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ALEXANDER DUALITY FOR PARAMETRIZED HOMOLOGY

SARA KALIŠNIK

(communicated by J. F. Jardine)

Abstract
Parametrized homology is a variant of zigzag persistent

homology that measures how the homology of the level sets
of the space changes as we vary the parameter. This paper
extends Alexander Duality to this setting. Let X ⊂ Rn × R
with n > 2 be a compact set satisfying certain conditions, let
Y = (Rn × R) \X, and let p be the projection onto the second
factor. Both X and Y are parametrized spaces with respect
to the projection. We show that if (X, p|X) has a well-defined
parametrized homology, then the pair (Y, p|Y ) has a well-defined
reduced parametrized homology. We also establish a relation-
ship between the parametrized homology of (X, p|X) and the
reduced parametrized homology of (Y, p|Y ).

1. Introduction

It is well-accepted that topological techniques can be useful for understanding high
dimensional data. Computational topologists view data as finite metric spaces, build
different complexes on the points (Čech, Vietoris-Rips), and analyze the topology of
those objects to infer that of the data. This process is motivated by the nerve theorem
in algebraic topology, which claims that given a covering of the space with balls, the
Čech complex associated with this covering is homotopy equivalent to the space.

Building any of these different complexes requires a choice of parameter, such as the
radius of the balls in the case of the Čech complex. The idea of persistent homology
is to let the parameter value vary while tracking the births and deaths of topological
features. The output is a persistence diagram that measures the significance of a
topological feature.

To ensure that the homology changes only at finitely many values, scholars have
imposed various restrictions (such as assuming a function to be Morse or a space to be
compact). Chazal, et al. [6] avoid these restrictions and define persistence diagrams
in a wider variety of situations. In an unpublished manuscript, Carlsson, et al. use
this approach to define the levelset zigzag persistence [4] more broadly. They label
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this outcome “parametrized homology” [5]. In order to make the present paper self-
contained, we will describe the necessary ideas in detail.

We are not only interested in determining relationships between homology groups,
but also between persistence diagrams. For example, Cohen-Steiner, et al. [7] deal
with the question of extending the Poincaré Duality to persistence diagrams. Another
classical theorem in algebraic topology is Alexander Duality, which asserts a relation-
ship between the homology groups of a locally contractible compact space and its
complement.

The goal of this paper is to extend Alexander Duality to the setting of parametrized
homology. In order to do so, we also prove Alexander Duality for Levelset Zigzag Per-
sistence Theorem. Let X ⊂ Rn × R, n > 2, be a compact set, let Y = (Rn × R) \X,
and let p be the projection onto the second factor. We assume that level sets
p−1(a) ∩X for a ∈ R, and slices p−1([a, b]) ∩X for a < b are locally contractible. We
show that if (X, p|X) has a well-defined parametrized homology, then the pair (Y, p|Y )
has a well-defined reduced parametrized homology. More specifically, we show that
the reduced parametrized homology of (Y, p|Y ) in dimension n− j − 1 is equal to
the parametrized homology of (X, p|X) in dimension j for j = 0, . . . , n− 1. While it
may not be immediately obvious, the complement is well-behaved as a consequence of
Alexander Duality. We also establish a duality in terms of how homological features
perish. If a j-dimensional homology cycle in X is killed at the parameter value p, then
there is a corresponding (n− j − 1)-dimensional homology cycle in Y that ceases to
exist beyond p and vice versa (see Section 2.2). Our theorem includes cases (X, p|X)
where:

• X is a compact submanifold of Rn × R (with or without boundary) and p|X is
Morse; or, more generally, when (X, p|X) is of Morse-type [4] and X is compact
with all the slices and level sets locally contractible;

• X is a finite simplicial complex and p|X is a piecewise-linear map;

• X is a compact semialgebraic subset of Rn × R.

Edelsbrunner and Kerber have expanded Alexander Duality to extended persis-
tence diagrams [10]. However, there is a difference in our approaches to Alexander
Duality. Edelsbrunner and Kerber consider Alexander Duality to be a statement
about two complementary subsets of the sphere that intersect in a n-manifold. By
contrast, we consider it to be a statement about a compact subset of a Euclidean
space (or a sphere) and its complement. An advantage of our approach is that it
allows us to generalize Alexander Duality directly to an appropriate parametrized
version, starting with a compact parametrized space that satisfies certain conditions.

One possible application of this research is in sensor networks [8]. The classic
Alexander Duality can be used to find gaps in static networks. However, since we
are interested in time-varying networks, we develop a parametrized version of this
theorem. While we can observe the space covered by the sensors within a time-varying
network, this method gives us knowledge of the uncovered regions [1].

2. Background

Throughout this paper we work with homology and cohomology with coefficients
in a field k. So Hj(X) always means Hj(X,k) and Hj(X) means Hj(X,k).
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2.1. Persistence diagrams
Persistence is commonly described either as a multiset of intervals (a barcode)

or as a multiset of points in the half plane (a persistence diagram). However, these
descriptions do not distinguish between different types of intervals (for example, [p, q],
[p, q), (p, q] and (p, q)). In order to capture the homology of spaces parametrized over
R, Chazal, et al. [6] introduced decorated real numbers. We can represent every
decorated point as a point in the half plane with a tick specifying the decoration: We
adopt the following notation:

[p, q) is written (p−, q−) and drawn

[p, q] is written (p−, q+) and drawn

(p, q) is written (p+, q−) and drawn

(p, q] is written (p+, q+) and drawn

We require p < q, except for the one point interval [p, p]. The notation for an arbitrary
interval is (p∗, q∗).

Let R = [a, b]× [c, d], where a < b 6 c < d, be a rectangle. Let (p∗, q∗) be a deco-
rated point. Then (p∗, q∗) ∈ R if [b, c] ⊂ (p∗, q∗) ⊂ (a, d). This happens exactly when
the point (p, q) and its decoration tick are contained in the closed rectangle R:

a b

c

d

A locally finite multiset of decorated points in the half plane is called a decorated
persistence diagram.

Chazal, et al. [6] introduce a new approach for expressing persistence that is espe-
cially well-suited for a continuous parameter. The intuition is that if we know how
many points of the diagram are contained in each rectangle in the half plane, then
we know the diagram itself. Counting the points in the rectangles leads to the intro-
duction of r-measures.

We work in the open half plane H = {(p, q) ∈ R2 | p < q} throughout this paper,
so we state the relevant results for this case only.

Definition 2.1. The set of rectangles in H is

Rect(H ) = {[a, b]× [c, d] ⊂H | a < b < c < d}.
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A rectangle measure or r-measure on H is a function

µ : Rect(H )→ {0, 1, 2, 3, . . .} ∪ {∞}

that is additive under vertical and horizontal splitting, meaning that we have
µ(R) = µ(R1) + µ(R2) whenever

R = R1 R2 or R =
R1

R2
.

Finite r-measures correspond exactly to decorated persistence diagrams [6].

Theorem 2.2 (The Equivalence Theorem). There is a bijective correspondence
between:

• Finite r-measures µ on H . Here ‘finite’ means that µ(R) <∞ for every
R ∈ Rect(H ).

• Locally finite multisets A of decorated points in H . Here ‘locally finite’ means
that card(A|R) <∞ for every R ∈ Rect(H ).

The measure µ corresponding to a multiset A satisfies the formula

µ(R) = card(A|R)

for every R ∈ Rect(H ).

From the proof of the equivalence theorem, we get the locally finite multiset A
determined by the measure µ by computing multiplicities. The multiplicity of (p∗, q∗)
with respect to µ is

mµ(p∗, q∗) = min{µ(R) | (p∗, q∗) ∈ R,R ∈ Rect(H )}.

Alternatively, we can pick a nested sequence R1 ⊃ R2 ⊃ R3 ⊃ · · · of closed rectangles
that contain (p∗, q∗) such that ∩nRn = (p, q) (see Figure 1). Then

mµ(p∗, q∗) = lim
n→∞

µ(Rn).

We use these formulas to determine the decorated diagram in Example 2.5.

min lim

Figure 1: Computing multiplicities.

2.2. Parametrized homology
In unpublished work [5], Carlsson, et al. will present levelset zigzag persistence [4]

in the measure context as parametrized homology. We will now describe the necessary
ideas in detail.
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A parametrized space is a pair X = (X, p), where X is a topological space, and
p : X → R is a continuous function. We are interested in how the homology changes
as the parameter varies. The function p defines levelsets Xa = p−1(a) and slices
Xb
a = p−1([a, b]).
We fix a discretization

−∞ < s1 < s2 < · · · < sm <∞.

Consider the following diagram of spaces and inclusion maps.

Xs2
s1 Xs3

s2 · · · X
sm−1
sm−2

Xsm
sm−1

Xs1 Xs2 Xs3 Xsm−2 Xsm−1 Xsm

Apply the j-dimensional homology functor Hj to obtain:

Hj(X
s2
s1 ) Hj(X

s3
s2 ) · · · Hj(X

sm−1
sm−2 ) Hj(X

sm
sm−1

)

Hj(Xs1) Hj(Xs2) Hj(Xs3) Hj(Xsm−2) Hj(Xsm−1) Hj(Xsm)

Such a diagram of vector spaces and maps between them is called a zigzag module [3].
It can be viewed as a representation of a quiver of type A2m−1. We denote this quiver
representation by Hj(X{s1,s2,...,sm}). It is decomposable by Gabriel’s theorem [11].

Given a rectangle R = [a, b]× [c, d] with −∞ < a < b < c < d <∞, the aim is to
count the homological features of X that persist over the closed interval [b, c], but not
over the open interval (a, d). We do this by observing the quiver Hj(X{a,b,c,d}). There
are four types of indecomposable summands that meet b and c, but not a and d. By
counting each of these summands, we get four quantities presented in the notation
introduced by Chazal, et al. [6]:

jµ
\\
X (R) = 〈 | Hj(X{a,b,c,d})〉

jµ
∨
X(R) = 〈 | Hj(X{a,b,c,d})〉

jµ
∧
X(R) = 〈 | Hj(X{a,b,c,d})〉

jµ
//

X (R) = 〈 | Hj(X{a,b,c,d})〉.

Here 〈 | Hj(X{a,b,c,d})〉 denotes the number of times the summand

appears in the interval decomposition of Hj(X{a,b,c,d}). For the sake

of simplicity we write instead of 0→ k← k→ k← k→ 0← 0, where
the maps k→ k are identities and the other maps are 0.

Suppose these four quantities are finite r-measures. By the equivalence theorem
each determines a decorated persistence diagram. Let Dgm∗j (X) be the diagram deter-
mined by jµ

∗.
These four diagrams demonstrate how homological features perish (whether j-

dimensional cycles are killed in homology by (j + 1)-dimensional chains or whether
they cease to exist):
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• Dgm
\\
j (X) contains decorated points (p∗, q∗) corresponding to homology j-cycles

that cease to exist beyond p, and are killed at q;

• Dgm∨j (X) contains decorated points (p∗, q∗) corresponding to homology j-cycles
that cease to exist beyond both endpoints;

• Dgm∧j (X) contains decorated points (p∗, q∗) corresponding to homology j-cycles
that are killed at both endpoints;

• Dgm
//
j (X) contains decorated points (p∗, q∗) corresponding to homology j-cycles

that are killed p and cease to exist beyond q.

Figure 2 shows examples of each type of homological feature discussed above.

∨ \\

// ∧

q q

p q

p p

p p

Figure 2: The 1-dimensional cycle on the upper left ceases to exist beyond both
endpoints, whereas that on the upper right ceases to exist beyond p and and is
spanned by a disc at q.

Remark 2.3. When X is a compact manifold and p is Morse, the four decorations
correspondend exactly with how features perish at endpoints [5]:

∗µ
\\
X ∗µ

∧
X

∗µ
∨
X ∗µ

//

X

This is not always the case as we see in Example 3.12.

The parametrized homology of X is the collection of Dgm
\\
j (X), Dgm∨j (X),

Dgm∧j (X), and Dgm
//
j (X) over all j. Sometimes it is more convenient to use reduced

instead of standard homology groups. We denote the four measures with respect to

H̃j by j µ̃
\\
X , j µ̃

∨
X , j µ̃

∧
X , and j µ̃

//

X . The corresponding diagrams are D̃gm
\\
j (X), D̃gm

∨
j (X),
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D̃gm
∧
j (X), and D̃gm

//

j (X). The reduced parametrized homology is the collection
of these diagrams over all j.

We say that X has a well-defined parametrized homology or a reduced parametrized
homology when the four quantities defined above are finite r-measures. This is not
always the case. Situations where X = (X, p) has a well-defined parametrized homol-
ogy include pairs when [5]:

• X is a compact manifold with a boundary and p is Morse, or more generally
when (X, p) is of Morse-type;

• X is a finite simplicial complex and p is a piecewise-linear map;

• X is a compact semialgebraic subset of Rn and p is the projection onto the n-th
coordinate.

Remark 2.4. In the case when (X, p) is of Morse-type, leaving out the decorations
on the points in the parametrized homology yields the levelset zigzag persistence
diagram [4].

For the four quantities to be r-measures they must be finite and additive with
respect to horizontal and vertical splitting. The next two paragraphs summarize the
proofs in [5].

To show finiteness, let R = [a, b]× [c, d] be a rectangle in the half plane. Then for
all j

jµ
∗(R) 6 〈 ,Hj(X{a,b,c,d})〉

= dim(Im(Hj(Xb)→ Hj(X
c
b )) ∩ Im(Hj(Xc)→ Hj(X

c
b ))).

Bendich, et al. [2] show that Im(Hj(Xb)→ Hj(X
c
b )) ∩ Im(Hj(Xc)→ Hj(X

c
b )) is the

well group of (X−1([b, c]), p|X−1([b,c])). Since its dimension is finite in the above situ-
ations, jµ

∗ are finite.
The proof of additivity requires the Mayer-Vietoris principle for Xb

a = Xp
a ∪Xb

p

whenever a < p < b. This is automatically satisfied for a compact manifold and Morse
function, as well as for a finite simplicial complex and piecewise-linear map. However,
generally we have to restrict X to those whose level sets are embedded in a certain
way. For example, this holds in cases where Xb is a neighborhood deformation retract
of Xb

p or of Xq
b for all b ∈ R and some p < b < q. This restriction can be circumvented

using a homology theory that satisfies the strong excision property. As a result, the
four quantities are measures even in the case where X is a compact simplicial complex
and p is a continuous function.

Example 2.5. Consider the surface X in Figure 3. Since the projection p onto the
horizontal axis is Morse, X has a well-defined parametrized homology.

To determine the diagrams belonging to each the four measures, we compute the
multiplicities of the decorated points. When p or q is a regular point, the multiplicity
of (p∗, q∗) is 0 for the four measures defined above. The only situations we have left
to compute are when p and q are critical points. For example, we can now calculate
the multiplicities of (a−1 , a

−
2 ) with respect to the four measures. Pick ε > 0 such that

a1 − ε < a1 < a2 − ε < a2. We have

H0(Xa1−ε,a1,a2−ε,a2) ∼= ⊕ .

The summand on the right is not registered by any of the measures, whereas the one



234 SARA KALIŠNIK

a1 a2 a3 a4 a5

Figure 3: Morse function on a 2-manifold with boundary.

on the left is detected by 0µ
\\
X . Since these values are the same for all 0 < ε < a2 − a1,

we have

m
0µ
\\
X

(a−1 , a
−
2 ) = lim

ε→0
0µ
\\
X ([a1 − ε, a1]× [a2 − ε, a2]) = 1,

m
0µ∨X

(a−1 , a
−
2 ) = lim

ε→0
0µ
∨
X([a1 − ε, a1]× [a2 − ε, a2]) = 0,

m
0µ∧X

(a−1 , a
−
2 ) = lim

ε→0
0µ
∧
X([a1 − ε, a1]× [a2 − ε, a2]) = 0,

m
0µ

//

X
(a−1 , a

−
2 ) = lim

ε→0
0µ

//

X ([a1 − ε, a1]× [a2 − ε, a2]) = 0.

This means that (a−1 , a
−
2 ) is a point in the decorated persistence diagram belonging

to 0µ
\\
X with a multiplicity of 1. The corresponding 0-homology cycle ceases to exist

beyond a1, and is killed at a2.

a5

a4

a3

a2

a1

a1 a2 a3 a4 a5

0

0

0

1

1
1

\\
∨

\\
∨

∨
∧

Figure 4: The parametrized homology of X. The color of the point indicates the
dimension, while the symbol designates to which of the diagrams it belongs.
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We repeat this procedure to compute the other multiplicities. The parametrized
homology of X is represented in Figure 4.

3. Alexander Duality for Parametrized Homology

Alexander Duality is a statement about the relationship between the cohomology
groups of a locally contractible, compact subset of Rn and the homology groups of the
complement (for more on the classical statement, see Hatcher [12] and Spanier [13]).

Theorem 3.1 (Alexander Duality). If K is a locally contractible, compact subset of
Rn, then for all j = 0, . . . , n− 1,

H̃n−j−1(Rn −K) ∼= Hj(K).

The goal of this section is to extend this theorem to parametrized spaces.

Theorem 3.2. Let X ⊂ Rn × R with n > 2 be a compact set, let Y = (Rn × R) \X,
and let p be the projection onto the second factor. We assume that the level sets Xa for
a ∈ R, and slices Xb

a for a < b are locally contractible. If (X, p|X) has a well-defined
parametrized homology, then the pair (Y, p|Y ) has a well-defined reduced parametrized
homology. Additionally, for j = 0, . . . , n− 1:

D̃gm
\\
n−j−1(Y) = Dgm

//
j (X)

D̃gm
∨
n−j−1(Y) = Dgm∧j (X)

D̃gm
∧
n−j−1(Y) = Dgm∨j (X)

D̃gm
//

n−j−1(Y) = Dgm
\\
j (X)

(recall that Xa = p−1(a) ∩X and Xb
a = p−1([a, b]) ∩X).

Remark 3.3. From the proof we can deduce the following duality: if a j-dimensional
homology cycle in X is killed (ceases to exist) at endpoint p, then there is a cor-
responding (n− j − 1)-dimensional homology cycle in Y, which ceases to exist (is
killed) beyond that same endpoint.

Remark 3.4. The conditions of the theorem are satisfied for (X, p|X), where:

• X is a compact submanifold of Rn × R (with or without boundary) and p|X is
Morse; or, more generally, when (X, p|X) is of Morse-type and X is compact
with all the slices and level sets locally contractible;

• X is a finite simplicial complex and p|X is a piecewise-linear map;

• X is a compact semialgebraic subset of Rn × R.

Example 3.5 gives an instance of our result not covered by the Land and Water
theorem by Edelsbrunner and Kerber [10]:

Example 3.5. Let S ⊂ R3 be the Alexander horned sphere (see [12, Example 2B.2]).
Let X = S × [−1, 1] ⊂ R3 × R, let Y = R3 × R \X, and let p be the projection onto
the second factor. Since (X, p|X) is of Morse-type, it has a well-defined parametrized
homology. The conditions of Theorem 3.2 are satisfied, because S is locally con-
tractible and compact.
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The local contractibility hypothesis can be removed by using Čech cohomology.
The following remark holds, but we omit the proof here as it is very similar to the
proof for Theorem 3.2.

Remark 3.6. Let X ⊂ Rn × R with n > 2 be a compact set, let Y = (Rn × R) \X,
and let p be the projection onto the second factor. If (X, p|X) has a well-defined
parametrized Čech cohomology, then the pair (Y, p|Y ) has a well-defined reduced
parametrized homology. Additionally, for j = 0, . . . , n− 1:

D̃gm
\\
n−j−1(Y) = Ďgm

j //
(X)

D̃gm
∨
n−j−1(Y) = Ďgm

j ∧
(X)

D̃gm
∧
n−j−1(Y) = Ďgm

j ∨
(X)

D̃gm
//

n−j−1(Y) = Ďgm
j \\

(X).

The proof of Theorem 3.2 requires two lemmas.

Lemma 3.7. Let X, Y , and p be as in the theorem. Consider the following diagram
of vector spaces and maps:

H̃n−j−1(Y
b
a )

H̃n−j−1(Ya) H̃n−j−1(Yb)

Hj(Xa) Hj(Xb)

Hj(Xb
a).

ia ib

ia ib

Da Db

Maps ia, ib, ia, and ib are induced by the inclusions Xa ↪→ Xb
a, Xb ↪→ Xb

a, Ya ↪→ Y ba ,
and Yb ↪→ Y ba . Isomorphisms Da and Db, respectively, are Alexander Duality isomor-
phisms in Rn × {a} and Rn × {b}. Then Im (Dai

a ⊕Dbi
b) = Ker (ia − ib).

Remark 3.8. This lemma holds even if we do not assume field coefficients.

Remark 3.9. The same statement holds if we use Čech cohomology instead of singular
cohomology. In that case the local contractibility hypothesis can be removed.

Proof. We look at the long exact sequence for homology groups of the pair
(Y ba , Ya ∪ Yb):

→ Hn−j(Y
b
a , Ya ∪ Yb)→ Hn−j−1(Ya ∪ Yb)→ Hn−j−1(Y ba )→ Hn−j−1(Y ba , Ya ∪ Yb)→

(1)
We claim that there exists an isomorphism Hj(Xb

a)→ Hn−j(Y
b
a , Ya ∪ Yb) making the

following diagram commute up to a sign

Hj(Xb
a) Hj(Xa)⊕Hj(Xb)

Hn−j(Y
b
a , Ya ∪ Yb) Hn−j−1(Ya)⊕Hn−j−1(Yb) Hn−j−1(Y

b
a ).

ia ⊕ ib

ia − ib

∼ = ∼ =
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Granted that, the case j 6= n− 1 follows immediately by virtue of exactness of the
bottom line. We analyze the case when j = n− 1 separately.

Let H∗c denote cohomology with compact supports. According to [12, Chapter
3, Problem 35], the following diagram, where the horizontal lines are long exact
sequences of the corresponding pairs and the vertical arrows are Poincaré Duality
isomorphisms, commutes up to a sign.

· · · Hj+1
c (Y b

a ) Hj+1
c (Ya ∪ Yb) Hj+2

c (Y b
a , Ya ∪ Yb) · · ·

· · · Hn−j(Y
b
a , Ya ∪ Yb) Hn−j−1(Ya ∪ Yb) Hn−j−1(Y

b
a ) · · ·

∼ = ∼ = ∼ =

Let {Ui}i be a nested sequence of neighborhoods of Xb
a in Rn × [a, b], such that U1

retracts onto Xb
a and ∩iUi = Xb

a. Such sequences exist since Xb
a is compact and locally

contractible by Theorem A.7 of [12]. Further let {Bi} be an increasing sequence of
closed balls centered at the origin and containing Xb

a such that ∪iBi = Rn+1. We

may assume that U1 ⊂ IntB1 so that U i ∩BCi = ∅ for all i. Now U1 ∩ Rn × {a} is
open in Rn × {a} in the subspace topology and contains Xa. Since Xa is compact
and locally contractible, we can find a neighborhood Ua of Xa which retracts onto
Xa (again using Theorem A.7 of [12]). Pick a nested sequence of neighborhoods Uai
of Xa such that Uai ⊂ Ua ∩ Ui for each i and ∩iUai = Xa. In a similar manner we
obtain a system of neighborhoods for Xb.

Let AC denote the complement of A (where the ambient set is clear from the
context). By cofinality, we have

Hj+1
c (Y ba ) ∼= colim Hj+1(Y ba , Y

b
a \Bi ∩ UCi ),

Hj+1
c (Ya ∪ Yb) ∼= colim Hj+1(Ya, Ya \Bi ∩ (Uai )C)⊕Hj+1(Yb, Yb \Bi ∩ (U bi )C)

Moreover, the restriction Hj+1
c (Y ba )→ Hj+1

c (Ya ∪ Yb) is the the colimit of the corre-
sponding morphisms.

Using the notation (BCi )ba = BCi ∩ Rn × [a, b], (BCi )a = BCi ∩ Rn × {a}, and
(BCi )b = BCi ∩ Rn × {b}, we rewrite the expressions

Hj+1(Y ba , Y
b
a \Bi ∩ UCi ) = Hj+1(Y ba , (B

C
i )ba ∪ (Ui \Xb

a)),

Hj+1(Ya, Ya \Bi ∩ (Uai )C) = Hj+1(Ya, (B
C
i )a ∪ (Uai \Xa)),

Hj+1(Yb, Yb \Bi ∩ (U bi )C) = Hj+1(Yb, (B
C
i )b ∪ (U bi \Xb)).

We have

Hj+1(Y ba , (B
C
i )ba ∪ (Ui \Xb

a)) ∼= Hj+1(Rn × [a, b], (BCi )ba ∪ Ui)
∼= H̃

j
((BCi )ba ∪ Ui),

Hj+1(Ya, (B
C
i )a ∪ (Uai \Xa)) ∼= Hj+1(Rn × {a}, (BCi )a ∪ Uai )

∼= H̃
j
((BCi )a ∪ Uai ),

Hj+1(Yb, (B
C
i )b ∪ (Uai \Xb)) ∼= Hj+1(Rn × {b}, (BCi )b ∪ U bi )

∼= H̃
j
((BCi )b ∪ U bi ).

The left-hand isomorphisms follow from excision and the right-hand isomorphisms
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from the long exact sequence of a pair.

By naturality of the above isomorphisms and by commutativity of the Poincaré
Duality ladder, the following diagram commutes up to a sign.

colim H̃
j
((BC

i )ba ∪ Ui) colim(H̃
j
((BC

i )a ∪ Ua
i )⊕ H̃

j
((BC

i )b ∪ Ub
i ))

Hn−j(Y
b
a , Ya ∪ Yb) Hn−j−1(Ya ∪ Yb).

∼ = ∼ =

(2)

Arguing as Hatcher, in Theorem 3.44 [12], we infer

colim H̃
j
((BCi )ba ∪ Ui) ∼= colim(H̃

j
(Sn−1))⊕ colim(Hj(Ui))

∼= H̃
j
(Sn−1)⊕Hj(Xb

a).
(3)

Similarly

colim(H̃
j
((BCi )a ∪ Uai )) ∼= H̃

j
(Sn−1)⊕Hj(Xa), (4)

and

colim(H̃
j
((BCi )b ∪ U bi )) ∼= H̃

j
(Sn−1)⊕Hj(Xb). (5)

If j 6= n− 1, we have H̃
j
(Sn−1) = 0. We insert (3), (4) and (5) into (2) and get the

desired commutative square

Hj(Xb
a) Hj(Xa)⊕Hj(Xb)

Hn−j(Y
b
a , Ya ∪ Yb) Hn−j−1(Ya)⊕Hn−j−1(Yb).

∼ = ∼ =

This finishes the proof for j 6= n− 1.

Now let j = n− 1. In this case H̃
j
(Sn−1) ∼= k. Observe that

H0(Ya ∪ Yb) ∼= k⊕ H̃0(Ya)⊕ k⊕ H̃0(Yb) and H0(Y ba ) ∼= k⊕ H̃0(Y ba ).

Taking this into account, inserting (3) and (4) into (2), and extending the bottom
line by an extra term from (1), we get the following commutative diagram

k⊕Hn−1(Xb
a) k⊕Hn−1(Xa)⊕ k⊕Hn−1(Xb)

H1(Y
b
a , Ya ∪ Yb) k⊕ H̃0(Ya)⊕ k⊕ H̃0(Yb) k⊕ H̃0(Y

b
a ).

∼ = ∼ =

Once again, the vertical maps are isomorphisms. Since additional copies of k get
mapped to corresponding additional copies of k, exactness of the diamond diagram
from the statement of the lemma now follows for j = n− 1.

We also need the Diamond Principle [3] for the proof of theorem 3.2. Consider the
following diagram of vector spaces and linear maps between them.
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V1 · · · Vk−1

Wk

Uk

Vk+1 · · · Vn

p1 pk−2

fk−1 gk

gk−1 fk

pk+1 pn−1

We say that the diamond in the center is exact if Im(D1) = Ker(D2) in the follow-
ing sequence

Uk Vk−1 ⊕ Vk+1 Wk,
D1 D2

where D1(u) = gk−1(u)⊕ fk(u), and D2(v ⊕ v′) = fk−1(v)− gk(v′).
Let V+ and V− denote the upper and lower zigzag modules.

V+ = V1 · · · Vk−1 Wk Vk+1 · · · Vn,
p1 pk−2 fk−1 gk pk+1 pn−1

V− = V1 · · · Vk−1 Uk Vk+1 · · · Vn.
p1 pk−2 gk−1 fk pk+1 pn−1

We have the following relation between persistence diagrams of V+ and V−. This
correspondence arises from a Bernstein-Gelfand-Ponomarev reflection functor [9].

Lemma 3.10 (The Diamond Principle [3]). Given V+ and V− as above, suppose
that the middle diamond is exact. Then there is a partial bijection between the set
of intervals that appear in the interval modules decomposition of V+ and the set
of intervals that appear in the interval modules decomposition of V−. Intervals are
matched according to the following rules:

• Intervals of type [k, k] are unmatched,

• Type [b, k] is matched with type [b, k − 1] and vice versa, for b 6 k − 1,

• Type [k, d] is matched with type [k + 1, d] and vice versa, for d > k + 1,

• Type [b, d] is matched with type [b, d] in all other cases.

Now we can state and prove a version of the Alexander Duality theorem for levelset
zigzag persistence.

Theorem 3.11 (Alexander Duality for Levelset Zigzag Persistence). Let X ⊂
Rn × R with n > 2 be a compact set, let Y = (Rn × R) \X, and let p be the pro-
jection onto the second factor. We fix a discretization

−∞ < s1 < s2 < · · · < sm <∞,

where m > 2. Assume that the level sets Xsk where k = 1, . . . ,m and slices X
sk+1
sk

where k = 1, . . . ,m− 1 are locally contractible. There is then a partial bijection
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between the set of intervals that appear in the interval modules decomposition of
Hj(X{s1,s2,...,sm}) and those that appear in the interval modules decomposition of

H̃n−j−1(Y{s1,s2,...,sm}) for j = 0, 1, . . . , n− 1. For a fixed j the intervals are matched
according to the following rules:

• For k = 1, . . . ,m− 1 the intervals of type [2k, 2k] are unmatched.

• For i < k < m the intervals [2i, 2k] are matched with intervals [2i+ 1, 2k − 1]
and vice versa.

• For i < k < m the intervals [2i, 2k − 1] are matched with intervals [2i+ 1, 2k]
and vice versa.
For k < m the intervals [2k, 2m− 1] are matched with intervals [2k + 1, 2m− 1]
and vice versa.

• For 1 < i < k < m the intervals [2i− 1, 2k − 1] are matched with intervals
[2i− 2, 2k] and vice versa.
For k < m the intervals [1, 2k − 1] are matched with intervals [1, 2k] and vice
versa.
For 1 < k the intervals [2k − 1, 2m− 1] are matched with intervals
[2k − 2, 2m− 1] and vice versa.
Intervals [1, 2m− 1] are matched with intervals [1, 2m− 1] and vice versa.

• For 1 < i < k < m the intervals [2i− 1, 2k] are matched with intervals
[2i− 2, 2k − 1] and vice versa.
For k < m the intervals [1, 2k] are matched with intervals [1, 2k − 1] and vice
versa.

Proof. The barcodes for Hj(X{s1,s2,...,sm}) and Hj(X{s1,s2,...,sm}) are equal as multi-
sets of the intervals (see for example [1]). So it is enough to establish a correspon-
dence between the intervals that appear in the decomposition of Hj(X{s1,s2,...,sm})
and the intervals that appear in the decomposition of H̃n−j−1(Y{s1,s2,...,sm}) for
j = 0, 1, . . . , n− 1.

By Lemma 3.7 all the diamonds in the following diagram are exact:

Hj(Xs2
s1 ) Hj(Xs3

s2 ) · · · Hj(X
sm−1
sm−2 ) Hj(Xsm

sm−1
)

Hj(Xs1) Hj(Xs2) Hj(Xs3) Hj(Xsm−2) Hj(Xsm−1) Hj(Xsm)

H̃n−j−1(Y
s2
s1 ) H̃n−j−1(Y

s3
s2 ) · · · H̃n−j−1(Y

sm−1
sm−2 )H̃n−j−1(Y

sm
sm−1

)

H̃n−j−1(Ys1) H̃n−j−1(Ys2) H̃n−j−1(Ys3) H̃n−j−1(Ysm−2) Hj(Xsm−1) H̃n−j−1(Ysm)

∼ = ∼ = ∼ = ∼ = ∼ = ∼ =

Now suppose that the interval [2, 2m− 2] appears in the interval decomposition of
Hj(X{s1,s2,...,sm}). By applying the Diamond Principle for each diamond, the following
change occurs:
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The same argument works in other cases.

Proof of Theorem 3.2. (X, p|X) has a well-defined parametrized homology, so jµ
\\

X ,

jµ
∨

X, jµ
∧

X, and jµ
//

X are finite r-measures for j = 0, . . . , n− 1.
LetR = [a, b]× [c, d] with−∞ < a < b < c < d <∞. For this particular discretiza-

tion it follows by Theorem 3.11 that the four indecomposable summands change as
follows:

Hj(X{a,b,c,d}) H̃n−j−1(Y{a,b,c,d})

↔
↔
↔
↔

From here we conclude that

〈 | H̃n−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉,
〈 | H̃n−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉,
〈 | Hn−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉,
〈 | H̃n−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉.

and consequently

n−j−1µ̃
\\
Y (R) = jµ

//

X (R),

n−j−1µ̃
∨
Y(R) = jµ

∧

X(R),

n−j−1µ̃
∧
Y(R) = jµ

∨

X(R),

n−j−1µ̃
//

Y (R) = jµ
\\

X (R).

Since jµ
∗
X = jµ∗X are measures for j = 1, . . . , n− 1, ∗ = \\,∨,∧, //, and by the above

relations, it follows that n−j−1µ̃
∗
Y are additive and finite for j = 1, . . . , n− 1 and

∗ = \\,∨,∧, //. Therefore Y has a well-defined parametrized homology. Since the mea-
sures are the same on all the rectangles, by the Equivalence Theorem the associated
decorated diagrams are also the same. This proves Theorem 3.2.

Example 3.12. Revisiting Example 2.5, let cX denote the 0-dimensional homology
cycle in X that ceases to exist beyond a1 and is killed at a2 (see Figure 5).

The parametrized homology of X and the reduced parametrized homology of Y can
be seen in Figure 6. The red point in the diagram representing the cycle cX indicates
its dimension, whereas the symbol \\ designates the way it perishes at endpoints. By
Theorem 3.2 we know that there is a corresponding 1-dimensional homology cycle cY
in Y. Its dimension is indicated in blue. In addition to the change of dimension, we
observe the following:
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cX

a1 a2 a3 a4 a5

Figure 5: A 0-homology cycle cX in X ceases to exist beyond a1 and is killed at a2.

• Since cycle cY persists over [a1, a2) like cX , the decorations of the points repre-
senting these two cycles are the same;

• In contrast to cX , the cycle cY is killed at a1 and ceases to exist beyond a2.
This is expressed by the symbol //.

a5

a4

a3

a2

a1

a1 a2 a3 a4 a5

a5

a4

a3

a2

a1

a1 a2 a3 a4 a5

0

0

0

1

1
1

\\
∨

\\
∨

∨
∧

1

1

1

0

0
0

//
∧

//
∧

∧
∨

Figure 6: The parametrized homology of X is on the left and the one of Y on the
right.
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