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ON KIRCHHOFF’S THEOREMS WITH COEFFICIENTS
IN A LINE BUNDLE
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(communicated by Robert Ghrist)

Abstract
We prove ‘twisted’ versions of Kirchhoff’s network theorem

and Kirchhoff’s matrix-tree theorem on connected finite graphs.
Twisting here refers to chains with coefficients in a flat unitary
line bundle.

1. Introduction

It is well-known that the classical result of Kirchhoff on the flow of electricity
through a finite network admits an elegant formulation using algebraic topology [E,
NS, R]. For a finite connected 1-dimensional CW complex Γ, the real cellular chain
complex ∂ : C1(Γ;R) → C0(Γ;R) is a homomorphism of finite dimensional real inner
product spaces with orthonormal basis given by the set of cells. When the branches
of the network have unit resistance, Kirchhoff’s network theorem is reflected in the
statement that the restricted homomorphism

∂ : B1(Γ;R) → B0(Γ;R) (1)

is an isomorphism, where B0(Γ;R) is the vector subspace of zero-boundaries and
B1(Γ;R) is the orthogonal complement to the space of 1-cycles Z1(Γ;R) ⊂ C1(Γ;R)
(when the network has branches of varying resistance, one rescales the inner product
on C1(Γ;R) accordingly). Actually Kirchhoff’s network theorem does more in that
it provides a concrete expression for the inverse to the isomorphism (1) in terms of
the set of spanning trees of Γ. The expression amounts to an explicit formula for the
orthonormal projection of C1(Γ;R) onto Z1(Γ;R) in terms of the set of spanning trees
of Γ.

A companion result of Kirchhoff, which has gotten more press, is the matrix-tree
theorem, which computes the determinant of the restricted combinatorial Laplacian

∂∂∗ : B0(Γ;R) → B0(Γ;R) .

Here, ∂∗ denotes the formal adjoint to the boundary operator (for a slightly different
formulation, see [B, p. 57]). In the unit resistance case, the result says that det(∂∂∗)
equals the product of the number of vertices with the number of spanning trees
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of Γ. In [CCK], using ideas from statistical mechanics, we showed how the matrix-
tree theorem can be derived from the general case of the network theorem. We also
generalized both of these results to higher dimensional CW complexes.

The main purpose of the current paper is to derive a twisted version of Kirchhoff’s
theorems. Here the twisting is given by taking coefficients in a complex line bundle.
In physical terms, the twisted version of the network theorem turns out to model the
flow of current through an electrical network in the presence of fluctuations. These
fluctuations allow one to compute not only the distribution function of currents but
also the generating function, via the Fourier transform.

Remark 1.1. The physics papers [CKS1] and [CKS2] study the distribution of cur-
rents (i.e., homology classes in degree one) on graphs using a non-equilibrium sta-
tistical mechanics formalism. The main invariant appearing in these papers is given
by averaging currents over stochastic trajectories in a certain long time and low
temperature limit. From the physics point of view, one is interested in computing
the distribution function. However, it is more convenient to compute the generating
function, associated with the probability distribution, which are related via a Fourier
transform. The latter can be done by twisting the graph Laplacian by a line bundle.
It is in this sense that the study of fluctuations corresponds to twisting the Laplacian
by a line bundle.

Our main result is a twisted version of Kirchhoff’s projection formula (Theorem A).
As an application, we will deduce a twisted version of the matrix-tree theorem (The-
orem C). Suitably reformulated, our twisted matrix-tree theorem is actually a result
of Forman [F, eq. (1)], which we first learned about in a recent paper of Kenyon
[Ke, theorem 5]. Forman’s proof is combinatorial, using an explicit expression for the
determinant in terms of symmetric groups. Kenyon’s proof relies on the Cauchy-Binet
theorem. By contrast, our approach is inspired by statistical mechanical ideas and
closely follows the untwisted version appearing in [CCK].

Graphs
A graph Γ is a CW complex of dimension one. We let Γ0 denote the set of 0-cells

and Γ1 the set of 1-cells. A 0-cell is called a vertex and a 1-cell is called an edge. The
entire structure of Γ is given by a function

(d0, d1) : Γ1 → Γ0 × Γ0 , (2)

which sends an edge b to its initial and terminal endpoints (where the edge b is
oriented using its characteristic map χb : [0, 1] → Γ). Given the function (2), one can
reconstruct Γ by taking

Γ0 ∪ (Γ1 × [0, 1]),

where the union is amalgamated over the map Γ1 × {0, 1} → Γ0 given by (b, 0) 7→
d0(b) and (b, 1) 7→ d1(b).

A loop edge is an edge such that d0(b) = d1(b). If b is not a loop edge, it is said to
be regular.

Flat line bundles on graphs
A flat complex vector bundle ρ on a graph Γ is a rule that assigns to each vertex i ∈

Γ0 a finite rank complex vector space Vi over C, and to each edge b with (d0b, d1b) =
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(i, j) an isomorphism

ρb : Vi → Vj .

We say that ρ is unitary if each Vi is a hermitian inner product space and each ρb is
unitary. In this paper we will deal exclusively with the rank one case; i.e., flat complex
line bundles. Henceforth, we simplify terminology and refer to ρ as a line bundle.1

Given a line bundle ρ, by choosing a non-zero vector ui in Vi having unit norm,
we can identify Vi with Cui, the complex vector space spanned by ui. Consequently,
there is no loss in generality in assuming that Vi = C for every i ∈ Γ0. In this instance,
ρb : C → C is given by multiplication by a unit complex number, which by abuse of
notation we denote as ρb. With respect to these choices, ρ is given by a function
Γ1 → U(1).

Recall that a circuit C of Γ is a simple closed path. An orientation of C consists
of a choice of direction for traversing C.

Definition 1.2. If C is an oriented circuit of Γ, then the holonomy of ρ along C is
given by the product

ρC :=
∏
b∈C1

ρsbb ,

where sb = ±1 according as to whether the orientation of C is the same as the orien-
tation of b.

If C̄ denotes C with its reverse orientation, then ρC̄ = ρ∗C , where ρ∗C denotes the
complex conjugate of ρC .

More generally, suppose A ⊂ Γ is a subgraph with the property that each compo-
nent Aα of A has trivial Euler characteristic. Then Aα has a unique circuit Cα. Then
A has a preferred set of circuits. Assigning to Cα an arbitrary orientation, we set

ρ̂A :=
∏
α

(ρCα − 1)(ρ∗Cα
− 1) =

∏
α

(2− ρCα − ρ∗Cα
) ,

where α ranges over the components of A. This last expression is well-defined and
independent of the choice of orientation for the circuits. It is also a real number.

The twisted chain complex
For i = 0, 1, let Ci(Γ; ρ) denote the C-vector space having basis Γi. Define the

twisted boundary operator

∂ : C1(Γ; ρ) → C0(Γ; ρ)

by mapping an edge b to the vector ρbd0(b)− d1(b) and extending linearly. The homol-
ogy of this two-stage complex is denoted by H∗(Γ; ρ). It is invariant with respect to
barycentric subdivision. That is, if Γ′ is the barycentric subdivision of Γ and ρ′ is a
line bundle on Γ′ such that ρb = ρ′b0ρ

′
b1

when b = b0b1 is the subdivision of an edge
b, then H∗(Γ; ρ) ∼= H∗(Γ

′; ρ′). Note that H1(Γ; ρ) is a subspace of C1(Γ; ρ) consisting
of the cycles.

1Strictly speaking, what we have defined here is really the notion of a transport operator on Γ
associated with a flat connection, but we will not need to worry about this distinction.
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Remark 1.3. This is the traditional notation. It is imprecise since each vector space
Ci(Γ; ρ) does not depend on ρ whereas the boundary operator ∂ does. A more precise
notation would write the complex as ∂ρ : C1(Γ;C) → C0(Γ;C).

If A ⊂ Γ is a subcomplex, we have the relative chain complex C∗(Γ, A; ρ) that is
the quotient complex C∗(Γ; ρ)/C∗(A; ρ). It has a basis consisting of the cells of Γ that
are not in A.

The resistance operator
A resistance function is a map r : Γ1 → R+ which assigns to an edge b a resistance

rb > 0. Associated with r is the resistance operator

R : C1(Γ; ρ) → C1(Γ; ρ) ,

which on basis elements is defined by b 7→ rbb.

The standard and modified inner products
The standard Hermitian inner product on C1(Γ; ρ), denoted 〈·, ·〉, is given on basis

elements b, b′ ∈ Γ1 by

〈b, b′〉 := δbb′ ,

where δbb′ is Kronecker delta.
Associated with the resistance operator R is themodified inner product on C1(Γ; ρ),

denoted 〈·, ·〉R, given by

〈b, b′〉R := rb〈b, b′〉 = δbb′rb .

Twisted spanning trees
From now on we assume that Γ is connected and finite.

Definition 1.4. A ρ-spanning tree for Γ is a subcomplex T ⊂ Γ such that

• T0 = Γ0,

• H1(T ; ρ) = 0, and

• The homomorphism H0(T ; ρ) → H0(Γ; ρ) induced by the inclusion is an isomor-
phism.

Remark 1.5. When ρ is the trivial line bundle, we recover the usual notion of spanning
tree. In the next section we characterize the ρ-spanning trees of Γ.

We henceforth make the following assumption:

Assumption. The vector space H0(Γ; ρ) is trivial.

Remark 1.6. The triviality of H0(Γ; ρ) is equivalent to the statement that the holon-
omy over each cycle of Γ is nontrivial. In the case of the twisted matrix-tree theorem
(Theorem C below), this assumption doesn’t cause additional restrictions on gener-
ality: if H0(Γ; ρ) is nontrivial, then the twisted Laplacian has trivial determinant.

Definition 1.7. The weight of a ρ-spanning tree T is the real number

wT := ρ̂T
∏
b∈T1

r−1
b .
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Remark 1.8. If we delete the factor ρ̂T from the above expression, we obtain the
weights appearing in classical untwisted version of the Kirchhoff formula (cf. [NS]).

The operator T̄
Given a ρ-spanning tree T , we define an operator

T̄ : C1(Γ; ρ) → H1(Γ; ρ)

as follows: if b ∈ T1 then T̄ (b) = 0. If b ∈ Γ1 \ T1, we form the graph T ∪ b. Then
dimC H1(T ∪ b; ρ) = 1. Let c ∈ H1(T ∪ b; ρ) be a non-zero vector, and set tb = 〈c, b〉.
We set T̄ (b) := c/tb. This does not depend on the choice of c. Note thatH1(T ∪ b; ρ) →
H1(Γ; ρ) is an inclusion, so this definition makes sense.

Remark 1.9. It will be useful to have an alternative description of T̄ . Assume b ∈
Γ1 \ T1. The homology class [∂b] ∈ H0(T ; ρ) = 0 is trivial, so ∂b ∈ C0(T ; ρ) bounds a
chain u ∈ C1(T ; ρ). Then c := b− u ∈ C1(T ∪ b; ρ) is a cycle such that tb = 〈c, b〉 = 1.
In this case T̄ (b) = c.

The main results
The twisted version of Kirchhoff’s network theorem will be a consequence of having

a concrete description of the projection operator from twisted 1-chains to twisted 1-
cycles.

Theorem A (Twisted Projection Formula). With respect to the modified inner prod-
uct 〈·, ·〉R, the hermitian projection of C1(Γ; ρ) onto the subspace H1(Γ; ρ) is given
by

1

∆

∑
T

wT T̄ ,

where T ranges over the ρ-spanning trees of Γ and ∆ =
∑

T wT .

Our twisted version of Kirchhoff’s network theorem is

Corollary B (Twisted Network Theorem). Given a vector V ∈ C1(Γ; ρ), there is only
one vector z ∈ Zd(Γ; ρ) such that V −Rz ∈ B1(Γ; ρ). Furthermore, for each edge b,
we have

〈z, b〉 = 1

∆

∑
T

wT

rb
〈V, T̄ (b)〉 .

Remark 1.10. In the untwisted case (ρ = 1), this is the formulation of Kirchhoff’s
network theorem that is found in [NS]. The expression 〈V, b〉 is called the voltage
source on the branch b and 〈z, b〉 is the current residing on b.

Let

∂∗
R : C0(Γ; ρ) → C1(Γ; ρ)

be the formal adjoint to the boundary operator ∂ : C1(Γ; ρ) → C0(Γ; ρ) with respect
to the standard hermitian inner product on C0(Γ; ρ) and the modified one on C1(Γ; ρ),
as determined by the resistance operator R.

The following is the result of Forman [F, eq. (1)] that was alluded to above.
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Theorem C (Twisted Weighted Matrix-Tree Theorem).

det(∂∂∗
R : C0(Γ; ρ) → C0(Γ; ρ)) =

∑
T

wT ,

where T ranges over all ρ-spanning trees, and wT is as in Definition 1.7.

The case R = 1 is worth singling out. We use the notation ∂∗ = ∂∗
R in this case.

Corollary D (Twisted Matrix-Tree Theorem).

det(∂∂∗) =
∑
T

ρ̂T ,

where T ranges over all ρ-spanning trees.

Remark 1.11. A natural question is whether versions of Theorems A and C exist for
higher rank bundles on Γ. We don’t think this is likely, since our approach relies
heavily on the fact that U(1) is abelian.

Outline. In §2 we develop foundational material on ρ-spanning trees. §3 contains the
proofs of Theorem A and Corollary B. In §4, we prove Theorem C using Theorem A
and the low temperature limit argument of [CCK].
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2. Properties of twisted spanning trees

The following lemma characterizes the structure of ρ-spanning trees of Γ. We
remind the reader we have made the assumption throughout that H0(Γ; ρ) = 0.

Lemma 2.1. A subcomplex T ⊂ Γ is a ρ-spanning tree if and only if

• T0 = Γ0,

• each connected component Tα of T has trivial Euler characteristic; i.e., Tα

possesses a unique circuit, Cα and

• the holonomy around Cα is nontrivial.

Remark 2.2. A cycle-rooted spanning forest (CRSF) is a subcomplex T of Γ satisfy-
ing the first two conditions listed in Lemma 2.1; i.e., a ρ-spanning tree is a CRSF
additionally satisfying the condition that the holonomy around circuits is nontrivial
(cf. Fig. 1, [Ke, 4.1]).
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Figure 1: A lattice graph equipped with CRSF having four components (cf.
Remark 2.2). The edges of the graph are the gray lines. The edges of the CRSF
are indicated in black.

Proof of Lemma 2.1. Assume T is a ρ-spanning tree. The assumption H0(Γ; ρ) =
0 implies that H0(T ; ρ) = 0 and the latter implies H0(T

α; ρ) = 0 since H0(T ; ρ) =
⊕αH0(Tα; ρ). Similarly,H1(T ; ρ) = 0 impliesH1(T

α; ρ) = 0. Hence the chain complex

∂ : C1(T
α; ρ) → C0(T

α; ρ)

is acyclic. In particular, the number of edges of Tα equals the number of vertices,
so the Euler characteristic of Tα is trivial. Orient the unique circuit Cα and let
the holonomy around Cα be denoted ρα. Then independence of twisted cohomology
with respect to subdivision yields H0(T

α; ρ) = H0(Cα; ρ) = H0(S
1; ρα), where we are

thinking of S1 as a graph with one vertex and one edge and where the line bundle
is given by ρα. An easy calculation shows H0(S

1; ρC) is the cokernel of the map
(ρα − 1) : C → C. Hence the triviality of H∗(T

α; ρα) is equivalent to the statement
ρα 6= 1.

Conversely, given T satisfying the three conditions, the second and third conditions
imply H∗(T ; ρ) = ⊕αH∗(T

α; ρ) is trivial. Hence T is a ρ-spanning tree.

Lemma 2.3. Γ has a ρ-spanning tree.

Proof. Call an edge b of Γ essential if there is a cycle z ∈ H1(Γ; ρ) ⊂ C1(Γ; ρ) such
that 〈b, z〉 6= 0. If there is no such edge, then it is straightforward to check that Γ is
a ρ-spanning tree.

Assume then that there is an essential edge b. Let Y be the effect of removing (the
interior of) b from Γ. Then we have a short exact sequence

0 → H1(Y ; ρ) → H1(Γ; ρ) → H1(b, ∂b; ρ) → H0(Y ; ρ) → 0

and the condition 〈b, z〉 6= 0 implies that the homomorphismH1(Γ; ρ) → H1(b, ∂b; ρ) is
nontrivial (note that H1(b, ∂b; ρ) ∼= C). It follows that dimC H1(Y ; ρ) < dimC H1(Γ; ρ)
and H0(Y ; ρ) = 0. We do not require that Y be connected. We now replace Γ by Y
and iterate this construction until we obtain a subcomplex T having no essential cells
and H∗(T ; ρ) = 0. Then T is a ρ-spanning tree.

Lemma 2.4. Fix a ρ-spanning tree T and let b1, . . . , bk be the set of edges of Γ1 \ T1.
Then {T̄ (b1), . . . , T̄ (bk)} is a basis for H1(Γ; ρ).
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Proof. The homomorphism H1(Γ; ρ) → H1(Γ, T ; ρ) is an isomorphism. Furthermore,
H1(Γ, T ; ρ) = C1(Γ;T ; ρ) has basis {b1, . . . , bk}. The inverse homomorphism sends bi
to T̄ (bi).

Corollary 2.5. For any z ∈ H1(Γ; ρ), we have T̄ (z) = z.

Proof. The definition of T̄ shows T̄ 2(bi) = T̄ (bi). Write z =
∑

i aiT̄ (bi). Then

T̄ (z) =
∑
i

aiT̄
2(bi) =

∑
i

aiT̄ (bi) = z .

Given a ρ-spanning tree T , consider an edge bi ∈ Γ1 \ T1 as well as an edge bj ∈ T1.
Let U = (T \ bj) ∪ bi.

Lemma 2.6. U is a ρ-spanning tree if and only if 〈T̄ (bi), bj〉 6= 0.

Proof. Throughout this proof we use local coefficients in ρ but suppress this from the
notation. We have an exact sequence

0 → H1(T \ bj) → H1(T ) → H1(bj , ∂bj) → H0(T \ bj) → 0 ,

where we are using the fact that H0(T ) = 0. Since H1(T ) = 0 and dimC H1(bj , ∂bj) =
1, we infer that H1(T \ bj) = 0 and dimC H0(T \ bj) = 1.

The inclusion U ⊂ T ∪ bi induces another exact sequence

0 → H1(U) → H1(T ∪ bi) → H1(bj , ∂bj) → H0(U) → 0 ,

and the homomorphism H1(T ∪ bi) → H1(bj , ∂bj) is a map of rank one vector spaces
that is induced by sending the preferred cycle c ∈ H1(T ∪ b) to 〈T̄ (bi), bj〉 with respect
to the preferred identification H1(b, ∂b) ∼= C. Consequently, U is a ρ-spanning tree if
and only if 〈T̄ (bi), bj〉 6= 0.

Proposition 2.7. With bi, bj , T, U as above, we have

ρ̂T 〈T̄ (bi), bj〉 = ρ̂U 〈bi, Ū(bj)〉 .

Remark 2.8. Proposition 2.7 will be a key step in verifying the Twisted Projection
Formula (Theorem A). Although we will have managed to reduce most of the argu-
ment to algebraic topology, we cannot completely eliminate combinatorics from the
proof (the same is true with respect to the classical theorem; see [NS]). However,
Proposition 2.7 effectively minimizes the role of combinatorics to a kind of general
and relatively simple statement.

Proof of Proposition 2.7. There are two cases to consider: either bi is attached to two
distinct components of T or b1 is attached to a single component of T . We proceed by
direct calculation in either case. Figure 2 gives a visualization of the cases at hand.

Case 1: Assume that bi is attached to two distinct components of T , say A and B.
By switching the roles of A and B if necessary, we may suppose that (d0(bi), d1(bi)) =
(w, v), where v lies in A and w lies in B. Without loss of generality assume that bj
lies in A. Let C be the unique circuit of A and C ′ the unique circuit of B.
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Then

v = ∂c

for c ∈ C1(A; ρ). We may then write c = c0 + αbj , where α ∈ C and 〈c0, bj〉 = 0. Sim-
ilarly, we write w = ∂d, where d ∈ C1(B; ρ). Then 〈T̄ (bi), bj〉 equals

〈bi − (ρbid− c0 − αbj), bj〉 = α ,

since ∂(ρbid− c0 − αbj) = ∂bi and ρbid− c0 − αbj is a chain of T .

A similar calculation shows 〈bi, Ū(bj)〉 equals

〈bi, bj −
ρbi

d−bi−c0
α 〉 = (α−1)∗ .

In order to compute α, it is enough to identify the 1-chain c ∈ C1(A; ρ) whose bound-
ary equals v, since then 〈c, bj〉 = −α.

To find c we rename v = v1 and choose a vertex vk on the unique circuit of A
together with an embedded path of edges e1, . . . ek that connects v1 to vk. Without loss
of generality, we can assume that none of the edges ei lies in the unique cycle of A. Let
ek+1, . . . , en denote the sequence of edges given by the traversing the unique cycle of A
such that vk is a vertex of both ek+1 and en. Then c is a linear combination of the edges
ei, which can be explicitly computed using the fact that ∂ei = ρeid0(ei)− d1(ei). Then
a straightforward calculation yields the expression for the component of c along the
edge ei as

〈c, ei〉 = −
ρs11 . . . ρ

si−1

i−1

ρA − 1
, (3)

where ρi := ρei and si = ±1 according as to whether ei points in the direction of the
path or not (we have also oriented A in a way that is compatible with our choice of
path). In particular, bj = e` for some index `, so

α =
ρs11 . . . ρ

s`−1

`−1

ρA − 1
.

Since ρ̂T = ρ̂Aρ̂B ρ̂
′, where ρ̂′ is the product of the ρ̂Tα ranging over the remaining

components of T , we have

ρ̂Tα = ρs11 . . . ρ
s`−1

i−1 (ρ∗A − 1)ρ̂B ρ̂
′ .

Since ρ̂U = ρ̂B ρ̂
′, we see

ρ̂U (α
−1)∗ = ρ̂Tα ,

which concludes Case 1.

A bi B

(a) bi bridges two distinct
components of T

bi A

(b) bi attached to a single
component of T

Figure 2: The two cases of Proposition 2.7
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Case 2: In this instance bi is attached to a single component A of T . In this case we
need to find a 1-chain c of A such that ∂c = ∂bi. Arguing in a way analogous to the
beginning of Case 1, if we set

〈T̄ (bi), bj〉 = α (4)

then it follows that

〈b̄i, Ū(bj)〉 = (α−1)∗ . (5)

Suppose d1(bi) = v and d0(bi) = w (where it is possible that v = w). We select a
simple path e1, . . . , ek of edges of A such that v meets e1 and w meets ek. Let us
rename bi as ek+1. Then c is a linear combination of the edges ei for 1 6 i 6 k. Let
C denote the unique circuit of A. Then A decomposes as

A− ∪ C ∪A+

in which A− is a connected subgraph of A that meets the vertex v and A+ is the
connected subgraph of A that meets the vertex w. For a given index i, consider the
expressions

α− :=
∏

16j<i

ρ
sj
j α+ :=

∏
i6j6k+1

ρ
sj
j .

A calculation similar to that appearing in Case 1 gives, for 0 6 i 6 k,

〈c, ei〉 =


α− if ei ⊂ A− ,

(ρA − 1)−1(α+ − α−) if ei ⊂ C ,

α+ if ei ⊂ A+ .

(6)

Then if βj = e` for some `, we have 〈T̄ (βi), βj〉 = −〈c, e`〉. As before, we have ρ̂T =
ρ̂Aρ̂

′, where ρ̂′ is a product of ρ̂Tα for Tα ranging over the other components of T .
Consequently,

〈ρ̂T T̄ (βi), βj〉 = ρ̂Aρ̂
′α ,

where α = −〈c, e`〉 is explicitly given by Eq. (6).

The remainder of the argument is just as in Case 1. A straightforward calculation
that we omit shows

ρ̂U =

{
ρ̂T if bj ⊂ A− ∪A+ ,

(2 + α+α
∗
− − α∗

+α−)ρ̂
′ if bj ⊂ C .

(7)

Then use Eq. (5) and Eq. (6) to identify the product ρ̂U (α
−1)∗. We infer that it

coincides with ρ̂Tα, thereby completing the proof.

3. Proof of Theorem A and Corollary B

Lemma 3.1. For distinct edges bi, bj ∈ Γ1, let Tij be the set of ρ-spanning trees such
that 〈T̄ (bi), bj〉 6= 0. Then∑

T∈Tij

wT 〈T̄ (bi), bj〉R =
∑

U∈Tji

wU 〈bi, Ū(bj)〉R .
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Proof. From the definition of the weights, we have

rjwT

ρ̂T
=

riwU

ρ̂U
. (8)

Recall that 〈T̄ (bi), bj〉R = rj〈T̄ (bi), bj〉. Using Eq. (8) and Proposition 2.7, we infer

wT 〈T̄ (bi), bj〉R = wU 〈bi, Ū(bj)〉R .

Now sum up over all T ∈ Tij .

Proof of Theorem A. Consider the operator F :=
∑

T wT T̄ , where the sum is over all
ρ-spanning trees of Γ. For any pair of edges bi and bj of Γ we have

〈
∑
T

wT T̄ (bi), bj〉R =
∑

T∈Tij

wT 〈T̄ (bi), bj〉R

=
∑

U∈Tji

wU 〈bi, Ū(bj)〉R by Lemma 3.1 ,

= 〈bi,
∑
U

wU Ū(bj)〉R

= 〈bi,
∑
T

wT T̄ (bj)〉R

Hence F is self-adjoint in the modified inner product.
If z ∈ Z1(Γ; ρ), then using Corollary 2.5, we have

F (z) = (
∑
T

wT )T̄ (z) = (
∑
T

wT )z =: ∆z

Consequently, (1/∆)F restricts to the identity on Zd(X; ρ). As (1/∆)F is self-adjoint,
it is the Hermitian projection in the modified inner product.

Proof of Corollary B. Let z be the Hermitian projection of R−1V in the modified
inner product. Then R−1V − z ∈ Bd

R(Γ; ρ); i.e.,

0 = 〈R−1V − z, z′〉R = 〈V −Rz, z′〉

for all z′ ∈ Zd(X; ρ). Hence, V −Rz ∈ Bd(Γ; ρ). The uniqueness of z is a consequence
of the fact that Bd(Γ; ρ) is the orthogonal complement to Zd(X; ρ) in the standard
inner product.

The proof of the last part is given by direct calculation using the self-adjointness
of the operator

∑
T wT T̄ :

〈z, b〉 = 1

rb
〈z, b〉R ,

=
1

rb
〈 1
∆

∑
TwTR

−1V, b〉R ,

=
1

∆

∑
T

wT

rb
〈R−1V, T̄ (b)〉R ,

=
1

∆

∑
T

wT

rb
〈V, T̄ (b)〉 .
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4. Proof of Theorem C

The proof of Theorem C is essentially the same as the proof of [CCK, theorem C].
We will outline the essential steps. The first step is to show that

det(∂∂∗
R : C0(Γ; ρ) → C0(Γ; ρ)) = γ

∑
T

wT , (9)

where T ranges over all ρ-spanning trees, and the pre-factor γ is to be determined.
This step follows, mutatis mutandis, by the proof of [CCK, proposition 4.2]. We
emphasize that γ is independent of R.

The second and final step is to compute the prefactor γ and show that it equals 1.
We work perturbatively, following a modified version of [CCK, proposition 5.2]. To
this end, let β ∈ R+ be the perturbation parameter and fix a ρ-spanning tree T .
For any W : Γ1 → R, write R = eW , Rβ = eβW , and set LR = ∂∂∗

R. Define LT
R =

∂T e
−W∂∗

T : C0(T ; ρ) → C0(T ; ρ).
A choice of orthogonal projection C1(Γ; ρ) → C1(T ; ρ) allows us to write

LR = LT
R + δL.

A standard expansion of the above operator allows us to bound the elements of δL

|δLjk| 6 e−βminb∈Γ1\T1
WbB,

where B is independent of W and β. Since γ is independent of R, we choose W : Γ1 →
R so that

Wb >
∑
α∈T1

Wα − k min
b′∈T1

Wb′ for any b ∈ Γ1 \ T1,

where k is number of edges of Γ. Our choice of W implies that in the β → ∞ limit,
the terms arising from LT

R dominate those of δL. Therefore,

lim
β→∞

detLT
Rβ

detLRβ

= 1. (10)

Substituting βW for W in Eq. (9), taking the β → ∞ limit, substituting the rela-
tion (10), and doing some minor rewriting, we deduce

det(LT
R) = γwT .

Note that LT
R = ∂T e

−W∂∗
T , and by definition of wT , we have det e

−W = ρ̂−1
T wT . Con-

sequently,

det(LT
R) = ρ̂−1

T wT det(∂T∂
∗
T ).

It follows that

γ = ρ̂−1
T det(∂T∂

∗
T ).

Theorem C is then a consequence of the following.

Lemma 4.1. For any ρ-spanning tree T , we have

det(∂T∂
∗
T ) = ρ̂T .

Hence, γ = 1.
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Proof. Clearly both sides of the equation factor as a product over the connected
components of T . So if Tα is a component of T , it will suffice to show

det(∂Tα∂∗
Tα) = ρ̂Tα .

This last statement can be proved in a number of ways. For example, Kenyon [Ke]
proves it using an interpretation of the determinant as a summation of cycles over
the symmetric group. We will give a proof using gauge invariance.

The gauge group G of Γ is the group of functions Γ0 → U(1) with respect to
pointwise multiplication. It is convenient in what follows to set gv = g(v) for a vertex
v. Then G acts on line bundles according to the rule

g · ρ(b) = gd0(b)g
∗
d1(b)

ρb .

Set ρg = g · ρ. To distinguish between boundary operators, we write ∂ for the bound-
ary operator associated with ρ, and ∂g for the one associated with ρg. Define an
action

G× C0(Γ; ρ) → C0(Γ; ρ)

by g · v = gvv, for v ∈ Γ0.
It is then straightforward to check that for g ∈ G we have

∂g∂
∗
g = g∂∂∗g−1.

In particular, det(∂g∂
∗
g ) = det(∂∂∗).

Write Tα = A ∪ b, where A is tree in the classical sense. We claim that there is
a gauge g ∈ G such that ∂g(e) = 1 for e ∈ A1. To find g we need to know that the
system of equations

gd0(e)g
∗
d1(e)

ρe = 1, e ∈ A (11)

admits a solution. If we fix a vertex i ∈ A0, we can set gi = 1. Then for any edge
ij of A that connects i to j, we set gj = ρsij with s = ±1 according to whether ij
points inward toward i or not. Consider a vertex k 6= i such that jk is an edge of
A. We set gk = ρsjkgj , where in this instance s is ±1 according to whether the edge
jk points toward j or not. Continuing in this fashion, we obtain a solution to the
system (11). For any vertex i not in A we set gi = 1. With respect to our choice of g,
inspection shows that ρgb is the holonomy with respect to ρ around the unique circuit
of A ∪ b that is oriented in the direction of b. Hence, we can without loss of generality
assume that the original line bundle ρ is trivial on every edge other than b, and we
are reduced to proving that det(∂∂∗) = (ρb − 1)(ρ∗b − 1), where ∂ is the boundary
operator for Tα = A ∪ b.

The columns of the matrix associated with ∂ represent the edges of A ∪ b and the
rows represent the vertices. An edge e of A ∪ b is said to be loose if it is attached to a
vertex i such that no other edge of A ∪ b is attached to i. If e is loose, then the e-th
column of ∂ has exactly two non-zero entries that are ±1 and these are of opposite
sign. We infer that the determinant of ∂ remains unchanged when we remove the
edge e and the vertex i from A ∪ b. Iterating this procedure, we may assume without
loss of generality that A ∪ b has no free edges. This means A ∪ b is a circuit. The
determinant of ∂ in this case is easy to compute and is given by ±(ρb − 1). Hence the
determinant of ∂∗∂ is (ρb − 1)(ρ∗b − 1).
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