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EFFECTIVE DESCENT MORPHISMS IN
STAR-REGULAR CATEGORIES

MARINO GRAN anp OLIVETTE NGAHA NGAHA

(communicated by George Janelidze)

Abstract

In this article a sufficient condition on a star-regular cate-
gory is introduced guaranteeing that regular epimorphisms are
effective descent morphisms. This condition is satisfied by any
category with a good theory of ideals (thus, in particular, by any
ideal determined category), by any almost abelian category (for
instance, by the categories of torsion abelian groups, torsion-free
abelian groups, normed vector spaces, Banach spaces, locally
compact abelian groups, etc.) and by any category of topological
Mal’tsev algebras (in particular, by the category of topological
groups).

Introduction

A finitely complete category C is regular when

(a) Any arrow f: A — B in C can be factorised as f = iq

S

with ¢ a regular epimorphism and ¢ a monomorphism;

(b) These factorisations are pullback-stable in C.

In the category of sets, and, more generally, in any variety of universal algebras,
an arrow is a regular epimorphism precisely when it is surjective. Accordingly, the
factorisation in (a) is the usual one of a function (or a homomorphism) as a surjection
q: A — Im(f) onto its direct image Im(f) = {f(a) | a € A} followed by the inclusion
i: Im(f) — B of its image in its codomain B. Furthermore, surjective functions (and
surjective homomorphisms) are clearly pullback-stable, so that these categories are
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all regular. For many purposes the notion of regular epimorphism provides a very
suitable abstraction of the notion of quotient in the context of regular categories.

However, although regular epimorphisms are known to be descent morphisms in
any regular category, they fail to be effective descent morphisms, in general [18].
This is due to the fact that not all equivalence relations in a regular category C are
effective, namely they do not necessarily occur as the kernel pair of a morphism in C.
The recent work on descent theory (see [17], for instance, and the references therein)
has made it clear that the right notion of “good quotient” in a general category is
precisely provided by the notion of effective descent morphism.

The present paper deals with the problem of finding a simple condition guarantee-
ing that regular epimorphisms and effective descent morphisms coincide in a regular
category. This is obviously the case when the regular category is ezact [1] (as the
category of sets or any variety of algebras is, for instance), since all equivalence rela-
tions are effective. However, this is also the case for many (not necessarily exact)
regular categories: G. Janelidze and M. Sobral call such categories almost exact [16].
The condition we propose in this article is expressed in the realm of star-regular
categories recently introduced in [10], which are a special kind of regular categories
equipped with an ideal of morphisms (in the sense of [7]), a concept that we recall
in Section 2. We call semi-effective the star-regular categories satisfying this suita-
ble condition (see Definition 2.11) which guarantees, under a mild further condition,
that regular epimorphisms are effective descent morphisms (Theorem 3.2). Several
interesting categories turn out to have this property, many of which are not exact:
any “efficiently regular category” in the sense of D. Bourn [4], any “almost abelian”
category in the sense of W. Rump [24] (see also [22]), and any “category with a good
theory of ideals” in the sense of Z. Janelidze, A. Ursini and the first author [10]. In
the last part of our work we analyse several further examples, some of which have
been studied in the interesting article [8] by T. Everaert. A difference with that arti-
cle is that here we adopt the “elementary approach” to descent theory (recalled here
below) instead of the “monadic approach” used in [8].
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1. Elementary descent theory

Let C be a category with pullbacks. For a morphism p: EF — B in C, we denote by

p1
Eq(p) —=E

b2
the equivalence relation in C determined by the kernel pair of p. Given such an equiva-
lence relation in C, we write DiscFib(Eq(p)) for the category of discrete fibrations of
equivalence relations over Fq(p) and natural morphisms: recall that an object in this
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category is an internal functor (g, p1): R — Eq(p) as in the commutative diagram

Lt

I

Eq(p) —=FE

P2

having the property that the square involving the second projections is a pullback
(this implies that the square involving the first projections is a pullback). Let

F?: (C | B) — DiscFib(Eq(p))

be the functor sending an object (A, ) in the comma category (C | B) to the discrete
fibration (C) in the commutative diagram

Eq(¢) —=F XBA—>q A

Eqlp) =——=F —— B,

where (D) is the pullback of p and «, Eq(q) is the kernel pair of ¢, and & the induced
arrow making the two left squares commutative.
A morphism p: E — B in C is said to be:

(a) a descent morphism if the functor FP is full and faithful,
(b) an effective descent morphism if the functor FP is a category equivalence.

Remark that a morphism p: F — B is an effective descent morphism as defined
above exactly when the change-of-base functor p*: (C | B) — (C | E) is monadic,
as explained in [17], for instance. The following theorem will also be needed (see [8,
16, 17)).

Theorem 1.1. Let C be a finitely complete regular category. Then

(1) p: E — B inC is a descent morphism if and only if it is a reqular epimorphism;

(2) A regular epimorphism p: E — B in C is an effective descent morphism if and
only if for any discrete fibration as in (1) over the kernel pair Eq(p) of p, the
equivalence relation R is effective.

2. Star-regular categories

In this section we recall some basic aspects of the theory of “star relations” in a
regular “multi-pointed category”, as introduced by Z. Janelidze, A. Ursini and the
first author. We refer the reader to [10] for further details.

Definition 2.1. Let C be a category, N a class of morphisms of C that forms an
ideal in the sense of C. Ehresmann [7]: for any composable pair of morphisms f, g of
C the composite gf belongs to ' whenever either f or g belongs to N. A category
C equipped with an ideal N of morphisms is called a multi-pointed category [10].

The following examples will be the guiding ones in this article:
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Example 2.2.

(1) Any category C can be seen as a multi-pointed category by choosing for N the
class of all morphisms in C: this situation is usually referred to as the total
context.

(2) Any pointed category, with zero object 0, can be thought of as a multi-pointed
category by choosing for A the class of zero morphisms: this is the pointed
context.

Convention. From now on we shall assume that the category C is finitely complete.

A pair of parallel morphisms o = (01,02): S = X is called a star when o1 € N}
it is called a monic star when the pair (o1, 02) is jointly monomorphic. A morphism
k: K — X is the N-kernel of a morphism f: X — Y if the composite fk belongs to
N and, for any other morphism ¢: L — X such that fg € N, there exists a unique
morphism u: L — K such that ku = g¢:

k !

K—X——Y.

1A

L

Note that such a k is always a monomorphism. In the pointed context, the NV -kernel
of a morphism f: X — Y is the classical kernel of this morphism; in the total context,
the N-kernel of f: X — Y is simply the identity morphism 1.

For a relation o = (01, 02): R = X on an object X, we denote by o* the largest
subrelation of p which is a monic star. Such a star exists whenever the A/-kernels
exist, since in this case it is given by o* = (01k, 02k): K = X, where k: K — R is
the N-kernel of ¢;. In particular, if Ax: X = X is the discrete equivalence relation
on X, we have A% = (kx,kx): K = X, where kx: K — X, is the N-kernel of 1y.

A kernel star (or a star-kernel) of a morphism f: X — Y is a star k = (K1, ka):
K = X such that fr1 = frs and, for any other star &’ = (k], x5): K’ = X such that
fr] = fr), there exists a unique morphism u: K’ — K such that ku = &':

K—=x-lovy.

1/

K/
It is easy to see that, in the presence of AN -kernels, the kernel star of an arrow
f: X =Y is given by Eq(f)* = X.
In the pointed context, the notion of a kernel star of a morphism becomes the

classical notion of a kernel of a morphism, while in the total context it gives the
notion of a kernel pair of a morphism. Let us then consider a commutative diagram

§—=X
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of stars and morphisms: fo = kg means that fo; = k19 and foz = kog. Such a
diagram is called a star-pullback when, given a star ¢’ : S’ = X and a morphism
g': 8" — K such that fo' = kg, there exists a unique morphism h: S’ — S such
that oh = ¢’ and gh = ¢'.

Definition 2.3 ([10]). A star-regular category is a regular multi-pointed category
(C,N') with N-kernels in which every regular epimorphism is a coequaliser of a star.

In the total context, a star-regular category is simply a regular category. In the
pointed context, a star-regular category is the same as a normal category in the
sense of [19], i.e., a regular category in which any regular epimorphism is a normal
epimorphism.

The following lemma provides a characterisation of those arrows that are mono-
morphisms in terms of their kernel star:

Lemma 2.4. In a star-regular category C, the following conditions are equivalent for
a morphism f: X — Y:

(1) f: X =Y is a monomorphism;
(2) Eq(f)" = Ax;
(8) The projections p1: Eq(f)* — X and p2: Eq(f)* — X are equal.

Proof. It is obvious that that (1) implies (2), and let us prove that (2) = (1). For
this, we observe that the correspondence ¢: KernelPairs — KernelStars mapping
any kernel pair Eq(f) in a star-regular category C to its corresponding star Eq(f)*
is a bijection, since any regular epimorphism in C is the coequaliser of its kernel
star. Accordingly, Eq(f)* = A% implies that Eq(f) = Ax, and f: X — Y is then a
monomorphism. Finally, the implication (2) = (3) is clear, whereas (3) = (2) easily
follows from the universal properties of the kernel stars Eq(f)* and A%. O

In the total context, Lemma 2.4 says, in particular, that f is a monomorphism if
and only if Eq(f) = Ax; in the pointed context, it says that f is a monomorphism
if and only if its kernel ker (f) is trivial: ker (f) =0 (see [5] for the case of normal
categories).

Corollary 2.5. A span Y P X—2>7 ina star-regular category C is a relation

if and only if Eq(f)* N Eq(g)* = A%.

Proof. This follows from Lemma 2.4 and the fact that “starring” preserves meets,
ie., Eq(f)* A Eq(g)* = (Eq(f) A Eq(g))" (see Lemma 2.6 in [10]). O

The following proposition extends to the star-regular context some properties well
known in the total and in the pointed contexts, and are needed for our work.

Proposition 2.6. In a star-reqular category C, the following conditions hold:
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(1) Consider a commutative diagram

E

where (¢, d) is jointly monomorphic. Then
Eq(f)" = Eq(a)” A Eq(b)".

(2) Given a commutative diagram

Bq(f) ==z x 1>y

]|

Eq(g)* =W =Y

of stars and morphisms, the left-hand side diagram is a star-pullback.

(8) For a commutative diagram

f

HY

HYZ

K—>x
L w
where k and | are the N-kernels of f and g, respectively, the left square is a
pullback.

H

In order to prove the main result of this article, we need an additional assumption
on the star-regular category. This property is referred to as having enough trivial
objects in [9] (see also [12], and the references therein, for the related notion of a
closed ideal of morphisms). There are several equivalent conditions defining when a
category has enough trivial objects (see Proposition 3.5 in [9]). For the purpose of
the present article, the following will be the most suitable one:

Definition 2.7 ([9]). Let (C, ) be a regular multi-pointed category with N-kernels.
C has enough trivial objects when, for any relation (r1,72): R = X in C and any arrow
f: K — R such that vy f,rof € N, one then has that f € N.

Example 2.8. Tt is clear that both in the total context and in the pointed context C
has enough trivial objects. Besides the pointed and the total contexts, one can also
consider the so-called proto-pointed context introduced in [10]: this is the situation of
a regular multi-pointed category (C, ') with A/-kernels, where the class N consists of
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the morphisms f: X — Y whose regular image is the smallest subobject of Y. Recall
also that a finitely complete category is quasi-pointed [3] if it has an initial object 0,
a terminal object 1, and the unique arrow 0 — 1 is a monomorphism. As explained
in [9] any quasi-pointed category provides an example of proto-pointed context: it
suffices to choose for N the class of morphisms that factor through the initial object.
Also, in the quasi-pointed context, C clearly has enough trivial objects.

Proposition 2.9. Let C be a star-regular category. If the following diagram

(01,02)

A—>BxB

l |51

C ——DxD

(K1,K2)

is a pullback with o1,k1 € N, then the following commutative diagram

A B
gl if
C:H>>D

led
_
=

of stars and morphisms is a star-pullback. The converse is true when f is a mono-
morphism and C has enough trivial objects.

Lemma 2.10. Let (r1,r2): R = X be a reflexive relation on an object X in a star-
reqular category C, and let (rik,rak): R* = X be the star associated with R. An
arrow q: X =Y is the coequaliser of (rik,rak) if and only if q is the coequaliser of
(’]"1, 7“2) .

Proof. In order to prove the result it suffices to show that an arrow ¢: X — Y
coequalises (r1,r2) whenever it coequalises (rik,rok):

r1
R*L>R*>f>X—q>Y.

Assume then that grik = qrok, where k is the A-kernel of r{. Since r; is a split
epimorphism in a star regular category, r1 is then the coequaliser of its kernel star
(p1,p2): Eq(r1)* = R. Since 7141 = r1p2 € N there are unique morphisms 6; such
that k0; = p; for i € {1,2} as in the diagram

‘91 k
02 M1

Bq(n) ———F R —> X.
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Consequently, we have

(qr2)p1 = qrakbh
= qr1kf; (since ¢ coequalises (r1k,r2k))
=qripm
= gqrips  (since 1 coequalises (i1, f2))
= qr1kts
= qra2kbs
= (qra) 2.

It follows that there exists a unique t: X — Y such that ¢ry = ¢gry. Since the relation

R is reflexive, there is an arrow : X — R such that r10 = 1x = r3d, and this implies
that ¢t = tr10 = grad = ¢, as desired. O

Definition 2.11. A star-regular category C is said to be semi-effective star-regular
when any equivalence relation R = X in C has the following property: if the star R*
associated with R is a subobject of a kernel star Eq(f)*

R* X,

N

Eq(f)*

with ¢ a split monomorphism in C, then R* is itself a kernel star.

Remark 2.12. If the category C has coequalisers of equivalence relations, then C is a
semi-effective star-regular category if and only if for any equivalence relation R =% X
on an object X and g the coequaliser of the equivalence relation R

R X —2 X/R,

N

Eq(q)*

with ¢ a split monomorphism in C, the star R* associated with R is the kernel star
of ¢, i.e., R* = Eq(q)*.

Example 2.13. In the total context, it is obvious that any Barr-exact category is semi-
effective star-regular. More generally, any “efficiently regular category” in the sense
of [4] is a semi-effective star-regular category, since any split monomorphism is a
regular monomorphism. Examples of efficiently regular categories are provided by
the category of topological groups and, more generally, by any category of topological
models of a Mal’tsev algebraic theory (see Section 4.5).

In the pointed context, among the examples of semi-effective star-regular categories
there are also any “category with a good theory of ideals” in the sense of [10], and
any “almost abelian category” in the sense of [24]. These examples, and many other
ones, will be examined in Section 4.
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Birkhoff subcategories

By a regular-epirefiective subcategory D of a regular category C, we mean a full
replete reflective subcategory

with the property that the A-component n4: A — UF(A) of the unit of the adjunc-
tion is a regular epimorphism for each A € C. It is well known that the last require-
ment is equivalent to the fact that I is closed in C under subobjects. D is a Birkhoff
subcategory of C if, moreover, D is closed in C under regular quotients.

Lemma 2.14. Let D be a Birkhoff subcategory of a semi-effective star-reqular cate-
gory (C,N¢). Then D is a semi-effective star-reqular category as well.

Proof. Tt is well known that if C is regular, then I is regular as well. This essentially
follows from the fact that the regular epi-mono factorisation in C of an arrow in D is
still the regular epi-mono factorisation of this arrow in D. Since D is a full subcategory
of C, we can choose the ideal of morphisms of D induced by the ideal of morphisms in
C, so that, for any XY in D, Mp(X,Y) = ANc(X,Y) = N(X,Y). The fact that D is
closed in C under subobjects implies that the A/-kernel of an arrow in D is computed
in the same way in the categories C and D.

The category (D,N) is a regular multi-pointed category. Since it is a regular-
epireflective subcategory of C, any regular epimorphism in D is a regular epimorphism
in C, and (D, N) is a star-regular category.

Consider then the following diagram in D:

R R—=A—1-E,

k
T2
pTls q1
q2

Eq(9)" —— Eqlq)

where R =% A is an equivalence relation in I and Fq(q)* = A is a kernel star of its
coequaliser ¢ (in D), k and [ are the A/-kernels of r; and ¢, respectively, and s is a
split monomorphism with ps = 1+, and ¢;ls = r;k for i € {1,2}. If we look at this
diagram in C, then q is still the coequaliser of (g1, g2) in C, since D is stable in C under
quotients. The category C is semi-effective star-regular, so that (r1k,rek): R* = A is
a kernel star in C of its coequaliser ¢': A — FE’ in C. Moreover, D is stable in C under
quotients, so that E’ lies in D, and (r1k,rok): R* = A is a kernel star in D. O

3. Main result

The following lemma will be needed to prove the main result of this article:

Lemma 3.1. Let C be a semi-effective star-reqular category. Then, given a discrete
fibration of equivalence relations
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over the kernel pair of p, the coequaliser of 1 and my exists.

Proof. Let us build the following diagram:

« k”
_Ba(t) Eq(1)
g q’ N 9 ”1&
R* R D
T2
P2 e1 / (1) WOJ/ ’
. P1
Eq(p) - Eq(p) E———>B,
P2
where
(a) t = ppo;

(b) the morphisms k, k" and k" are the N -kernels of p;,m and t1, respectively;
(¢) w is the unique arrow such that pot; = pyu, for I € {1;2};
(d) g is the unique arrow such that 719 = ¢; and @19 = u.
There is a unique morphism j such that ¢;j = m;, for | € {1;2}. Since (p1,m)
is jointly monomorphic and uj = @1, we have the equality gj = 1g. By assumption
R* = D is then a kernel star, since Eq(t)* = D is a kernel star, and the induced

arrow j’ a split monomorphism. This implies that the coequaliser ¢: D — D/R* of
m k' and mok’ exists, and ¢ is also the coequaliser of m; and 72 by Lemma 2.10. O

Theorem 3.2. Let C be a semi-effective star-reqular category with enough trivial
objects. Then the following conditions for an arrow p: E — B are equivalent:

(1) p is an effective descent morphism;

(2) pis a descent morphism;

(8) p is a regular epimorphism.

Proof. The implication (1) = (2) is trivial, whereas (2) = (3)) is true in any finitely
complete regular category (see Theorem 1.1).

We are now going to prove that (3) = (1). Assume that p: F — B is a regular
epimorphism, and consider the commutative diagram (1) as in Lemma 3.1. We would
like to prove that the equivalence relation R == D is effective.
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Let us then build the commutative diagram

k

o Fad) / q(q\
Z, s B [3 a1
A f! y / ﬂx .
R* R D——>D/R
T2
%2 ®1 / (1) «Pol ‘w
« p1
Eq(p) p Eq(p) — E——>B,

where
(a) ¢ is the coequaliser of m; and 7 (which exists by Lemma 3.1);
(b)
(¢c) k, k' and k" are the N-kernels of p;, m; and ¢, respectively;
(d)

(e) f is the unique arrow such that m f = ¢; and @1 f = .

i is the unique arrow such that gi = g, for h € {1;2};
1 is the unique arrow such that poqn = prt, for h € {1;2};

A similar argument to the one used in Lemma 3.1 (to show that gj = 1g)
implies that fi=1r. We also know that the induced split monomorphism
i': R* — FEq(q)* is an isomorphism, thanks to Lemma 3.1 and to Remark 2.12.

It will suffice to show that the split epimorphism f: E¢(q) — R is a monomor-
phism, and this will imply that i: R — FEq(q) will be an isomorphism, as desired.

For this consider the following commutative cube:

A% Eq(p1)

T«

xEq(f)

‘/ Eq(y)*

RXxR

Eq(m)* L

-1
\

Eq(q)” Eq(q) x Eq(q),

where the back square is a pullback by Corollary 2.5, the front square is a pullback
by Proposition 2.6(1), and the dotted arrow « is induced by the universal property
of this latter pullback. By Proposition 2.6(2), the commutative diagram

Eq(m)* 3

Eq(q1)* —= Eq(q)
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is a star-pullback, and by Proposition 2.9 the bottom square of the cube above is
a pullback. The same arguments are applied to conclude that the right square is a
pullback as well, so that the left square is a pullback. The arrow i” is an isomorphism'
indeed, this follows from Proposition 2.6(2) and (3), the fact that i': R* — Eq(q)* i

an isomorphism, and the assumption that C has enough trivial objects. Accordlngly,
the dotted arrow « is an isomorphism as well. This implies that the projections
fi: Eq(f)* — Eq(q) and fo: Eq(f)* — Eq(q) of the kernel star of f are equal, as
one can see from the commutativity of the following diagram:

A} = R
Eq( )* S —= Eq(q),
2

where kg is the N-kernel of 1. From Lemma 2.4(c) we conclude that f is a mono-
morphism, as desired. O

4. Examples

4.1. Categories with a good theory of ideals

In any regular multi-pointed category C there is a natural notion of ideal, that
extends the one coming from universal algebra considered in [21, 25]. A star-relation
(r1,r72): R = X in C is an ideal if it is the regular image of a kernel star: this means
that there exists a kernel star (k1,ks): K = Y and a regular epi f: Y — X with the
property that f(K) = R. This categorical notion of ideal, introduced in the context
of regular multi-pointed categories in [10], extends the one defined and studied in
regular categories in [14, 15]. It is obvious that any kernel star is an ideal, but the
converse is not true, in general, even for varieties of algebras. When the classes of
ideals and of kernel stars coincide in a star-regular category C, one says that C is a
category with a good theory of ideals [10]. The results in [10] show that, in the total
context, the categories with a good theory of ideals are exactly the exact Goursat
categories [6], whereas, in the pointed context, they are the so-called ideal determined
categories introduced in [13] (in the presence of finite colimits as required in [13]).

Let us then observe that, in the pointed context, the star (rik,r2k): R* = X
associated with an equivalence relation (r1,72): R = X on X is the star whose first
component is the zero arrow, and the second one the normal subobject in the sense
of Bourn [3] associated with R, i.e., the 0-class of R.

In any category C with a good theory of ideals, it is possible to show that any star
(rik,rok): R* = X associated with an equivalence relation (r1,r2): R = X on X is
necessarily a kernel star. Indeed, any such equivalence relation determines a canonical
discrete fibration (re,0): Eq(r;) — R as in the diagram

Eq(r)) —=R

R—— X,
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where o is the arrow (internally) sending an element ((z,y), (z,2)) of Eq(r1) to the
element (y, z) of R. The following pushout

r2

R X
7’1l iq

exists in C, since r; and ry are regular epimorphisms (see [10]). Thanks to the charac-
terisation of the categories with a good theory of ideals given in Theorem 3.8 in [10],
it follows that the induced composite arrow Eq(r1)* — R* — Eq(q)* is a regular epi.
This implies that the canonical monomorphism R* — Eq(q)* is also a regular epi,
thus an isomorphism.

Accordingly, any category C with a good theory of ideals is semi-effective star-
reqular. By Theorem 3.2, when C also has enough trivial objects, any regular epimor-
phism in C is then an effective descent morphism.

The particular case of ideal determined categories has been considered by T. Ever-
aert [8], who arrived at the conclusion that regular epimorphisms therein are effective
for descent by using a completely different approach. Observe that our Theorem 3.2
applies to any star-regular category with enough trivial objects for which the class of
“stars of equivalence relations” coincides with the class of “kernels stars”. This latter
condition is weaker than the one asserting that the class of “ideals” coincide with the
class of ‘kernel stars”.

The property of being a category with a good theory of ideals is stable under
Birkhoff subcategories. More precisely, one has the following

Proposition 4.1. Let D be a reqular-epireflective subcategory of a category C with a
good theory of ideals. Then the following conditions are equivalent:

(1) D is a Birkhoff subcategory of C;
(2) D is a category with a good theory of ideals;

(8) For any span of regular epimorphisms C <7 A R B in D their pushout
(P, f',¢") in C is also their pushout in D.

Proof of (1) = (2). By Lemma 2.14 we know that the category D is star-regular.
Consider then the diagram

-

where f is a regular epimorphism in D, A a kernel star in D and pg the factorisation
(regular epi)-(monic-star) of fA in C. One clearly has that I € D. By assumption u
is then the kernel star of its coequaliser q: B — @ in C. The category D is stable in
C under quotients, and this implies that ¢: B — @ is also the coequaliser of u in D.
Accordingly, p is a kernel star in .

=~
=

sl

—_—

f )
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(2) = (3). Let f: A— B and g: A — C be regular epimorphisms lying in D. In
the category C with a good theory of ideals the pushout square

A—1-p

C——=P
7
always exists: it is obtained by considering the coequaliser ¢’': B — P’ of the regu-
lar image f(Fq(g)*) = B of the kernel star Eq(g)* = A along f (by Theorem 3.8
in [10]). The assumption that I is a category with a good theory of ideals implies
that the pushout (P”, f”,¢”) of f and g exists also in D, and ¢” is the coequaliser
of f(FEq(g)*) = B in D. The canonical comparison n: P’ — P” such that ng’ = ¢" is
a regular epimorphism. The fact that both ¢’ and ¢’ are regular epimorphisms in C
with the same kernel star implies that the arrow n: P’ — P” is an isomorphism.

(8) = (1). Let f: A — B be a regular epimorphism in C, with A € D, and con-
sider the kernel pair (f1, f2): Fq(f) = A of f, which lies in D, since D is stable in
C under subobjects. The projections f1: Eq(f) = A and fo: Fq(f) — A are regular
epimorphisms in D, so that (B, f, f) is their pushout in D by the assumption. This
shows that B € D. O

Observe that Proposition 4.1 is useful to find examples of semi-effective star-regular
categories which are not categories with a good theory of ideals.

This is the case, for instance, for the category Ab; ;. of torsion-free abelian groups.
Indeed, Ab; . is obviously a normal category, and it is also semi-effective star-regular
(see Example 4.4); however, by Proposition 4.1, it does not have a good theory of ide-
als. This is due to the fact that, although Ab, ¢ is a regular-epireflective subcategory
of the category Ab of abelian groups, it is not stable in Ab under quotients.

4.2. Regular epimorphisms in a category with a good theory of ideals

When C is a category, we denote by RegEpi(C) the category of regular epimor-
phisms in C: an object in RegEpi(C) is a regular epi a: A; — Ag in C, and a mor-
phism f: a — b in RegEpi(C) is a pair (fy, f1) of morphisms in C with fo: Ay — By
and f1: Ay — Bj such that foa = bf7.

Lemma 4.2. Let C be a category with a good theory of ideals and enough trivial
objects. Then RegEpi(C) is star-reqular with enough trivial objects.

Proof. The category RegEpi(C) is finitely complete, and it also has coequalisers of
effective equivalence relations since C has pushouts of regular epimorphisms by regu-
lar epimorphisms (see also [8]). Furthermore, a regular epi in RegEpi(C) is simply
given by a pair of regular epimorphisms (fo, f1): @ = b determining a pushout in
C. The assumption that C has enough trivial objects and the characterisation of the
categories with a good theory of ideals given in Theorem 3.8 in [10] allow one to prove
that regular epimorphisms in RegEpi(C) are stable under pullbacks, and RegEpi(C) is
then a regular category. Let us then denote by M the class of morphisms f = (fo, f1)
in RegEpi(C) defined by f = (fo, f1) € M if and only if f; € . This class M is an
ideal of morphisms in RegEpi(C) (since N is an ideal in C), so that (RegEpi(C), M)
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is a regular multi-pointed category. The M-kernel of a morphism f = (fo, f1): a = b
in RegEpi(C) is constructed as follows: one takes the N-kernel k; of f1, and then the
factorisation kgc of ak; as a regular epimorphism ¢ followed by a monomorphism k.
The arrow (ko, k1) is the M-kernel of f in RegEpi(C). Since any morphism in (C, )
has an N-kernel by assumption, then any morphism in RegEpi(C) has an M-kernel.

To see that any regular epimorphism in RegEpi(C) is the coequaliser of its ker-
nel star, consider a regular epimorphism (eg,e1): a — b in RegEpi(C). The induced
arrow c: Fq(e1)* — Eq(eg)* is a regular epimorphism (again by Theorem 3.8 in [10]).
If ((m1, K1), (M2, K2)): ¢ = a is the kernel star of (eq, e1), then (eg, e1) is the coequa-
liser of ((m1, k1), (M2, k2)): ¢ = a, and RegEpi(C) is a star-regular category. If C has
enough trivial objects, it is easy to verify that RegEpi(C) has enough trivial objects
as well. O

Remark 4.3. Tt is not true, in general, that RegEpi(C) has a good theory of ideals
when C is a category with a good theory of ideals (and enough trivial objects). For
instance, in the total context, even when C is abelian, the category RegEpi(C) is
regular but not exact Goursat (= with a good theory of ideals, in the total context).

From Lemma 4.2, and Corollary 2.4 in [8], we get

Corollary 4.4. Let C be a category with a good theory of ideals and enough trivial
objects. Then regular epimorphisms are effective descent morphisms in RegEpi(C).

Under the assumptions of Corollary 4.4 it can be shown that, more generally,
the categories RegEpi(C)" of n-fold regular epimorphisms in C are star-regular with
enough trivial objects (see also Proposition 3.1 in [8]).

4.3. Monomorphisms in a semi-effective star-regular category

Let us denote by Mono(C) the category of monomorphisms in a category C. An
object in Mono(C) is a monomorphism m: M; — My in C and a morphism f: m — n
in Mono(C) is a pair (fo, f1) of morphisms of C with fo: My — Np and f: M7 — Ny
such that fom = nf;. When (C, ) is a regular multi-pointed category, let us denote
by M the class of morphisms k = (ko, k1) of Mono(C) such that kg and k; are in N.
In this way, (Mono(C), M) becomes a regular multi-pointed category as well. The
reader will find it easy to verify the following

Lemma 4.5. Let (C,N) be a semi-effective star-regular category with enough trivial
objects. Then Mono(C) is a semi-effective star-reqular category with enough trivial
objects.

As a consequence, under the assumptions of the lemma above, the regular epimor-
phisms are effective descent morphisms in Mono(C) (see also Example 4.4 in [8]).

4.4. Almost abelian categories

Another class of examples to which Theorem 3.2 applies is provided by the so-
called “almost abelian categories” in the sense of W. Rump [24], also called “Raikov
semi-abelian” [22] in the literature. An almost abelian category can be defined as
an additive category with kernels and cokernels with the property that normal epi-
morphisms are pullback-stable and normal monomorphisms are pushout-stable. As



142 MARINO GRAN AND OLIVETTE NGAHA NGAHA

explained in [23], G. Janelidze has observed that a category C is almost abelian if
and only if it is both homological (in the sense of F. Borceux and D. Bourn [2])
and co-homological. It is well known that, in an almost abelian category, any arrow
f: A — B has a canonical factorisation

A ! B
coker(ker(f))l Tker(coker(f)) (2)
Coim(f) ? Im(f)

with f: Coim(f) — Im(f) a bimorphism, i.e., an arrow which is at the same time
monic and epic. Any almost abelian category C is normal (it is even homological),
and we are now going to prove that it is also semi-effective star-regular (with respect
to the class N of zero arrows). For this, consider a commutative diagram

R* . X,
Im(n)

where n: R* — X is the (Bourn-)normal monomorphism yielding the 0-class of an
equivalence relation R, k = ker(coker(n)) is the kernel of the cokernel coker(n) of n,
and 4 is a split monomorphism. Then, by factorising n = kmicoker(ker(n)) as in dia-
gram (2), we see that the arrow ¢ = coker(ker(n))7 is an epimorphism, as a composite
of two epimorphisms. It follows that ¢ is an isomorphism, and C is a semi-effective
star-regular category, as desired.

We observe that, more generally, any normal category C such that any arrow in
C has a factorisation as an epimorphism followed by a normal monomorphism is
semi-effective star-regular.

It is explained in [24] that any torsion-free subcategory of an abelian category C
is necessarily almost abelian, as is any torsion subcategory of C. Further examples of
almost abelian categories are given, for instance, by the categories of real (or complex)
normed vector spaces, Banach spaces (with bounded linear maps as morphisms), and
also by the category of locally compact abelian groups. By Theorem 3.2 the regular
epimorphisms are then effective descent morphisms in all these categories.

4.5. Categories of topological Mal’tsev algebras

Consider T a Mal’tsev theory, i.e., an algebraic theory containing a ternary
term p(z,y, z) satisfying the identities p(x,z,y) = y and p(z,y,y) = x. The category
T(Top) of topological models of such a theory (i.e., models in the category Top of
topological spaces) is called a category of topological Mal’tsev algebras. The category
T(Top) is a regular category, as shown in [20]. We now prove that T(Top) is semi-
effective star-regular (thinking of (T(Top), ) as a star-regular category with N the
ideal of all morphisms).

When (R, 7r) = (X, 7x) is an equivalence relation in T(Top), and we consider a
commutative diagram
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(Rv TR) (Xa TX)

o

(Eq(f),T)

with the property that 4 is a split monomorphism, then the topology of (R, 7r) is
the one induced by the topology of the product (X x X,7xxx). Accordingly, the
equivalence relation (R, 7g) is the kernel pair of its coequaliser. Hence, the category
T(Top) is semi-effective star-regular and, by Theorem 3.2, every regular epimorphism
is an effective descent morphism in T(Top) (this result is known, see [11] for instance,
although the proof presented here is different).
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