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Abstract
We study the problem of existence and uniqueness of homo-

topy colimits in stable representation theory, where one typ-
ically does not have model category structures to guarantee
that these homotopy colimits exist or have good properties.
We get both negative results (homotopy cofibers fail to exist
if there exist any objects of positive finite projective dimen-
sion!) and positive results (reasonable conditions under which
homotopy colimits exist and are unique, even when model cate-
gory structures fail to exist). We describe some applications to
Waldhausen K-theory and to deformation-theoretic methods in
stable representation theory.
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1. Introduction.

Suppose C is an abelian category—for examples, the category of modules over
a ring, or the category of abelian sheaves on a scheme. By stable representation
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theory one means the study of C under the equivalence relation in which one regards
two maps f, g in C as being equivalent, or “homotopic,” if f − g factors through
a projective object. One says that two objects in C are “stably equivalent” if they
become isomorphic after imposing this equivalence relation on maps in C. Since stably
equivalent objects in C have the same ExtnC groups for all n > 0, stable representation
theory is a natural topic of study if one wants to compute the higher ExtC groups for
a large family of objects (or perhaps all objects) in C.

In this paper we consider the problem of the existence and uniqueness of homotopy
colimits in stable representation theory. Specifically, if one has a diagram of objects in
an abelian category C, and all of the morphisms in the diagram are monomorphisms,
one wants to know that replacing an object in the diagram with a stably equivalent
object will not change the colimit of the diagram, up to stable equivalence. Here are
some reasons why one wants to do this:

1. One wants to study and compute the stable algebraic G-theory associated to C,
that is, one wants to study derived stable representation theory, in the sense thatG0(C)
is the Grothendieck group completion of a monoid of stable equivalence classes of
objects in C, and the higher G-theory groups capture more subtle K-theoretic invari-
ants of the stable representation theory of C. We do some of this in our paper [14],
using results from the present paper.

To construct the relevant G-theory, one needs the structure of a Waldhausen cate-
gory on C in which the weak equivalences are the stable equivalences. But one of the
axioms required of a Waldhausen category, Waldhausen’s axiom Weq 2 from [15], is
that, given a commutative diagram in C

X ′

��

Y ′oo //

��

Z ′

��
X Yoo // Z

in which the horizontal maps are cofibrations and the vertical maps are weak equiv-
alences, the induced map of pushouts X ′ qY ′ Z ′ → X qY Z is a weak equivalence.
In other words, homotopy pushouts are well-defined in C. So one must know some-
thing about well-definedness of homotopy pushouts in order to do any K-theory or
G-theory.

2, One wants to be able to make constructions in stable representation theory which
come from geometric realization of simplicial objects and totalization of cosimplicial
objects. For example, topological Hochschild homology and topological Andre-Quillen
homology occur as geometric realizations. Because of their applications in deformation
theory and algebraic K-theory, one wants to be able to form the necessary geometric
realizations to construct these objects in the context of stable representation theory.

Geometric realizations are particular kinds of homotopy colimits and we study
their existence and uniqueness in this paper.

Existence and uniqueness of homotopy colimits is well-understood in the context
of a model category, but abelian categories frequently do not admit the structure of
a model category in which the weak equivalences are the stable equivalences and the
cofibrations are the monomorphisms. So one cannot rely on general model-category-
theoretic methods.
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In fact, we get some negative results, which preclude the existence of such a model
category structure (or even a Waldhausen category structure) on an abelian category
under surprising conditions: a special case of our Cor. 3.11 is that if an abelian category
C with enough projectives has any objects of finite, positive projective dimension, then
homotopy cofibres fail to be well-defined in C. As a consequence, if there exists a
single object of projective dimension 6= 0,∞, then C cannot have a model category
structure or a Waldhausen category structure with the desired cofibrations and weak
equivalences.

On the other hand, suppose that C has enough projectives and enough injectives,
and suppose that every projective object is injective. Then homotopy cofibers (and
homotopy pushouts in general) are unique up to stable equivalence; this is a special
case of our Cor. 4.4. As a consequence, C then satisfies Waldhausen’s axiom Weq
2. This is substantially weaker than the assumption that C is quasi-Frobenius (i.e.,
projective objects coincide with injective objects), which is the known condition under
which C admits a model category structure with the desired properties, as in [6].

We also show that, when C has enough projectives and enough injectives, when
every projective object is injective, and when every object can be embedded appro-
priately into a projective object, then geometric realization of simplicial objects is
well-defined in C; this is a special case of our Cor. 6.8.

Throughout this paper, we work in the context of relative homological algebra.
A good treatment of the basics of this subject is in Mac Lane’s book [7], but the
appendix to this paper is a self-contained introduction to the subject, so that the
reader will not have to look elsewhere for the basic definitions.

There are two reasons we work in the context of relative homological algebra:
1. In [14] we study the effect of localization, i.e., change of allowable class, on alge-

braic G-theory. Our results in [14] require the results on well-definedness of homotopy
pushouts, in particular Cor. 4.5, from the present paper.

2. Our main area of applications for these results is in the stable representation
theory of comodules over Hopf algebroids, especially those arising in stable homotopy
theory. The Ext groups in the category of comodules over various Hopf algebroids
are the E2-terms of generalized Adams spectral sequences which are used to compute
stable homotopy groups of various spaces and spectra, so the stable representation
theory of these comodules is quite important for topology. If (A,Γ) is a Hopf algebroid,
the relevant homological algebra is the one in which the relative projective objects are
the comodules which are tensored up from A-modules; see Appendix 1 of [12] for these
ideas. Since comodules over certain Hopf algebroids are equivalent to quasicoherent
modules over certain Artin stacks, this direction is relevant to algebraic geometry as
well.

We note that three essential technical tools in this paper are the relative-homologi-
cal-algebraic versions of classical theorems in the theory of abelian categories: namely,
our Lemmas 3.6 and 3.7 are the relative versions of the main results of the 1961
paper [5] of Hilton and Rees, and our Prop. 4.1 is a relative variant of the main
result of the 1963 paper [10] of Oort. These results are, to our knowledge, new, but
they are not difficult: one can simply mimic the proofs of Hilton-Rees and Oort, with
appropriate adjustments for the more general setting.

Even if one has no interest in relative homological algebra or in abelian categories
aside from categories of modules over a ring, our positive results still have some
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“teeth”: there is an open conjecture in pure algebra that the category of finitely-
generated modules over a ring R is quasi-Frobenius if and only if every finitely-
generated R-module embeds in a projective R-module. See [11] for some discussion
of this problem. This conjecture is the analogue for finitely-generated modules of
the theorem of Faith and Walker (a good reference is [3]), which states that the
category of all R-modules is quasi-Frobenius if and only if every R-module embeds
in a projective R-module. The main point of the section on homotopy pushouts
and homotopy cofibres in the present paper is that one weakening of the (relative)
quasi-Frobenius condition—the condition that every relatively projective object be
relatively injective—suffices to ensure that homotopy pushouts are well-defined. This
result is Prop. 4.4. So if one wants to study the stable representation theory of finitely-
generated R-modules (which is what one must do in order for K-theoretic approaches
like stable G-theory to be applicable, to avoid an Eilenberg swindle forcing all K-
groups to be trivial), then being able to embed such modules in projectives is not
known to imply the quasi-Frobenius property and hence such module categories are
not known to admit the structure of a model category—but one still has some good
properties (e.g., homotopy cofibres, and Waldhausen’s axiom Weq 2) in such cate-
gories of modules, by the results in the present paper.

Finally, we list the main results in this paper, for ease of reference:

• Cor. 3.11 states that, in a relative abelian category with enough relative pro-
jectives and in which there exists an object of positive, finite relative projective
dimension, homotopy pushouts (including homotopy cofibers) fail to be unique
up to homotopy equivalence.

• Cor. 3.12 states that, under the same hypotheses, such a relative abelian cate-
gory does not satisfy Waldhausen’s axiom Weq 2.

• Prop. 4.4 states that, under mild assumptions on a relative abelian category, if
every relatively projective object is relatively injective, then homotopy pushouts
(including homotopy cofibers) are unique up to homotopy equivalence.

• Cor. 4.5 states that, under the same hypotheses, the relative abelian category
does satisfy Waldhausen’s axiom Weq 2.

• Prop. 5.2 states that, under mild assumptions on a relative abelian category, if
every relatively projective object is relatively injective, then sequential homo-
topy colimits are unique up to homotopy equivalence.

• Cor. 6.8 states that, under the same hypotheses, if the abelian category is AB3
and every object embeds appropriately in a relatively projective object, then
geometric realizations of simplicial objects exist and are unique up to homotopy
equivalence.
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2. Definitions.

Definition 2.1. By a weak Waldhausen abelian category we mean an abelian cate-
gory C together with a pair of subcategories cof(C) and we(C) of it, satisfying the
axioms:

• For each object X of C, the identity map on X is in we(C). (In other words,
we(C) is “lluf.”)

• There exists an allowable class E in C with the property that we(C) is equal
to the class of E-stable equivalences, and cof(C) is equal to the class of E-
monomorphisms.

If E is such an allowable class for a given weak Waldhausen abelian category C, we
will say that E is allowable for C.

The appendix to this paper provides some useful classical definitions for the reader
unfamiliar with relative homological algebra. In particular, “allowable class” is
Def. 7.1 and “E-stable equivalence” is Def. 7.5.

The following is Waldhausen’s axiom Weq 2, which we will be concerned with:

Definition 2.2. Let C be a weak Waldhausen category. We say that C satisfies Wald-
hausen’s axiom Weq 2 if, for each commutative diagram

X ′

��

Y ′oo //

��

Z ′

��
X Yoo // Z

in which the maps Y ′ → X ′ and Y → X are cofibrations and the vertical maps are
all weak equivalences, then the map X ′ qY ′ Z ′ → X qY Z is a weak equivalence.

Definition 2.3. Let D be a small category and let C be a category with a distin-
guished class of morphisms cof(C) (for example, C could be a weak Waldhausen
abelian category). Suppose C has an initial object 0. By a D-indexed homotopy col-
imit diagram in C we mean a functor F : D → C with the following properties:

• For each object X of D, the map 0 → F (X) is in cof(C).
• For each map f : X → Y in D, the map F (f) : F (X) → F (Y ) is in cof(C).

We shall see, in Lemma 3.4, that if C is a weakWaldhausen abelian category with an
allowable class that has sectile epics, then the first condition (that the map 0 → F (X)
be a cofibration) in Def. 2.3 is automatically satisfied. The second condition in Def. 2.3
is the significant one. See Def. 7.6 for the definition of “having sectile epics.”

The essential property that one wants in a homotopy colimit is that it should be
homotopy-invariant. In a model category, one always knows that this is so. But in our
much, much more general situation, that of a weakWaldhausen abelian category, some
homotopy colimit diagrams may fail to have homotopy-invariant colimits. When this
is so, we say that the homotopy colimit in question fails to be well-defined. Precisely:

Definition 2.4. Let D be a small category and let C be a weak Waldhausen abelian
category. Suppose C has all D-indexed colimits. We say that D-indexed homotopy
colimits are well-defined, or unique up to homotopy, in C if, for any pair of D-indexed
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homotopy colimit diagrams F,G : D → C and any map of diagrams φ : F → G such
that φ(X) : F (X) → G(X) is in we(C) for every object X of D, the induced map
colimF → colimG is in we(C).

Finally, we include definitions related to lengths of E-projective resolutions, which
we will use in the next section:

Definition 2.5. Suppose C is an abelian category, E an allowable class in C. We say

that a long exact sequence · · · fn−→ Pn−1
fn−1−→ · · · f1−→ P0

f0−→ X → 0 is E-long exact
if each short exact sequence 0 → ker fi+1 → Pi → coker fi+1 → 0 is in E. If each Pi

is an E-projective object, we say that the E-long exact sequence is an E-projective
resolution of X.

Definition 2.6. Suppose C is an abelian category, E an allowable class in C. Suppose
n is a nonnegative integer. We say that an object X of C has E-projective dimension
6 n if there exists an E-projective resolution of X

0 → Pn
fn−→ Pn−1

fn−1−→ · · · f1−→ P0
f0−→ X → 0.

We say that X has E-projective dimension n if it has E-projective dimension 6 n
but does not have E-projective dimension 6 n− 1.

3. Negative results on all homotopy colimits.

In this section we prove that homotopy colimits in a weak Waldhausen abelian
category fail to be unique up to homotopy unless colimits of appropriately-shaped
relative projectives are themselves relatively projective. A precise statement is in
Prop. 3.10. An important application of Prop. 3.10 is the case of homotopy pushouts
in Cor. 3.11, and the question of whether Waldhausen’s axiom Weq 2 is satisfied,
which we address in Cor. 3.12.

Lemma 3.1. Let C be an abelian category and let E be an allowable class in C.
Suppose C has enough E-projectives. Then an object X of C is E-projective if and
only if Ext1C/E(X,Y ) ∼= 0 for all objects Y of C.

Proof. Suppose X is E-projective. Then vanishing of Ext1C/E(X,Y ) is classical (and
easy).

Now suppose X is not E-projective. Then there exists some E-epimorphism
f : A → B and a map g : X → B which does not lift through f . In other words, the
element g ∈ homC(X,B) is not in the image of the map homC(X,A) → homC(X,B).
But we have the exact sequence homC(X,A) → homC(X,B) → Ext1C/E(X, ker f) and

so g must have nonzero image in Ext1C/E(X, ker f). So Ext1C/E(X, ker f) is nontriv-

ial. So by contrapositive, vanishing of Ext1C/E(X,Y ) for all Y implies that X is E-
projective.

Lemma 3.2. Suppose C is an abelian category, E an allowable class in C with sectile
epics. Suppose C has enough E-projectives. Then any finite direct sum of members of
E is in E.
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Proof. Let I be a finite set and 0 → Xi → Yi → Zi → 0 be a member of E for every
i ∈ I. Then, for any E-projective object P of C, we have the commutative diagram

homC(P,⊕iYi) //

∼=
��

homC(P,⊕iZi)

∼=
��

⊕i homC(P, Yi) // ⊕i homC(P,Zi).

The bottom horizontal map is a surjection of abelian groups, so the top horizontal map
is as well. Now by Heller’s theorem 7.7, the map ⊕iYi → ⊕iZi is an E-epimorphism.
So the short exact sequence 0 → ⊕iXi → ⊕iYi → ⊕iZi → 0 is in E.

Lemma 3.3. (Shearing E-monics.) Let C be an abelian category and let
E be an allowable class in C. Suppose X,Y, Z are objects in C and suppose
we have E-monomorphisms e : X → Y and f : Z → Y . Let s be the morphism

s : X ⊕ Z → Y ⊕ Z given by the matrix of maps s =

[
e f
0 idZ

]
. Then coker s is

naturally isomorphic to coker e. Furthermore, if C has enough E-injectives and E has
retractile monics, then s is an E-monomorphism.

Proof. We first show that coker e ∼= coker s. But this follows immediately from the
commutative diagram with exact rows and exact columns:

0 //

��

0 //

��

0 //

��

0 //

��

0

��
0 //

��

X
e //

i

��

Y //

i

��

coker e //

��

0

��
0 //

��

X ⊕ Z
s //

π

��

Y ⊕ Z

π

��

// coker s

��

// 0

��
0 //

��

Z
id //

��

Z

��

// 0

��

// 0

��
0 // 0 // 0 // 0 // 0

in which the maps marked π are projections to the second summand, and the maps
marked i are inclusions as the first summand.

Now assume that E has retractile monics, and let t : Y ⊕ Z → Y ⊕ Y be the map

given by the matrix of maps t =

[
idY −f
0 f

]
. Then a matrix multiplication reveals

that the composite map t ◦ s : X ⊕ Z → Y ⊕ Y is the direct sum map e⊕ f , a direct
sum of E-monomorphisms, hence by Lemma 3.2, itself an E-monomorphism. (Note
that, by taking the opposite category and noticing that the definition of an allow-
able class in an abelian category is self-dual, we get the conclusion of Lemma 3.2
if E has retractile monics and C has enough E-injectives.) Now since t ◦ s is an E-
monomorphism and E is assumed to have retractile monics, s is an E-monomorphism.
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Lemma 3.4. Suppose C is an abelian category, E an allowable class in C which has
sectile epics. Suppose C has enough E-projectives. Any split monomorphism in C is
an E-monomorphism. Dually, any split epimorphism in C is an E-epimorphism.

Proof. Any split monomorphism f fits into a short exact sequence

0 → X
f−→ Y → coker f → 0 (1)

in which Y decomposes as X ⊕ coker f , i.e., short exact sequence 1 is a direct sum of
the short exact sequences 0 → X → X → 0 → 0 and 0 → 0 → coker f → coker f → 0,
both of which are in E by the definition of an allowable class. Now by Lemma 3.2,
short exact sequence 1 is in E. So f is an E-monomorphism.

Lemma 3.5. Suppose C is an abelian category, E an allowable class in C with sectile
epics. Suppose C has enough E-projectives. A composite of E-epimorphisms is an
E-epimorphism.

Proof. Let f : X → Y and g : Y → Z be E-epimorphisms. Let P be an E-projective
object equipped with a map P → Z. Then, since g is an E-epimorphism, P → Z lifts
over g to a map P → Y , which in turn lifts over f since f is an E-epimorphism. So
every map from an E-projective to Z lifts over g ◦ f . Now, by Heller’s theorem 7.7,
g ◦ f is an E-epimorphism.

The following two lemmas are the relative-homological-algebraic generalizations of
the main results of Hilton and Rees’s paper [5]. We provide proofs of the lemmas,
but they are fairly easy generalizations of those already in the literature. There are
also some similar results already in the literature on Auslander-Reiten theory, e.g.,
those of section 9.2 of [4], but our results are more general than any already-existing
results which we aware of. (We are grateful to C. Weibel and an anonymous referee
for pointing out the relevance of that section in Gabriel and Roiter’s book to us.)

Lemma 3.6. Suppose C is an abelian category with an allowable class E. Suppose
C has enough E-projectives. Then E-stable equivalence classes of morphisms
X → Y in C are in bijection with natural transformations of functors Ext1C/E(Y,−) →
Ext1C/E(X,−). This bijection is natural in X and Y .

Proof. This proof is a straightforward generalization of Margolis’ proof of the Hilton-
Rees result, as in Prop. 9 of section 14.1 of [9]. Write [X,Y ] for homC(X,Y ) modulo
E-stable equivalence. We have the morphism of abelian groups

α : homC(X,Y ) → nat(Ext1C/E(Y,−),Ext1C/E(X,−))

defined by the functoriality of Ext1C/E in the first variable. If f : X → Y factors
through a E-projective then clearly α(f) = 0, so α factors as

homC(X,Y )
α //

%%LLLLLLLLLL
nat(Ext1C/E(Y,−),Ext1C/E(X,−))

[X,Y ]

β

55kkkkkkkkkkkkkkkk

We now check that β is a bijection. Suppose β(f) = 0. Then choose E-projective
covers sX : PX → X and sY : PY → Y . We have the commutative diagram with
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exact rows

0 //

��

ker sx

ker sf

��

iX // PX

`

{{w
w

w
w

w

sX //

Pf

��

X

f

��

// 0

��
0 // ker sY iY

// PY sY
// Y // 0.

(2)

(The map as in the dotted line has not yet been shown to exist.) After applying
homC(−, ker sY ), we have the commutative diagram with exact rows

0 Ext1C/E(X, ker sY )oo homC(ker sX , ker sY )oo homC(PX, ker sY )
φoo

0

OO

Ext1C/E(Y, ker sY )

0

OO

oo homC(ker sY , ker sY )

λ

OO

oo homC(PY, ker sY )oo

OO

Commutativity of the diagram together with exactness of the rows and triviality of
the far left-hand vertical map implies that the map λ factors through the image of
φ, i.e., there exists a map ` as in the dotted line in diagram 2 making the triangle
involving ker sf , iX , and ` commute. We now replace Pf with g = Pf − iY ◦ ` to get
the commutative diagram with exact rows

0 //

��

ker sx

ker sf

��

iX // PX
sX //

g

��

X

f

��

//

µ
}}|

|
|

|
0

��
0 // ker sY iY

// PY sY
// Y // 0.

(3)

Since g ◦ iX = Pf ◦ iX − iY ◦ ` ◦ iX = 0, there exists a map as in the dotted line in
diagram 3 to make the triangle involving sX , g, and µ commute. Now we have

f ◦ sX = sY ◦ g = sY ◦ µ ◦ sX
and sX is E-epic, hence epic, i.e., right-cancellable, so f = sY ◦ µ. So f factors through
the E-projective PY , i.e., f is E-stably equivalent to zero. So β is one-to-one.

Now choose a natural transformation Ext1C/E(Y, −) → Ext1C/E(X, −). We
choose E-projective covers sX : PX → X and sY : PY → Y as above. Write
χ ∈ Ext1C/E(Y, ker sY ) for the class of the extension 0 → ker sY → PY → Y → 0.

Notice that the natural map homC(ker sX , ker sY ) → Ext1C/E(X, ker sY ) is surjective

since PX is E-projective and hence Ext1C/E(PX, ker sY ) ∼= 0. So we can choose an

element h ∈ homC(ker sX , ker sY ) whose image in Ext1C/E(X, ker sY ) agrees with the

image of χ under the given map Ext1C/E(Y, ker sY ) → Ext1C/E(X, ker sY ). The map

Ext1C/E(Y, ker sY ) → Ext1C/E(Y, PY ) is automatically zero, so from the commutative
diagram

Ext1C/E(Y, ker sY )
0 //

��

Ext1C/E(Y, PY )

��
Ext1C/E(X, ker sY ) // Ext1C/E(X,PY )
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we know that the image of χ in Ext1C/E(X,PY ) is zero. Hence also the image of h in

Ext1C/E(X,PY ) is zero. Hence in the commutative diagram with exact rows

homC(ker sX , ker sY ) //

��

Ext1C/E(X, ker sY )

��
homC(PX,PY ) // homC(ker sX , PY ) // Ext1C/E(X,PY )

the image of h in homC(ker sX , PY ) lifts to an element in homC(PX,PY ), i.e., we
have a commutative diagram

0 //

��

ker sX

h

��

// PX //

��

X //

��

0

��
0 // ker sY // PY // Y // 0

and the map X → Y is the desired map inducing the given natural transformation
in Ext1C/E . Hence β is surjective, hence an isomorphism.

Lemma 3.7. Suppose C is an abelian category with an allowable class E with sectile
epics. Suppose C has enough E-projectives. Then a map f : X → Y in C induces a
natural isomorphism

Ext1C/E(Y,−) → Ext1C/E(X,−) (4)

if and only if there exist E-projective objects P,Q and an isomorphism g : X ⊕ P →
Y ⊕Q such that the composite X

i−→ X ⊕ P
g−→ Y ⊕Q

p−→ Y is equal to f . (Here
we write i for inclusion of the first summand and p for projection to the first sum-
mand.)

Proof. If an isomorphism g exists as described then we have natural isomorphisms

Ext1C/E(Y,−) ∼= Ext1C/E(Y ⊕Q,−)

∼= Ext1C/E(X ⊕ P,−)

∼= Ext1C/E(X,−)

as desired.
For the converse: suppose f : X → Y induces the natural isomorphism 4. Then, by

Lemma 3.6, f is an E-stable equivalence. So there exists a map g : Y → X such that
idX −g ◦ f and idY −f ◦ g each factors through an E-projective object. Suppose P is
an E-projective object and i : Y → P and s : P → Y maps in C such that

s ◦ i = idY −f ◦ g.

Since C has enough E-projectives, we can choose P so that s is epic. Then we have a
short exact sequence in E

0 → kerm → X ⊕ P
m−→ Y → 0 (5)

where m is the map given by the matrix of maps m =
[
f s

]
. That m is an E-

epimorphism follows from the composite

P −→ X ⊕ P
m−→ Y (6)
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being s, which is epic, and hence m is epic since E has sectile epics; here the left-hand
map in 6 is inclusion of the right-hand summand. (We are grateful to the anonymous
referee for suggesting this argument for m being an E-epimorphism. The argument
we had in the original draft of this paper was more complicated.)

Since m is an E-epimorphism, by definition the short exact sequence 5 is in E.
So short exact sequence 5 induces a natural long exact sequence in ExtC/E for any
object M of C:

ExtiC/E(X ⊕ P,M) Exti−1
C/E(Y,M)

∼=
��

ExtiC/E(Y,M)

∼=

OO

Exti−1
C/E(kerm,M)oo Exti−1

C/E(X ⊕ P,M)oo

(7)

where the maps marked as isomorphisms are isomorphisms for i > 2 since
X → Y is an E-stable equivalence. Exactness of long exact sequence 7 gives us
that Exti−1

C/E(kerm,M) ∼= 0 for all M in C and all i > 2. So by Lemma 3.1, kerm

is an E-projective. Part of the long exact sequence induced in ExtC/E by short exact
sequence 5 reads:

Ext1C/E(X ⊕ P,M) Ext1C/E(Y,M)∼=
oo

homC(kerm,M)

55kkkkkkkkkkkkkk
homC(X ⊕ P,M)oo homC(Y,M)oo 0oo

i.e., 0 → homC(Y,M) → homC(X ⊕ P,M) → homC(kerm,M) → 0 is exact for every
object M in C. Hence short exact sequence 5 is in fact split, and X ⊕ P ∼= Y ⊕ kerm,
proving the lemma.

Lemma 3.8. (Shearing isomorphism.) Suppose X,Y are objects in an abelian
category C and f : X → Y is a monomorphism. Then the pushout Y qX Y is naturally
isomorphic to Y ⊕ coker f .

Proof. Let g : Y ⊕ Y → Y ⊕ Y be the map given by the (invertible, hence an isomor-

phism) matrix of maps g =

[
id 0
− id id

]
. Then we have the commutative diagram

with exact rows

0 //

��

X
[f f ]⊥//

id

��

Y ⊕ Y //

g

��

Y qX Y

��

// 0

��
0 // X

[f 0]⊥// Y ⊕ Y // coker f ⊕ Y // 0

and hence the isomorphism Y qX Y
∼=−→ coker f ⊕ Y . (We have written ⊥ above as

notation for the transpose of a matrix of maps.)

Lemma 3.9. Suppose C is an abelian category, E an allowable class in C. Suppose
C has enough E-projectives. If there exists an object of finite E-projective dimension
n > 2 in C, then there exists an object of E-projective dimension 1 in C.
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Proof. Let X have E-projective dimension n > 2. Choose an E-projective resolution
of X

0 → Pn
fn−→ Pn−1

fn−1−→ · · · f2−→ P1
f1−→ P0 −→ X → 0.

Then

0 → Pn
fn−→ Pn−1

fn−1−→ · · · f2−→ P2 −→ coker f2 → 0 (8)

is an E-projective resolution of coker f2. If coker f2 is E-projective, then

0 → coker f2 → P0 → X → 0

is a length 1 E-projective resolution of X, and we are done. So suppose coker f2
is not E-projective. So it is not of E-projective dimension zero. Then diagram 8
expresses coker f2 as having E-projective dimension at most n− 1. Now we continue
by induction: either coker f3 is E-projective or has E-projective dimension at most
n− 2, etc. After at most n steps this process terminates with an object of E-projective
dimension 1.

The preceding lemmas suffice for us to prove the following proposition, which is
really a negative result: it shows that, if D-indexed colimits of E-projectives are
not always E-projective, then D-indexed homotopy colimits fail to be unique up to
homotopy.

Proposition 3.10. Let D be a small category and let C be a weak Waldhausen abelian
category. Choose a class E allowable for C. Suppose D-indexed homotopy colimits are
well-defined in C. Then every D-indexed colimit of E-projective objects of C is E-
projective.

Proof. We work by contrapositive. Suppose there exists a homotopy colimit diagram
F : D → C with the property that F (X) is E-projective for every object X of D, and
colimF is not E-projective. Let G : D → C be the zero diagram, i.e., G(X) = 0 for
all objects X of D. Then the unique map φ : F → G has the property that φ(X) is
an E-stable equivalence for every object X of D, since any map with E-projective
domain and E-projective codomain is trivially an E-stable equivalence. But colimF is
nontrivial, so Ext1C/E(colimF, Y ) is nontrivial for some object Y of C, by Lemma 3.1.

So the natural transformation 0 ∼= Ext1C/E(colimG,Y ) → Ext1C/E(colimF, Y ) is not
an isomorphism. So by Lemma 3.6, the map colimF → colimG ∼= 0 is not an E-stable
equivalence.

Corollary 3.11. Let C be a weak Waldhausen abelian category. Let E be a class
allowable for C. Suppose C has enough E-projectives. Then homotopy pushouts, and
in particular homotopy cofibers, are well-defined in C only if every object in C has
E-projective dimension 0 or ∞.

Proof. Suppose an object in C has finite E-projective dimension n > 0. Then, by
Lemma 3.9, there exists some objectX in C of E-projective dimension 1. Choose an E-
projective resolution 0 → P1

s−→ P0 → X → 0 of X. Then we have the commutative
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diagram

P1

s

��

P1
idoo

id

��

id // P1

s

��
P0 P1

soo s // P0

in which all vertical arrows are E-stable equivalences (since any map between two
E-projective objects is an E-stable equivalence) and all horizontal arrows are E-
monomorphisms. We compute the induced map on pushouts by the commutative
diagram with exact rows

0 // P1
∆ //

id

��

P1 ⊕ P1
//

s⊕s

��

P1

��

// 0

0 // P1
// P0 ⊕ P0

// P0 qP1 P0
// 0.

Exactness of the top row, as well as an isomorphism P0 qP1 P0
∼= X ⊕ P0, both follow

from Lemma 3.8. So the pushout map P1 qP1 P1 → P0 qP1 P0 is, up to isomorphism,
the map P1 → X ⊕ P0. Applying Ext1C/E(−,M) to this map, we get

Ext1C/E(P0 qP1 P0,M)

��

∼= // Ext1C/E(X ⊕ P0,M)

��

∼= // Ext1C/E(X,M)

��
Ext1C/E(P1 qP1 P1,M)

∼= // Ext1C/E(P1,M)
∼= // 0

for all objects M of C. Since X is assumed to be of E-projective dimension 1, it is
not E-projective, so by Lemma 3.1, Ext1C/E(X,M) is nonzero for some object M in
C. So by Lemma 3.6, the pushout map P1 qP1 P1 → P0 qP1 P0 is not an E-stable
equivalence.

Corollary 3.12. Let C be a weak Waldhausen abelian category. Let E be a class
allowable for C. Suppose C has enough E-projectives. Then C is not a Waldhausen
category unless each object in C has E-projective dimension either 0 or ∞.

Proof. Well-definedness of homotopy pushouts is implied by Waldhausen’s axiom
Weq 2 in the definition of a Waldhausen category, from [15].

4. Positive results on homotopy pushouts and cofibers.

In this section we prove that homotopy pushouts in a weak Waldhausen abelian
category C are well-defined if one makes some mild assumptions on C, as well as one
quite significant assumption on C: that every relatively projective object is relatively
injective. In the absolute case, i.e., the case where E is the class of all short exact
sequences in C, this condition is somewhat weaker than the assumption that C be
quasi-Frobenius, which holds when C is the category of modules over any quasi-
Frobenius ring (e.g., connected co-commutative finite-dimensional Hopf algebras over
fields, such as finite-dimensional sub-Hopf-algebras of the Steenrod algebra). Recall
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that an abelian category C is said to be “quasi-Frobenius” if projective and injective
objects coincide in C.

The following proposition is a relative-homological-algebraic variant of the main
result of Oort’s paper [10]. The proof follows Oort’s but with some adaptations to
the relative situation. We also make the assumption, here, that relative projectives
are relatively injective, which simplifies the proof.

Proposition 4.1. Let C be an abelian category, E an allowable class in C with sectile
epics and retractile monics. Suppose C has enough E-projectives, suppose every E-
projective in C is E-injective, and suppose i > 1. Then a map f : X → Y in C induces
a natural isomorphism ExtiC/E(Y,−) → ExtiC/E(X,−) if and only if there exists a
short exact sequence in E

0 → Q → P ⊕X
p−→ Y → 0 (9)

with P an E-projective and Q of E-projective dimension < i− 1, such that the com-

posite X
i−→ P ⊕X

p−→ Y is equal to f . (Here i is inclusion as the second summand.)

Proof. If short exact sequence 9 exists with the described properties, then for any
object M of C, the induced long exact sequence in ExtC/E reads

0 ExtiC/E(P ⊕X,M)oo ExtiC/E(Y,M)oo 0oo

and since P is projective we now have ExtiC/E(Y,M) ∼= ExtiC/E(X,M).

Now instead assume that f induces an isomorphism in ExtiC/E . We want to con-
struct a short exact sequence 9 with the described properties. Choose exact sequences
for X,Y

0 //

��

N

θi−1

��

dQ
i−1 // Qi−2

θi−2

��

dQ
i−2 // . . .

dQ
2 // Q1

dQ
1 //

θ1

��

Q0

dQ
0 //

θ0

��

X

f

��

// 0

��
0 // M

dP
i−1 // Pi−2

dP
i−2 // . . .

dP
2 // P1

dP
1 // P0

dP
0 // Y // 0

(10)

with each Qj and Pj an E-projective, with each short exact sequence

0 → im dQj+1 → Qj → im dQj → 0

and

0 → im dPj+1 → Pj → im dPj → 0

both in E, and such that each θj factors through the kernel of the map Qj−1 → Qj−2

for j > 1, and θ0 factors through the kernel of the map Q0 → X. Then θi−1 induces
a natural isomorphism

Ext1C/E(N,−) ∼= ExtiC/E(X,−) ∼= ExtiC/E(Y,−) ∼= Ext1C/E(M,−)

and hence, by Lemma 3.7, there exist E-projectives Q,P and an isomorphism

g : N ⊕Q
∼=−→ M ⊕ P extending θn−1. We choose component maps for g, so that
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we can write g as a matrix of maps

g =

[
θi−1 β
γ δ

]
.

We take a direct sum of diagram 10 with the E-projectives P and Q to get a com-
mutative diagram with exact rows

0 → N ⊕Q

g

��

dQ
i−1⊕idQ// Qi−2 ⊕Q

f

��

dQ
i−2◦π1 // Qi−3

dQ
i−3 //

θi−3

��

Qi−4

dQ
i−4 //

θi−4

��

. . .

0 → M ⊕ P
dP
i−1⊕idP// Pi−2 ⊕ P

dP
i−2◦π1 // Pi−3

dP
i−3 // Pi−4

dP
i−4 // . . .

(11)

defined as follows: first, we are writing π1 for projection to the first summand. The
map f is given by the matrix of maps

f =

[
θi−2 dPi−1 ◦ β
f01 δ

]
where f01 : Qi−2 → P is any map making the diagram

N
dQ
i−1 //

β

��

Qi−2

f01||zz
zz

zz
zz

P

commute. The existence of such a map f01 is guaranteed by dQi−1 being an E-
monomorphism, by P being an E-projective, and by our assumption that E-project-
ives are E-injective; now existence of f01 follows from the universal property of an
E-injective object. (This is the only place in this proof where we use the assumption
that E-projectives are E-injective.) One can easily check (by matrix multiplication
of the matrices of maps) that every square in diagram 11 commutes.

Now, regarding diagram 11 as a double complex and totalizing, we get an exact
sequence

0 → Qi−2 ⊕Q → Qi−3 ⊕ Pi−2 ⊕ P → Qi−4 ⊕ Pi−3 → · · · → X ⊕ P0
p−→ Y → 0

which expresses that we have a short exact sequence

0 → ker p → X ⊕ P0
p−→ Y → 0 (12)

with P0 E-projective and ker p of E-projective dimension 6 i− 2, and with p extend-
ing f as desired. All that remains is to check that short exact sequence 12 is in E.
This follows from p being a difference of the map f : X → Y and the E-projective
cover dP0 : P0 → Y , as follows: by the dual of Lemma 3.3, the map X ⊕ P0 → X ⊕ Y
given by the matrix of maps [

idX 0
f p

]
is an E-epimorphism. By Lemma 3.4, the projectionX ⊕ Y → Y is an E-epimorphism
as well. So the composite map X ⊕ P0 → X ⊕ Y → Y , which is equal to p, is an E-
epimorphism by Lemma 3.5.
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Lemma 4.2. Let C be an abelian category and let E be an allowable class in C with
sectile epics. Suppose C has enough E-projectives, and suppose that every E-projective
object is E-injective. If X → Y is a map in C which induces a natural isomorphism
of functors

Ext2C/E(Y,−)
∼=−→ Ext2C/E(X,−), (13)

then X → Y is an E-stable equivalence.

Proof. Let f : X → Y be a map which induces a natural isomorphism of functors 13.
Then, by Prop. 4.1, there exists a short exact sequence in E

0 → Q → P ⊕X → Y → 0 (14)

where P ⊕X → Y extends f and both P and Q are E-projective. Now we use
the assumption that every E-projective in C is E-injective: since Q is E-injective,

short exact sequence 14 splits, and we get an isomorphism P ⊕X
∼=−→ Q⊕ Y . Now

Lemma 3.7 implies that f induces a natural isomorphism in Ext1C/E and hence, by
Lemma 3.6, f is an E-stable equivalence.

Lemma 4.3. Let C be a weak Waldhausen abelian category. Let E be a class allow-
able for C. Suppose C has enough E-projectives and enough E-injectives, suppose E
has sectile epics and retractile monics, and suppose every E-projective object is E-
injective. Then, for any cofibration f : X → Y and any weak equivalence g : X → Z
in C, the pushout map Y → Y qX Z is also a weak equivalence.

Proof. The given maps fit into a commutative diagram with exact rows in E

0 //

��

X
f //

g

��

Y //

��

coker f //

∼=
��

0

��
0 // Z // Y qX Z // coker f // 0

and since g is an E-stable equivalence, Lemma 3.6 gives us, for any object M of C,
the marked isomorphisms in the commutative diagram with exact columns

Ext1C/E(Z,M)

��

∼= // Ext1C/E(X,M)

��
Ext2C/E(coker f,M)

��

∼= // Ext2C/E(coker f,M)

��
Ext2C/E(Y qX Z,M)

��

// Ext2C/E(Y,M)

��
Ext2C/E(Z,M)

��

∼= // Ext2C/E(X,M)

��
Ext3C/E(coker f,M)

∼= // Ext3C/E(coker f,M).
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So by the Five Lemma, Y → Y qX Z induces a natural isomorphism of functors

Ext2C/E(Y qX Z,−)
∼=−→ Ext2C/E(Y,−)

and hence, by Lemma 4.2, Y → Y qX Z is an E-stable equivalence, hence a weak
equivalence.

Proposition 4.4. Let C be a weak Waldhausen abelian category. Let E be a class
allowable for C. Suppose C has enough E-projectives and enough E-injectives, suppose
E has sectile epics and retractile monics, and suppose that every E-projective object
is E-injective. Then homotopy pushouts are well-defined in C.
Proof. Let D be the small category indexing pushout diagrams, i.e., D has three
objects A0, A1, A2, maps A0 → A1 and A0 → A2, and no other non-identity maps.
Suppose F,G : D → C are homotopy colimit diagrams and φ : F → G is a natural
transformation such that φ(X) : F (X) → G(X) is an E-stable equivalence for every
object X of D. Then we have the commutative diagram with rows short exact
sequences in E:

0 //

��

F (A0)

��

// F (A1)⊕ F (A2)

��

// colimF //

��

0

��
0 // G(A0) // G(A1)⊕G(A2) // colimG // 0.

That the maps F (A0) → F (A1) ⊕ F (A2) and G(A0) → G(A1) ⊕ G(A2) are
E-monomorphisms, and hence that the rows are exact and in E, follows from
Lemma 3.3. Now, for any object M of C, we get the commutative diagram with
exact columns

Ext1C/E(G(A1)⊕G(A2),M)

��

∼= // Ext1C/E(F (A1)⊕ F (A2),M)

��
Ext1C/E(G(A0),M)

��

∼= // Ext1C/E(F (A0),M)

��
Ext2C/E(cokerG,M)

��

// Ext2C/E(cokerF,M)

��
Ext2C/E(G(A1)⊕G(A2),M)

∼= //

��

Ext2C/E(F (A1)⊕ F (A2),M)

��
Ext2C/E(G(A0),M)

∼= // Ext2C/E(F (A0),M)

where the horizontal maps marked as isomorphisms are isomorphisms by Lemma 3.6.
By the Five Lemma, the remaining horizontal map is an isomorphism. So we have

a natural isomorphism of functors Ext2C/E(colimG,−)
∼=−→ Ext2C/E(colimF,−) and

now, by Lemma 4.2, the map colimF → colimG is an E-stable equivalence. Hence
homotopy pushouts are well-defined in C.
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Corollary 4.5. Let C be a weak Waldhausen abelian category. Let E be a class allow-
able for C. Suppose C has enough E-projectives and enough E-injectives, suppose E
has sectile epics and retractile monics, and suppose that every E-projective object is
E-injective. Then C satisfies Waldhausen’s axiom Weq 2.

Proof. Follows immediately from Lemma 4.3 and Prop. 4.4.

5. Positive results on sequential homotopy colimits.

In this section we show that, under the same conditions from the previous section
(that relatively projective objects are relatively injective), sequential homotopy col-
imits are well-defined (Prop. 5.2). As a corollary, in the next section we will be
able to show that geometric realization of simplicial objects in C is well-defined
(Cor. 6.8).

Lemma 5.1. Suppose C is an abelian category and E is an allowable class in C
with retractile monics. Suppose C has enough E-projectives and enough E-injectives.
Suppose we have objects P,X, Y in C with P an E-projective, and suppose we have a
map f : X → Y and an E-epimorphism p : P → X. Then there exists an E-projective
object Q, a split monomorphism g : P → Q with E-projective cokernel, and an E-
epimorphism q : Q → Y making the diagram

P
p //

g

��

X

f

��
Q

q // Y

(15)

commute.

Proof. Choose an E-projective P0 and an E-epimorphism s : P0 → Y . Since P is E-
projective, the composite map f ◦ p : P → Y lifts over s to give a map ` : P → P0, i.e.,

s ◦ ` = f ◦ p. Let g : P → P ⊕ P0 be the map given by the matrix of maps g =

[
idP
`

]
and let q : P ⊕ P0 → Y be the map given by the matrix of maps q =

[
0 s

]
. It is

trivial to check that the diagram

P
p //

g

��

X

f

��
P ⊕ P0

q // Y

(16)

commutes. The map q is an E-epimorphism since s is, by the dual of Lemma 3.4
combined with Lemma 3.2. We also have that π ◦ g = idP , where π : P ⊕ P0 → P is
projection to the first summand. So g is a split monomorphism. That its cokernel is E-
projective follows from an easy application of the Nine Lemma to get the commutative
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diagram with exact rows and exact columns:

0 //

��

0 //

��

0

��
0 //

��

0 //

��

P0
id //

i

��

P0
//

id

��

0

��
0 //

��

P
g //

id

��

P ⊕ P0
π′

//

π

��

P0
//

��

0

��
0 // P

id //

��

P //

��

0 //

��

0

0 // 0 // 0

where i is inclusion as the second summand and π′ is projection to the second sum-
mand. So P0, an E-projective, is the cokernel of g.

So diagram 16 is the desired diagram 15.

For the next proposition, we use the phrase “sequential colimit” to describe any
colimit indexed by the partially-ordered set of the natural numbers regarded as a
category, i.e., a colimit with shape • → • → • → . . . . We also include, in the next
proposition, a requirement that sequential colimits of E-long exact sequences be E-
long exact. This is a mild assumption; in the absolute case, when E is the class of
all short exact sequences in C, this assumption is equivalent to Grothendieck’s axiom
AB5. We remind the reader that axiom AB5 on an abelian category C stipulates that
small colimits exist in C and that a sequential colimit of exact sequences in C remains
exact. This axiom is satisfied, for example, by the category of R-modules, for any
ring R.

Proposition 5.2. Let C be a weak Waldhausen abelian category. Let E be a class
allowable for C, and suppose that a sequential colimit of E-long exact sequences in C
is E-long exact. Suppose C has enough E-projectives and enough E-injectives, suppose
E has retractile monics and sectile epics, and suppose that every E-projective object
is E-injective. Then sequential homotopy colimits are well-defined in C.

Proof. Let F,G : N → C be homotopy colimit diagrams and let φ : F → G be a natural
transformation (i.e., map of diagrams) such that φ(n) : F (n) → G(n) is an E-stable
equivalence for every n ∈ N. In other words, we have a commutative diagram

F (0) //

��

F (1) //

��

F (2) //

��

. . .

G(0) // G(1) // G(2) // . . .

(17)

in which all horizontal maps are cofibrations (in particular, E-monomorphisms) and
all vertical maps are E-stable equivalences. Then, by Lemma 3.6, the vertical maps
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in the diagram

ExtnC/E(F (0),M) ExtnC/E(F (1),M)oo ExtnC/E(F (2),M)oo . . .oo

ExtnC/E(G(0),M)

OO

ExtnC/E(G(1),M)oo

OO

ExtnC/E(G(2),M)oo

OO

. . .oo

are isomorphisms for all n > 1 and for any object M of C, and these isomorphisms
are natural in M . Consequently, we have natural isomorphisms

lim i Ext
n
C/E(G(i),M)

∼=−→ lim i Ext
n
C/E(F (i),M) (18)

and

lim 1
i Ext

n
C/E(G(i),M)

∼=−→ lim 1
i Ext

n
C/E(F (i),M) (19)

for all n > 1, where we are writing lim 1 for the first right-derived functor of lim.
Now we can use Lemma 5.1 to choose E-projective resolutions for each F (i) to get

a commutative diagram

. . . // PF
2,0

//

��

PF
1,0

//

��

PF
0,0

//

��

F (0) //

��

0

��
. . . // PF

2,1
//

��

PF
1,1

//

��

PF
0,1

//

��

F (1) //

��

0

��
. . . // PF

2,2
//

��

PF
1,2

//

��

PF
0,2

//

��

F (2) //

��

0

��
...

...
...

...
...

in which each row is an E-projective resolution and each vertical map PF
i,j → PF

i,j+1

is a split monomorphism.
We claim that, for every i ∈ N, the colimit colimj P

F
i,j is E-projective. Let

f : X → Y be an E-epimorphism and g : colimj P
F
i,j → Y be a map. We write

gj : P
F
i,j → Y for the jth component map of g. Since PF

i,0 is E-projective, there exists a

lift `0 : P
F
i,0 → X of g0 over f , which provides the first step of an induction. Suppose we

have a map `j : P
F
i,j → X such that f ◦ `j = gj . Then, since the map PF

i,j → PF
i,j+1 is a

split monomorphism with E-projective cokernel, there exists a map `j+1 : P
F
i,j+1 → X

making the diagram

F (i)

`i

��

// F (i+ 1)

gi+1

��`i+1zzt
t

t
t

t

X
f

// Y

commute. So we can assemble the maps {`j}j∈N into a map ` : colimj P
F
i,j → X such

that f ◦ ` = g. So colimj P
F
i,j has the universal property defining an E-projective
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object, so colimj P
F
i,j is E-projective. We make the same constructions for G as well

as F , writing PG
i,j rather than PF

i,j for the E-projectives constructed in this way.

Now the chain complex

· · · → colimj P
F
2,j → colimj P

F
1,j → colimj P

F
0,j → colimF → 0 (20)

is E-long exact, due to our assumption that sequential colimits of E-long exact
sequences in C are E-long exact. Furthermore, we have shown that each colimj P

F
i,j is

E-projective. So long exact sequence 20 is an E-projective resolution of colimF . So,
for any object M of C, the cohomology of the cochain complex

. . . homC(colimj P
F
1,j ,M)oo

∼=
��

homC(colimj P
F
0,j ,M)oo

∼=
��

0oo

��
. . . limj homC(P

F
1,j ,M)oo limj homC(P

F
0,j ,M)oo 0oo

(21)

is Ext∗C/E(colimF,M), and this isomorphism is natural in M .

Now we have the usual short exact sequence relating the cohomology of a sequen-
tial limit of cochain complexes of abelian groups to the sequential limit of their
cohomologies (we have left off the zeroes to fit within the margins):

lim 1
jH

n−1 homC(P
F
•,j ,M) → Hn lim

j
homC(P

F
•,j ,M) → lim

j
Hn homC(P

F
•,j ,M).

Due to isomorphisms 18 and 19, we now have the commutative diagram with rows
short exact sequences:

lim1
j Ext

n−1
C/E(G(j),M) //

∼=
��

ExtnC/E(colimG,M) //

∼=
��

limj Ext
n
C/E(G(j),M)

∼=
��

lim1
j H

n−1 homC(P
G
•,j ,M) //

b

��

Hn limj homC(P
G
•,j ,M) //

a

��

limj H
n homC(P

G
•,j ,M)

c

��
lim1

j H
n−1 homC(P

F
•,j ,M) //

∼=
��

Hn limj homC(P
F
•,j ,M) //

∼=
��

limj H
n homC(P

F
•,j ,M)

∼=
��

lim1
j Ext

n−1
C/E(F (j),M) // ExtnC/E(colimF,M) // limj Ext

n
C/E(F (j),M)

and the vertical map marked b is an isomorphism if n > 2, and the vertical map
marked c is an isomorphism if n > 1. Hence, by the Five Lemma, the vertical map
marked a is an isomorphism if n > 2.

We conclude that the ExtnC/E(colimG,M) → ExtnC/E(colimF,M) is an isomor-
phism if n > 2. Hence, by Lemma 4.2, the assumption that every E-projective is
E-injective implies that the map colimF → colimG is an E-stable equivalence. So
sequential homotopy colimits in C are unique up to homotopy.
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6. Positive results on geometric realization.

In this section we prove that, under the same assumptions made in the previous
section plus the assumption that our abelian category satisfies Grothendieck’s axiom
AB3, geometric realization of simplicial objects is well-defined (Cor. 6.8).

One can approach geometric realization as a particular kind of colimit called a
“co-end”; this approach is taken in e.g. [8]. We take a different approach to geometric
realization in this section, by regarding geometric realization as the sequential colimit
of a certain sequence of homotopy cofibers. We give an abbreviated description of this
approach in Def. 6.5, but it is well-known in the special case of a pointed (e.g., stable)
model category, and, for example, it appears in the context of a triangulated category
in [2].

Lemma 6.1. A pullback of a surjective map of abelian groups is surjective.

Proof. The forgetful functor from abelian groups to sets is a right adjoint, hence
preserves limits. It also clearly preserves surjections. So the lemma is true if a pullback
of a surjective maps of sets is surjective, which is an elementary exercise.

Lemma 6.2. Let C be an abelian category and let E be an allowable class with retrac-
tile monics. Suppose C has enough E-injectives. Then E-monics are closed under
pushout in C. That is, if X → Z is an E-monic and X → Y is any morphism in C,
then the canonical map Y → Y qX Z is an E-monic.

Proof. Suppose f : X → Z is an E-monic and X → Y any morphism. We have the
commutative diagram with exact rows

0 // X
f //

��

Z //

��

coker f //

��

0

��
Y // Y qX Z // coker f // 0

and hence, for every E-injective I, the induced commutative diagram of abelian
groups

0 //

��

homC(coker f, I) // homC(Z, I) // homC(X, I) // 0

0 // homC(coker f, I) //

∼=

OO

homC(Y qX Z, I) //

OO

homC(Y, I).

OO

Exactness of the top row follows from f being an E-monic together with E having
retractile monics, hence E is its own retractile closure, hence E-monics are precisely
the maps which induce a surjection after applying homC(−, I) for every E-injective I.
Now in particular we have a commutative square in the above commutative diagram:

homC(Z, I) // homC(X, I)

homC(Y qX Z, I) //

OO

homC(Y, I),

OO

which is a pullback square of abelian groups, by the universal property of the pushout.
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The top map in the square is a surjection, hence so is the bottom map, Lemma 6.1.
So homC(Y qX Z, I) → homC(Y, I) is a surjection for every E-injective I. Again since
E is its own retractile closure, this implies that Y → Y qX Z is an E-monic.

We now define a weak form of the quasi-Frobenius condition that will allow us to
factor maps into cofibrations followed by weak equivalences:

Definition 6.3. Suppose C is a weak Waldhausen abelian category and E a class
allowable for C. We say that C is quasi-cone-Frobenius if there exists a functor
J : C → C and a natural transformation η : idC → J such that:

1. J(X) is E-projective for every object X of C,
2. η(X) : X → J(X) is an E-monomorphism for every object X of C, and
3. if f : X → Y is an E-monomorphism then so is J(f) : J(X) → J(Y ).

We sometimes call the pair J, η a quasi-cone functor on C.

Here is an example of a quasi-cone functor: suppose R is a Noetherian ring, and
let U be the injective envelope of the direct sum

⊕
R/I, where I ranges across all

right ideals of R. For each right R-module M , let

J(M) =
∏

homR(M,U)

U,

and let η(M) : M → J(M) send m to the map whose component in the factor cor-
responding to f ∈ homR(M,U) is f(m). This gives a functorial embedding of every
R-module into an injective R-module, and (due to the characterizing property of an
injective envelope) J sends monomorphisms to monomorphisms. This construction
appears in Bass’s paper [1], and Bass writes there that he was told of it by C. Watts.
We do not know if there is an earlier reference. We have a paper in preparation, [13],
which provides a more general version of this construction and develops its basic prop-
erties. In any case, if every injective R-module is projective, then this functor J is a
quasi-cone functor. So the category of modules over any Noetherian quasi-Frobenius
ring is quasi-cone-Frobenius, for example. Similarly, the category of finitely-generated
modules over any finite-dimensional quasi-Frobenius algebra over a finite field is also
quasi-cone-Frobenius.

Now we will begin assuming our weak Waldhausen abelian category C is quasi-
cone-Frobenius. The notation we will usually use is this: for any object X of C, we
will write iX : X → PX for the chosen E-monomorphism from X to an E-projective
PX .

The following lemma gives us conditions under which a homotopy pushout can be
computed as the pushout of a diagram in which only one map is a cofibration, rather
than both maps.

Lemma 6.4. Let C be a quasi-cone-Frobenius weak Waldhausen abelian category.
Let E be a class allowable for C. Suppose C has enough E-projectives and enough
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E-injectives, suppose E has sectile epics and retractile monics, suppose every E-
projective object is E-injective. Then any map f : X → Y can be factored as a com-
posite

X
f0−→ Ỹ

f1−→ Y, (22)

where f0 is a cofibration and f1 is a weak equivalence, and furthermore, the pushout
of the diagram

X
f0 //

iX

��

Ỹ

PX

(23)

is weakly equivalent to the pushout of the diagram

X
f //

iX

��

Y

PX .

(24)

Proof. We let Ỹ be PX ⊕ Y , we let f0 be given by the matrix of maps f0 =

[
iX
f

]
,

and we let f1 be the projection to the second summand. It is trivial to check that
f = f1 ◦ f0. That f1 is a weak equivalence follows from its being a split epimorphism
with E-projective kernel. That f0 is a cofibration follows from its being the composite
of the inclusion in the first summand X → X ⊕ Y (which is an E-monomorphism,
hence cofibration, by Lemma 3.4) followed by the map X ⊕ Y → PX ⊕ Y given by

the matrix of maps

[
ix 0
f idY

]
, which is an E-monomorphism, hence cofibration,

by Lemma 3.3. So f0 is a composite of two cofibrations, hence itself a cofibration. So
we have the desired factorization 22.

Now we have the commutative diagram

X

iX

��

f0 // PX ⊕ Y

��

f1 // Y

��
PX

// PX qX (PX ⊕ Y ) // (PX qX (PX ⊕ Y ))qPX⊕Y Y

(25)

in which the two squares are pushout squares, hence the outer rectangle is a pushout
diagram, i.e., we have a natural isomorphism

(PX qX (PX ⊕ Y ))qPX⊕Y Y ∼= PX qX Y.

In diagram 25, the maps iX and f0 are cofibrations, hence the central vertical map
is as well, by Lemma 6.2. Hence the bottom map PX qX (PX ⊕ Y ) → PX qX Y is
a pushout of a weak equivalence (f1) along a cofibration (the central vertical map),
hence itself a weak equivalence by Lemma 4.3. So we have a weak equivalence, as
desired, between the pushout of the diagram 23 and the pushout of diagram 24.
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Recall that an abelian category satisfies Grothendieck’s axiom AB3 if it has arbi-
trary (small) colimits. Since any abelian category has coequalizers, axiom AB3 is
equivalent to having arbitrary (small) coproducts.

Definition 6.5. Suppose C is a quasi-cone-Frobenius weak Waldhausen abelian cat-
egory satisfying Grothendieck’s axiom AB3 as well as the assumptions of Lemma 6.4.
Let F : ∆op → C be a simplicial object in C. We will write Fn for the nth object of
F and di : Fn → Fn−1, i = 0, . . . , n, for the face maps of F . We write ΣX for the
pushout of the diagram

X
iX //

ix

��

PX

PX .

Then by a geometric realization tower of F we mean the diagram GRF : N → C
defined inductively as follows: GRF (0) = F0 ⊕

∐
n>0 PFn , and if GRF (i) has already

been defined for i = 0, . . . , n− 1, we define GRF (n) as the pushout in the diagram

Σn−1(Fn ⊕
∐

i>n PFi)

Σn−1(iFn⊕id)
��

fn // GRF (n− 1)

gn

��
Σn−1

(∐
i>n PFi

)
// GRF (n)

(26)

where fn : Σ
n−1(Fn ⊕

∐
i>n PFi) → GRF (n− 1) is the map obtained from the two

nulhomotopies (i.e., factorizations through an E-projective) of the composite map

Σn−2(Fn ⊕
∐

i>n PFi)
Σn−2d // Σn−2(Fn−1 ⊕

∐
i>n−1 PFi)

fn−1

ttiiiiiiiiiiiiiiiii

GRF (n− 2)
gn−1

// GRF (n− 1),

where we write

d : Fn ⊕
∐
i>n

PFi → Fn−1 ⊕
∐

i>n−1

PFi

for the map given on the summands Fn, PFn+1 , PFn+2 , . . . of its domain as follows:

• on the summand Fn of its domain, it is the alternating sum

d0 − d1 + d2 − · · ·+ (−1)n−1dn−1 : Fn → Fn−1

plus the map iFn : Fn → PFn , and

• on each summand PFi for i > n, it is simply the inclusion of the summand PFi

into the codomain.

Finally, by the geometric realization of F we mean the colimit colimGRF of the
geometric realization tower of F .
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Here is a simple way of describing the maps d appearing in Def. 6.5: if one applies
the factorization 22 from Lemma 6.4 to the alternating sum map d0 − d1 + d2 − · · ·+
(−1)n−1dn−1 : Fn → Fn−1, one gets a cofibration f0 : Fn → Fn−1 ⊕ PFn . The map d
is simply the direct sum of f0 with the identity map on all the E-projectives PFi that
will appear later on in the geometric realization tower. Note that, if P is E-projective,
then so is ΣP , since the assumptions made in Def. 6.5 imply that homotopy pushouts
are well-defined in C due to Prop. 4.4, which in turn implies that a homotopy pushout
of E-projective objects is E-projective, by Prop. 3.10. Furthermore, the quasi-cone-
Frobenius assumption implies that iFn being a cofibration forces ΣiFn to be a cofi-
bration. So the left-hand vertical map in square 26 really is an E-monomorphism
into an E-projective object. So by Lemma 6.4, square 26 is computing a homotopy
pushout.

Lemma 6.6. Under the assumptions made in Def. 6.5, making different choices of
the quasi-cone functor, in particular the E-projective objects PX and cofibrations iX ,
does not change the E-stable equivalence type of each object GRF (n) in the geometric
realization tower.

Proof. Suppose we have two choices PX , P ′
X of E-projective object and two choices of

cofibration, iX : X → PX and i′X : X → P ′
X . For any cofibration f : X → Y , we have

the two pushout diagrams

X
iX //

f

��

PX

Y

and X
i′X //

f

��

P ′
X

Y

.

By Lemma 6.4, the pushout of each diagram is E-stably equivalent to the pushout of
the diagram

X //

f

��

0

Y.

So the E-stable equivalence type of the homotopy cofiber of a cofibration doesn’t
depend on the choice of ix, PX .

Now we handle the dependence of the factorization 22 on the choices of iX , PX .
We have the two pushout diagrams

X
iX //

f0

��

PX

PX ⊕ Y

and X
iX //

f ′
0

��

PX

P ′
X ⊕ Y

(27)

arising from factorization 22, and we want to know that the pushouts of these two
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diagrams are E-stably equivalent. We accomplish this with the pushout diagram

X
iX //

m

��

PX

PX ⊕ P ′
X ⊕ Y

(28)

where m is given the matrix of maps

m =

 iX
i′X
f

 ,

and is a cofibration by Lemma 3.3. We note that diagram 28 maps to each of the
two diagrams 27; we handle the map to the left-hand diagram 27, and the map to
the right-hand diagram is handled similarly. Since iX , f0, and m are all cofibrations,
Lemma 6.2 implies that, in the pushout square

PX ⊕ P ′
X ⊕ Y

��

// PX qX (PX ⊕ P ′
X ⊕ Y )

��
PX ⊕ Y // PX qX (PX ⊕ Y ),

the top horizontal map is a cofibration. The left-hand vertical map is a weak equiva-
lence, since it is a split epimorphism with E-projective kernel; so by Lemma 4.3, the
right-hand vertical map is also a weak equivalence. A similar argument holds for the
right-hand pushout diagram 27, so since the pushouts of the two pushout diagrams
in 27 are each E-stably equivalent to the pushout of diagram 28, the two pushout
diagrams in 27 are E-stably equivalent to one another. So the choice of iX , PX used in
the construction of the factorization 22 doesn’t affect the E-stable equivalence type
of the resulting homotopy pushouts.

Finally, since GRF is constructed entirely from these two operations (factorizations
as in 22 and homotopy cofibers of cofibrations), up to levelwise E-stable equivalence,
GRF does not depend on the choices of iX , PX .

Proposition 6.7. Let C be a quasi-cone-Frobenius weak Waldhausen abelian cate-
gory. Let E be a class allowable for C. Suppose C has enough E-projectives and
enough E-injectives, suppose E has sectile epics and retractile monics, and suppose
every E-projective object is E-injective. Then, for any simplicial object F : ∆op → C
in C, the geometric realization tower GRF : N → C is a homotopy colimit diagram.
Furthermore, if F,G : ∆op → C are two simplicial objects and φ : F → G a levelwise
weak equivalence, then the induced natural transformation GRφ : GRF → GRG has
the property that, for every natural number n, the map GRφ(n) : GRF (n) → GRG(n)
is a weak equivalence.

Proof. First we check that GRF is a homotopy pushout diagram. All we need to check
is that, for every natural number n, the map GRF (n) → GRF (n+ 1) is a cofibration.
But this map is the pushout of diagram 26, which is the pushout of a cofibration
along a cofibration, hence itself a cofibration by Lemma 6.2.
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Now suppose F,G, φ are as in the statement of the proposition. The maps
GRφ(n) : GRF (n) → GRG(n) are, by construction, pushouts of weak equivalences
along cofibrations, hence by Lemma 4.3, they are themselves weak equivalences.

Corollary 6.8. Let C, E be as in Def. 6.5, and suppose that a sequential colimit of
E-long exact sequences in C is E-long exact. Then geometric realization of simplicial
objects in C is well defined. That is, if we have two simplicial objects F,G : ∆op → C
in C and a natural transformation φ : F → G such that φ(n) : F (n) → G(n) is a weak
equivalence for every natural number n, then the induced map of geometric realizations
colimGRF → colimGRG is a weak equivalence.

Proof. By Prop. 6.7, φ induces a natural transformation GRφ : GRF → GRG of
homotopy colimit diagrams which is a levelwise weak equivalence. Then by Prop. 5.2,
GRφ induces a weak equivalence of colimits colimGRF → colimGRG.

7. Appendix on basic notions of relative homological algebra.

Here is an appendix on some ideas in relative homological algebra. The definitions
are all classical, except for Def. 7.6.

Definition 7.1. An allowable class in C consists of a collection E of short exact
sequences in C which is closed under isomorphism of short exact sequences and which
contains every short exact sequence in which at least one object is the zero object of
C. (See section IX.4 of [7] for this definition and basic properties.)

The usual “absolute” homological algebra in an abelian category C is recovered by
letting the allowable class E consist of all short exact sequences in C.

Definition 7.2. Let E be an allowable class in C. A monomorphism f : M → N in C
is called an E-monomorphism or an E-monic if the short exact sequence 0 → M

f−→
N → coker f → 0 is in E.

Dually, an epimorphism g : M → N is called an E-epimorphism or an E-epic if

the short exact sequence 0 → ker f → M
f−→ N → 0 is in E.

In the absolute case, the case that E is all short exact sequences in C, the E-
monomorphisms are simply the monomorphisms, and the E-epimorphisms are simply
the epimorphisms.

Definition 7.3. Let E be an allowable class in C. An object X of C is said to be an
E-projective if, for every diagram

X

��
M

f // N

in which f is an E-epic, there exists a morphism X → M making the above diagram
commute.
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Dually, an object X of C is said to be an E-injective if, for every diagram

M
f //

��

N

X

in which f is an E-monic, there exists a morphism N → X making the above diagram
commute.

When the allowable class E is clear from context we sometimes refer to E-project-
ives and E-injectives as relative projectives and relative injectives, respectively.

In the absolute case, the case that E is all short exact sequences in C, the E-
projectives are simply the projectives, and the E-injectives are simply the injectives.

Definition 7.4. Let E be an allowable class in C. Let f, g : M → N be morphisms
in C. We say that f and g are E-stably equivalent and we write f ' g if f − g factors
through an E-projective object of C.

Definition 7.5. We say that a map f : M → N is a E-stable equivalence if there
exists a map h : N → M such that f ◦ h ' idN and h ◦ f ' idM .

In the absolute case where E consists of all short exact sequences in C, this is the
usual notion of stable equivalence of modules over a ring.

Here is a new definition which makes many arguments substantially smoother:

Definition 7.6. An allowable class E is said to have retractile monics if, whenever
g ◦ f is an E-monic, f is also an E-monic.

Dually, an allowable class E is said to have sectile epics if, whenever g ◦ f is an
E-epic, g is also an E-epic.

Here is a fundamental theorem of relative homological algebra, due to Heller
(see [7]), whose statement is slightly cleaner is one is willing to use the phrase “hav-
ing sectile epics.” The consequence of Heller’s theorem is that, in order to specify a
“reasonable” allowable class in an abelian category, it suffices to specify its associated
relative projective objects.

Theorem 7.7. (Heller.) If C is an abelian category and E is an allowable class in C
with sectile epics and enough E-projectives, then an epimorphism M → N in C is an
E-epic if and only if the induced map homC(P,M) → homC(P,N) of abelian groups
is an epimorphism for all E-projectives P .
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