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CHEVALLEY-EILENBERG HOMOLOGY OF CROSSED MODULES
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Abstract
In this paper we prove a five term exact sequence connect-

ing in lower dimensions the Chevalley-Eilenberg homologies of
the crossed module of Lie algebras (m, g, µ) and of the Lie alge-
bra g/Im(µ). Moreover, a relationship between the Chevalley-
Eilenberg homology with coefficients and the homology of a
crossed module of Lie algebras is established.

1. Introduction

Crossed modules of Lie algebras, which are simultaneous generalisations of ideals
and modules over Lie algebras, were introduced by Kassel and Loday (see [11]), in
order to give an interpretation of the third relative Chevalley-Eilenberg cohomology
of Lie algebras. Crossed modules of Lie algebras are algebraic objects equivalent to
simplicial Lie algebras with the associated Moore complex of length 1 (see, e.g., [8, 9]).
A first approach to an internal (low dimensional) homology theory of crossed modules
of Lie algebras was done in [5]. In [4], the authors studied the homology theory of
crossed modules of Lie algebras in the spirit of [3, 10]. In particular, the authors
checked that the category of crossed modules of Lie algebras is tripleable and proved
that the natural homology theory obtained from this triple (called cotriple homology)
can be determined by small complexes formed from the standard Chevalley-Eilenberg
complex of Lie algebras. In [7] it is shown that lower dimensional cyclic homology
groups of associative algebras can be described in terms of the cotriple homology of
crossed modules of Lie algebras.

The present paper provides answers to some questions posed in [4]. In particular,
the existence of a five term exact sequence connecting the low-dimensional Chevalley-
Eilenberg homologies of crossed modules and their cokernel Lie algebras is proved.
The analogous result for the cyclic and Hochschild homologies of crossed modules of
associative algebras is given in [6], and its proof is based on using of the Eilenberg-
Zilber theorem and the Künneth formula, which are not valid in the case mentioned
above. Moreover, a relationship between the homology of a crossed module of Lie
algebras and the Chevalley-Eilenberg homology of Lie algebras with coefficients is
established in the paper.
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Notations and Conventions
Throughout the paper we fix a field k. All tensor and exterior products are over

k. All Lie algebras and vector spaces we deal with are also over k. Lie bracket is
denoted by [ , ]. Given a Lie algebra g and a right module V over g, denote by [V, g]
the vector subspace of V generated by the elements [v, g] for all v ∈ V and g ∈ g,
where [−,−] : V × g→ V is the action.
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2. Chevalley-Eilenberg homology of crossed modules of Lie

algebras

A crossed module of Lie algebras (m, g, µ) consists of a Lie homomorphism µ : m
→ g together with a Lie action of g on m which is a k-linear map g×m→ m, (g,m) 7→
gm, satisfying

[g,g′]m = g(g
′

m)− g′

(gm), g[m,m′] = [gm,m′] + [m, gm′],

such that the following conditions hold:

µ(gm) = [g, µ(m)],

µ(m)m′ = [m,m′] (Peiffer identity),

for all m,m′ ∈ m and g ∈ g. One easily sees that Ker(µ) is contained in the center
of m. Moreover, the image of µ, Im(µ), is necessarily an ideal in g and Ker(µ) is a
module over Coker(µ) = g/ Im(µ).

A common example of crossed module of Lie algebras is an inclusion homomor-
phism n →֒ g for any Lie algebra g and its ideal n. Another common instance is the
trivial homomorphism 0: V → g, v 7→ 0, for any g-module V , where V is considered
as Lie algebra with trivial Lie bracket. For other examples of Lie algebra crossed
modules the reader can see [1, 2, 12].

A morphism of crossed modules of Lie algebras (α, β) : (m, g, µ)→ (m′, g′, µ′) con-
sists of Lie homomorphisms α : m→ m

′, β : g→ g
′ such that µ′α(m) = βµ(m) and

α(gm) = β(g)α(m) for all m ∈ m and g ∈ g. In this way we get the category of crossed
modules of Lie algebras.

Given any crossed module of Lie algebras (m, g, µ) we can form the semidirect
product of Lie algebras, m⋊ g, with the underlying vector space m⊕ g endowed with
the Lie algebra bracket defined by the formula

[(m, g), (m′, g′)] = ([m,m′] + gm′ − g′

m, [g, g′]),

for all (m, g), (m′, g′) ∈ m⋊ g. Moreover, there are Lie homomorphisms s : m⋊ g→ g,
(m, g) 7→ g and t : m⋊ g → g, (m, g) 7→ µ(m) + g, and a binary operation
(m′, g′) ◦ (m, g) = (m+m′, g) defined for any pair (m, g), (m′, g′) ∈ m⋊ g such that
µ(m) + g = g′. This composition ◦ with the source map s and target map t constitutes
an internal category in the category of Lie algebras. The nerve of its category structure
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forms the simplicial Lie algebra N∗(m, g, µ), where N∗(m, g, µ) = m⋊ (· · · (m⋊ g) · · · )
with n semidirect factors of m, and face and degeneracy homomorphisms are defined
by

d0(m1, . . . ,mn, g) = (m2, . . . ,mn, g),

di(m1, . . . ,mn, g) = (m1, . . . ,mi +mi+1, . . . ,mn, g), 0 < i < n,

dn(m1, . . . ,mn, g) = (m1, . . . ,mn−1, µ(mn) + g),

si(m1, . . . ,mn, g) = (m1, . . . ,mi, 0,mi+1, . . . ,mn, g), 0 6 i 6 n.

This simplicial Lie algebra is called the nerve of the crossed module of Lie algebras
and its Moore complex is trivial in dimensions > 2. In fact its Moore complex is
just the original crossed module up to isomorphism with m in dimension 1 and g in
dimension 0.

Chevalley-Eilenberg homology

Given a Lie algebra g and a (right) g-module V , the standard Chevalley-Eilenberg
complex, CCE(g, V ), has the following form:

· · · → V ⊗ ∧ng
∂n−→ V ⊗ ∧n−1

g
∂n−1

−−−→ · · ·
∂3−→ V ⊗ ∧2g

∂2−→ V ⊗ g
∂1−→ V,

where the boundary map ∂n is given by the formula

∂n(v ⊗ g1 ∧ · · · ∧ gn) =

n∑

i=1

(−1)i+1[v, gi]⊗ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn

+
∑

16i<j6n

(−1)i+jv ⊗ [gi, gj ] ∧ g1 ∧ · · · ∧ ĝi ∧ · · · ∧ ĝj ∧ · · · ∧ gn.

The Chevalley-Eilenberg homology of the Lie algebra g with coefficients in V,H∗(g, V )
is defined to be the homology of the complex CCE(g, V ). If V = k is considered as
a trivial g-module, then the Chevalley-Eilenberg complex is denoted by CCE(g) and
its homology by H∗(g).

Given a simplicial Lie algebra g∗, the Chevalley-Eilenberg homology extends to g∗

in a natural way (see, e.g., [4]). Namely, applying the Chevalley-Eilenberg complex,
CCE(−), dimensional-wise to the simplicial Lie algebra g∗, we arrive at the following
bicomplex

...
...

...

∂3

y −∂3

y ∂3

y

CCE
2 (g0) ←−−−− CCE

2 (g1) ←−−−− CCE
2 (g2) ←−−−− · · ·

∂2

y −∂2

y ∂2

y

CCE
1 (g0) ←−−−− CCE

1 (g1) ←−−−− CCE
1 (g2) ←−−−− · · ·

∂1

y −∂1

y ∂1

y

CCE
0 (g0) ←−−−− CCE

0 (g1) ←−−−− CCE
0 (g2) ←−−−− · · · ,
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denoted by CCE(g∗), where the horizontal differentials are obtained by taking alter-
nating sums. The Chevalley-Eilenberg homology of the simplicial Lie algebra g∗ is
defined by the formula

Hn(g∗) = Hn

(
Tot

(
CCE(g∗)

))
, n > 0.

Given a crossed module of Lie algebras (m, g, µ), denote by CCE(m, g, µ) the

total complex Tot
(
CCE

(
N∗(m, g, µ)

))
. Then the Chevalley-Eilenberg homology of

(m, g, µ) is defined by the formula

Hn(m, g, µ) = Hn

(
CCE(m, g, µ)

)
, n > 0.

In other words, Hn(m, g, µ) is defined as the Chevalley-Eilenberg homology of the
nerve N∗(m, g, µ).

3. Five term exact sequence

The aim of this section is to prove the following:

Proposition 3.1. Let (m, g, µ) be a crossed module of Lie algebras. Then

H0(m, g, µ) = k and H1(m, g, µ) = Coker(µ)/[Coker(µ),Coker(µ)].

Moreover, if characteristic of k is not 2 (i.e., 1/2 ∈ k), then there is an exact sequence
of vector spaces

H3(m, g, µ)→ H3 (Coker(µ))→ Ker(µ)/[Ker(µ), g]→ H2(m, g, µ)→

H2 (Coker(µ))→ 0.

First, a few auxiliary lemmas will be proved. Define the simplicial vector spaces
X∗, X̂∗ and X∗ in the following way:

X∗ ≡ · · ·
→...→
Nn(m, g, µ)⊗2 →...→

· · ·
→
→
→
N1(m, g, µ)⊗2 →→ N0(m, g, µ)⊗2,

X̂∗ ≡ · · ·
→...→
Nn(m, g, µ)∧

2 →...→
· · ·
→
→
→
N1(m, g, µ)∧

2

→→ N0(m, g, µ)∧
2

,

X∗ ≡ Ker{X∗ → X̂∗},

where face and degeneracy homomorphisms are defined componentwise.

Lemma 3.2. If 1/2 ∈ k, then there is a short exact sequence of homotopy groups

0→ π0(X∗)→ π0(X∗)→ π0(X̂∗)→ 0.

Proof. We have the following short exact sequence of simplicial vector spaces:

0→ X∗ → X∗ → X̂∗ → 0.

The corresponding long exact sequence of homotopy groups

· · · → π1(X∗)→ π1(X∗)→ π1(X̂∗)→ π0(X∗)→ π0(X∗)→ π0(X̂∗)→ 0

implies that it suffices to show the injectivity of the homomorphism π0(X∗)→ π0(X∗)
which we denote by i. To finish the proof we construct a homomorphism τ : π0(X∗)→
π0(X∗) such that τi = 1π0(X∗)

.
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Direct calculus gives

π0(X∗) = (g⊗ g)/
(
Im(µ)⊗ g+ g⊗ Im(µ)

)
,

π0(X∗) =
{the submodule of g⊗ g generated by g ⊗ g, g ∈ g}

{the submodule of g⊗ g generated by g ⊗ x+ x⊗ g, g ∈ g, x ∈ Im(µ)}
.

Take g1 ⊗ g2 ∈ g⊗ g and assume that

g1 ⊗ g2
τ
7−−→

1

2
(g1 ⊗ g2 + g2 ⊗ g1) .

We easily checks that τ is well defined on π0(X∗) and τi = 1π0(X∗)
.

It is well known that each simplicial vector space gives rise to a chain complex
whose objects are the same and the differentials are obtained by alternating sum of the
face homomorphisms. Denote by (X∗, ∂∗), (X̂∗, ∂̂∗) and (X∗, ∂∗) the corresponding

chain complexes of the simplicial vector spaces X∗, X̂∗ and X∗, respectively.

Lemma 3.3. If 1/2 ∈ k, then

H1(X̂∗, ∂̂∗)

=
{the submodule of ∧2 (m⋊ g) generated by x ∧ y, x ∈ Ker(µ), y ∈ m⋊ g}+ Im ∂̂2

Im ∂̂2
.

Proof. We have the short exact sequence of complexes

0→ (X∗, ∂∗)→ (X∗, ∂∗)→ (X̂∗, ∂̂∗)→ 0,

which gives rise to the long homology exact sequence

· · · → H1(X∗, ∂∗)→ H1(X̂∗, ∂̂∗)→ H0(X∗, ∂∗)→ H0(X∗, ∂∗)→ H0(X̂∗, ∂̂∗)→ 0.

Since the homotopy groups of simplicial vector space are isomorphic to the homology
groups of the corresponding chain complex, by the previous lemma H1(X∗, ∂∗)→

H1(X̂∗, ∂̂∗) is an epimorphism. Thus, to finish the proof it suffices to show that the
following natural homomorphism

Ker(µ)⊗ (m⋊ g) + (m⋊ g)⊗Ker(µ)→ H1(X∗, ∂∗)

is an epimorphism. The latter follows from the Eilenberg-Zilber theorem and the
Künneth formula.

Proof of Proposition 3.1. Consider the bicomplex CCE
(
N∗(m, g, µ)

)
in Figure 1.

There is a spectral sequence of the first quadrant

E1
pq = Hq

(
CCE

p

(
N∗(m, g, µ)

))
⇒ Hp+q(m, g, µ).

We have

E1
p0 = CCE

p (Coker(µ)) for all p > 0,

E1
0q = 0 when q > 1,

E1
1q = 0 when q > 2 and E1

11 = Ker(µ).
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...
...

...

∂

y −∂

y ∂

y

∧3g ←−−−− ∧3(m⋊ g) ←−−−− ∧3(m⋊m⋊ g) ←−−−− · · ·

∂

y −∂

y ∂

y

∧2g ←−−−− ∧2(m⋊ g) ←−−−− ∧2(m⋊m⋊ g) ←−−−− · · ·

∂

y −∂

y ∂

y

g ←−−−− m⋊ g ←−−−− m⋊m⋊ g ←−−−− · · ·

∂

y −∂

y ∂

y

k ←−−−− k ←−−−− k ←−−−− · · · .

Figure 1: The bicomplex CCE
(
N∗(m, g, µ)

)
.

Hence

E∞

p0 = Hp (Coker(µ)) when p 6 2, and E2
p0 = Hp (Coker(µ)) when p > 3,

E∞

0q = 0 when q > 1, and E∞

1q = 0 when q > 2.

This implies

H0(m, g, µ) = H0 (Coker(µ)) = k,

H1(m, g, µ) = H1 (Coker(µ)) = Coker(µ)/[Coker(µ),Coker(µ)].

Thus, the first part of the proposition is proved.
Now we calculate E2

11 = Coker{E1
21 → E1

11}. By the definition, E1
21 is exactly

H1(X̂∗, ∂̂∗). Therefore, by the previous lemma we will have

E2
11 = Coker{E1

21 → E1
11} = Coker{H1(X̂∗, ∂̂∗)→ Ker(µ)}

= Ker(µ)/[Ker(µ),m⋊ g] = Ker(µ)/[Ker(µ), g].

Since E1
02 = 0, we have the following exact sequence:

0→ E∞

30 → E2
30 → E2

11 → E∞

11 → 0.

Hence, according to the formulas mentioned above, we get an exact sequence

0→ E∞

30 → H3 (Coker(µ))→ Ker(µ)/[Ker(µ), g]→ E∞

11 → 0. (1)

Moreover, we have an epimorphism

H3(m, g, µ) ։ E∞

30 (2)

and an exact sequence

0→ E∞

11 → H2(m, g, µ)→ E∞

20 → 0. (3)

Since E∞
20 = H2 (Coker(µ)), (1) (2) and (3) imply the required result.

Corollary 3.4. Let k be a field, 1/2 ∈ k and V be a k-module with trivial Lie bracket.
Then H2(V, 0, 0) = V .
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We will later show the last isomorphism without the restriction 1/2 ∈ k.

4. Relationship to the Chevalley-Eilenberg homology with

coefficients

Given a Lie algebra g and a g-module V , there is a crossed module defined by
the trivial homomorphism 0: V → g, which we denote by (V, g, 0). We have a nat-
ural morphism of crossed modules of Lie algebras (0, 1g) : (0, g, 0)→ (V, g, 0), which
induces a homomorphism of chain complexes

(0, 1g)∗ : C
CE(0, g, 0)→ CCE(V, g, 0).

This homomorphism is injective, since the ground ring k is a field. Define the chain
complex Θ(V, g) from the following short exact sequence of complexes:

0→ CCE(0, g, 0)
(0,1g)∗
−−−−→ CCE(V, g, 0)→ Θ(V, g)→ 0.

It is easy to calculate that

H0

(
Θ(V, g)

)
= H1

(
Θ(V, g)

)
= 0 and

H2

(
Θ(V, g)

)
= V/[V, g] = H0(g, V ) (see [4]).

Proposition 4.1. For any integer n > 0 there is a homomorphism

Hn+2

(
Θ(V, g)

)
→ Hn(g, V ).

Moreover, this homomorphism is an isomorphism for n = 0, 1 and an epimorphism
for n = 2.

Proof. Define a bicomplex X∗∗ = CCE
(
N∗(V, g, 0)

)/
CCE

(
N∗(0, g, 0)

)
. By definition,

Hn

(
Θ(V, g)

)
= Hn

(
Tot(X∗∗)

)
, n > 0.

There is a spectral sequence of the first quadrant

E1
pq ⇒ Hq(X∗p).

The bicomplex CCE
(
N∗(V, g, 0)

)
has the following form:

...
...

...

∂

y −∂

y ∂

y

g
∧ 3 ←−−−− (V ⋊ g)∧ 3 ←−−−− (V ⋊ V ⋊ g)∧ 3 ←−−−− · · ·

∂

y −∂

y ∂

y

g
∧ 2 ←−−−− (V ⋊ g)∧ 2 ←−−−− (V ⋊ V ⋊ g)∧ 2 ←−−−− · · ·

∂

y −∂

y ∂

y

g ←−−−− V ⋊ g ←−−−− V ⋊ V ⋊ g ←−−−− · · ·

∂

y −∂

y ∂

y

k ←−−−− k ←−−−− k ←−−−− · · · ,
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while CCE
(
N∗(0, g, 0)

)
has the following form:

...
...

...

∂

y −∂

y ∂

y

g
∧ 3 ←−−−− g

∧ 3 ←−−−− g
∧ 3 ←−−−− · · ·

∂

y −∂

y ∂

y

g
∧ 2 ←−−−− g

∧ 2 ←−−−− g
∧ 2 ←−−−− · · ·

∂

y −∂

y ∂

y

g ←−−−− g ←−−−− g ←−−−− · · ·

∂

y −∂

y ∂

y

k ←−−−− k ←−−−− k ←−−−− · · · .

Consequently, X∗0 = X0∗ = 0. This implies E1
p0 = 0 for all p > 0. Therefore, for all

n > 0, there exists a homomorphism

Hn+1

(
Tot(X∗∗)

)
→ E2

n1. (4)

Moreover, it is routine to check that E1
n1 = V ⊗ g

∧ n−1, n > 1, and the differential of
the spectral sequence d1 : E1

n1 → E1
n−1 1 is exactly the Chevalley-Eilenberg differential

∂ : V ⊗ g
∧ n−1 → V ⊗ g

∧ n−2. This implies an isomorphism

E2
n1 = Hn−1(g, V ), n > 0. (5)

Thus, (4) and (5) imply the first part of the proposition.
Now, the direct calculus gives the following:

E1
1q = Hq

(
E∗(V, 0, 0)

)
= 0 when q > 2.

Therefore, we have an isomorphism

H3

(
Tot(X∗∗)

)
= E2

21 = H1(g, V )

and an epimorphism

H4

(
Tot(X∗∗)

)
։ E2

31 = H2(g, V ).

Question. What is the term E2
22?

It would be interesting to give an answer to this question, since we have the fol-
lowing exact sequence:

H5

(
Θ(V, g)

)
→ H3(g, V )→ E2

22 → H4

(
Θ(V, g)

)
→ H2(g, V )→ 0.

Remark 4.2. A similar result for crossed modules of groups is proved in [10] using
topological methods.

Corollary 4.3. For any Lie algebra g and g-module V , there is the following eight
term exact sequence
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H4(V, g, 0) H4

(
Θ(V, g)

)
H3(g) H3(V, g, 0) H1(g, V )

H2(g) H2(V, g, 0) V/[V, g] 0.

Proof. By the definition of Θ(V, g) there is a long exact sequence of homology groups

· · · → Hn(0, g, 0)→ Hn(V, g, 0)→ Hn

(
Θ(V, g)

)
→ Hn−1(0, g, 0)→ · · · .

For all n > 0, one has a natural isomorphism Hn(0, g, 0) = Hn(g) (see [4]). Moreover,
by Proposition 3.1 we have

H1(0, g, 0) = H1(V, g, 0) = g/[g, g].

Therefore, from the aforementioned long exact sequence we get the following exact
sequence with eight terms:

H4(V, g, 0) H4

(

Θ(V, g)
)

H3(g) H3(V, g, 0) H3

(

Θ(V, g)
)

H2(g) H2(V, g, 0) H2

(

Θ(V, g)
)

0.

Replacing H3

(
Θ(V, g)

)
and H2

(
Θ(V, g)

)
by H1(g, V ) and V/[V, g], respectively, we

get the desired result.

Corollary 4.4. Let V be a k-module with trivial Lie bracket. Then

H2(V, 0, 0) = V and H3(V, 0, 0) = 0.

Proposition 4.5. Let k be a field and 1/2 ∈ k. Then

H2(V, g, 0) = H2(g)⊕ V/[V, g] and H3(V, g, 0) = H3(g)⊕H1(g, V ).

Proof. By Corollary 4.3 we have an exact sequence

H2(g)→ H2(V, g, 0)→ V/[V, g]→ 0. (6)

Denote by α the first homomorphism in the sequence (6). By Proposition 3.1 we have
an epimorphism τ : H2(V, g, 0) ։ H2(g). It is easy to check that τα = 1H2(g). Hence,
the sequence (6) splits

H2(V, g, 0) = H2(g)⊕ V/[V, g]. (7)

Now, Corollary 4.3 and (7) imply the following exact sequence:

H3(g)→ H3(V, g, 0)→ H1(g, V )→ 0.

Denote by β the natural homomorphism H3(g)→ H3(V, g, 0). By Proposition 3.1
and (7) we have an epimorphism η : H3(V, g, 0) ։ H3(g). Moreover, ηβ = 1H3(g). This
completes the proof.

Corollary 4.6. If 1/2 ∈ k, then there exists an epimorphism H4(V, g, 0) ։ H2(g, V ).

Proof. By Corollary 4.3 and Proposition 4.5 we have a natural epimorphism
H4(V, g, 0) ։ H4

(
Θ(V, g)

)
. Moreover, by Proposition 4.1 there exists an epimorphism

H4

(
Θ(V, g)

)
։ H2(V, g).
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