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Abstract
The join operad arises from the combinatorial study of the

iterated join of simplices. We study a suitable simplicial version
of this operad that includes the symmetries given by permu-
tations of the factors of the join. This is the symmetric join
operad. As an application of this combinatorics we construct
an E∞-operad that coacts naturally on the chains of a simpli-
cial set.

1. Introduction

Right from the outset we establish the following convention: we index simplices
by the number of vertices, rather than by dimension; that is, we write ∆k

for a simplex with k vertices and therefore dimension k − 1.
Let X and Y be topological spaces. Then X ∗ Y , the join of X and Y , is a quotient

space of I ×X × Y and so there is a canonical map

I ×X × Y → X ∗ Y.

More generally, there are canonical maps

∆k ×X1 × · · · ×Xk → X1 ∗ · · · ∗Xk.

The join of two simplices is a simplex and these canonical maps make the sequence
of spaces ∆k into a topological operad.

If we look for a version of these canonical maps at the level of simplicial sets we
are led, quite naturally, to two fundamental points.

• The simplest way to construct such maps for simplicial sets uses exactly the
same geometric constructions with simplices that are the basis of Steenrod’s
construction [19] of the cup-i products at the cochain level.

• While the join operation of spaces is symmetric, it is not symmetric at the level
of simplicial sets. The basic point is that if A and B are geometric simplices and
if we order the vertices of A and B, then the natural orderings of the vertices
of A ∗B and B ∗A are not the same.

In the theory of classical simplicial complexes, simplices are uniquely determined
by their vertices and so as usual we identify a simplex with its set of vertices. Then,
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assuming K and L are classical simplicial complexes, the simplices of K ∗ L are given
by σ t τ , where σ is a simplex in K or else it is empty and τ is a simplex in L
or else it is empty. The simplest way of dealing with this is to add to both K and
L a simplex of dimension −1 with the empty set as its set of vertices. Passing to
simplicial sets, this amounts to working with simplicial sets augmented by adjoining
a set of simplices that have “no vertices” or dimension −1. In terms of the category
∆ of ordered sets and order preserving maps used in the theory of simplicial sets,
this corresponds to replacing ∆ by the category O obtained by adjoining to ∆ an
additional initial object and working with O-sets, also known as augmented simplicial
sets, rather than ∆-sets. The category of O-sets is the natural context for the join
operation; see §3 for the details.

However the join of O-sets is not symmetric. What we lack is an action of the
symmetric group Σn on the set of simplices with n vertices which “behaves like”
reordering the vertices of an ordered simplex. This brings us to the framework of
OΣ-sets, an augmented version of ∆Σ-sets, one of the basic examples of crossed
simplicial groups studied by Fiedorowicz and Loday [11]. Any augmented simplicial
set determines a free OΣ-set, and the category of O-sets is equivalent to the category
of OΣ-sets in a suitable homotopy theoretic sense; see 2.4. This leads to the symmetric
join JΣ of OΣ-sets and symmetric versions of the canonical maps

OΣn ×X1 × · · · ×Xn → JΣ(X1, . . . , Xn),

where OΣn is the OΣ-set corresponding to the augmented simplex ∆n. The join of
O-sets or OΣ-sets is in fact nothing but a Day convolution on the respective presheaf
category.

The join of OΣn and OΣm is OΣn+m and these constructions produce an operad
{OΣn}n>0 in the category of OΣ-sets. This is the fundamental object in this paper.
The other operads we consider are derived from this one by forming pairs, applying
the forgetful functor to simplicial sets, and applying chains. Combining the canonical
maps with the diagonal X → Xn we get a canonical “coaction”

OΣn ×X → JΣ(X, . . . ,X)

on any OΣ-set X.
Having sorted out the combinatorics of the symmetric join operad of OΣ-sets, we

convert it into a chain level E∞-operad {j(n)}n>0; see Definition 4.4. The canonical
maps yield, after some manipulation, chain level coaction

j(n) ⊗ C∗(Y ) → C∗(Y )⊗n

for any simplicial set Y , making C∗(Y ) into a coalgebra over j.
The cooperations in C∗(Y ) induced by this coaction include the classical Alexander-

Whitney coproduct and higher cup-i coproducts whose duals in C∗(Y ) are the stan-
dard cup product and higher cup-i products. This expresses in a very precise sense the
relation between Steenrod’s construction of the cup-i products and the combinatorics
of the join of simplices that was the starting point for this work.

This is not at all the first construction of a chain E∞-operad that endows the chain
complex C∗(Y ) (resp. C∗(Y )) with a natural structure of an E∞-coalgebra (resp. E∞-
algebra). In [17] McClure and Smith constructed the sequence operad and its action
on C∗(Y ). Berger and Fresse [5] analyse the Barratt-Eccles operad, which is the
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chain version of a simplicial operad obtained from the bar constructions of symmetric
groups. Another such operad is the condensation of the multi-coloured lattice path
operad of Batanin and Berger [1]. It contains the sequence operad as a suboperad.
There is also a significant amount of unpublished work due, independently, to Jim
Milgram and Ezra Getzler to be acknowledged. These constructions are significant
since by [13, 14], under suitable assumptions on Y , an E∞-algebra structure on
C∗(Y ) determines the homotopy type of Y .

Perhaps the main theme in this paper is to understand better the relation between
chain cooperations (or cochain operations) and the combinatorics of joins. Another
important theme is the idea that OΣ-sets give a conceptual way of encoding the rela-
tions between reorderings of the vertices of a simplex and its faces and degeneracies
and therefore form the most natural setting for our general constructions. Finally,
one of our aims is to do as much as possible in the context of simplicial geometry and
translate this into a coaction on chains at the last possible moment.

This paper is set out as follows: §2 contains the background on the necessary
modifications of simplicial sets; that is, O-sets and OΣ-sets that are the natural
setting for our constructions; §3 describes in detail the construction of the symmetric
join operad; in §4 we describe the manipulations required to produce and E∞-operad
and its coaction on C∗(Y ), where Y is a simplicial set; finally §5 contains some deferred
proofs.

2. Background

2.1. Indexing categories.
Let ∆ denote the usual simplicial category, with objects [n] = {0, . . . , n} for n > 0

and order-preserving maps as morphisms. For 0 6 i 6 n let δi : [n− 1] → [n] be the
injection whose image does not contain i and let σi : [n+ 1] → [n] be the surjection
which maps i and i+ 1 to the same value.

Let O be the ordinal category whose objects are the sets n = {1, . . . , n} for n > 0,
where 0 = ∅, and whose morphisms are the order-preserving maps. For 1 6 i 6 n let
δi : n− 1 → n be the injection whose image does not contain i and let σi : n+ 1 → n
be the surjection that maps i and i+ 1 to the same value. For each n there is a unique
morphism 0 → n and there are no morphisms n→ 0 if n > 0.

The assignment [n] → n+ 1 defines an inclusion ∆ ↪→ O. It sends the morphisms
δi, σi of ∆ to δi+1, σi+1 of O, respectively.

Our main tool is the category OΣ; see [11, 18]. Its objects are the same as the
objects of O. A morphism f ∈ OΣ(n,m) is, by definition, a map of sets together with
a complete order on each of the sets f−1(i) for i ∈ m. There is a forgetful functor
OΣ → Set which discards the ordering and remembers the underlying set map.

It follows that an injective set map f : n→ m determines a unique morphism in
OΣ. In particular we have inclusions Σn ⊆ OΣ(n, n) for all n. Moreover, there is a
canonical embedding of categories

O ↪→ OΣ.

On the objects it is the identity and it takes an order-preserving map to the morphism
with the same underlying set map and with each fibre ordered according to the natural
ordering of the source.
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The category OΣ has another description. First note that any morphism φ ∈
OΣ(n,m) has a unique decomposition as φ = f ◦ π, where f ∈ O(n,m) ⊆ OΣ(n,m)
and π ∈ Σn ⊆ OΣ(n, n). We can therefore identify elements of OΣ(n,m) with pairs
(f, π) ∈ O(n,m) × Σn. Let us express the composition of morphisms in this represen-
tation. First, for any permutation π ∈ Σn and an order-preserving map g ∈ O(k, n),
define a permutation g∗π ∈ Σk and a map π∗g ∈ O(k, n) as the unique pair with the
following two properties:

• the diagram

k
g //

g∗π
��

n

π

��
k

π∗g
// n

commutes

• the permutation g∗π is order-preserving on each of the fibres g−1(i).

A quick calculation now shows that the composition of morphisms in OΣ is defined
as follows: if (f, π) ∈ OΣ(n,m) and (g, σ) ∈ OΣ(k, n) then

(f, π) ◦ (g, σ) = (f ◦ (π∗g), (g∗π) ◦ σ) ∈ OΣ(k,m). (1)

In this representation the inclusion O(n,m) ↪→ OΣ(n,m) is given by f → (f, id), the
forgetful functor OΣ → Set is given by (f, π) → fπ, and the inclusion Σn ⊆ OΣ(n, n)
is π → (id, π).

2.2. Some notation.

Let P denote any of the categories O, OΣ, or Set. For any subset I ⊆ m let
iI : |I| → m be the unique morphism in P determined by the order-preserving injec-
tion of the set |I| into m with image I. For any morphism f ∈ P(k,m) and any subset
I ⊆ m we define fI : |f−1(I)| → m and f I : |f−1(I)| → |I| as the unique morphisms
in P which make the following diagram commute:

|f−1(I)|

if−1(I)

��

fI

//

fI

##GGGGGGGGG
|I|

iI

��
k

f // m

Intuitively, fI is the morphism f restricted to the preimage of I and f I is obtained
by further restricting the target to I. Note that iI = idI .

Now every morphism f ∈ P(k, n) determines a decomposition of k into n blocks
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{f−1(i)}ni=1 of sizes ai = |f−1(i)|. Given a sequence of morphisms defined on these
blocks,

gi ∈ P(ai, ki)

for some ki > 0, we can combine them to from a morphism

h ∈ P(k, k1 + · · · + kn).

Here h is the unique morphism which for 1 6 i 6 n makes each of the following
diagrams commute:

ai

if−1(i)

��

gi // ki

��
k

h // k1 + · · · + kn

where the right hand vertical map is the order-preserving inclusion of the i-th block
in the sum. We will use the notation

h = f〈g1, . . . , gn〉.

Note that the morphism f is only used to determine the blocks, so the definition of
f〈g1, . . . , gn〉 makes sense also when f ∈ Set(k, n) and gi ∈ OΣ(ai, ki) and it produces
an element of OΣ(k, k1 + · · · + kn).

It is not difficult to verify directly that we have the following identities of P-
morphisms:

iI ◦ f I = f ◦ if−1(I) (P1)

(fg)〈h1 ◦ gf
−1(1), . . . , hn ◦ gf

−1(n)〉 = f〈h1, . . . , hn〉 ◦ g (P2)

gf
−1(I) ◦ f I = (gf)I (P3)

iA ◦ (iB)A = iA∩B . (P4)

Note that all the above constructions and the formulae (P1)–(P4) are preserved by
the functors O ↪→ OΣ → Set.

2.3. ∆-sets, O-sets and OΣ-sets.
A P-set (where P is ∆, O, or OΣ) is a contravariant functor from P to the

category of sets. We will write X(n) instead of X([n]) or X(n). It is important to
be clear that for a ∆-set X the set X(n) is to be thought of as a set of simplices
of dimension n, while for a O-set or OΣ-set X the set X(n) is to be thought of as
a set of simplices with n vertices. For an O-set or OΣ-set X we have the i-th face
map di = δ∗i : X(n) → X(n− 1) and i-th degeneracy si = σ∗

i : X(n) → X(n+ 1) for
1 6 i 6 n.

The inclusion ∆ ↪→ O induces a forgetful functor U : SetO
op

→ Set∆op

that satisfies
(UX)(n) = X(n+ 1) for n > 0 (it forgets the augmentation X(0)). For a simplicial
set Y we will denote by Y+ the one-point augmentation; i.e., the O-set with

Y+(n) =

{
Y (n− 1) if n > 1
∗ if n = 0,

where ∗ is a singleton set. The functor Y 7→ Y+ is the right adjoint of U .
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The inclusion O ↪→ OΣ induces another forgetful functor I : SetOΣop

→ SetO
op

.
It has a left adjoint denoted X 7→ XΣ. For an O-set X, it is given by (XΣ)(n) =
X(n) × Σn and the structure maps are defined by the formula

(x, π) ◦ (g, σ) = (x ◦ (π∗g), (g∗π) ◦ σ) (2)

for (x, π) ∈ X(n) × Σn and (g, σ) ∈ OΣ(m,n). We write the structure maps as acting
on the right to indicate contravariance.

In particular, for 1 6 i 6 n the face map di : (XΣ)(n) → (XΣ)(n− 1) is given by

di(x, π) = (x, π) ◦ (δi, idn−1) = (x ◦ π∗δi, δ∗i π) = (xδπ(i), δ
∗
i π) = (dπ(i)x, diπ), (3)

where diπ denotes the (n− 1)-permutation obtained from π by erasing the i-th posi-
tion and reindexing.

For each n > 0 we have the canonical objects ∆n, On, and OΣn given by

∆n(m) = ∆([m], [n]), On(m) = O(m,n), OΣn(m) = OΣ(m,n)

and

(∆n)+ = On+1, UOn = ∆n−1 for n > 1, OnΣ = OΣn.

We can also consider categories of pairs (X,X ′), where X ′ is a sub-object of X.
Note that since there are no morphisms in O or OΣ with target 0, the 0-component
X(0) of an O-set or OΣ-set X is a sub-object in a trivial way, so we can always form
a pair (X,X(0)) of O-sets or OΣ-sets. This gives a way to remove the simplices with
no vertices from either O-sets or OΣ-sets.

For every n > 0 we have canonical pairs

(∆n, ∂∆n), (On, ∂On), (OΣn, ∂OΣn)

in the respective categories. In each case the sub-object ∂Pn consists of those mor-
phisms whose underlying set map is not surjective.

The geometric realization |X| of an O-set or OΣ-set X is defined by passing to
the underlying simplicial set, resp., UX or UIX.

2.4. Homotopical properties of OΣ-sets.
Let X be a O-set and let ηX : X → I(XΣ) be the unit of the adjunction

(−)Σ: SetO
op

� SetOΣop

: I. By [11, Prop.5.1] there is a commutative diagram

|X|
|ηX | //

(x,∗) %%KKKKKKKKKK |I(XΣ)|
(p1,p2)

≡
��

|X| × |OΣ1|

where (p1, p2) is a homeomorphism and |OΣ1| is contractible by the argument of
[11, Ex.6]. It follows that |ηX | : |X| → |I(XΣ)| is always a homotopy equivalence. In
particular, the spaces |OΣn| are contractible for n > 1.

In fact, one can say more. The category of ∆Σ-sets, the obvious non-augmented
version of OΣ-sets, satisfies the assumptions of Theorem 6.2 of [8], which provides it
with a model structure in which a map is a weak equivalence if and only if it is a weak
equivalence of the underlying simplicial sets. Then the adjoint pair (−)Σ: Set∆op

�



THE SYMMETRIC JOIN OPERAD 251

Set∆Σop

: I is a Quillen equivalence of model categories, in particular it induces an
equivalence of homotopy categories.

3. The join operad of OΣ-sets.

3.1. Joins.
The category of O-sets is a natural context for the join operation at the level of

simplicial sets. Let X1, . . . , Xn be O-sets. Then their join is the O-set JO(X1, . . . , Xn)
defined as

JO(X1, . . . , Xn)(k) =
∐

a1+···+an=k

X1(a1) × · · · ×Xn(an) (4)

=
∐

φ∈O(k,n)

n∏
i=1

Xi(|φ−1(i)|). (5)

The two definitions are clearly equivalent because every order-preserving map φ ∈
O(k, n) determines, and is determined by, an ordered partition of k into n parts of
sizes ai = |φ−1(i)|. The join has the following structure maps. An order-preserving
map f ∈ O(k′, k) and a partition a1 + · · · + an = k of k determine a new partition
a′1 + · · · + a′n = k′ of k′ and a sequence of order-preserving maps fi : a′i → ai. Then
for (x1, . . . , xn) ∈ X1(a1) × · · · ×Xn(an), we have

(x1, . . . , xn) ◦ f = (x1f1, . . . , xnfn) ∈ X(a′1) × · · · ×X(a′n).

There is an alternative formulation of this recipe which uses the definition (5) of
the join. If f ∈ O(k′, k) then f takes the summand indexed by φ ∈ O(k, n) to the
summand of φf ∈ O(k′, n) as follows:

(x1, . . . , xn) ◦ f = (x1f
φ−1(1), . . . , xnf

φ−1(n)) ∈
n∏
i=1

Xi(|(φf)−1(i)|).

Note that fφ
−1(i) is exactly the morphism fi from the previous definition. It is

straightforward to check using (P3) that these maps define the structure of an O-set
on the join.

Notice how this definition mimics the combinatorial structure of the join of two
classical simplicial complexes. Indeed it follows from [10] that if Y1, . . . , Yn are sim-
plicial sets we have a homeomorphism

|JO(Y1+, . . . , Yn+)| ≡ |Y1| ∗ · · · ∗ |Yn|.

The category of OΣ-sets also has a join operation. For OΣ-sets X1, . . . , Xn we
define

JΣ(X1, . . . , Xn)(k) =
∐

a1+···+an=k

X1(a1) × · · · ×Xn(an) ×Σa1×···×Σan
Σk (6)

=
∐

φ∈Set(k,n)

n∏
i=1

Xi(|φ−1(i)|). (7)

The equivalence of the two definitions follows from the fact that every map of
sets φ ∈ Set(k, n) can be factored as φ = fπ with π ∈ Σk and f ∈ O(k, n). In this
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factorization, f is determined uniquely and it induces a decomposition a1 + · · · + an =
k (with ai = |φ−1(i)| = |f−1(i)|), while π is unique up to postcomposition with an
element of Σa1 × · · · × Σan . The maps

(x1, . . . , xn) → [(x1(π−1)φ
−1(1), . . . , xn(π−1)φ

−1(n)), π]

[(y1, . . . , yn), π] → (y1π
f−1(1), . . . , ynπ

f−1(n))

establish the equivalence between the two versions of the join.
The structure map of JΣ induced by the morphism f ∈ OΣ(k′, k) takes the sum-

mand indexed by φ ∈ Set(k, n) to the summand of φf ∈ Set(k′, n) by the formula

(x1, . . . , xn) ◦ f = (x1f
φ−1(1), . . . , xnf

φ−1(n)) ∈
n∏
i=1

Xi(|(φf)−1(i)|). (8)

The verification that these maps assemble to the structure of an OΣ-set is identical
to that for JO.

A direct calculation with the representation (6) of the join shows that if f =
(g, σ) ∈ O(k′, k) × Σk′ then the structure map induced by f is given by the formula

[(x1, . . . , xn), π] ◦ (g, σ) = [(x1(π∗g)1, . . . , xn(π∗g)n), g∗π ◦ σ]

where (π∗g)i : a′i → ai are the components of the order-preserving map π∗g : k′ → k
determined by the partition a1 + · · · + an = k.

Lemma 3.1. For any sequence of O-sets X1, . . . , Xn, we have an isomorphism of
OΣ-sets

JΣ(X1Σ, . . . , XnΣ) = JO(X1, . . . , Xn)Σ.

Proof. Since XiΣ(k) = Xi(k) × Σk this follows immediately from (6) and (4).

Because every map h ∈ O(k, k1 + · · · + kn) has a unique presentation in the form
h = f〈g1, . . . , gn〉, where f ∈ O(k, n) and gi ∈ O(|f−1(i)|, ki), we obtain isomorphisms

Θ: JO(Ok1 , . . . ,Okn)
'−→ Ok1+···+kn .

It follows from Lemma 3.1 that they yield isomorphisms

Θ: JΣ(OΣk1 , . . . ,OΣkn)
'−→ OΣk1+···+kn .

In both cases the map inducing the isomorphism acts on the summand of the join
indexed by a map φ ∈ Set(k, n) as

n∏
i=1

P(|φ−1(i)|, ki) 3 (g1, . . . , gn)
Θ−→ φ〈g1, . . . , gn〉 ∈ P(k, k1 + · · · + kn), (9)

where P is O or OΣ. We will frequently use the formal similarity between (5) and
(7) to present a single argument that simultaneously applies to analogous statements
about JO and JΣ.

3.2. Day convolution, monoidal structure and symmetry.
The join operations in O-sets and OΣ-sets are instances of a standard construction

known as Day convolution [6, 2, 7], a monoidal product in a presheaf category. More
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precisely, if (C,⊗, I) is a small monoidal category then the category of functors SetC

becomes a closed monoidal category with the convolution product given by the coend

(X1 ⊗ · · · ⊗Xn)(c) =

∫ a1,...,an

X1(a1) × · · · ×Xn(an) × C(a1 ⊗ · · · ⊗ an, c)

for X1, . . . , Xn ∈ SetC . Moreover, if C is symmetric, then so is SetC . The categories C =
Oop and C = OΣop are monoidal categories under the ordered union m⊗ n = m t n,
and one checks directly that the convolution products in SetO

op

and SetOΣop

amount
to the joins JO and JΣ of (4) and (6). Their units are O0 and OΣ0, respectively.

It follows from the general properties of Day convolution that the join operation
is associative. We state this fact explicitly just to introduce the notation that will be
used later.

Lemma 3.2. Let X1,∗, . . . , Xn,∗ be sequences of O-sets or OΣ-sets, where the i-th
sequence has length ki for i = 1, . . . , n. Let X∗,∗ denote the sequence of length

∑
ki

obtained by joining the given sequences in the lexicographic order of indices. Then
there is an isomorphism

Θ: J(J(X1,∗), . . . , J(Xn,∗)) → J(X∗,∗),

where J = JO or J = JΣ.

From now we will often simplify notation in this way by writing X∗ instead of
(X1, . . . , Xn).

The join of O-sets, however, is not symmetric, which is a consequence of the fact
that O is not symmetric. Indeed, the O-sets JO(X,Y ) and JO(Y,X) have isomorphic
sets of simplices but there is no isomorphism between these sets that commutes with
the structure maps. Intuitively, they have the same simplices but the vertices of these
simplices are ordered differently. Since the category OΣop is symmetric monoidal,
this deficiency is corrected by the join JΣ of OΣ-sets. For any permutation σ ∈ Σn,
one can explicitly describe the natural isomorphism

Tσ : JΣ(X1, . . . , Xn) → JΣ(Xσ−1(1), . . . , Xσ−1(n)) (10)

of OΣ-sets. Consider the presentation (7) of the join. In degree k the map Tσ sends
the summand of JΣ(X∗) indexed by φ ∈ Set(k, n) to the summand of JΣ(Xσ−1(∗))

indexed by σφ ∈ Set(k, n), shuffling the factors appropriately.
We can transcribe this description of the isomorphism Tσ to the presentation

(6). Given σ ∈ Σn and a1 + · · · + an = k, let σa1,...,an ∈ Σk be the block permutation
determined by σ that permutes the blocks of sizes a1, . . . , an in the way σ permutes
n letters. Formally, σa1,...,an = σ∗f , where f ∈ O(k, n) is the order-preserving map
corresponding to the partition a1 + · · · + an = k. Then

Tσ([(x1, . . . , xn), π]) = [(xσ−1(1), . . . , xσ−1(n)), σa1,...,anπ].

In particular, the basic symmetry operator of the monoidal structure

TX,Y : JΣ(X,Y ) → JΣ(Y,X)

acts by sending the element [(x, y), π] ∈ X(a) × Y (b) ×Σa×Σb
Σa+b to

[(y, x), τa,bπ] ∈ Y (b) ×X(a) ×Σb×Σa Σb+a,

where τa,b switches the two blocks of sizes a and b.
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3.3. Canonical maps and the join operad of OΣ-sets.
We can now define the OΣ-analogue of the canonical maps of the introduction.

There are obvious maps

Ψk1,...,kn : OΣn ×OΣk1 × · · · × OΣkn → JΣ(OΣk1 , . . . ,OΣkn) = OΣk1+···+kn (11)

given by the formula

Ψk1,...,kn(f ; g1, . . . , gn) = f〈g1 ◦ if−1(1), . . . , gn ◦ if−1(n)〉 ∈ OΣ(k, k1 + · · · + kn)
(12)

for (f ; g1, . . . , gn) ∈ OΣ(k, n) ×OΣ(k, k1) × · · · × OΣ(k, kn). Our main observation
in this section is that these maps define an operad.

Theorem 3.3. The sequence of OΣ-sets {OΣn}n>0 forms an operad (non-unital,

with permutations) in the symmetric monoidal category of OΣ-sets (SetOΣop

,×, ∗).
The structure maps of the operad are the Ψk1,...,kn of (11). The right action of Σn on
OΣn is given by

f ◦ π = π−1f

for f ∈ OΣn(k) and π ∈ Σn.

The proof can be found in Section 5. It is a tedious but otherwise straightforward
verification. The operad has no unit since there is no map ∗ → OΣ1 of OΣ-sets.

In order to discuss operad coactions we introduce the following notation. For a
sequence of OΣ-sets X1, . . . , Xn let A(X1, . . . , Xn), also denoted A(X∗), be the OΣ-
set

A(X∗) = OΣn ×X1 × · · · ×Xn.

Since a natural transformation between colimit-preserving functors on presheaf cate-
gories is determined by its values on the representable objects, the maps (11) defines
maps of OΣ-sets

α : A(X∗) → JΣ(X∗).

We can describe them explicitly. Write an element of A(X∗)(k) = OΣ(k, n) ×X1(k) ×
· · · ×Xn(k) as a tuple (f ;x1, . . . , xn). Then α(f ;x1, . . . , xn) lies in the summand of
JΣ(X∗) indexed by the underlying map f ∈ Set(k, n) and

α(f ;x1, . . . , xn) = (x1if−1(1), . . . , xnif−1(n)). (13)

If f = (g, σ) then we can also write

α((g, σ);x1, . . . , xn) = [(x1(σ−1 ◦ ig−1(1)), . . . , xn(σ−1 ◦ ig−1(n))), σ]. (14)

One can immediately see that α is Σn-equivariant in the sense that

Tπ(α(f ;x1, . . . , xn)) = α(πf ;xπ−1(1), . . . , xπ−1(n)). (15)

Until now we have constructed an operad of OΣ-sets that governs the relations
between the canonical maps of the symmetric join JΣ. In addition to the operad
structure, the transformation α, precomposed with the n-fold diagonal X → X ×
· · · ×X, yields for every OΣ-set X and every n > 0 maps of OΣ-sets

ΨX
n : OΣn ×X → JΣ(Xn), (16)

where JΣ(Xn) = JΣ(X, . . . ,X).
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3.4. The induced operads of pairs.

We now explain how the operad {OΣn}n>0 gives rise to an operad in the category
of pairs of OΣ-sets and, via the forgetful functor I, an operad in the category of pairs
of O-sets.

First, given a sequence X1, . . . , Xn of O-sets or OΣ-sets we define the relative join
as the pair

(J(X1, . . . , Xn), ∂J(X1, . . . , Xn))

for J = JO or J = JΣ, where ∂J(X1, . . . , Xn) is the sub-object consisting of the
summands in (5) or (7) indexed by non-surjective maps φ. In other words, those are
the simplices of the join that do not contain a proper face from at least one of the
factors.

The maps Ψk1,...,kn of (11) clearly induce maps of relative OΣ-sets

Ψk1,...,kn : (OΣn, ∂OΣn) × (OΣk1 , ∂OΣk1) × · · · × (OΣkn , ∂OΣkn) (17)

→ (OΣk1+···+kn , ∂OΣk1+···+kn)

and it is an immediate corollary of Theorem 3.3 that {(OΣn, ∂OΣn)}n>0 is an operad
in the category of pairs. Moreover, in the relative context the map α induces a map

α : (OΣn, ∂OΣn) × (X1, X1(0)) × · · · × (Xn, Xn(0)) → (JΣ(X∗), ∂JΣ(X∗)), (18)

which specializes to a relative version of (16)

ΨX
n : (OΣn, ∂OΣn) × (X,X(0)) → (JΣ(Xn), ∂JΣ(Xn)). (19)

4. The chain operad

In this section we explain how to construct an E∞-operad j in the category of
chain complexes from the symmetric join operad. We go on to explain how the maps
ΨX
n of (19) give a coaction of the operad j on the chain complex C∗(Y ) of a simplicial

set Y .

4.1. Conventions regarding chain complexes.

We fix once for all some commutative ground ring k. Let (Ch,⊗, k) denote the
symmetric monoidal category of chain complexes of k-modules, with differential of
degree −1. The symmetry operator is

T (x⊗ y) = (−1)deg(x) deg(y)y ⊗ x.

For a chain complex (C, d), let σnC denote the n-fold chain suspension; i.e., the
chain complex with (σnC)m = Cm−n and differential d(σnx) = (−1)nσndx. For any
chain complexes C and D we have an isomorphism

σnC ⊗ σmD = σn+m(C ⊗D)

given by σnx⊗ σmy → (−1)m deg(x)σn+m(x⊗ y).
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If Y is a simplicial set then C∗(Y ) denotes its usual chain complex. The functor

C∗(−) : (Set∆op

,×, ∗) → (Ch,⊗, k)

is lax-monoidal with the natural transformation

C∗(Y1) ⊗ C∗(Y2)
EZ−−→ C∗(Y1 × Y2)

given by the Eilenberg-Zilber map [16, Def.29.7].

4.2. Chain complexes of O-sets.
If X is an O-set, we define the augmented chain complex CO

∗ (X) by

CO
n (X) = k[X(n)]

with differential dx =
∑n
i=1(−1)idix for x ∈ X(n). If (X,X ′) is an O-set pair then

we can form the relative chain complex CO
∗ (X,X ′) in the usual way.

Recall the adjoint functors U : SetO
op

� Set∆op

: (−)+ between O-sets and ∆-sets.
The sign conventions associated to suspensions imply that

CO
∗ (X,X(0)) = σC∗(UX) for any O-set X, (20)

CO
∗ (Y+, Y+(0)) = σC∗(Y ) for any ∆-set Y.

Remark. The last isomorphism holds for any functorial augmentation Y+ of sim-
plicial sets. In fact we will see that the choice of augmentation will not affect the
final outcome of the constructions of this section. This is not surprising, since we are
trying to produce chain level maps for ∆-sets, while O-sets and OΣ-sets serve only
as an intermediate tool.

We also have

CO
∗ (JO(X1, . . . , Xn)) =

n⊗
i=1

CO
∗ (Xi) (21)

CO
∗ (JO(X1, . . . , Xn), ∂JO(X1, . . . , Xn)) =

n⊗
i=1

CO
∗ (Xi, Xi(0))

for any sequence X1, . . . , Xn of O-sets. In other words, we have a monoidal functor
CO

∗ (−) : (SetO
op

, JO,O0) → (Ch,⊗, k). On the other hand, using the isomorphisms
(20), we see that the Eilenberg-Zilber map induces in the augmented context a trans-
formation

σ−1CO
∗ (X1, X1(0)) ⊗ σ−1CO

∗ (X2, X2(0))
EZ−−→ σ−1CO

∗ (X1 ×X2, X1(0) ×X2(0)),
(22)

which makes the functor σ−1CO
∗ (−,−(0)) : (SetO

op

,×, ∗) → (Ch,⊗, k) lax-monoidal.

4.3. Chain complexes of OΣ-sets.
If Z is an OΣ-set, we will continue to write CO

∗ (Z) for the chain complex of the
underlying O-set IZ. Recall from 2.4 that for any O-set X the standard inclusion
ηX : X → I(XΣ) is a weak equivalence. There is no natural inverse map XΣ → X,
but a suitable inverse exists at the level of chain complexes (see also the miraculous
map of [3, Def. 4.2]).
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Proposition 4.1. For every O-set X, the assignment

(x, π) → sgn(π)x

induces a natural map of chain complexes

sX : CO
∗ (XΣ) → CO

∗ (X), (23)

which gives a quasi-isomorphism CO
∗ (XΣ, XΣ(0))

∼−→ CO
∗ (X,X(0)).

Proof. Let us first verify that s = sX is indeed a map of chain complexes. We have

ds(x, π) =sgn(π)dx = sgn(π)
n∑
i=1

(−1)idix.

Using (3) and the easy formula

sgn(diπ) = (−1)i+π(i)sgn(π) (24)

we verify that

sd(x, π) = s

n∑
i=1

(−1)i(dπ(i)x, diπ)

=

n∑
i=1

(−1)isgn(diπ)dπ(i)x

= sgn(π)
n∑
i=1

(−1)π(i)dπ(i)x = sgn(π)
n∑
i=1

(−1)idix = ds(x, π),

so the claim is proved.

The map sX is clearly natural. To prove that the map of relative complexes is a
quasi-isomorphism note that the identity of CO

∗ (X,X(0)) factors as

CO
∗ (X,X(0))

CO
∗ (ηX)−−−−−→ CO

∗ (XΣ, XΣ(0))
sX−−→ CO

∗ (X,X(0)),

and CO
∗ (ηX) is a quasi-isomorphism by the results of Section 2.4.

Consider now the chain morphism sX in the special case whenX=JO(X1, . . . , Xn).
Then by Lemma 3.1 and (21), sX can be identified with the map

CO
∗ (JΣ(X∗Σ)) = CO

∗ (JO(X∗)Σ)
sX−−→ CO

∗ (JO(X∗)) =
n⊗
i=1

CO
∗ (Xi).

Proposition 4.2. For any O-sets X1, . . . , Xn the maps

sJO(X∗) : CO
∗ (JΣ(X1Σ, . . . , XnΣ)) →

n⊗
i=1

CO
∗ (Xi)

are Σn-equivariant.
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Proof. Due to obvious associativity it suffices to check the claim for the join of two
objects; that is, to verify the commutativity of the diagram

CO
∗ (JΣ(XΣ, Y Σ))

sJO(X,Y )//

CO
∗ (TXΣ,Y Σ)

��

CO
∗ (X) ⊗ CO

∗ (Y )

TCO
∗ (X),CO

∗ (Y )

��
CO

∗ (JΣ(Y Σ, XΣ))
sJO(Y,X)// CO

∗ (Y ) ⊗ CO
∗ (X).

If an element of JΣ(XΣ, Y Σ)(k)=JO(X,Y )Σ(k) is represented by the triple (xp, yq, π)
with p+ q = k then

Ts(x, y, π) = sgn(π)T (x⊗ y) = (−1)pqsgn(π)y ⊗ x

while

sT (x, y, π) = s(y, x, τp,qπ) = sgn(τp,q)sgn(π)y ⊗ x

and the two values are equal because sgn(τp,q) = (−1)pq.

4.4. Construction of the chain operad.
The structure maps of the operad {(OΣn, ∂OΣn)}n>0 of pairs of OΣ-sets (17)

induce, via the lax-monoidal functor σ−1CO
∗ (−) of (22), maps of chain complexes

ak1,...,kn : σ−1CO
∗ (OΣn, ∂OΣn) ⊗

n⊗
i=1

σ−1CO
∗ (OΣki , ∂OΣki) (25)

→ σ−1CO
∗ (OΣk1+···+kn , ∂OΣk1+···+kn),

which are therefore the structure maps of a chain operad

a(n) = σ−1CO
∗ (OΣn, ∂OΣn), n > 0.

In particular, a(0) = σ−1k. It is also easy to check that if id ∈ OΣ(1, 1) denotes the
unique morphism then σ−1id ∈ a(1)0 is the unit of this operad.

Recall that for any OΣ-set we have the maps of (19). Now let X be an O-set.
Consider the following composition aXn .

aXn : a(n) ⊗ CO
∗ (X,X(0)) = σ−1CO

∗ (OΣn, ∂OΣn) ⊗ CO
∗ (X,X(0))

1⊗ηX∗−−−−−→ σ−1CO
∗ (OΣn, ∂OΣn) ⊗ CO

∗ (XΣ, XΣ(0))
EZ−−−−−→ CO

∗ ((OΣn, ∂OΣn) × (XΣ, XΣ(0)))

ΨXΣ
n ∗−−−−−→ CO

∗ (JΣ(XΣn), ∂JΣ(XΣn))

= CO
∗ (JO(Xn)Σ, ∂JO(Xn)Σ)

sJO(Xn)−−−−−→ CO
∗ (JO(Xn), ∂JO(Xn))

= CO
∗ (X,X(0))⊗n

In summary, we first enlarge X to the OΣ-set XΣ, apply the simplicial “coaction”
maps of (19), and pass back to the non-symmetric context using Proposition 4.1.
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Proposition 4.3. For any O-set X the maps

aXn : a(n) ⊗ CO
∗ (X,X(0)) → CO

∗ (X,X(0))⊗n

equip CO
∗ (X,X(0)) with a natural structure of a coalgebra over the operad {a(n)}n>0.

For the proof see the last section.

Now suppose that X = Y+ for a simplicial set Y . Then CO
∗ (Y+, Y+(0)) = σC∗(Y )

and we conclude that σC∗(Y ) is a coalgebra over a. Now we use the device known
as operadic desuspension of a; i.e., the operad Λa characterized by the property that
giving σC the structure of a coalgebra over a is the same as giving C the structure
of a coalgebra over Λa. Explicitly

(Λa)(n) = σ1−na(n) ⊗ sgnn,

where sgnn is the sign representation of Σn (see [12]).

Definition 4.4. The symmetric join operad {j(n)}n>0 is the operad j = Λa in the
category of chain complexes. Explicitly

j(n) = σ−nCO
∗ (OΣn, ∂OΣn) ⊗ sgnn.

Theorem 4.5. The symmetric join operad {j(n)}n>0 is a unital E∞-operad of chain
complexes. For any simplicial set Y the chain complex C∗(Y ) is naturally a j-coalgebra
(hence C∗(Y ) is a j-algebra).

Proof. Each j(n)d is clearly a free k[Σn]-module. Since CO
d (OΣn, ∂OΣn) = 0 for

d < n, each chain complex j(n) is concentrated in non-negative degrees. Because
(OΣn, ∂OΣn) = (On, ∂On)Σ, Proposition 4.1 provides for n > 1 a quasi-isomorphism

CO
∗ (OΣn, ∂OΣn) → CO

∗ (On, ∂On) = σC∗(∆n−1, ∂∆n−1),

where the last complex has one-dimensional homology group concentrated in degree n.
Moreover j(0) = k. The other statements follow from the properties of the previously
constructed operad a.

Let us make a few remarks.

• Since a surjective morphism in OΣ(n+ 1, n) must send two elements of n+ 1 to
the same value and be injective otherwise, one can observe that j(n)0 = k[Σn]
splits as a direct sum

j(n)0 = k[idn − sgn(π)π]π∈Σn ⊕ k[idn]

where additionally the first summand is precisely the image of the differential
d : j(n)1 → j(n)0. It follows that the sign map

sgn: j(n)0 → k

is an augmentation of j(n) and it defines a quasi-isomorphism j → Com to the
commutative operad.
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• The degree zero maps

j(n)0 ⊗ j(k1)0 ⊗ · · · ⊗ j(kn)0 → j(k1 + · · · + kn)0

agree, up to sign, with the maps

k[Σn] ⊗ k[Σk1 ] ⊗ · · · ⊗ k[Σkn ] → k[Σk1+···+kn ]

induced by the canonical permutation operad {Σn}n>0 in the category of sets
[5, Sec. 0.10].

• The general framework of Berger [4], adapted to chain complexes in [17, Sec.
5], enables us to construct a filtration of the symmetric join operad by sub-En-
operads.
For f ∈ OΣ(k + d, k) let sf ∈ OΣ(k + d+ 1, k) be the morphism defined by
requiring that (sf)(1) = 1, (sf) ◦ δ1 = f , and that 1 is the smallest element in
the total ordering of (sf)−1(1). A direct verification shows that s determines
a chain homotopy s : j(k)d → j(k)d+1, which is a chain contraction of j(k) onto
a chain subcomplex isomorphic to j(k − 1). Now define a cell structure on j
by lifting the basis of the cell structure on the sequence operad (defined using
“complexity” in [17, Def. 5.5]) via the forgetful functor OΣ → Set. Using the
chain homotopy s, one shows that the cells are contractible as in [17, Prop. 5.6].
The remaining arguments in [17, Sect. 5], which show how to assemble the cells
into a filtration by En-operads, go through without change, with the proviso
that a “map” should be understood as “the underlying map of a morphism in
OΣ.”

5. Proofs.

This section contains all the postponed proofs. They are expressed using the inter-
pretation of morphisms in OΣ as set maps f with ordering on each fibre and rely on
the notation and properties (P1)–(P4) of Section 2.2. We fix one more convention.
Given a set k1 + · · · + kn the pair (i, j) denotes the j-th position in the i-th summand;
i.e., the element k1 + · · · + ki−1 + j.

5.1. Proof of Theorem 3.3.
It is easy to check that the maps (11) are equivariant with respect to the actions

of Σn and (Σk1 × · · · × Σkn). We proceed to verify the operadic associativity axiom.
Consider the family OΣki,j of OΣ-sets, where i = 1, . . . , n and j = 1, . . . , ki for some
ki. We need to show the commutativity of the outermost rectangle in the diagram

A(A(OΣk1,∗), . . . , A(OΣkn,∗))

A(αn)

��

Ψk1,...,kn // A(OΣk∗,∗)

α

��
A(JΣ(OΣk1,∗), . . . , JΣ(OΣkn,∗))

α //

A(Θn)

��

JΣ(JΣ(OΣk1,∗), . . . , JΣ(OΣkn,∗))

JΣ(Θn)

��

Θ // JΣ(OΣk∗,∗)

Θ

��
A(OΣ∑

k1,∗ , . . . ,OΣ∑
kn,∗)

α // JΣ(OΣ∑
k1,∗ , . . . ,OΣ∑

kn,∗)
Θ // OΣ∑

k∗,∗
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In order to streamline notation it will be convenient to show the commutativity of
the three rectangles separately.

First consider the top rectangle. Note that the degree k component of A(X∗) can
also be written as

A(X∗)(k) =
∐

f∈OΣ(k,n)

∏
i=1,...,n

Xi(k).

Suppose we start in the summand of the upper-left corner indexed by the collection
(f ; g1, . . . , gn). Both ways of going around the diagram send this summand to the
summand indexed by

h = f〈g1 ◦ if−1(1), . . . , gn ◦ if−1(n)〉.

The map Θ ◦ α ◦A(αn) acts on each individual factor OΣki,j of that summand by
the OΣ-morphism

ξ1 = ig−1
i (j) ◦ (if−1(i))

g−1
i (j) ◦ id.

On the other hand, the map α ◦ Ψk1,...,kn acts on OΣki,j via the morphism

ξ2 = id ◦ ih−1(i,j).

We have the equality

ξ1 = ig−1
i (j) ◦ (if−1(i))

g−1
i (j) ◦ id = if−1(i)∩g−1

i (j) = ih−1(i,j) = ξ2,

where the first transition follows from (P4) and the second from the equality of sets
h−1(i, j) = f−1(i) ∩ g−1

i (j). This proves that the top rectangle commutes.
The bottom-left corner commutes because α is a natural transformation.
Consider now the bottom-right square (note that all maps in that square are

isomorphisms). The degree k component of JΣ(JΣ(OΣk1,∗), . . . , JΣ(OΣkn,∗)) is∐
f∈Set(k,n)

∏
i=1,...,n

∐
gi∈Set(|f−1(i)|,ki)

∏
j=1,...,ki

OΣ(|g−1
i (j)|, ki,j).

Consider an element of this set given by a collection

f ∈ Set(k, n),
{
gi ∈ Set(|f−1(i)|, ki)

}
i=1,...,n

,{
hi,j ∈ OΣ(|g−1

i (j)|, ki,j)
}

(i,j)∈k1+···+kn
.

The two ways of going to OΣ∑
k∗,∗(k) send this family, respectively, to the morphisms(

f〈g1, . . . , gn〉
)
〈h1,1, . . . , h1,k1 , . . . , hn,1, . . . , hn,kn〉

and

f〈 g1〈h1,1, . . . , h1,k1〉, . . . , gn〈hn,1, . . . , hn,kn〉 〉,

which are easily seen to be equal as elements of OΣ(k,
∑
k∗,∗).

5.2. Proof of Proposition 4.3.
Each of the maps used in the definition of aXn is Σn-equivariant, hence so is the

composition. For C to be a coalgebra over a, we need the commutativity of the
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diagram

a(n) ⊗ a(k1) ⊗ · · · ⊗ a(kn) ⊗ C //

��

a(k1) ⊗ · · · ⊗ a(kn) ⊗ C⊗n

��
a(
∑
k∗) ⊗ C

))TTTTTTTTTTTTTTT
a(k1) ⊗ C ⊗ · · · a(k1) ⊗ C

uukkkkkkkkkkkkkk

C⊗
∑
k∗

(26)

For this we first generalize the combinatorial “coaction” maps (16). For any se-
quence X1, . . . , Xn of OΣ-sets and integers k1, . . . , kn we have a map

OΣk1 × · · · × OΣkn × JΣ(X1, . . . , Xn) → JΣ(OΣk1 ×X1, . . . ,OΣkn ×Xn). (27)

On components of degree k

OΣ(k, k1) × · · · × OΣ(k, kn) ×
∐

f∈Set(k,n)

n∏
i=1

Xi(|f−1(i)|)

→
∐

f∈Set(k,n)

n∏
i=1

OΣ(|f−1(i)|, ki) ×Xi(|f−1(i)|),

it is given by the formula

(g1, . . . , gn;x1, . . . , xn) → ((g1 ◦ if−1(1), x1), . . . , (gn ◦ if−1(n), xn)).

By post-composing the map of (27) with the “coactions” ψXi

ki
of (16), we obtain maps

ψ̃ : OΣk1 × · · · × OΣkn × JΣ(X1, . . . , Xn) → JΣ(JΣ(Xk1
1 ), . . . , JΣ(Xkn

n )), (28)

which satisfy the following compatibility.

Lemma 5.1. For any OΣ-set X and integers n, k1, . . . , kn the following diagram of
OΣ-sets commutes.

OΣn ×OΣk1 × · · · × OΣkn ×X
ψX

n //

ψk1,...,kn

��

OΣk1 × · · · × OΣkn × JΣ(Xn)

ψ̃

��
OΣ∑

k∗ ×X

ψX∑
k∗ ((RRRRRRRRRRRRR

JΣ(JΣ(Xk1), . . . , JΣ(Xkn))

Θvvmmmmmmmmmmmmm

JΣ(X
∑
k∗)

Proof. The proof resembles that of Section 5.1 and uses (12), (13), (8), the map Θ
from 3.2, and (28). Consider a tuple (f ; g1, . . . , gn;x) in OΣn ×OΣk1 × · · · × OΣkn ×
X. Each of the two ways around the diagram sends it to the summand of the join
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indexed by the map

h = f〈g1 ◦ if−1(1), . . . , gn ◦ if−1(n)〉.

The result in JΣ(X
∑
k∗) is a tuple indexed by pairs (i, j), 1 6 i 6 n, 1 6 j 6 ki. The

left path in the diagram produces a tuple whose (i, j)-th entry is

x ◦ ih−1(i,j),

while for the other path it is

x ◦ if−1(i) ◦ i(gi◦if−1(i))
−1(j) = x ◦ if−1(i) ◦ i(if−1(i))

−1(g−1
i (j))

= x ◦ ig−1
i (j) ◦ (if−1(i))

g−1
i (j),

where the last equality follows from (P1). We conclude that the two maps are equal
as in Section 5.1.

To complete the proof of Proposition 4.3, note that Lemma 5.1 gives, after applica-
tion of the chains functor CO

∗ (·), the following commutative diagram for every O-set
X. In the diagram s is the map of Proposition 4.2.

CO
∗ (OΣn) ⊗ CO

∗ (OΣk1) ⊗ · · · ⊗ CO
∗ (OΣkn) ⊗ CO

∗ (X)

CO
∗ (ηX)

��
CO

∗ (OΣn) ⊗ CO
∗ (OΣk1) ⊗ · · · ⊗ CO

∗ (OΣkn) ⊗ CO
∗ (XΣ)

EZ

��
CO

∗ (OΣn ×OΣk1 × · · · × OΣkn ×XΣ) //

��

CO
∗ (OΣk1 × · · · × OΣkn × JΣ(XΣn))

��
CO

∗ (OΣ∑
k∗ ×XΣ)

((QQQQQQQQQQQQ
CO

∗ (JΣ(JΣ(XΣk1), . . . , JΣ(XΣkn)))

vvmmmmmmmmmmmm

CO
∗ (JΣ(XΣ

∑
k∗))

s

��
CO

∗ (X)⊗Σk∗

It follows that the same diagram commutes for the relative objects (OΣ, ∂OΣ),
(X,X(0)), and (XΣ, XΣ(0)), and the two ways of traversing that diagram correspond
to the two ways around (26) for C = CO

∗ (X,X(0)).
That ends the proof.
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