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INVARIANTS PRESERVED BY MUTATION

THILO KUESSNER

(communicated by Charles A. Weibel)

Abstract
We prove that generalized mutation preserves several geo-

metric invariants such as the volume and Goncharov invariant
of closed or Q-rank 1 locally symmetric spaces.

1. Introduction

Rigidity results in the theory of locally symmetric spaces imply that geometrically
defined invariants, such as the volume, are topological invariants. Yet it remains
largely mysterious how these invariants are determined by the topology and how
they behave with respect to topological operations such as cut and paste. “Cut and
paste” hereby means the following operation: we have a properly embedded, 2-sided,
codimension 1 submanifold Σ in a compact manifold M , and we denote by Mτ the
manifold that is the result of cutting M along Σ and regluing via a diffeomorphism
τ : Σ→ Σ.

In [15] Ruberman considered the case of hyperbolic 3-manifolds and showed that
mutation of a hyperbolic link yields a hyperbolic link of the same volume. More
generally, he proved that for hyperbolic 3-manifolds M and certain pairs (Σ, τ), espe-
cially for the hyperelliptic involution of the genus 2 surface, Mτ is always hyperbolic
with vol (Mτ ) = vol (M) if Σ ⊂M is incompressible and boundary-incompressible.
(The latter conditions are needed only to guarantee hyperbolicity of Mτ .) Neumann
indicated in [14] that the PSL(2,C)-fundamental class and the Bloch invariant of
hyperbolic 3-manifolds are also preserved under mutation. In [10] we gave a topo-
logical proof of Ruberman’s theorem using the fundamental class construction. In [8]
we used an analogous argument to prove that the volume of flag structures is also
preserved under mutation. The aim of this paper is to prove in a general setting that
G-fundamental classes and hence various geometric invariants are preserved under
generalized mutation.

For a closed, orientable d-manifold M and a representation ρ : π1M → G, one
has the naturally associated G-fundamental class (Bρ)∗ [M ] ∈ Hd(BG), where BG
denotes the classifying space with respect to the discrete topology on G. If M has
π1-injective boundary, G is a semisimple Lie group without compact factor, and
ρ sends π1∂iM to a parabolic subgroup Pi ⊂ G for each component ∂iM of ∂M .
Then we can still associate a fundamental class (Bρ)∗ [M,∂M ] ∈ Hd(BGcomp) for
a certain completion BGcomp; see Section 4.1. We discuss in Section 3 that this
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fundamental class determines several geometric invariants. The generalized mutations
to be considered will be defined in Definition 2.1. The general result proved in this
paper is the following theorem:

Theorem 1.1. Assume M is a compact, oriented d-manifold such that int(M) is a
Q-rank 1 locally symmetric space of noncompact type. Let ρ : π1M → G be a repre-
sentation to a semisimple Lie group without compact factor, sending the fundamental
group of each boundary component π1∂iM to some parabolic subgroup Pi ⊂ G.

If ρτ : π1M
τ → G is a generalized mutation of ρ, then

(Bρ)∗ [M,∂M ]Q = (Bρτ )∗ [M
τ , ∂Mτ ]Q ∈ Hd(BGcomp;Q).

The corresponding result for Z-coefficients is not true; examples are given in [14,
Section 2.6]. We will see in Section 3 that the following invariants are determined
by the rational G-fundamental class: (Bρ)∗ [M,∂M ]Q. Thus their invariance under
generalized mutations follows.

Corollary 1.2. The volume, the (generalized) rational Bloch invariants and Gon-
charov invariants of Q-rank 1 locally symmetric spaces, the complex volume of rep-
resentations and the rational Bloch invariant and volume of CR structures and flag
structures are preserved under generalized mutations.

2. Generalized mutation

2.1. Definition of generalized mutations
In this paper we will consider the following situation: We have a compact mani-

fold M (possibly with boundary) and a properly embedded, 2-sided, codimension 1
submanifold Σ ⊂M . We consider a diffeomorphism τ : (Σ, ∂Σ)→ (Σ, ∂Σ), and we
denote Mτ the manifold, which is the result of cutting M along Σ and regluing
via τ .

We will also assume that a representation ρ : π1M → G is given. This representa-
tion may arise from the identification of π1M with a discrete subgroup Γ ⊂ G in case
that M = Γ\G/K is a locally symmetric space of noncompact type, but we will also
be interested in other representations, e.g., arising from CR or flag structures.

Definition 2.1 (Generalized mutation). For a fixed representation ρ : π1M → G, we
say that a finite order homeomorphism τ : Σ→ Σ is a generalized mutation if there
exists some finite order A ∈ G with

ρ (τ∗h) = Aρ (h)A−1

for all h ∈ π1Σ.

We remark that the condition of A having finite order is implied if ρ is the holonomy
of a hyperbolic 3-manifold ([10, Observation 1.2]), or if ρ(π1Σ) is Zariski-dense.

Lemma 2.2. If τ : Σ→ Σ is a generalized mutation for a representation ρ : π1M
→ G, then there is a representation

ρτ : π1M
τ → G

such that the restrictions of ρ and ρτ to π1(M − Σ) agree.
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Proof. We can choose regular neighborhoods of Σ in M and Mτ and an identification
of their complements. We denote X the union of M and Mτ along this identifica-
tion. Let π1M = 〈S|R〉 be a presentation of π1M . The Seifert-van Kampen Theorem
implies (with i : Σ→ X denoting the inclusion):

π1X = 〈S, t | R, ti∗(h)t
−1 = i∗ (τ∗h) ∀ h ∈ π1Σ〉.

Definition 2.1 implies that we can extend ρ to a representation ρX : π1X → G by
defining ρ(t) = A. Composition with π1M

τ → π1X yields ρτ : π1M
τ → G.

2.2. Examples
Symmetries of representation variety

The mapping class of τ : Σ→ Σ acts on R(π1Σ, G) = Hom (π1Σ, G) / ∼, the space
of representations up to conjugation. The condition from Definition 2.1 is obviously
equivalent to the condition that the conjugacy class of ρ|π1Σ is a fixed point for
the action of τ∗ on R(π1Σ, G). We do not know a general approach for finding such
fixed points, but a remarkably general case is provided by the following example
due to Ruberman. (Here Rd,f (π1Σ, G) is the subset of discrete, faithful, parabolics-
preserving representations upon conjugation, an analogue of Teichmüller space.)

Example 2.3 (Surfaces in hyperbolic 3-manifolds). If Σ ⊂M is the genus 2 surface
and τ : Σ→ Σ the hyperelliptic involution, then by [15, Theorem 2.2] τ∗ acts trivially
on Rd,f (π1Σ, SL(2,C)), every ρ is a fixed point. The same is true for the τ -invariant
subsurfaces of Σ: the 1- and 2-punctured torus and the 3- and 4-punctured sphere.

Example 2.4 (Totally geodesic submanifolds). If M = Γ\G/K is a closed locally sym-
metric space of noncompact type of dimension d > 4, Σ ⊂M a totally geodesic
hypersurface and τ : Σ→ Σ a diffeomorphism, then by [5, Theorem IV.7.1] Σ is
a locally symmetric space, upon conjugation Σ = H/K for some subgroup H ⊂ G.
Hence Mostow rigidity means that τ : Σ→ Σ is homotopic to an isometry (of finite
order), and there is some A ∈ H ⊂ G with τ∗ (h) = AhA−1 for all h ∈ π1Σ.

2.3. Discreteness
Even though the invariants considered in this paper, including the volume and

the Bloch invariant, are defined for arbitrary representations to a Lie group (not
necessarily of discrete image), it is a natural question to ask whether the mutation ρτ

of a discrete embedding ρ : π1M → G is again discrete. In [15] Ruberman answered
this question positively for lattices in SL(2,C). When ρ(π1Σ) is geometrically finite
(hence 1-quasifuchsian, [7, Definition 9.2]), then in [10, Proposition 3.1] we gave
another proof by using the Maskit combination theorem from [13, Chapter VII]. The
Maskit combination theorem in the formulation of [13] has an exact generalisation
to higher-dimensional hyperbolic manifolds by the recent work of Li-Ohshika-Wang
([12, Theorem 4.2]). Thus one can literally adapt the proof of [10, Proposition 3.1]
to obtain the following result:

Proposition 2.5. Let M be a compact, oriented n-manifold such that int(M) is
hyperbolic with holonomy ρ : π1M → Isom+(Hn). Let Σ ⊂M be a properly embedded,
2-sided, codimension 1 submanifold such that ρ(π1Σ) is geometrically finite, (n− 2)-
quasifuchsian. If τ : Σ→ Σ is a generalized mutation, then ρτ (π1M

τ ) is a discrete
subgroup of Isom+(Hn).
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2.4. The closed case

Though this is superfluous from a logical point of view — as we handle the more
general Q-rank 1 case in Section 4 — we first discuss the, technically simpler, proof
of Theorem 1.1 for the closed case. The idea is essentially due to Neumann ([14], in
the context of hyperbolic 3-manifolds), and in this case the simplicity and beauty of
the argument can hopefully be better appreciated.

Let X be constructed as in the proof of Lemma 2.2. The images of the fundamental
classes of M,Mτ and the mapping torus T τ satisfy the relation

[M ]− [Mτ ] = [T τ ] ∈ Hd (X) .

From the proof of Lemma 2.2, we have a representation ρX : π1X → G with ρX |π1M =
ρ and ρX |π1Mτ = ρτ . Then

(Bρ)∗ [M ]− (Bρτ )∗ [M
τ ] = (BρX)∗ [T

τ ] ,

and Theorem 1.1 for closed manifolds will follow once we have proved (BρX)∗ [T
τ ]Q

= 0.

τ and A have finite order, say τn = id and An = 1 for an n ∈ N. Hence we have
an n-fold covering pn : Σ× S1 → T τ . In the following diagram we denote by iΣ and
iT τ the inclusions and by P1 the projection to the first factor:

Σ× S1

pn

��

P1 // Σ

iΣ

��
T τ

iTτ // X
BρX

// |BG|.

The left-hand square does not commute, even homologically, but we claim that the
compositions with BρX commute up to homotopy and hence homologically.

Since |BG| is aspherical1 it suffices to look at the fundamental group. We have
π1

(
Σ× S1

)
= π1Σ⊕ Z, and, for the π1Σ-summand, of course already the left-hand

square is commuting. Moreover, for the generator s ∈ π1S
1 = Z we have (P1)∗ (s) =

0. On the other hand, (iT τ pn)∗ (s) = tn, and thus (BρX iT τ pn)∗ (s) = ρX (tn) = An

= 1. Therefore, the induced homomorphisms of fundamental groups commute, and
Hurewicz’ Theorem2 implies commutativity in homology.

With d = dim(M) we have Hd(Σ) = 0. The homomorphism
(
BρX iΣP1

)
d
factors

over Hd (Σ) and is therefore trivial. By the discussion before this implies(
BρX iT τ pn

)
d

[
Σ× S1

]
= 0.

We have (pn)d
[
Σ× S1

]
= n [T τ ], thus rationally

(
BρX iT τ

)
d
[T τ ]Q = 0, hence the

claim.

1In this paper, |BG| always means the classifying space for G with respect to the discrete topology.
We think of it as the geometric realization of the simplicial set BG.
2Hurewicz’ Theorem ([6, page 219]) gives [X,Y ] = Hom(π1X,π1Y )/Inn(π1Y ) for the homotopy
classes of mappings from a space X to an aspherical space Y . In particular, two maps are homotopic
when they have the same effect on fundamental groups.
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3. Invariants obtained from the G-fundamental class

For a manifold M and a group G, a representation ρ : π1M → G induces a con-
tinuous map Bρ : M → |BG|. If M is a closed, oriented d-manifold with funda-
mental class [M ] ∈ Hd(M), then the G-fundamental class of (M,ρ) is defined as
(Bρ)∗ [M ] ∈ Hd(BG).

More generally, we will be interested in the situation that M has (π1-injective,
possibly disconnected) boundary,G is a semisimple Lie group without compact factors
and the representation ρ : π1M → G maps the fundamental group of each component
∂iM to some parabolic subgroup Pi ⊂ G. Then we have an element

(Bρ)∗ [M,∂M ] ∈ Hd(BGcomp);

see Section 4.1 for its construction. Several invariants can be derived from this ele-
ment.

Volume of locally symmetric spaces
If ρ : Γ→ G is the inclusion of a Q-rank 1 lattice and int(M) = Γ\G/K the locally

symmetric space, then by [9, Section 4.2.3] there is the extended volume cocycle cνd
defined by

cνd(g1, . . . , gd) =

∫
str(x̃, g1x̃, ..., g1···gdx̃)

dvol

for (g1, . . . , gd) ∈ BG and by

cνd(p1, . . . , pd−1, ci) =

∫
str(x̃, p1x̃, ..., p1···pd−1x̃, ci)

dvol

for (p1, . . . , pd−1, ci) ∈ Cone(BG). Its cohomology class does not depend on x̃ ∈ G/K
and by [8, Lemma 6.3] we have

〈[cνd] , (Bρ)∗ [M,∂M ]〉 = vol(M).

In particular, the volume is determined by (Bρ)∗ [M,∂M ]Q.

Goncharov invariant
If again int(M) = Γ\G/K is a Q-rank 1 locally symmetric space of finite volume,

then by Weil rigidity we can assume that Γ ⊂ G(Q). If ρ : Γ→ SL(N,Q) is the
restriction of some representation G(Q)→ SL(N,Q), then by [8, Proposition 7.1]
the rational fundamental class

(Bρ)∗ [M,∂M ]Q ∈ Hd(BSL(N,Q)comp,Q)

has a (unique) preimage

γ(M) ∈ Hd(BSL(N,Q),Q)

and also an associated element

γ(M) ∈ Kd(Q)⊗Q,

which are called the homological and K-theoretic Goncharov invariant, respectively.
Similarly, if F ⊂ C is a subring with 1 and ρ(Γ) ⊂ SL (N,F), then one obtains γ(M) ∈
Kd(F)⊗Q. By definition, γ(M) is determined by (Bρ)∗ [M,∂M ]Q.
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Complex volume
If M is a closed 3-manifold and ρ : π1M → SL(n,C) a representation, then the

complex volume as defined in [4] is

1

i
〈ĉ, (Bρ)∗ [M ]〉,

where ĉ is the Cheeger-Chern-Simons class of the flat bundle with monodromy ρ.

Bloch invariant
It is proved in the appendix of [2] that the Bloch-Wigner morphism sends the

PSL(2,C)-fundamental class of a closed hyperbolic 3-manifold to its Bloch invariant
β(M). The corresponding result for cusped hyperbolic 3-manifolds, as well as for
the generalized Bloch invariant of (closed or R-rank 1) locally symmetric spaces,
has been proved in [11, Theorem 1]; see also [8, Definition 8.1] for Q-rank 1 spaces.
So the rational Bloch-Wigner morphism maps (Bρ)∗ [M,∂M ]Q to the rational Bloch
invariant β(M)⊗ 1.

Bloch invariant of CR structures ([3])
If M is a finite-volume hyperbolic manifold and

ρ : π1M → SU(2, 1)

a reductive, boundary-unipotent representation, then [8, Lemma 10.3] implies that
the Bloch invariant βFW (M) is determined by (Bρ)∗ [M,∂M ].

Bloch invariant and volume of flag structures ([1])
If M is a finite-volume hyperbolic 3-manifold, and

h : CP 1 → F l(C3)

is equivariant with respect to some representation

ρ : π1M → SL(3,C),

then Bergeron-Falbel-Guilloux define a Bloch invariant βh(M), which generalizes the
Bloch invariants of hyperbolic and CR structures. It follows from [8, Lemma 10.7]
that βh(M) is determined by (Bρ)∗ [M,∂M ]. In particular, the volume of the flag
structure is determined by (Bρ)∗ [M,∂M ]Q.

4. Proof

4.1. Recollections from [9, Section 4]: Construction of (Bρ)∗ [M,∂M ]
Definition 4.1. For a manifold M and ∂1M, . . . , ∂sM the components of ∂M , we let

DCone (∪si=1∂iM →M)

be the union along ∂M of M with the (disjoint) cones over ∂1M, . . . , ∂sM .
For a group Γ and a collection of subgroups Γ1, . . . ,Γs, we denote by

BΓcomp := DCone (∪si=1BΓi → BΓ)

the union along ∪si=1BΓi of the simplicial set BΓ with the cones over BΓi.
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If G is a semisimple Lie group without compact factor and ∂∞G/K the Hadamard
boundary of the associated symmetric space, then we denote3

BGcomp = DCone
(
∪̇c∈∂∞G/KBPc → BG

)
,

where Pc is the subgroup of parabolic elements fixing c.

Let M be connected and the components ∂1M, . . . , ∂sM be π1-injective. We fix
x ∈M,xi ∈ ∂iM and pathes li : [0, 1]→M with li (0) = x, li (1) = xi for 1 6 i 6 s.
Conjugation by li identifies π1 (∂iM,xi) to a subgroup Γi ⊂ Γ := π1 (M,x).

Let |BΓ| denote the geometric realization of the simplicial set BΓ. The classifying
map ΨM : M → |BΓ| extends to ΨM : DCone (∪si=1∂iM →M)→ |BΓcomp|.

For ∗ > 2 we have an isomorphism H∗ (M,∂M) ∼= H∗ (DCone (∪si=1∂iM →M));
see [8, Lemma 5.1]. Thus, if dim (M) > 2, then (ΨM )∗ [M,∂M ] ∈ H∗ (|BΓcomp|) is
defined.

We assume that ρ : Γ→ G is a representation to a simple Lie group without com-
pact factor, sending each Γi to a parabolic subgroup Pi ⊂ Fix(ci), ci ∈ ∂∞G/K,
where G/K is the associated symmetric space. (This holds, in particular, for the
inclusion ρ : Γ→ G if int (M) ∼= Γ\G/K is a Q-rank 1 locally symmetric space.)

Then we have a well-defined simplicial map Bρ : BΓcomp → BGcomp by sending the
cone point over Γi to ci. It induces the continuous map |Bρ| : |BΓcomp| → |BGcomp|.
We will use the shorthand

(Bρ)∗ [M,∂M ] ∈ Hsimp
∗ (BGcomp)

for the image of (|Bρ|ΨM )∗ [M,∂M ] ∈ H∗(|BGcomp|) under the canonical isomor-
phism H∗ (|BGcomp|) ∼= Hsimp

∗ (BGcomp).

4.2. Proof of Theorem 1.1

Proof. The proof is similar to that of [8, Corollary 10.8] and [10, Theorem 1]. Let
X be constructed as in the proof of Lemma 2.2 and let ∂X = X ∩ (∂M ∪ ∂Mτ ). By
Lemma 2.2 we have a representation ρX : π1X → G with ρX |π1M = ρ and ρX (t) = A.
The construction of X implies that

iM∗ [M,∂M ]− iMτ∗ [M
τ , ∂Mτ ] = iT τ∗ [T

τ , ∂T τ ] ∈ Hd (X, ∂X) , (1)

where iM , iMτ , iT τ are the inclusions of M,Mτ and the mapping torus T τ into X.

Fix n ∈ N such that An = 1 and τn = id. Using the presentation

π1X = 〈S, t | R, t(iΣ∗h)t
−1 = iΣ∗ (τ∗h) ∀ h ∈ π1Σ〉,

we define a surjective homomorphism a : π1X → Z/nZ by

a (t) = 1, a (s) = 0 ∀ s ∈ S.

Let π : X̂ → X be the n-fold cyclic covering with ΓX̂ := π1

(
X̂, x̂

)
∼= ker (a). Consider

M̂ = π−1 (M) , M̂τ = π−1 (Mτ ) and Σ× S1 = π−1(T τ ).

3In [9] we were using the larger space DCone
(
∪̇c∈∂∞G/KBG → BG

)
. Even though this does not

affect any of the arguments, the ‘smaller’ definition of BGcomp might seem a more natural one.
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The transfer map tr : H∗ (X, ∂X)→ H∗

(
X̂, ∂X̂

)
applied to Equation (1) yields

i
M̂∗

[
M̂, ∂M̂

]
− i

M̂τ∗

[
M̂τ , ∂M̂τ

]
= iΣ×S1∗

[
Σ× S1, ∂Σ× S1

]
∈ Hd

(
X̂, ∂X̂

)
. (2)

Let ∂1M, . . . , ∂sM be the components of ∂M . The path li, which defines the iso-
morphism of π1(∂iM,xi) with Γi ⊂ Γ := π1(M,x) (see Section 3.1), also identifies
π1(∂iX) to a subgroup ΓX

i ⊂ π1(X,x) for the corresponding component ∂iX of ∂X.

For each component ∂ikX̂ of π−1(∂iX), we can use a lift l̂ik of li to define an isomor-

phism from π1(∂ikX̂, x̂ik) to a subgroup ΓX̂
ik ⊂ ΓX̂ with π∗

(
ΓX̂
ik

)
= ΓX

i .

The representation ρX̂ := ρXπ∗ : Γ
X̂ → G sends all ΓX̂

ik to the parabolic group Pi.

Indeed, ΓX
i = π∗

(
ΓX̂
ik

)
is generated by tn and elements of Γi, and since ρX (tn) =

An = 1 we have ρX̂

(
ΓX̂
i

)
= ρX

(
ΓX
i

)
= ρX (Γi) = ρ(Γi) ⊂ Pi. Therefore, we can ex-

tend BρX̂ to

BρX̂ :
(
BΓX̂

)comp

→ BGcomp

by mapping the cone point over BΓX̂
ik to ci, the fixed point of the parabolic group Pi.

Let ΨX̂ : DCone
(
∪i,k∂ikX̂ → X̂

)
→ |BΓX̂comp| be the extension of the classify-

ing map. We look at the effect of |BρX̂ |ΨX̂ iΣ×S1 on π1(Σ× S1) (and on its subgroups
isomorphic to images of π1(∂jΣ× S1) for the components ∂jΣ of ∂Σ). The genera-
tor z of π1S

1 is sent to ρX̂(z) = ρX(tn) = An = 1 and elements of π1Σ are sent to
their image under ρX̂ . Thus the effect on the fundamental group of Σ× S1 (and its
subgroups) is the same as for |BρX̂ |ΨX̂ iΣp1, where p1 : (Σ× S1,Σ× S1)→ (Σ, ∂Σ)
means projection to the first factor.

By asphericity of |BG| and Hurewicz’ Theorem ([6, page 219]), this implies that
|BρX̂ |ΨX̂ iΣ×S1 and |BρX̂ |ΨX̂ iΣp1 are homotopic as maps from Σ× S1 to |BG|. The
same argument applied to the path-components ∂jΣ× S1 of ∂Σ× S1 and to the
aspherical space |BPi| (with Pi the parabolic group corresponding to the component
∂iM ⊃ ∂jΣ) implies that the restrictions of both maps are homotopic as mappings
from ∂jΣ× S1 to |BPi|. The cone of the homotopy is then a homotopy between the
corresponding maps from Cone(∂jΣ× S1) to Cone(|BPi|).

Now, |BGcomp| is a homotopy colimit of the cofibrant diagram

∪iCone(|BPi|)← ∪i|BPi| → |BG|,

and DCone(∪j∂jΣ× S1 → Σ× S1) is a homotopy colimit of the cofibrant diagram

∪jCone(∂jΣ× S1)← ∪j∂jΣ× S1 → Σ× S1.

So homotopy invariance of homotopy colimits ([16, Section 5]) gives a homotopy

|BρX̂ |ΨX̂ iΣ×S1 ∼ |BρX̂ |ΨX̂ iΣp1 : DCone(∪j∂jΣ× S1 → Σ× S1)→ |BGcomp|.

We use [8, Lemma 5.2] to identify H∗(Σ, ∂Σ) with H∗(DCone(∪j∂jΣ→ Σ)) in de-
grees ∗ > 2 and obtain(
|BρX̂ |ΨX̂ iΣ×S1

)
∗ =

(
|BρX̂ |ΨX̂ iΣP1

)
∗ : Hd

(
Σ× S1, ∂Σ× S1

)
→ Hd (|BGcomp|) .
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Since the latter homomorphism factors over Hd (Σ, ∂Σ) = 0, we have(
|BρX̂ |ΨX̂ iΣ×S1

)
∗

[
Σ× S1, ∂Σ× S1

]
= 0,

and Equation (2) implies(
|BρX̂ |ΨX̂ i

M̂

)
∗

[
M̂, ∂M̂

]
=

(
(|BρX̂ |ΨX̂ i

M̂τ

)
∗

[
M̂τ , ∂M̂τ

]
∈ Hd(|BGcomp|). (3)

On the other hand we have

(Bρ)∗ [M,∂M ]Q := (|Bρ|ΨM )∗ [M,∂M ]Q

=
1

n
(|BρX |ΨX iM )∗π∗

[
M̂, ∂M̂

]
Q

=
1

n
(|BρX̂ |ΨX̂ i

M̂
)∗

[
M̂, ∂M̂

]
Q
,

similarly for Mτ , and thus Equation (3) implies the claim of Theorem 1.
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