
4 4 2 0
0 2 4 4
4 0 4 2
2 4 0 4

 −→


1 1 3 0
0 1 2 2
0 0 0 0
0 0 0 0


and this X-labeling contributes a u25 to the invariant Φk

X,R(41). Summing these con-

tributions over the complete set of X-labelings gives us ΦK
X,R(41) = 3u25. Comparing

this to the unknot, which has Φk
X,R(Unknot) = 3u5, we see that ΦK

X,R distinguishes
the unoriented figure eight from the unoriented unknot despite the two having equal
kei counting invariant values. In particular, since ΦZ

X(k) is obtained from ΦK
X,R by

evaluating at u = 1, ΦK
X,R is a strictly stronger invariant than ΦZ

X(k).

Example 4.5. Our python computations1 yield the listed values for ΦK
X,R with X the

3-element Takasaki kei and the randomly selected ZK [X]-module over Z7 below for
the prime knots with up to eight crossings and prime links with up to seven crossings
as listed in the knot atlas [2]:

MR =

 6 3 5 2 5 3
5 6 3 3 2 5
3 5 6 5 3 2


ΦK

X,M (L) L

3u7 unknot, 41, 51, 62, 63, 72, 73, 75, 76, 81, 82, 83, 84, 86, 87, 88, 89, 812, 813,
814, 817, L2a1, L4a1, L6a2, L6a4, L6n1, L7a2, L7a3, L7a4, L7a7,
L7n1, L7n2

3u7 + 6u49 31, 61, 74, 810, 811, 815, 819, 820, 821, L6a1, L6a3, L6a5, L7a1, L7a5
3u7 + 24u49 818

3u49 52, 71, 816, L7a6
9u49 77, 85

Remark 4.6. As with most enhancements of quandle-related counting invariants,
ΦK

X,M is well-defined for unoriented virtual links as well as classical links.

1Code available at http://www.esotericka.org.
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In our final example, we use a quandle module which is not a kei module to detect
the non-invertibility of a virtual knot.

Example 4.7. Let X be the kei from example 3.4 and M the quandle module from
remark 3.5. Since M is not a kei module, ΦM

X is an invariant of oriented knots and
links, but not unoriented knots and links. Thus, we can potentially use ΦM

X to compare
the two orientations of a non-invertible knot. In particular, consider the virtual knot
numbered 4.97 in the Knot Atlas [2]; it is the closure of the virtual braid below. Let
us denote 4.97 with the upward orientation by 4.97↑ and 4.97 with the downward
orientation as 4.97↓. The only labelings of 4.97 by X are constant labelings, of which
there are three for both orientations, the unenhanced integral kei counting invariant
ΦZ

X(4.97↑) = 3 = ΦZ
X(4.97↓), and ΦZ

X does not distinguish 4.97↑ from 4.97↓. However,
the constant labeling with every arc labeled with a 1 ∈ X yields the listed fundamental
kei module presentation matrices. Replacing t1,1 and s1,1 with their values from M
yields the listed matrices, which we row-reduce over Z5 to obtain the cardinalities of
the solution spaces which form the signature of the constant labeling by the element
1 ∈ X.

MZ[f ](4.97↓) :
s11 −1 t1,1 0
s11 0 −1 t1,1
t11 −1 0 s1,1
−1 0 s11 t1,1

 →


4 4 2 0
4 0 4 2
2 4 0 4
4 0 4 2

 →


1 0 1 3
0 1 2 2
0 0 0 0
0 0 0 0



MZ[f ](4.97↑) :
s1,1 t1,1 −1 0
s1,1 0 t1,1 −1
−1 t1,1 0 s1,1
t1,1 0 s1,1 −1

 →


4 2 4 0
4 0 2 4
4 2 0 4
2 0 4 4

 →


1 0 0 4
0 1 0 4
0 0 1 4
0 0 0 0



Since t1,1 = t2,2 = t3,3 = 2 and s1,1 = s2,2 = s3,3 = 4, we get the same signatures for
all three labelings for each knot, respectively u25 and u5, and thus we have

ΦM
X (4.97↓) = 3u25 6= 3u5 = ΦM

X (4.97↑)

and for non-kei module quandle modules M over a finite kei, X, the quandle module
enhanced counting invariant ΦM

X is capable of detecting invertibility of virtual (and
hence classical) knots.

5. Questions

In this section we collect a few open questions for future research.
In our computations we have only considered the simplest type of ZK [X] modules,

namely Zk[X]-module structures on Zn with the action of tx,y and sx,y given by



KEI MODULES AND UNORIENTED LINK INVARIANTS 177

multiplication by fixed elements of ZK [X]. Expanding to other abelian groups with
other automorphisms tx,y : X → X and endomorphisms sx,y : X → X should give
interesting results. We are particularly interested in the case of non-commuting tx,y
and sx,y values.

We have generalized the rack module bead counting invariant from [8], but several
other oriented link invariants using the quandle algebra were defined in [3]; these
invariants should have generalizations to the unoriented case using the kei algebra.
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