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Abstract
A generalized Postnikov tower (GPT) is defined as a tower of

principal fibrations with the classifying maps into generalized
Eilenberg–Mac Lane spaces. We study fundamental properties
of GPT’s such as their existence, localization and length. We
further consider the distribution of torsion in a GPT of a finite
complex, motivated by the result of McGibbon and Neisendorfer
[MN]. We also give an algebraic description of the length of a
GPT of a rational space.

1. Introduction

Decomposing a space into a tower of fibrations is a standard technique in homotopy
theory. One readily conceives the Postnikov tower as an example of such a decom-
position. Recall that the Postnikov tower of a path-connected space X is a tower of
fibrations

· · · → Xn → Xn−1 → · · · → X0 = ∗

such that the fiber of Xn → Xn−1 is K(πn(X), n) for each n and that there is a weak
homotopy equivalence Xn → lim←−Xn. Although the Postnikov tower is one of the
most useful decompositions of spaces, it sometimes seems redundant. For example,
the length of the Postnikov tower of a product of Eilenberg–Mac Lane spaces can
be infinite, but each fibration in the tower is trivial. So one might naively want to
bundle all of these trivial fibrations. This is, of course, caused by the dimensional
constraint; i.e., the fiber of Xn → Xn−1 is K(πn(X), n). Relaxing this constraint,
certain generalizations of Postnikov towers were introduced in [GM, Ma, Sm]. More
general towers were also introduced in [F], and there are also other generalizations
of Postnikov towers. The generalization of Postnikov towers studied in this paper is
the following, which generalizes the ones in [GM, Ma, Sm] and is included in the
class of [F]. Let us call the product of (possibly infinitely many) Eilenberg–Mac Lane
spaces a generalized Eilenberg–Mac Lane space (GEM).
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Definition 1.1. A generalized Postnikov tower (GPT) of a path-connected, finite-
type space X is a tower of fibrations

· · · → Xn → Xn−1 → · · · → X0 (1)

satisfying the following conditions:

1. X0 is weakly contractible.

2. For n > 1, Xn is the homotopy fiber of some map from Xn−1 to a simply
connected, finite-type GEM.

3. There is a weak homotopy equivalence X → lim←−Xn.

We here remark two points in the above definition. The first point is the finite-type
condition. This is standard in homotopy theory to control homotopy invariants. The
second point is that the fibrations are special. In most interesting cases, each fibration
in the classical Postnikov tower is principal; i.e., Xn is the homotopy fiber of some
map Xn−1 → K(πn(X), n+ 1). Then we assume that each fibration in a GPT is a
principal fibration with the classifying map into a GEM.

A GPT is not a new object. There are several generalizations of Postnikov towers
as in [GM, Ma, Sm, F] that are closely related with a GPT, as is noted above.
However, a GPT has not been studied systematically so far; it has been treated as
a test example of well-developed tools like spectral sequences. The purpose of this
paper is to study basic properties of a GPT such as its existence, localization, and
length. We also consider a property of the length of a GPT of a finite complex as an
analogy of the result of McGibbon of Neisendorfer [MN]. Finally, we give an algebraic
description of the length of a GPT of a rational space.

Throughout this paper, we always assume the following. Every space is a path-
connected and finite-type (integrally or locally) CW-complex with a basepoint. Every
map between spaces preserves basepoints.

2. Existence

In this section, we give a necessary and sufficient condition for the existence of a
GPT of a given space. To this end, it is important to calculate the homotopy groups
of a space from its GPT. Consider a GPT (1) of a space X. There is a tower of groups

· · · → πk(Xn)→ πk(Xn−1)→ · · · → πk(X0).

As is well known, the homotopy groups of X can be calculated from that of Xn in
the tower by the Milnor exact sequence

1→ lim←−
1 πk+1(Xn)→ πk(X)→ lim←−πk(Xn)→ 1, (2)

where lim←−
1 is the derived functor of lim←− of a tower of groups. Then it turns out that

the control of lim←−
1 πk(Xn) is important for our purpose.
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Let us recall here the definition of lim←−
1 of a tower of groups. Consider a tower of

groups

· · · αn+1−−−→ Gn
αn−−→ Gn−1

αn−1−−−→ · · · α1−→ G0. (3)

From this tower, we define an action of the group
∏

n>0 Gn onto itself by

(g0, g1, . . .) · (h0, h1, . . .) := (h0g0α1(h1)
−1, h1g1α2(h2)

−1, . . .)

for gn, hn ∈ Gn. By definition, lim←−Gn is the isotropy subgroup of the unit (1, 1, . . .) ∈∏
n>0 Gn with respect to this group action. Recall that lim←−

1 Gn is defined as the

orbit space of this group action. Then, in particular, lim←−
1 Gn is just a pointed set in

general, but it is an abelian group if all Gn are abelian. The following lemma is useful
in calculating lim←−

1.

Lemma 2.1 ([Mc, Theorem 4.2]). Suppose there is a commutative diagram of abelian
groups

0

��

0

��

0

��
· · · // Gn

//

��

Gn−1
//

��

· · · // G0

��
· · · // Hn

//

��

Hn−1
//

��

· · · // H0

��
· · · // Kn

//

��

Kn−1
//

��

· · · // K0

��
0 0 0

in which each column is exact. Then there is an exact sequence

0→ lim←−Gn → lim←−Hn → lim←−Kn → lim←−
1 Gn → lim←−

1 Hn → lim←−
1 Kn → 0.

Let us next recall the criteria for the triviality of lim←−
1 of a tower of groups. There

is a well-known criterion for the triviality of lim←−
1 called the Mittag–Leffler condition.

In order to explain this condition, we set the notation. For a tower of groups (3), we
put

G(m)
n := Im{αn+1 ◦ · · · ◦ αm : Gm → Gn} for m > n and G(∞)

n :=
∩

m>n

G(m)
n .

A tower (3) is said to satisfy the Mittag–Leffler condition if the descending chain

G
(n+1)
n ⊃ G

(n+2)
n ⊃ · · · stabilizes in finite steps for each n.

Lemma 2.2. If a tower (3) satisfies the Mittag–Leffler condition, lim←−
1 Gn is trivial.

In some cases, the converse to Lemma 2.2 holds as follows:
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Lemma 2.3 (McGibbon and Møller [MM]). Suppose that every Gn is countable in
a tower (3). Then lim←−

1 Gn is trivial if and only if (3) satisfies the Mittag–Leffler

condition. Moreover, if lim←−
1 Gn is not trivial, then it is uncountable.

If all αn in (3) are surjective, it is Mittag–Leffler, and hence lim←−
1 Gn is trivial. In

this special case, we have the following, which can be proved analogously to showing
that 2-adic integers are uncountably many.

Lemma 2.4. If every αn is surjective in a tower (3) and lim←−Gn is countable, then
αN is an isomorphism for N large enough.

Recall from [HMR] that a space X is called nilpotent if the action of π1(X) on
πk(X) is nilpotent for any k. We now state the main theorem of this section.

Theorem 2.5. A space admits a GPT if and only if it is nilpotent.

Proof. If X is nilpotent, its classical Postnikov tower has a principal refinement in
the sense of [HMR], where the resulting tower is a GPT of X. Then the “if” part is
proved.

Suppose that X has a GPT (1). Let us first calculate π1(X). By definition, there
is a homotopy fiber sequence

Xn → Xn−1 → Kn (4)

for each n, where Kn is a simply connected GEM. Then the induced map π1(Xn)→
π1(Xn−1) is surjective, implying that there is a central extension

0→ An → π1(Xn)→ π1(Xn−1)→ 1,

where An is a subgroup of π2(Kn). On the other hand, since we are now assuming
that X is of finite type, π1(X) is countable. Then it follows from Lemma 2.4 that the
induced map π1(XN )→ π1(XN−1) is an isomorphism for N large enough, implying
that the above central extension is trivial except for finitely many n. Hence we obtain
that π1(Xn) is nilpotent.

Let us next consider the action of π1(X) on πk(X) for k > 2. Put Gn = πk(Xn).
Since there is a homotopy fiber sequence (4) for each n, the action of π1(Xn) on
Gn is nilpotent. Then since π1(XN ) ∼= π1(X) for N large enough, GN is a nilpotent
π1(X)-module for N large enough. Hence we get a tower of nilpotent π1(X)-modules

· · · → Gn → Gn−1 → · · · → GN . (5)

Since we are assuming that each Xn and X are of finite type, Gn and πk(X) are
countable. Then by Lemma 2.3, the above tower satisfies the Mittag–Leffler condition,
hence by Lemma 2.2 we obtain an isomorphism

πk(X)
∼=−→ lim←−Gn,

which is compatible with the π1(X)-action. Notice that G
(∞)
N is also a nilpotent

π1(X)-module forN large enough. Then there is the tower of nilpotent π1(X)-modules

· · · → G(∞)
n → G

(∞)
n−1 → · · · → G

(∞)
N

in which every arrow is surjective since the tower (5) satisfies the Mittag–Lefler condi-

tion. Then since lim←−G
(∞)
n ⊂ lim←−Gn

∼= πk(X) is countable, we may assume that every
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arrow in this tower is an isomorphism, implying that lim←−G
(∞)
n = G

(∞)
N is a nilpotent

π1(X)-module. Consider the third tower of abelian groups

· · · → Gn/G
(∞)
n → Gn−1/G

(∞)
n−1 → · · · → GN/G

(∞)
N .

Since the tower (5) satisfies the Mittag–Leffler condition, for any m > N there exists

l > 0 such that the composite Gm+l/G
(∞)
m+l → Gm+l−1/G

(∞)
m+l−1 → · · · → Gm/G

(∞)
m is

trivial, implying that lim←−Gn/G
(∞)
n = 0. Then it follows from Lemma 2.1 that the

natural map of π1(X)-modules lim←−G
(∞)
n → lim←−Gn is an isomorphism. Thus we have

proved that πk(X) is a nilpotent π1(X)-module.

3. Localization

Let p be a prime or zero, where if p = 0, “p-local” means “rational.” Let us define a
p-local GPT of a p-local space X by replacing a simply connected GEM with a simply
connected p-local GEM in the definition of a GPT in Section 1. Then in particular,
we see that Theorem 2.5 also holds p-locally, and so when we consider a GPT of
a (p-local) space X, we implicitly assume that X is nilpotent. The p-localization of
a tower of spaces · · · → Xn → Xn−1 → · · · → X0 means the term-wise p-localization
· · · → (Xn)(p) → (Xn−1)(p) → · · · → (X0)(p). Now it is natural to ask whether the p-
localization of a GPT of a space X is a p-local GPT of X(p) or not. The goal of this
section is to prove the following answer to this question.

Theorem 3.1. The p-localization of a GPT of X is a p-local GPT of X(p).

We prepare the following lemma.

Lemma 3.2. Consider a tower of finitely generated abelian groups

· · · → An → An−1 → · · · → A0. (6)

If the tower satisfies the Mittag–Leffler condition and lim←−An is also finitely generated,
the natural map

(lim←−An)(p) → lim←−(An)(p)

is an isomorphism.

Proof. As in the proof of Theorem 2.5, since the tower (6) satisfies the Mittag–Leffler

condition, the natural map lim←−A
(∞)
n → lim←−An is an isomorphism. Since lim←−A

(∞)
n

(∼= lim←−An) is finitely generated and hence countable, it follows from Lemma 2.4 that

the map A
(∞)
n → A

(∞)
n−1 is an isomorphism for n large enough. Then the natural map

(lim←−A
(∞)
n )(p) → lim←−(A

(∞)
n )(p) is an isomorphism. Moreover, since the tower (6) sat-

isfies the Mittag–Leffler condition, we have ((An)(p))
(∞) ← (A

(∞)
n )(p) is an isomor-

phism, and hence lim←−((An)(p))
(∞) ← lim←−(A

(∞)
n )(p). On the other hand, since the tower

(6) satisfies the Mittag–Leffler condition, so does its p-localization. Thus there is a
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commutative diagram of natural maps

(lim←−A
(∞)
n )(p)

∼=
��

∼= // (lim←−An)(p)

��
lim←−(A

(∞)
n )(p) lim←−((An)(p))

(∞)
∼= // lim←−(An)(p)

that implies the desired result.

Proof of Theorem 3.1. Let ρ : X → lim←−Xn be a weak homotopy equivalence. By
Lemma 3.2, the composite

πk(X)(p)
(ρ∗)(p)−−−−→ (lim←− πk(Xn))(p) → lim←− πk(Xn)(p)

is an isomorphism for k > 2, where the second arrow is the natural map. Then by
the naturality of the p-localization, we get a map ρ̄ : X(p) → lim←−(Xn)(p) that induces
an isomorphism in πk for k > 2. As in the proof of Theorem 2.5, the induced tower
· · · → π1(Xn)→ π1(Xn−1)→ · · · → π1(X0) stabilizes in finite steps, implying that ρ̄
induces an isomorphism also in π1, completing the proof.

4. Length

Let · · · → Yn → Yn−1 → · · · → Y0 be a tower of fibrations. We define the length
of this tower as the minimum k such that for each m > k the map Ym → Ym−1 is a
weak homotopy equivalence.

Definition 4.1. The Postnikov length of a space X, denoted by PL(X), is the mini-
mum n such that X has a GPT of length n.

The purpose of this section is to collect basic properties of the Postnikov length.
Of course, the Postnikov length is a homotopy invariant. By definition, PL(X) = 0 if
and only if X is weakly contractible, and PL(X) = 1 if and only if X is a nontrivial
GEM.

Let us first prove the following useful lemma. Let X〈n〉 denote the n-connected
cover of a space X, and let π : X〈n〉 → X be the natural projection. For a graded
abelian group A =

⊕
n>1 An, let K(A) denote the generalized Eilenberg–Mac Lane

space
∏

n>1 K(An, n).

Lemma 4.2. Suppose that a space X has a GPT (1). Then there is a GPT

· · · → Xn〈m〉 → Xn−1〈m〉 → · · · → X0〈m〉

of X〈m〉 in which each arrow is a part of a homotopy fibration Xn〈m〉 → Xn−1〈m〉 →
Kn for an m-connected GEM Kn.

Proof. Let A be a graded abelian group. For a map α : Y → K(A) and a positive
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integer m, we define a subgroup B ⊂ A by

Bn =


0 n 6 m

Im{α∗ : πm+1(Y )→ Am+1} n = m+ 1

An n > m+ 1.

Let ᾱ be the composite Y 〈m〉 π−→ Y
α−→ K(A). Since there is a homotopy fibration

K(B)→ K(A)→ K(A/B) and Y 〈m〉 is m-connected, the obstruction to lift ᾱ to a
map Y 〈m〉 → K(B) is the cohomology class in Hm+1(Y 〈m〉;Am+1/Bm+1) that is
represented by the composite

Y 〈m〉 ᾱ−→ K(A)→ K(A/B)→ K(Am+1/Bm+1,m+ 1).

Then this obstruction can be identified with the composite πm+1(Y 〈m〉)
ᾱ∗−−→ Am+1 →

Am+1/Bm+1 through the congruences

Hm+1(Y 〈m〉;Am+1/Bm+1) ∼= Hom(Hm+1(Y 〈m〉;Z), Am+1/Bm+1)
∼= Hom(πm+1(Y 〈m〉), Am+1/Bm+1).

Then by the definition of B, the obstruction is trivial, and hence there is a map
α̃ : Y 〈m〉 → K(B) satisfying a homotopy commutative diagram

Y 〈m〉 α̃ //

π

��

K(B)

��
Y

α // K(A).

Let F, F̃ be the homotopy fibers of the maps α, α̃, respectively. It is straightforward
to verify that F̃ is the m-connected cover of F and that the natural map F̃ → F is
idenfied with the projection π : F 〈m〉 → F .

Apply the above construction to the classifying map Xn−1 → Kn of the fibration
Xn → Xn−1, where Kn is a simply connected GEM. Then the proof of the first half
of the lemma is proved, and it remains to show that there is a weak homotopy equiv-

alence X〈m〉 → lim←−Xn〈m〉. Obvoiusly, the composite X〈m〉 π−→ X
ρ−→ lim←−Xn lifts to

lim←−Xn〈m〉 through lim←−π : lim←−Xn〈m〉 → lim←−Xn, where ρ is a weak homotopy equiv-
alence. It is straightforward to see that this lift is a weak homotopy equivalence, and
therefore the proof is completed.

The following proposition is an immediate consequence of Lemma 4.2.

Proposition 4.3. For any positive integer m, there is an inequality

PL(X〈m〉) 6 PL(X).

We consider the behavior of the Postnikov length on a fibration.

Proposition 4.4. For a fibration F → E → B with a 2-connected base B, we have

PL(F ) 6 PL(E) + PL(B).
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Proof. Take a GPT · · · → Bn → Bn−1→ · · · →B0 of B with length k. By Lemma 4.2,
without raising length, we may assume that each Bn is 2-connected and that each
map is a part of a homotopy fibration Bn → Bn−1 → Kn with a 2-connected GEM
Kn. We also take a GPT · · · → En → En−1 → · · · → E0 of E with length l. Let Fi

be the homotopy fiber of the composite

El
'−→ E → B

'−→ Bk → Bk−1 → · · · → Bi

for i > 1. Notice that Fk ' F . It is well known that there is a homotopy commutative
diagram

Fi
//

��

El
// Bi

��
Fi−1

//

��

El
//

��

Bi−1

��
ΩKi

// ∗ // Ki

in which all rows and columns are homotopy fibrations. We are now assuming that
each Ki is a 2-connected GEM, and hence so is B1. Then the tower

· · · = F = Fk → Fk−1 → · · · → F1 → El → El−1 → · · · → E0

is a GPT of F with length l + k, completing the proof.

Corollary 4.5. If X is 2-connected,

PL(ΩX) 6 PL(X).

Proof. Apply Proposition 4.4 to the path-loop fibration of X.

It is useful to estimate the Postnikov length by other homotopy invariants. Recall
that the Whitehead length of a space X, denoted by WL(X), is the minimum n
such that for some xi ∈ πki(X) (i = 1, . . . , n+ 1) the iterated Whitehead product
[x1, [x2, [· · · [xn, xn+1] · · · ]] is nontrivial.

Proposition 4.6. For a space X, we have

WL(X) 6 PL(X).

Proof. The proof of [BG, Theorem 3.3] implies that for a principal fibration E → B,
it holds that WL(E) 6 WL(B) + 1, completing the proof.

We can consider the p-local version of the Postnikov length. The p-local Postnikov
length of a p-local space X, denoted by PL(p)(X), is defined as the minimum n such
that X has a p-local GPT of length n. All of the above results in this section hold
also for the p-local Postnikov length. The integral and the p-local Postnikov lengths
are related by the following inequality, which is a consequence of Theorem 3.1.
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Corollary 4.7. For a space X, we have

PL(p)(X(p)) 6 PL(X).

To end this section, we give an interesting example of a space with finite Postnikov
length, into which there is an essential phantom map but not after p-localization. Let
us first recall the definition of phantom maps, where our reference for phantom maps
is [Mc]. A map f : X → Y between spaces is called a phantom map if for any map
g : K → X from a finite complex K, the composite f ◦ g is null homotopic. So f is

a phantom map if and only if the composite X(n) → X
f−→ Y is null homotopic for

any n, where X(n) is the n-skeleton of X. Then by the homotopy set version of the
Milnor exact sequence (2), there is an identification of all phantom maps from X to
Y , denoted by Ph(X,Y ), as

Ph(X,Y ) ∼= lim←−
1[X(n),ΩY ]. (7)

Let · · · → Yn → Yn−1 → · · · → Y be the classical Postnikov tower of Y . Then dually,
we also have the identification

Ph(X,Y ) ∼= lim←−
1[X,ΩYn].

In particular, if Y is a finite Postnikov piece—i.e., the length of the classical Postnikov
tower is finite—there is no essential phantom map into Y .

We now introduce the main object of this section. Let P be the set of all primes,
and let P1

p : K(Z, 3)→ K(Z/p, 2p+ 1) be the composite of the modulo p reduction
K(Z, 3)→ K(Z/p, 3) and the Steenrod reduced power operation P1 : K(Z/p, 3)→
K(Z/p, 2p+ 1), where P1 = Sq2 for p = 2. Define a space X as the homotopy fiber
of the map

ρ =
∏
p∈P

P1
p : K(Z, 3)→

∏
p∈P

K(Z/p, 2p+ 1).

Obviously, we have PL(X) 6 2. By looking at cohomology, we also see that PL(X) > 2;
hence

PL(X) = 2.

Notice that since ρ is a stable cohomology operation, X is an infinite loop space.

Theorem 4.8. For the above space X, we have

Ph(K(Z, 2), X) ∼= Z∧/Z⊕
⊕
p∈P

Z/p∞ and Ph(K(Z, 2), X(p)) = ∗

for any prime p, where Z∧ is the profinite completion of Z.
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Proof. Consider the commutative diagram

0

��

0

��

0

��
· · · // [CPn,ΩX] //

��

[CPn−1,ΩX]

��

// · · · // [CP 1,ΩX]

��
· · ·

∼= // [CPn,K(Z, 2)]
∼= //

Ωρ∗

��

[CPn−1,K(Z, 2)]

Ωρ∗

��

∼= // · · ·
∼= // [CP 1,K(Z, 2)]

Ωρ∗

��
· · · // [CPn, Y ] // [CPn−1, Y ] // · · · // [CP 1, Y ]

induced from the fibration X −→ K(Z, 2) ρ−−→
∏

p∈P K(Z/p, 2p+ 1), where Y =∏
p∈P K(Z/p, 2p). Let u be the element of [K(Z, 2),K(Z/p, 2)] corresponding to the

modulo p reduction. By the definition of the map ρ, we have

(Ωρ)∗(u) = (u2, u3, . . . , up, . . .) ∈ [K(Z, 2), Y ],

and hence the top row is identified with the tower

· · · pn+1−−−→ Z pn−→ Z pn−1−−−→ · · · p1−→ Z,

where pn is the product of all primes 6 n. Thus the first half follows from the iden-
tification (7) and the calculation in [Mc]. The second half follows from the fact that
X(p) is a finite Postnikov piece.

5. GPT of a finite complex

In this section, we study the length of a GPT of a finite complex, motivated by
the result of McGibbon and Neisendorfer [MN] on the distribution of torsion in the
homotopy groups of a finite complex, which is a generalization of the classical result
of Serre [Se]. Let us first recall these results.

Theorem 5.1 (Serre [Se] for p = 2 and Umeda [U] for p odd). If X is a simply
connected finite complex, then πn(X)(p) 6= 0 for infinitely many n.

Theorem 5.2 (McGibbon and Neisendorfer [MN]). If X is a simply connected finite
complex, πn(X)(p) has torsion for infinitely many n.

Notice that Theorem 5.1 can be restated in terms of the classical Postnikov tower
as follows: The length of the classical Postnikov tower of a simply connected finite
complex is infinite at any prime p. There is a GPT version of this result due to Grodal
whose proof is based on consideration of unstable modules. We here give a short and
simple proof using the following Zabrodsky lemma.

Lemma 5.3 (Zabrodsky [Z]). For a homotopy fibration F → E → B, if map∗(F,X)
is weakly contractible, the induced map map∗(B,X)→ map∗(E,X) is a weak homo-
topy equivalence.
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Theorem 5.4 (Grodal [Gr]). If X is a simply connected p-locally finite complex that
is not contractible, then PL(p)(X) =∞.

Proof. Let map∗(K,X) denote the space of basepoint-preserving maps from K to X.
By the solution of the Sullivan conjecture on the homotopy fixed point set, the p-
completion map∗(K,X)∧p is weakly contractible for any simply connected Eilenberg–
Mac Lane space K. Then it follows from Lemma 5.3 together with the natural homo-
topy equivalence map∗(K,X)∧p ' map∗(K

∧
p , X

∧
p ) that map∗(K,X)∧p is also weakly

contractible for any simply connected space K with finite Postnikov length. In par-
ticular, if we assume PL(p)(X) <∞, map∗(X,X)∧p is weakly contractible. This implies
that the identity map of X∧

p is null homotopic, and hence X∧
p is contractible, which

is a contradiction.

As in the case of Theorem 5.1, we can restate Theorem 5.2 in terms of the classical
Postnikov tower as follows: the homotopy fiber of the natural map X → Xn has
torsion in the homotopy groups for any n, where Xn is the n-th Postnikov piece. So
we consider the following problem as a generalization of Theorem 5.2 using a GPT.

Problem 5.5. Consider a GPT (1) of a simply connected finite complex X. Do the
homotopy groups of the homotopy fiber of the natural map X → Xn have p-torsion
for any n?

We give an affirmative answer to this problem in several cases. Let us first consider
the case WL(X) =∞. We prepare the following variant of the argument in [MN].

Lemma 5.6. Suppose that a map f : X → Y between p-local nilpotent spaces satisfies
the following conditions:

1. f∗ : πm(X)→ πm(Y ) is nontrivial for some m > 3.

2. πn(X) is torsion-free for any n.

Then Y cannot be a simply connected p-locally finite complex.

Proof. By assumption, there is a map g1 : CP 1 → Ωm−2X for some m > 3 such that
Ωm−2f ◦ g1 is essential. Suppose that g1 extends to a map gn : CPn → Ωm−2X. We
consider the induced map of gn in the minimal models of rational homotopy theory.
Since every rational H-space is a GEM, the minimal model of Ωm−2X is of the form
(ΛV, 0) for some graded vector space V . On the other hand, the minimal model of
CPn is given by

(Λ(u, v), d), |u| = 2, |v| = 2n+ 1 and dv = un+1.

Then we see that gn induces the trivial map in the minimal models. Then, in particu-
lar, the associated linear map V = ΛV/Λ+V → Λ(u, v)/Λ+(u, v) = 〈u, v〉 is also triv-
ial; this is identified with the induced map Hom((gn)∗,Q) : Hom(π∗(Ω

m−2X),Q)→
Hom(π∗(CPn),Q); see [FHT2]. Thus, as the rationalization map π2n+1(Ω

m−2X)→
π2n+1(Ω

m−2X)(0) is injective by assumption, the map (gn)∗ : π2n+1(CPn)→
π2n+1(Ω

m−2X) is trivial, implying that gn extends to gn+1 : CPn+1 → Ωm−2X.
Taking the (homotopy) colimit, we get a map g∞ : CP∞ → Ωm−2X such that

Ωm−2f ◦ g∞ is essential, implying that map∗(CP∞, Y ) is not weakly contractible
(after p-completion). By the solution to the Sullivan conjecture on the homotopy
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fixed point sets, this implies that Y cannot be a simply connected p-locally finite
complex. Therefore the proof is completed.

Theorem 5.7. Let X be a simply connected p-locally finite complex with WL(X) =∞.
Then for any p-local GPT (1) of X and any n, the homotopy fiber of the map X → Xn

has torsion in the homotopy groups.

Proof. Let F be the homotopy fiber of the map X → Xn. By the p-local version of
Proposition 4.6, we have WL(Xn) 6 PL(p)(Xn) 6 n. Then since WL(X) =∞ and X is
simply connected, the induced map πm(X)→ πm(Xn) is not injective for somem > 3,
implying that the induced map πm(F )→ πm(X) is nontrivial for somem > 3. Assume
that πm(F ) is torsion-free for any m. Then by Lemma 5.6, X cannot be a simply
connected p-locally finite complex, a contradiction. Thus π∗(F ) has torsion.

Recall that a simply connected spaceX is called rationally elliptic if πn(X)⊗Q 6= 0
for finitely many n. If X is not rationally elliptic, it is called rationally hyperbolic;
i.e., πn(X)⊗Q 6= 0 for infinitely many n.

Corollary 5.8. Let X be a simply connected p-locally finite complex with a p-local
GPT (1). If X is rationally hyperbolic, the homotopy fiber of the map X → Xn has
torsion in the homotopy groups for any n.

Proof. It is proved in [FHT1] that if X is rationally hyperbolic, WL(X) =∞. Thus
the proof is completed by Theorem 5.7.

We next consider the case that the v1-periodic homotopy groups are nontrivial. Let
us recall the definition of the v1-periodic groups, where we refer to [D] for more details.
Let Mn(p) denote the n-dimensional Moore space Sn−1 ∪p en. Recall that there is
the so-called Adams map α : Mn+s(p)→Mn(p) for s = 8, 2p− 2, according as p = 2
and p > 2. The v1-periodic homotopy group of a space X, denoted by v−1

1 πn(X;Z/p),
is defined as the colimit of the sequence

[Mn(p), X]
α∗

−−→ [Mn+s(p), X]
α∗

−−→ [Mn+2s(p), X]
α∗

−−→ · · · . (8)

For a fibration F → E → B, we have a homotopy exact sequence [D]

· · · → v−1
1 πn(F ;Z/p)→ v−1

1 πn(E;Z/p)→ v−1
1 πn(B;Z/p)→ v−1

1 πn−1(F ;Z/p)→· · ·.

There are several examples of finite complexes with nontrivial v1-periodic homotopy
groups such as spheres and compact Lie groups [D].

Theorem 5.9. Let X be a simply connected p-locally finite complex with a p-local
GPT (1). If v−1

1 π∗(X;Z/p) 6= 0, the homotopy fiber of the map X → Xn has torsion
in the homotopy groups for any n.

Proof. For any GEM K, every arrow in the sequence (8) becomes trivial after finitely
many steps, so we have v−1

1 πn(K;Z/p) = 0. Then by the homotopy exact sequence,
we get that v−1

1 πn(X;Z/p) = 0 for a p-local space with PL(p)(X) <∞.
Let F be the homotopy fiber of the map X → Xn with the fiber inclusion i : F →

X. Since v−1
1 π∗(Xn;Z/p) = 0, it follows from the homotopy exact sequence that the

induced map i∗ : v
−1
1 πn(F ;Z/p)→ v−1

1 πn(X;Z/p) is an isomorphism for any n. Then,
as v−1

1 π∗(X;Z/p) 6= 0 by assumption, for some integer N the map i∗ : [MN (p), F ]→



POSTNIKOV TOWERS WITH FIBERS GENERALIZED EILENBERG–MAC LANE SPACES 151

[MN (p), X] is nontrivial. Consider the following commutative diagram induced from

the cofibration sequence SN−1 p−→ SN−1 →MN (p)
π−→ SN .

πN (F )
π∗

//

i∗

��

[MN (p), F ]

i∗

��

// πN−1(F )

i∗

��

p // πN−1(F )

i∗

��
πN (X)

π∗
// [MN (p), X] // πN−1(X)

p // πN−1(X)

.

Suppose now that π∗(F ) has no torsion. Then the p-power map in the upper right of
the diagram is injective, implying that the map π∗ : πN (F )→ [MN (p), F ] in the upper
left is surjective. Hence since the second vertical arrow i∗ : [M

N (p), F ]→ [MN (p), X]
is nontrivial as above, we obtain that the first vertical arrow i∗ : πN (F )→ πN (X) is
also nontrivial. Thus by Lemma 5.6, X cannot be a simply connected p-locally finite
complex, a contradiction. Therefore π∗(F ) has torsion, completing the proof.

Remark 5.10. Let X be a 3-connected space. It is proved in [B] that v−1
1 π∗(X;Z/p) 6=

0 if and only if the mod p K-homology of (ΩnX)〈3〉 is nontrivial for any n. If X is
rationally hyperbolic, we have H∗((Ω

nX)〈3〉;Q) 6= 0 for any n, implying that the mod
p K-homology of (ΩnX)〈3〉 is nontrivial for any n. Then Corollary 5.8 for 3-connected
spaces follows from Theorem 5.9.

We have considered the rationally hyperbolic case, so we next consider the ratio-
nally elliptic case. Let us recall the following result.

Theorem 5.11 (McGibbon and Wilkerson [MW]). Let X be a simply connected
finite complex that is rationally elliptic and is not rationally contractible. Then except
for finitely many p, there is a p-local homotopy equivalence

ΩX '(p)

k∏
i=1

S2mi+1 ×
l∏

j=1

ΩS2nj+1.

Corollary 5.12. Let X be a simply connected finite complex that is rationally elliptic
and is not rationally contractible, and let the tower (1) be a GPT of X. Except for
finitely many p, the homotopy fiber of the map X → Xn has p-torsion in the homotopy
groups for any n.

Proof. As is noted above, the v1-periodic homotopy groups of spheres are nontrivial.
Then by Theorem 5.11, v−1

1 π∗(X;Z/p) 6= 0 except for finitely many p, and hence the
proof is completed by Theorem 5.9.

6. Rational Postnikov length

As is well known, the rational homotopy type of a simply connected space is
completely described by the dga called the minimal model. According to this, many
homotopy invariants are now described in terms of the minimal model, or a Sullivan
model in general. The purpose of this section is to give an algebraic description of the
rational Postnikov length. Our reference for rational homotopy theory is [FHT2].

We first recall basic terminology in rational homotopy theory. Throughout this
section, vector spaces and dga’s are over the field of rational numbers Q. Let V be a
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graded vector space. A filtration of V is an ascending chain 0 = V (0) ⊂ V (1) ⊂ · · · of
vector subspaces of V satisfying

∪
n>0 V (n) = V . The length of a Sullivan filtration

is the minimum k such that V (k) = V . Recall that a dga (ΛV, d) is called a Sullivan
algebra if there is a filtration 0 = V (0) ⊂ V (1) ⊂ · · · of V satisfying

dV (n) ⊂ ΛV (n− 1) for all n.

Such a filtration is called a Sullivan filtration. A Sullivan algebra (ΛV, d) is called
minimal if dv is decomposable for any v ∈ V . A map between dga’s is called a quasi-
isomorphism if it induces an isomorphism in cohomology. We have the following
fundamental theorem in the algebraic part of rational homotopy theory.

Theorem 6.1 (cf. [FHT2]). Let (A, d) be a simply connected dga.

1. There is a Sullivan algebra (ΛV, d) and a quasi-isomorphism ρ : (ΛV, d)→ (A, d).
The dga (ΛV, d) (or the map ρ) is called a Sullivan model of (A, d).

2. The above Sullivan algebra can be chosen as minimal.

3. The minimal Sullivan model of (A, d) is unique up to homotopy.

Let us define the algebraic Postnikov length of a dga.

Definition 6.2. The Postnikov length of a dga (A, d), denoted by PL(A, d), is the
minimum n such that there is a Sullivan model of (A, d) with filtration length n.

By definition, PL(A, d) = 0 if and only if (A, d) is acyclic, and PL(A, d) = 1 if and
only if (A, d) is not acyclic and there is a Sullivan model of (A, d) with a trivial
differential. The Postnikov length of a dga is a quasi-isomorphism invariant as:

Proposition 6.3. For dga’s (A, d) and (B, d), if there exists a quasi-isomorphism
(A, d)→ (B, d), then

PL(A, d) = PL(B, d).

Proof. Obviously, we have PL(A, d) > PL(B, d). Let ρ : (ΛV, d)→ (B, d) be a Sullivan
model of (B, d). Then the map ρ lifts to a map ρ̃ : (ΛV, d)→ (A, d) through the given
quasi-isomorphism (A, d)→ (B, d). Then ρ̃ is a Sullivan model of (A, d), implying
PL(A, d) 6 PL(B, d).

For a dga (ΛV, d), we define the special filtration V [0] ⊂ V [1] ⊂ · · · of V as

V [0] = 0 and V [n] = {v ∈ V | dv ∈ ΛV [n− 1]} for n > 1.

Proposition 6.4. The length of the filtration V [0] ⊂ V [1] ⊂ · · · of V is minimal
among all Sullivan filtration of (ΛV, d).

Proof. Let V (0) ⊂ V (1) ⊂ · · · be an arbitrary Sullivan filtration of V . By definition,
we have V (0) = V [0] = 0. Suppose that V (n− 1) ⊂ V [n− 1]. Then dV (n) ∈ ΛV (n−
1) ⊂ ΛV [n− 1], implying that V (n) ⊂ V [n]. This completes the proof.

As in Theorem 6.1, the quasi-isomorphism type of a dga is determined by its
minimal model. So it is natural to consider whether the Postnikov length of a dga
can be described by its minimal model. This leads us to define the minimal model
Postnikov length of a dga (A, d), denoted by PLmin(A, d), as the minimum n such
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that there is the minimal model of (A, d) that admits a length n Sullivan filtration.
By definition, we have

PLmin(A, d) > PL(A, d).

But unfortunately, the following example shows that the converse implication does
not hold. Thus the rational Postnikov length cannot be determined only from the
minimal Sullivan model.

Example 6.5. Consider a dga (ΛV, d) with V = 〈x3, x5, x7, x17, x31, x47, u9, u10〉 and

dx3 = dx5 = dx17 = 0, dx7 = x3x5, dx31 = x5x17u10, dx47 = x17x31,

du9 = u10 + x3x7, du10 = 0,

where the suffix indicates the degree. The minimum length Sullivan filtration of V is
given as

V [0] = 0, V [1] = 〈x3, x5, x17, u10〉, V [2] = V [1]⊕ 〈x7, x31, u9〉, V [3] = V ;

hence PL(ΛV, d) = 3. The minimal model of (ΛV, d) is a dga (ΛW,d) with W =
〈y3, y5, y7, y17, y31, y47〉 and

dy3 = dy5 = dy17 = 0, dy7 = y3y5, dy31 = y3y5y7y17, dy47 = y17y31,

where the quasi-isomorphism ρ : (ΛW,d)→ (ΛV, d) is given by

ρ(yi) = xi for i = 3, 5, 7, 17, 47 and ρ(y31) = x31 − x5x17u9.

The minimum length Sullivan filtration of (ΛW,d) is

W [0] = 0, W [1] = 〈y3, y5, y17〉, W [2] = W [1]⊕ 〈y7〉,
W [3] = W [2]⊕ 〈y31〉, W [4] = W.

For a degree reason, the minimal model (ΛW,d) is unique, and then PLmin(ΛV, d) = 4.

For a space X, there is a dga APL(X) consisting of PL de Rham forms whose
cohomology is naturally isomorphic to H∗(X;Q). Then by Theorem 6.1, the rational
homotopy type of a simply connected space X is completely determined by the min-
imal model of APL(X). The functor APL has a left adjoint that is denoted by |(A, d)|
for a dga (A, d).

We consider the algebraic object corresponding to a fibration. Recall that a KS-
extension of a dga (A, d) by a graded vector space V is a dga (A⊗ ΛV, d̄) satisfying

d̄|A = d and dV ⊂ A.

Let ΣV be the graded vector space with ΣVn = Vn−1. Then the differential of the
above KS-extension corresponds to a map (ΣV, 0)→ (A, d). We know that for a KS-
extension (A⊗ ΛV, d̄) of a dga (A, d) defined by a map (ΣV, 0)→ (A, d), the natural
sequence (A, d)→ (A⊗ ΛV, d̄)→ (ΛV, 0) induces a principal fibration

|(ΛV, 0)| → |(A⊗ ΛV, d̄)| → |(A, d)| (9)

that is classified by the induced map |(A, d)| → |(ΛΣV, 0)|. Moreover, we also know
that for a graded vector space W , |(ΛW, 0)| is the GEM K(W ).

The converse of the above construction also holds as follows. Let E → B be a prin-
cipal fibration that is classified by a map B → K(ΣW ) for a graded vector space W .
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Let (A, d)→ APL(B) be a quasi-isomorphism. The minimal model of APL(K(ΣW ))
is (ΛΣW, 0), and the composite (ΛΣW, 0)→ APL(K(ΣW ))→ APL(B) lifts to (A, d)
through the given quasi-isomorphism. Then we get a KS-extension (A⊗ ΛW, d̄). As
in [FHT2], there is a commutative diagram

(A, d) //

��

(A⊗ ΛW, d̄) //

��

(ΛW, 0)

��
APL(B) // APL(E) // APL(K(W )),

(10)

where the bottom row is induced from a fibration K(W )→ E → B and each vertical
arrow is a quasi-isomorphism.

We are now ready to show a relation between the Postnikov length of a space X
and the Postnikov length of the dga APL(X).

Theorem 6.6. For a rational space X, we have

PL(0)(X) = PL(APL(X), d).

Proof. Let (ΛV, d) be a Sullivan model of APL(B). By (9), for the minimum Sullivan
filtration V [0] ⊂ V [1] ⊂ · · · of V , there is a tower

· · · → |(ΛV [n], d)| → |(ΛV [n− 1], d)| → · · · → |(ΛV [0], d)| = ∗

in which each arrow |(ΛV [n], d)| → |(ΛV [n− 1], d)| is a principal fibration classified by
a map |(ΛV [n− 1], d)| → |(Σ(V [n]/V [n− 1]), 0)| = K(Σ(V [n]/V [n− 1])). Since the
functor APL is a is a right adjoint, we have

lim←−|(ΛV [n], d)| = | lim−→ (ΛV [n], d)| = |(ΛV, d)|.

Then the above tower is a GPT of X, implying

PL(0)(X) 6 PL(APL(X), d).

Suppose X has a rational GPT (1). Then each arrow Xn → Xn−1 corresponds to a
KS-extension for a given quasi-isomorphism (A, d)→ APL(Xn−1), and hence we get
a sequence of KS-extensions

0 = (ΛV (0), d)→ · · · → (ΛV (n− 1), d)→ (ΛV (n), d)→ · · ·

such that there is a natural quasi-isomorphism (ΛV (n), d)→ APL(Xn). Since
lim−→ APL(Xn) = APL(lim←−Xn) as above, (ΛV, d) = lim−→ (ΛV (n), d) is a Sullivan model
of APL(X), implying

PL(0)(X) > PL(APL(X), d).

Therefore, the proof is completed.

7. Problems

In this last section, we propose some problems concerning a GPT that naturally
arise in the above study. We first consider a relation between the Postnikov length
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and localization. By Corollary 4.7, we have

PL(X) > max{PL(p)(X(p)) | p ∈ P}, (11)

where P is the set of all primes as above. However, we do not know whether the
equality holds or not. Then we raise the following problem.

Problem 7.1. Does the equality in (11) always hold?

We next consider the distribution of torsion in a GPT of a finite complex. Let X
be a simply connected finite complex with a GPT (1). We here write the problem in
Section 5 once again.

Problem 7.2. Consider a GPT (1) of a simply connected finite complex X. Do the
homotopy groups of the homotopy fiber of the natural map X → Xn have p-torsion
for any n?

We have answered to this problem affirmatively in many cases. In the proof of this
answer, the key is to show the noninjectivity of the map π∗(X)→ π∗(Xn). So we
raise the following problem.

Problem 7.3. Let X be a simply connected finite complex with a GPT (1). Is the
induced map π∗(X)(p) → π∗(Xn)(p) noninjective for any n?

A slightly generalized problem is the following, which might be thought of as a
“homotopy” version of the immersion problem.

Problem 7.4. Let X be a simply connected finite complex, and let Y be a p-local
space with PL(p)(Y ) <∞. Does any map X(p) → Y induce a noninjection in the
homotopy groups?

Of course, there are implications:

Problem 7.4 ⇒ Problem 7.3 ⇒ Problem 7.2

We finally consider the rational Postnikov length. For simplicity, we only consider
rational spaces. In [Y], Yau defines the fiber length of a space X, denoted by FLY(X),
as follows. FLY(X) = 0 if and only if X is contractible, and FLY(X) 6 n if and only if
there is a homotopy fibration X → Y → Z in which FLY(Y ) < n. In [H], Hovey gives
another definition of the fiber length of a space by adding the extra condition that Z
is an H-space in the above definition due to Yau. We denote Hovey’s fiber length by
FLH(X). Since every rational H-space is a GEM, we have

FLH(X) = PL(0)(X).

By definition, we also have

FLY(X) 6 FLH(X) (= PL(0)(X)). (12)

The fiber length is defined in connection with the cocategory, and there are two
definitions of the cocategory [Ga, H] corresponding to the above two definitions of the
fiber length. It is known that there is an inequality between these two cocateogories,
and Hovey [H] proved that the inequality for rational spaces is strict in general. We
now raise the following problem.

Problem 7.5. Is there a rational space X for which the inequality (12) is strict?
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