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HIGHER K-THEORY OF KOSZUL CUBES

SATOSHI MOCHIZUKI

(communicated by Charles A. Weibel)

Abstract
The main objective of this paper is to determine generators

of the topological filtrations on the higherK-theory of a noethe-
rian commutative ring with unit A. We introduce the concept
of Koszul cubes and give a comparison theorem between the
K-theory of Koszul cubes with that of topological filtrations.

Introduction

The following generator conjecture is one of the significant problems in commu-
tative algebra and algebraic K-theory. (For the relationship between the generator
conjecture and Serre’s intersection multiplicity conjecture [24], please see the refer-
ences [8], [9]).

Let A be a commutative noetherian ring with unit and p a natural number such
that 0 6 p 6 dimA. LetMp

A denote the category of finitely generated A-modules M
whose support has codimension > p in SpecA. Recall that a sequence of elements
f1, · · · , fq in A is said to be an A-regular sequence if all fi are not unit elements and
if f1 is not a zero divisor of A and if fi+1 is not a zero divisor of A/(f1, · · · , fi) for
any 1 6 i 6 q − 1.

Conjecture 0.1 (Generator conjecture). For any commutative regular local ring
A and any natural number 0 6 p 6 dimA, the Grothendieck group K0(Mp

A) is gen-
erated by cyclic modules A/(f1, · · · , fp) where the sequence f1, · · · , fp forms an A-
regular sequence.

Conjecture 0.1 is equivalent to Gersten’s conjecture for K0. Here is a statement of
Gersten’s conjecture for Kn:
For any commutative regular local ring A and natural numbers n, p, the canonical
inclusionMp+1

A ↪→Mp
A induces the zero map on K-groups

Kn(Mp+1
A )→ Kn(Mp

A),

where Kn(Mi
A) denotes the n-th K-group of the abelian categoryMi

A. (See [10]).

Remark. Conjecture 0.1 is known for the following cases:
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(i) A = B[[T1, · · · , Tn]]/(ΣT 2
i − π), where B is a discrete valuation ring and π is

a prime element in B or an unramified regular local ring A by combining the
result in [22], [21], [11] and [17]. (Please see also related works [2] and [5]).

(ii) p = 0, 1, 2 and dimA (The results are classical for p = 0 and p = dimA and for
p = 1 and p = 2, please see the reference [25]).

Let Mp
A(p) denote the full subcategory of Mp

A consisting of those A-modules M
of projective dimension 6 p. It is well-known that if A is regular, then the canoni-
cal inclusion functor Mp

A(p) ↪→M
p
A induces a homotopy equivalence on K-theory.

(See 5.11). For any endomorphism of A-module φ : F → F between a finitely gener-
ated free A-module F , if we fix a basis α of F , then φ is represented by a square
matrix Φ. We write detα φ or simply detφ for detΦ and call it the determinant of
φ (with respect to α). In connection with Conjecture 0.1, here is a corollary to the
main theorem in this paper.

Theorem 0.2. If A is a local Cohen-Macaulay ring, then for any natural number
0 6 p 6 dimA, the Grothendieck group K0(Mp

A(p)) is generated by modules of the
form

F/〈Imψ1, · · · , Imψp〉,

where F is a finitely generated free A-module and ψk : F → F is an A-module homo-
morphism such that the sequence detψ1, · · · ,detψp forms an A-regular sequence for
any basis of F .

Remark. It is well-known that in general K0(M3
A(3)) is not generated by cyclic mod-

ules A/(f1, f2, f3), where f1, f2, f3 forms a regular sequence. Please see the refer-
ence [7], [18] and [1]. On the other hand, Smoke proved that for any dimA > p > 3,
K0(Mp

A(p)) is generated by cyclic modules A/(f1, · · · , fr) (r > p), where the sequence
f1, · · · , fr forms an A-regular sequence. Please see the reference [25, 4.2].

More generally, the main objective in the paper is to study topological filtrations
on the higher K-theory of a commutative noetherian ring with unit. Inspired by the
works of Gillet and Soulé [12], of Diekert [6], and of Grayson [14], the main method in
the paper is to replace certain full subcategories of modules with the category of cubes
in the category of appropriate modules. More accurately, let us fix a commutative
noetherian ring with unit A, a non-negative integer q and a sequence f1, . . . , fp in A
such that for any bijection σ on the set S = {1, . . . , p}, fσ(1), . . . , fσ(p) is an A-regular
sequence. We put I = (f1, . . . , fp) and fS = {fs}s∈S . LetMI

A(q) denote the category
of finitely generated A-modules M such that ProjdimAM 6 q and SuppM ⊂ V (I).
(See Notations 4.6).

A Koszul cube x associated with f1, . . . , fp is a contravariant functor from [1]×p to
the category of finitely generated projective A-modules PA, where [1] is the totally
ordered set {0, 1} with the natural order 0 < 1 satisfying the condition that for each
1 6 k 6 p and i = (i1, . . . , ip) ∈ [1]×p such that ik = 1, dki := x(i− ek → i) is injective

and Coker dki is in MfkA
A (1), where ek is the k-th unit vector. A morphism between

Koszul cubes is just a natural transformation. We write KosfSA for the category of
Koszul cubes associated with f1, . . . , fp. (See Definition 4.8). A Koszul cube x asso-
ciated with f1, . . . , fp is reduced if for each 1 6 k 6 p and i = (i1, . . . , ip) ∈ [1]×p such
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that ik = 1, fk Coker d
k
i = 0. We write KosfSA,red for the category of reduced Koszul

cubes associated with the family fS = {fs}s∈S . (See Lemma-Definition 5.4). If we
consider a Koszul cube x as a multi-complex, where x(0,...,0) is in degree (0, . . . , 0),
we will take its total complex. (See Definition 3.5). We will prove that for any Koszul
cube x, Hk(Totx) = 0 for k > 0 (See 3.15, 4.19). A morphism between Koszul cubes
f : x→ y is a quasi-isomorphism if H0 Tot f is an isomorphism. We denote the class
of quasi-isomorphisms in KosfSA and KosfSA,red by the same symbol tq. The term
“Koszul” comes from the fact that the total complex of the cube of Example 2.7 is
just the usual Koszul complex associated with {fs}s∈S . We have the morphism of
Waldhausen categories

H0 Tot: (KosfSA , tq)→ (MfS
A (p), i),

where i is the class of all isomorphisms. The next result is the comparison theorem
referred to in the Abstract.

Theorem 0.3 (A part of Corollary 5.14). The exact functor H0 Tot: KosfSA →
MfS

A (p) induces a homotopy equivalence on K-theory:

K(KosfSA ; tq)→ K(MfS
A (p)).

When A is a principle ideal domain, Theorem 0.3 has been proven in [20]. To prove
the theorem above, we develop a resolution theorem for Waldhausen categories. (See
Theorem 1.13). The other ingredient of the proof is giving a quite elementary, but
new algorithm of resolution process of modules by finite direct sums of typical Koszul
cubes. (See Theorem 5.12). The second main theorem is the following:

Theorem 0.4 (See Corollary 6.3). In the notation above, moreover if we assume

that A is regular, then the canonical inclusion functor ι : KosfSA,red ↪→ KosfSA induces
the following homotopy equivalences on K-theory:

K(KosfSA,red)→ K(KosfSA )

K(KosfSA,red; tq)→ K(KosfSA ; tq).

To prove the theorem above, we will utilize the split fibration theorem 2.19 which
is a generalization of Lemma 3.3 in [20]. Theorem 0.4 has the following application
to Gersten’s conjecture:

Corollary 0.5. Gersten’s conjecture for a regular local ring A is equivalent to the
following assertion: For any A-regular sequence {fs}s∈S in A, H0 Tot: KosfSred,A →
M#S−1

A induces the zero maps on K-groups.

The relationship between Gersten’s conjecture and weight of the Adams operations
on Koszul cubes, a higher analogue of generator conjecture will be studied in my
subsequent papers by utilizing Corollary 0.5.

By handling koszul cubes, in particular free Koszul cubes, we will be able to import
linear algebra and combinatorial methods into our research for modules and (perfect)
complexes in my forthcoming papers. On the other hand, since Waldhausen categories
of Koszul cubes are not closed under taking the mapping cylinder functor, many
standard theorems in Waldhausen K-theory, such as the generic fibration theorem
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and the approximation theorem in the literature do not apply directly. The paper is
devoted to the concept of Koszul cubes, for example, homological algebra for cubes,
and the fundamental technique of manipulating K-theory for Waldhausen category
without assuming the factorization axiom.

Now we give a guide for the structure of this paper. In section 1, we give a resolution
theorem for Waldhausen categories which is a generalization of Quillen’s original one
in [22]. In section 2, we develop the theory of semi-direct products of exact categories
which is initiated in [20]. In section 3, we establish the theory about admissible cubes
in an abelian category which is a categorical variant of the concept about regular
sequences. We will calculate homology groups of the total complex associated with an
admissible cube and utilizing this, we give several characterizations of admissibility.
Finally we extend the notion of semi-direct products to that of multi semi-direct
products of a family of exact categories. In section 4, we define Koszul cubes and
by combining results in the previous sections, we describe the category of Koszul
cubes by multi semi-direct products of the exact categories of pure weight modules.
In section 5, we give the algorithm of resolution process as mentioned above and as
its corollary we get the first main result. In the final section, assuming the regularity
of A, we will prove a dévissage theorem for Koszul cubes.

Conventions.
(1) Set theory

(i) Throughout this paper, we use the letter S to denote a set.
(ii) For a positive integer n, we write (n] for the set of integers k such that

1 6 k 6 n and for a non-negative integer m, we denote the totally ordered
set of integers k such that 0 6 k 6 m by [m].

(iii) For any set S, we write P(S) for its power set. Namely P(S) is the set
of all subsets of S. We consider P(S) to be a partially ordered set under
inclusion. A fortiori, P(S) is a category.

(iv) For a finite set S, we denote the number of elements in S by #S.

(2) Commutative algebra

(i) Throughout this paper, we use the letter R (resp., A) to denote a commu-
tative ring with 1 (resp., commutative noetherian ring with 1).

(ii) For any R, we write R× for the group of units in R.
(iii) If {fs}s∈S is a subset of R, we write fS for the ideal they generate. By

convention, we set f∅ = (0).
(iv) A subring of R is a subring with the same 1 = 1R.
(v) For any R, A, we let PR denote the category of finitely generated pro-

jective R-modules, and let MA denote the category of finitely generated
A-modules.

(3) Category theory

(i) Throughout the paper, we use the letters C and A to denote a category and
an abelian category, respectively.

(ii) For any category C, we denote the class of objects in C by Ob C.
(iii) For any category C, iC or just i means the subcategory of all isomorphisms

in C.
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(iv) For categories X and Y, let us denote the (large) category of functors from
X to Y by HOM(X ,Y).

(v) For categories X and Y, a functor from X to Y, j : X → Y is an inclusion
functor if it is fully faithful and the function between their classes of objects
j : ObX → ObY is injective. We denote an inclusion functor by the arrow
“↪→”.

(4) Exact categories, Waldhausen categories and algebraic K-theory

(i) Basically, for exact categories, we follow the notations in [22] and for alge-
braic K-theory of categories with cofibrations and weak equivalences, we
follow the notations in [29].

(ii) We denote an admissible monomorphism (resp. an admissible epimorphism)
by the arrow “�” (resp. “�”).

(iii) We call a category with cofibrations and weak equivalences a Waldhausen
category.

(iv) For a Waldhausen category (X , w), we denote its S-construction by wS•X
and write K(X ;w) for the K-space Ω|wS•X|. We also write K(X ) for
K(X ; i).

(v) We say that a functor between exact categories (resp. categories with cofi-
brations) f : X → Y reflects exactness if for a sequence x→ y → z in X
such that fx→ fy → fz is an admissible exact sequence (resp. a cofibra-
tion sequence) in Y, x→ y → z is an admissible exact sequence (resp. a
cofibration sequence) in X .

(vi) For an exact category E , we say that its full subcategory F is an exact
subcategory (resp. a strict exact subcategory) if it is an exact category and
the inclusion functor is exact (and reflects exactness).

(vii) Notice that as in [29, p.321, p.327], the concept of subcategories with cofi-
brations (resp. Waldhausen subcategories) is stronger than that of exact
subcategories. Namely we say that C′ is a subcategory with cofibrations
of a category with cofibration C if a morphism in C′ is a cofibration in
C′ if and only if it is a cofibration in C and the quotient is in C′ (up to
isomorphism). That is, the inclusion functor C′ ↪→ C is exact and reflects
exactness. For example, let E be a non-semisimple exact category. Then E
with semi-simple exact structure is not a subcategory with cofibrations of
E , but a exact subcategory of E .

(viii) Let E be an exact category and F a full subcategory of E . We say that F
is closed under kernels (of admissible epimorphisms) if for any admissible
exact sequence x� y � z in E if y is isomorphic to object in F , then x is
also isomorphic to an object in F . (See [31, II.7.0]).

(ix) We say that the class of morphisms w in an exact category E satisfies the
cogluing axiom if (Eop, wop) satisfies the gluing axiom.

(x) A pair of an exact category E and a class of morphisms w in E is said to
be a Waldhausen exact category if (E , w) and (Eop, wop) are Waldhausen
categories.

(xi) For a Waldhausen category (C, w), we write w(C) if we wish to emphasis
that w is the class of weak equivalences in C. We write C for (C, w) when w
is the class of all isomorphisms in C.
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(xii) An object x in a Waldhausen category (C, w) is w-trivial if the canonical
morphism 0→ x is in w. We write Cw for the full subcategory of w-trivial
objects of C.

(xiii) For a Waldhausen category C and subcategories with cofibrations X and
Y of C, let E(X , C,Y) denote the category with cofibrations of cofibration
sequences x� y � z in C such that x is in X and z is in Y.

1. A resolution theorem for Waldhausen categories

In this section, we will prove a resolution theorem for Waldhausen categories by
improving the proof for exact categories in [26]. This theorem is a generalization of
Quillen’s original one in [22]. Let (X , w) be a Waldhausen category and Y a full
subcategory of X closed under extensions in X . In 1.9 and 1.12, we will define the
(strong) resolution conditions of the inclusion functor ι : Y ↪→ X . In this situation, Y
naturally becomes a Waldhausen subcategory and if X is essentially small, then the
canonical map induced by ι, K(Y;w)→ K(X ;w) is a homotopy equivalence 1.13. In
this section, from now on, let (X , w) be a Waldhausen category.

Definition 1.1. Let v be a class of morphisms in a category C. We say that v is a
multiplicative system of C if v is closed under finite compositions and closed under
isomorphisms. Namely

(1) if • f→ • g→ • are composable morphisms in v, then gf is also in v, and

(2) all isomorphisms in C are in v.

For a category C and a multiplicative system v of C, we define the simplicial subcat-
egory C(−, v) in HOM(−, C)

[m] 7→ C(m, v),

where C(m, v) is the full subcategory of HOM([m], C) consisting of those functors
which take values in v. For each m, we denote an object x• in C(m, v) by

x• : x0
ix0→ x1

ix1→ x2
ix2→ · · ·

ixm−1→ xm.

Example 1.2. (cf. [29, 1.1.4.]). For a category with cofibrations (Z,Cof Z) and each
non-negative integer m, we can naturally make FmZ := Z(m,Cof Z) into a category
with cofibrations. Here a morphism a• → a′• is defined to be a cofibration if for each
0 6 j 6 m, aj → a′j and a′j taj aj+1 → a′j+1 are cofibrations in Z.

Example 1.3. (cf. [29, p.336 in the proof of 1.4.3.]). For (X , w) and each non-negative
integer m, we can make X (m,w) into a category with cofibrations by defining the
cofibrations to be term-wised cofibrations in X .

Lemma 1.4. Let D be a full subcategory of a category C, v a multiplicative system
in C and m a non-negative integer. For each x• in C(m, v) if each xi is isomorphic
to an object in D, then x• is isomorphic to an object in D(m, v).

Proof. For each xj , there are an object yj in Y and an isomorphism φj : xj
∼→ yj .

We define the morphism iyj : yj → yj+1 by the formula iyj := φj+1i
x
jφ

−1
j . Since v is a
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multiplicative system, iyj is in v and therefore

y• : y0
iy0→ y1

iy1→ y2
iy2→ · · ·

iym−1→ ym

is an object in D(m, v) and it is isomorphic to x•.

Definition 1.5. Let Y be a full subcategory of X . Y is said to be closed under
extensions in X if for a cofibration sequence x� y � z in X , x and z are isomorphic
to objects in Y, respectively, then y is also isomorphic to an object in Y. In this case,
Y is a Waldhausen category by declaring that a morphism x→ y in Y is a cofibration
in Y if it is a cofibration in X and if y/x is isomorphic to an object in Y and that
a morphism x→ y in Y is a weak equivalence in Y if it is a weak equivalence in X .
From now on, let Y be a full subcategory of X closed under extensions.

Remark 1.6. The extensional closed condition is preserved by equivalences as cate-
gories with cofibrations. That is, let us consider the commutative diagram of cate-
gories with cofibrations

Z
a

//

oiZ

��

W

o iW

��

Z ′
a′

// W ′

with both iZ and iW are fully faithful, essentially surjective and exact and reflect
exactness. If a : Z ↪→W is closed under extensions in W, then a′ : Z ′ ↪→W ′ is also
closed under extensions in W ′.

Lemma 1.7. In the case above, for any non-negative integer m, the inclusion func-
tors

Y(m,w) ↪→ X (m,w),
FmY ↪→ FmX and

SmY ↪→ SmX

are closed under extensions in X (m,w), FmX and SmX , respectively.

Proof. Let us consider a cofibration sequence

x• � y• � z•

in X (m,w) or FmX and assume that x• and z• are isomorphic to objects in Y(m, v)
or FmY, respectively. Then by the definitions (see 1.2 or 1.3), for each 0 6 j 6 m, we
have the cofibration sequence

xj � yj � zj

in X . Therefore by assumption, yj is isomorphic to an object in Y. Now by 1.4, we
learn that y• is isomorphic to an object in Y(m, v) or FmY. This means that Y(m,w),
FmY are closed under extensions in X (m, v) or FmX , respectively. Finally since we
have the functorial equivalence Fm−1X

∼→ SmX as categories with cofibrations, we
notice that SmY is closed under extensions in SmX by 1.6.
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Definition 1.8. In the situation above, we can define the category XY as follows. The
class of objects of XY is same as that of X . A morphism x→ y in XY is a cofibration in
X such that y/x is isomorphic to an object in Y. One can easily prove that morphisms
in XY are closed under compositions, namely it is actually a category by virtue of the
assumption 1.5. Notice that there is the natural inclusion functor j : Cof Y → XY .
Here Cof Y is the category of cofibrations in Y.

Definition 1.9. We say that the inclusion functor ι : Y ↪→ X satisfies the resolution
conditions if it satisfies the following three conditions:

(Res 1) Y is closed under extensions in X .
(Res 2) For any object x in X , there are an object y in Y and a cofibration x� y.

(Res 3) For any cofibration sequence x� y � z in X , if y is in Y, then z is also in
Y.

Lemma 1.10. (cf. [13, Proof of 4.1.], [26, p.524]) If the inclusion functor ι : Y ↪→ X
satisfies the resolution conditions, then XY is contractible.

Proof. Since Cof Y has the initial object, it is contractible. We intend to apply
Quillen’s Theorem A to j : Cof Y → XY and then we will get the result. Fix an
object a in XY and objects x and y in Y such that there is a cofibration sequence
a� x� y. Now we will prove that a/j is contractible. To do so, consider an object
a� b in a/j. Since Y is closed under extensions in X , in the push out diagram

a // //
��

��

F

x // //
��

��

y

b // // b ta x // // y,

where the square F is coCartesian, we can take b ta x in Y. Now there are the natural
transformations

((a� b) 7→ (a� b)) � ((a� b) 7→ (a� b ta x)) � ((a� b) 7→ (a� x))

between the identity functor and the constant functor (a� b) 7→ (a� x) on a/j.
Therefore a/j is contractible.

Lemma 1.11. If ι : Y ↪→ X satisfies the resolution conditions, then for each non-
negative integer n, SnY ↪→ SnX also satisfies the resolution conditions.

Proof. Since the filtered object categories Fn−1X and Fn−1Y are equivalent to SnX
and SnY, respectively, as categories with cofibrations, we just check that the inclu-
sion functor FnY ↪→ FnX satisfies the resolution conditions. The condition (Res 1)
has been proven in 1.7. We first check the condition (Res 2). For a filtered object
x0 � . . .� xn, we have an object y0 in Y and a cofibration x0 � y0 by the assump-
tion (Res 2). For each k < n, if we have a filtered object y0 � . . .� yk in FkY and
a cofibration x0 � . . .� xk to y in FkY, then we have an object yk+1 in Y and a
cofibration yk txk

xk+1 � yk+1 by the assumption (Res 2) again. Therefore induc-
tively, we can find a filtered object y in FnY and a cofibration x� y. Next we check
the condition (Res 3). For a cofibration sequence x� y � z in FnX , if y is in FnY,
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then by applying the assumption (Res 3) term-wisely, we notice that z is also in
FnY.

Definition 1.12. We say that the inclusion functor ι : Y ↪→ X satisfies the strong
resolution conditions if for any non-negative integer m, Y(m,w) ↪→ X (m,w) satisfies
the resolution conditions.

Theorem 1.13 (Resolution theorem). In the notation above, if ι satisfies the
strong resolution conditions and X is essentially small, then the canonical map in-
duced by ι, K(Y;w)→ K(X ;w) is a homotopy equivalence.

Proof. We may assume that X is small. By [29, p.344, p.345 1.5.7], we have the
sequence of homotopy type of a fibration

wS•Y
wS•ι→ wS•X → wS•F•(X ,Y).

Fix non-negative integers n and m. We have the following equalities:

NmwSnF•(X ,Y)
∼→ f•(SnX (m,wSnX ),SnY(m,wSnY))
∼→ f•(Sn(X (m,w)),Sn(Y(m,w))),

where f• denote the simplicial set of objects of F• and for the definition X (m,w)
and so on see 1.3. By the realization lemma [23, Appendix A] or [28, 5.1], and by
replacing X (m,w) and Y(m,w) with X and Y, respectively, we shall just check the
following claim:

Claim. For a small category with cofibrations X and ι : Y ↪→ X a full sub category
closed under extensions. Assume that ι is satisfying the resolution conditions. Then
for each non-negative integer n, f•(SnX ,SnY) is contractible.

If n = 0, this claim is trivial. For n > 1, by 1.11 and by replacing SnX and SnY with
X and Y, respectively, we shall assume n = 1. Now f•(X ,Y) is just the nerve of XY
in 1.8 and therefore we get the result by 1.10.

2. Semi-direct products of exact categories

In this section, we will establish the theory of semi-direct products of exact cate-
gories (with weak equivalences) which is a generalization of [20, §3]. Let us start by
preparing the general terminologies about cubes. Let S be a set, C a category, A an
abelian category and R a commutative ring with 1.

Definition 2.1. We define the category of S-cubes in C by

CubS(C) : = HOM(P(S)op, C).

An object in CubS(C) is said to be an S-cube. Let x be an S-cube in C. For T ∈ P(S)
and k ∈ T , we denote x(T ) by xT and call it a vertex of x (at T ) and we also write

dx,kT or shortly dkT for x(T r {k} ↪→ T ) and call it a (k-direction) boundary morphism
of x.
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Remark 2.2. For a positive integer n, we have the canonical category isomorphism

P((n]) ∼→ [1]×n, S 7→ (χS(k)),

where χS is the characteristic function associated with S. Namely χS(k) = 1 if k is in
S and otherwise χS(k) = 0. Through the isomorphism above, we consider (n]-cubes

to be contravariant functors from [1]×n and call them n-cubes. Cub(n] is abbreviated
to Cubn.

Remark 2.3. For any abelian (resp. exact) category C and a set S, CubS(C) is an
abelian category (resp. exact category by defining the admissible exact sequences to
be termwise admissible exact sequences in C).

Remark 2.4. For a pair of disjoint sets S and T , we have the category isomorphism

P(S)× P(T ) ∼→ P(S t T ), (U, V ) 7→ U ∪ V

and by the exponential law, the isomorphism above induces the category isomorphism

CubStT (C) ∼→ CubS(CubT (C)).

Moreover if C is an abelian (resp. exact) category, then the isomorphism above is an
exact functor.

Definition 2.5 (Homology of cubes). Let us fix an S-cube x in A. For each k, the
k-direction 0-th (resp. 1-th) homology of x is an S r {k}-cube in A denoted by Hk

0(x)
(resp. Hk

1(x)) and defined by Hk
0(x)T := Coker dkT∪{k} (resp. Hk

1(x)T := Ker dkT∪{k}).

The following lemma is sometimes useful to deal with morphisms of cubes:

Lemma 2.6. We have the following assertions:

(1) For any S-cube x, every T , U ∈ P(S) such that T ⊂ U and U r T is a finite set,
the morphism x(T ⊂ U) is described as compositions of boundary morphisms.

(2) Assume that S is a finite set. For any S-cubes x, y and a family of morphisms
f = {fT : xT → yT }T∈P(S) in C, f : x→ y is a morphism of S-cubes in C if and

only if for any T ∈ P(S) and k ∈ T , we have the equality dy,kT fT = fTr{k}d
x,k
T .

Example 2.7 (Typical cubes). Assume that S is a finite set and let fS = {fs}s∈S be
a family of elements in R. The typical cube associated with {fs}s∈S is an S-cube in

PR denoted by TypR(fS) and defined by TypR(fS)T = R and d
TypR(fS),t
T = ft for any

T ∈ P(S) and t ∈ T .

The following lemma is often used when we are dealing with cubes. Its proof is
very easy:
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Lemma 2.8 (Cube lemma). For the diagram below in a category C

a //

��

b

��

x //

��

__>>>>>>>>
y

��

??~~~~~~~~

z

����
��

��
��

// w

��@
@@

@@
@@

@

c // d,

assume that the morphism ~wd is a monomorphism (resp. ~xa is an epimorphism) and
every square except xywz (resp. abdc) is commutative. Then xywz (resp. abdc) is also
commutative.

Definition 2.9. Let E and F be full strict exact subcategories of A. We define the
category F n E as follows. F n E is the full subcategory of Cub1(E) of those mor-
phisms x1 → x0 in E which are monomorphisms with A-cokernel in F .

Proposition 2.10. In the notations above, if F satisfies either condition (1) or (2)
below, then F n E is a full strict exact subcategory of Cub1(A). Moreover,
H0 : F n E → F is exact.

(1) F is closed under extensions, that is, for an exact sequence a� b� c in A, if
a and c are isomorphic to objects in F , respectively, then b is also isomorphic to
an object in F .

(2) F is closed under admissible sub- and quotient objects, that is, for an exact
sequence a� b� c in A, if b is isomorphic to an object in F , then a and c
are also isomorphic to objects in F , respectively.

Proof. We may assume that E and F are closed under isomorphisms in A. That is,
if a is an object in A which is isomorphic to an object in E (resp. F), then a is
also in E (resp. F). We declare that a sequence x→ y → z in F n E is an admissible
exact sequence if it is exact in Cub1(A). Obviously a split short exact sequence in
F n E is an admissible exact sequence. We need to prove that the class of admissible
monomorphisms (resp. admissible epimorphisms) is closed under compositions and
co-base change (resp. base change) along arbitrary morphisms. We just check for
the admissible monomorphisms case. To prove for the admissible epimorphisms case
is similar. For a pair of composable admissible monomorphisms x� y � z, by the
snake lemma in Cub1(A), we have the short exact sequence

y/x� z/x� z/y
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in Cub1(A). Applying the snake lemma to the following diagram

(y/x)1 // //

dy/x

��

(z/x)1

dz/x

��

// // (z/y)1

dz/y

��

(y/x)0 // // (z/x)0 // // (z/y)0,

we learn that dz/x is a monomorphism in A. Now let us assume the condition (1)
(resp. (2)). Then by considering the following short exact sequence in A

H0(y/x) � H0(z/x) � H0(z/y),

(resp. H0(x) � H0(z) � H0(z/x), )

we notice that H0(z/x) is actually in F . Therefore the short exact sequence

x� z � z/x

is an admissible exact sequence in F n E . Hence the class of admissible monomor-
phisms is closed under compositions. Next let us consider morphisms y ← x� z in
F n E . Consider the coproduct y tx z in Cub1(A). We have the following pushout
diagram

x // //

��

z // //

��

z/x

��

y // // y tx z // // z/x

(1)

in Cub1(A). Then since the class of admissible monomorphisms in E is closed under
the co-base change by arbitrary morphisms, (y tx z)i is in E for i = 0, 1. Applying
the snake lemma to the following diagram

y1 // //

dy

��

(y tx z)1

dytxz

��

// // (z/x)1

dz/x

��

y0 // // (y tx z)0 // // (z/x)0,

we learn that dytxz is a monomorphism in A and by applying the functor H0 to the
pushout diagram (1) above, we get the following commutative diagram

H0(x) // //

��

F

H0(z)

��

// // H0(z/x)

H0(y) // // H0(y tx z) // // H0(z/x),

where the horizontal lines are short exact sequences in A. Thus F is coCartesian and
since the class of admissible monomorphisms in F is closed under co-base change by
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arbitrary morphisms, H0(y tx z) is in F . We conclude that y tx z is in F n E and

y � y tx z � z/x

is an admissible exact sequences in F n E .

Definition 2.11. In the situation 2.10, moreover assume that F has the subcategory
w = w(F) containing the class of isomorphisms in F . We define the subcategory
tw(F n E) of F n E as follows. A morphism f : x→ y in F n E is in tw(F n E) if
and only if H0(f) : H0(x)→ H0(y) is in w(F). Then every isomorphism in F n E is
in tw(F n E).

Proposition 2.12. In the notation above, if w(F) satisfies the gluing (resp. cogluing,
saturational, extensional) axiom, then tw(F n E) also does. In particular if (F , w) is
a Waldhausen exact category, then (F n E , tw(F n E)) is also a Waldhausen exact
category and the functor H0 : (F n E , tw(F n E))→ (F , w) is a morphism of Wald-
hausen categories.

Proposition 2.13. In the notation 2.12, moreover assume that (F , w) is a Wald-
hausen category and F is contained in E, then the functor H0 induces a homotopy
equivalence on K-theory:

K(H0) : K(F n E ; tw)→ K(F ;w).

Proof. Define the morphism of Waldhausen categories s : (F , w)→ (F n E , tw) by
x 7→ [0→ x]. Then obviously we have the equality H0 ◦s = id. Moreover there is the
natural weak equivalence id→ s ◦H0 defined by the canonical morphisms

x1

dx

��
x0


→

→


0

��

H0(x)


for any object x in F n E . Therefore by [29, p.330 1.3.1], we learn that wS• H0 is a
homotopy equivalence.

Next let Ei and Fi (i = 1, 2) be full strict exact subcategories of A. Moreover we
suppose that Fi satisfies either condition (1) or (2) in 2.10. Then by 2.10, Fi n Ei is
an exact category.

Proposition 2.14. Assume that the inclusion functors E1 ↪→ E2 and F1 ↪→ F2 are
closed under extensions. That is, for an admissible exact sequence

x� y � z

in E2 (resp. F2) if x and z are isomorphic to objects in E1 (resp. F1), then y is also
in E1 (resp. F1). Then F1 n E1 ↪→ F2 n E2 is also closed under extensions.

Proposition 2.15. Assume that the inclusion functors E1 ↪→ E2 and F1 ↪→ F2 are
closed under taking kernels of admissible epimorphisms. That is, for a short exact
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sequence

x� y � z

in A if z is isomorphic to an object in E2 (resp. F2) and y is isomorphic to an
object in E1 (resp. F1), then x is also isomorphic to an object in E1 (resp. F1). Then
F1 n E1 ↪→ F2 n E2 is also closed under taking kernels of admissible epimorphisms.

Proof of 2.14 and 2.15. Let us consider the short exact sequence below in Cub1(A)

x1 // //

dx

��

y1 // //

dy

��

z1

dz

��
x0 // // y1 // // z1.

If dz and dx are monomorphisms (resp. dy is a monomorphism), then dy (resp. dx) is
also. In this case, observing the 3× 3 commutative diagram below

x1 // //

dx

��

y1 // //

dy

��

z1

dz

��
x0 // //

����

y1 // //

����

z1

����

H0(x) // // H0(y) // // H0(z),

we learn that if the condition 2.14 (resp. 2.15) is verified and if z is isomorphic to
an object in F1 n E1 (resp. F2 n E2) and if x (resp. y) is isomorphic to an object in
F1 n E1, then y (resp. x) is also isomorphic to an object in F1 n E1.

Remark 2.16. The assertions 2.14, 2.15 and its dual imply the following statements:

(1) Assume that the inclusion functors E1 ↪→ E2 and F1 ↪→ F2 are closed under
admissible sub- and quotient objects, then F1 n E1 is also closed in F2 n E2.

(2) Let E , F be full subcategories of A closed under extensions in A. Then F n E is
closed under extensions in Cub1(A).

Proposition 2.17. In the notation above, moreover let us assume the following two
conditions:

(1) F2 is a full subcategory of E2.

(2) Every object in E1 is a projective object in E2 and every object in F1 is a projective
object in F2.

Then all objects in F1 n E1 are projective objects in F2 n E2.
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Proof. Let us consider the left diagram in F2 n E2 below

x
f

  @
@@

@@
@@

s

��
�
�
�

y
t

// // z,

H0(x)

H0(f)

##H
HH

HH
HH

HH

σ

��
�
�
�

H0(y)
H0(t)

// // H0(z),

where x is an object in F1 n E1 and t is an admissible epimorphism. Then by applying
H0 to the diagram, we get the right diagram in F2 above. Since H0(x) is a projective
object in F2, there is a morphism σ : H0(x)→ H0(y) which makes the right diagram
above commutative.

Claim. There is a morphism s′ : x→ y such that H0(s
′) = σ and ts′ is chain homo-

topic to f .

Proof of claim. Let us consider the left diagram of admissible exact sequences below

x1 //
dx

//

s′1

��
�
�
�

x0
πx

// //

s′0

��
�
�
�

H0(x)

σ

��

y1 //

dy

// y0
πy

// // H0(y),

x1 //
dx

//

(f−ts′)1

��

x0
πx

// //

(f−ts′)0

��

h

���
�

�
�

�
H0(x)

0

��

z1 //

dz

// z0
πz

// // H0(z).

Since x0 is a projective object in E2, we have a morphism s′0 : x0 → y0 which makes
the diagram above commutative. Therefore by the universality for the kernel of dy,
we also have a morphism s′1 : x1 → y1 in the left commutative diagram above. Then
we have the equalities H0(f) = H0(t)σ = H0(ts

′). Therefore we have πz(f − ts′)0 = 0.
By the universality for the kernel of πz, we have a morphism h : x0 → z1 such that
(f − ts′)0 = dzh. Since dz is a monomorphism, we also have the equality (f − ts′)1 =
hdx. Hence we get the desired result.

Since x0 is a projective object in E2, we have a morphism u : x0 → y1 such that
t1u = h.

x0

u

��
�
�
�

h

  B
BB

BB
BB

B

y1
t1

// // z1

We put s1 := s′1 + udx and s0 := s′0 + dyu. Then we can easily check that s is a
morphism of complexes and f = ts.

Definition 2.18. Let H ↪→ G be strict exact subcategories of A. Assume that G
satisfies either condition (1) or (2) in 2.10. Moreover assume that G has a class of
weak equivalences wG which satisfies the axioms of weak equivalences in [29]. We put
v := wG ∩ H and it is a class of weak equivalences in H. We define the new class of
weak equivalences lv(G nH) in G nH as follows. A morphism f : x→ y in G nH is
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in lv(G nH) if and only if fi : xi → yi for i = 0, 1 is in vH. We call a morphism in
lv(G nH) a level weak equivalence.

We can easily check that (G nH, lv) is a Waldhausen category.

Proposition 2.19 (Abstract split fibration theorem). Let G, H, w and v be as
in 2.18. Then we have split fibration sequences

K(H; v)→ K(G nH; lv)→ K(G;w) and

K(H)→ K(G nH)→ K(G).

Proof. Let us denote the category of acyclic complexes in G nH by (G nH)q. Since
(G nH)q is closed under extensions in G nH, it naturally becomes a Waldhausen cat-

egory and the association x 7→ [x
idx→ x] gives an equivalence between H and (G nH)q

as Waldhausen categories. On the other hand, there is an equivalence of Waldhausen
categories

G nH ∼→ E((G nH)q,G nH,G),

x 7→




x1

idx1

��
x1


idx1→

→
dx


x1

dx

��
x0


→

→


0

��

H0(x)



 ,

where E((G nH)q,G nH,G) is the exact category of admissible exact sequences
x� y � z in G nH such that x is in (G nH)q and z is in G. Moreover E((G nH)q,
G nH,G) has the natural class of weak equivalences lv induced from G nH. Hence by
the additivity theorem in [29, Proposition 1.3.2.], we get the first fibration sequence.
The second fibration sequence is given by taking w = iG and v = iH the class of all
isomorphisms in G and H and by the equality liH = iGnH in the first situation.

Definition 2.20 (Adroit systems). An adroit (resp. a strongly adroit) system in
an abelian category A is a triple X = (E1, E2,F) consisting of strict exact subcate-
gories E1 ↪→ E2 ←↩ F of A such that they satisfies the following conditions (Adr 1),
(Adr 2), (Adr 3) and (Adr 4) (resp. (Adr 1), (Adr 2), (Adr 3) and (Adr 5)):

(Adr 1) F n E1 and F n E2 are strict exact subcategories of Cub1A.
(Adr 2) E1 is closed under extensions in E2.
(Adr 3) Let x� y � z be an admissible exact sequence in A. Assume that y is

isomorphic to an object in E1 and z is isomorphic to an object in either E1
or F . Then x is isomorphic to an object in E1.

(Adr 4) For any object z in E2, there is an object y in E1 and an admissible epi-
morphism y � z in E2.

(Adr 5) For any non-negative integer m and any object z in HOM([m], E2), there
is an object y in HOM([m], E1) and an admissible epimorphism y � z in
HOM([m], E2).
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Theorem 2.21. Let X = (E1, E2,F) be a triple of strict exact subcategories
E1 ↪→ E2 ←↩ F of A and w a class of morphisms in F such that (F , w) is a Wald-
hausen exact category. Then

(1) If the triple X is an adroit (resp. a strongly adroit) system, then the inclusion
functor of opposite categories

(F n E1)op ↪→ (F n E2)op(resp. ((F n E1)op, twop) ↪→ ((F n E2)op, twop))

satisfies the resolution (resp. strong resolution) conditions in 1.12. In particular
we have a homotopy equivalence on K-theory:

K(F n E1)→ K(F n E2)

(resp. K(F n E1; tw)→ K(F n E2; tw)).

(2) (Abstract weight declension theorem). If the triple X is a strongly adroit
system, then the exact functor H0 : (F n E1, tw)→ (F , w) induces a homotopy
equivalence on K-theory:

K(H0) : K(F n E1; tw)→ K(F ;w).

(3) If the triple X is an adroit system, then for i = 1, 2, the exact functor

θi : F n Ei → F × Ei which sends a morphism x = [x1
f→ x0] to an ordered pair

(H0(x), x1) gives a homotopy equivalence on K-theory:

K(F n Ei)→ K(F)×K(Ei).

Proof. Proof of assertion (1): Let us fix a non-negative integer m. We will only prove
that the inclusion functor (F n E1(m, tw))op ↪→ (F n E2(m, tw))op satisfies the reso-
lution conditions in 1.9 when X is a strongly adroit system. When m = 0, this yields
the case when X is adroit. The condition (Res 1) follows from 1.7 and 2.14. We can
easily check the condition (Res 3) from assumption (Adr 3) and 1.4. Next we check
the condition (Res 2). For each x in F n E2(m,w), by assumption (Adr 5), we have
an object y0 in HOM([m], E1) and an admissible epimorphism y0 � x0. Then for
each 0 6 i 6 m, we put y1(i) := Ker(y0(i) � x0(i) � H0 x(i)). We have the following
commutative diagram:

y1(i) // //

��

��

x1(i)
��

��

y0(i) // //

����

x0(i)

����

H0 x(i) H0 x(i).

By assumption (Adr 3), we notice that y is in HOM([m],F n E1). Since the mor-
phism y(i) � x(i) is a quasi-isomorphism for each 0 6 i 6 m, we learn that y is in
F n E1(m,w). Therefore we get the result.
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Proof of assertion (2): We have the factorization

K(H0) : K(F n E1; tw)
I→ K(F n E2; tw)

II→ K(F ;w),

where the maps I and II are homotopy equivalences by (1) and 2.13, respectively.

Proof of assertion (3): The inclusion functors F n E1 ↪→ F n E2 and E1 ↪→ E2
induce the commutative diagram below:

K(F n E1)
K(θ1)

//

o
��

K(F)×K(E1)

o
��

K(F n E2)
K(θ2)

∼
// K(F)×K(E2).

Here the vertical maps are homotopy equivalences by (1) and the resolution theo-
rem 1.13 and the bottom map K(θ2) is a homotopy equivalence by 2.19. Therefore
the map K(θ1) is also a homotopy equivalence.

3. Admissible cubes

In this section we define and study the notion of an admissible cube in an abelian
category which is a categorical variant of the concept about regular sequences. We
calculate the homologies of the total complexes of admissible cubes in 3.13 and as
its applications, we give a characterization of admissible cubes in terms of their faces
and total complexes as in 3.15 and an inductive characterization of admissibility as
in 3.16. Finally by utilizing the notion of admissibility, we extend semi-direct products
to multi semi-direct products of exact categories as in 3.18. Let us start by organizing
the general phraseologies of cubes. Let A be an abelian category.

Definition 3.1 (Restriction of cubes). Let U , V be a pair of disjoint subsets of
S. We define the functor iVU : P(U)→ P(S), A 7→ A ∪ V and it induces the natural

transformation (iVU )
∗
: CubS → CubU . For any S-cube x in a category C, we write

x|VU for (iVU )
∗
x and it is called restriction of x (to U along V ).

Example 3.2 (Faces of cubes). For any S-cube x in a category C and k ∈ S, x|{k}Sr{k},

x|∅Sr{k} are called the backside k-face of x, the frontside k-face of x, respectively. By

a face of x, we mean any backside or frontside k-face of x.

Recall the definition of Hu
0 and Hu

1 for cubes from 2.5.

Lemma 3.3. For any S-cube x in an abelian category and any pair of disjoint subsets
U and V and any element u in U , we have

Hu
p(x|VU ) = Hu

p(x)|VUr{u} for p = 0, 1. (2)

Proof. We will only prove the equation (2) for p = 0. For any subset T of U r {u},
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the following equalities show the equation (2) for p = 0:

Hu
0 (x|VU )|T = Coker((x|VU )Tt{u}

d
x|VU ,u

Tt{u}→ (x|VU )T )

= Coker(xV tTt{u}
dx,u
V tTt{u}→ xV tT ) = Hu

0 (x)V tT = (Hu
0 (x)|VUr{u})T .

Definition 3.4 (Degenerate cubes, non-degenerate cubes). Let x be an S-cube
in a category C.
(1) For k ∈ S, we say that x is degenerate along the k-direction if dx,kTt{k} is an

isomorphism for any T ∈ P(S r {k}).
(2) We say that x is non-degenerate if no boundary morphism of x is an isomorphism.

Definition 3.5 (Total complexes). For an n-cube x in an additive category B, we
associate the complex Totx, called the total complex of x, defined as:

(Totx)k :=
⊕

T∈P((n])#T=k

xT .

The boundary morphisms dTot xk : (Totx)k → (Totx)k−1 are defined by

(−1)
n∑

t=j+1

χT (t)

djT : xT → xTr{j}

on its xT component to xTr{j} component. Here χT is the characteristic function

associated with T . (See 2.2). For a general finite set S, let us fix a bijection α : (n]
∼→ S.

Then we can consider any S-cubes to be n-cubes by α. Therefore we can define the
total complex of an S-cube x which is denoted by Totα x or simply Totx. Next
moreover let us assume that B is an abelian category. We say that a morphism
f : x→ y between S-cubes in B is a quasi-isomorphism if Tot f : Totx→ Tot y is a
quasi-isomorphism. We denote the class of quasi-isomorphisms inCubn B by tqCubn B
or shortly tq.

Definition 3.6 (Spherical complex). Let n be an integer. We say that a complex
z in an abelian category A is n-spherical if Hk(z) = 0 for any k 6= n.

From now on, in this section, let us assume that S is a finite set and let x be an
S-cube in an abelian category A.

Example 3.7 (Motivational example). Let {fs}s∈S be a family of elements in A which
forms a regular sequence in any order. Then for any 1 6 k 6 #S and any distinct
elements s1, · · · , sk in S, the boundary maps in the cube Hs1

0 (· · · (Hsk
0 (TypA(fS))) · · · )

are injections where TypA(fS) is the typical cube associated with {fs}s∈S (See 2.7).

Definition 3.8 (Admissible cubes). If #S = 1, x is said to be admissible if its
boundary morphism is a monomorphism. Inductively, for #S > 1, x is called admis-
sible if its boundary morphisms are monomorphisms and if for any k in S, Hk

0(x) is
admissible. By convention, we say that x is admissible if S = ∅.
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Remark 3.9. The name “admissible” comes from [29, p.331]. In [29, p.323 1.1.2],
Waldhausen give a characterization of admissibility of squares. More precisely, for a
square of monomorphisms in A below

a // //
��

��

b
��

��

c // // d,

it is admissible if and only if the induced morphism c ta b→ d is a monomorphism.

Remark 3.10. Assume that #S > 2. Then x is admissible if and only if for any distinct
elements t, s1, · · · , sr in S (1 6 r 6 #S − 1),

Ht
1(x) and Ht

1(H
s1
0 (Hs2

0 (· · · (Hsr
0 (x)) · · · )))

are trivial.

Lemma-Definition 3.11. For a pair of disjoint subsets U and V ∈ P(S) such that
k := #U > 2, let us assume that x|VU is admissible. We denote the all distinct elements
of U by i1, . . . , ik. Then we have the canonical isomorphism:

Hi1
0 (Hi2

0 (· · · (Hik
0 (x)) · · · ))V

∼→ H
iσ(1)

0 (H
iσ(2)

0 (· · · (Hiσ(k)

0 (x)) · · · ))V ,

where σ is a bijection on U . In this case we put

HU
0 (x)V := Hi1

0 (Hi2
0 (· · · (Hik

0 (x)) · · · ))V .

We also put H∅
0(x) := x. Notice that HT

0 (x) is an S r T -cube for any T ∈ P(S).

Proof. We may assume that U = S and V = ∅ by replacing x|VU with x. Since every
bijection on S is expressed in compositions of substitutions of two elements, we shall
just check the assertion for any substitution of two elements σ. Since for a pair of
distinct elements i, j ∈ S, x is considered to be a {i, j}-cube in CubSr{i, j}A by 2.4,
we shall assume that S = {i, j}. In this case, by 3× 3-lemma (See for example [30,
Exercise 3.2.1]), we learn that Hj

0(H
i
0(x))∅ and Hi

0(H
j
0(x))∅ are canonically isomorphic

to the object y in the diagram below.

x{i, j} // //
��

��

x{i}
��

��

// // Hj
0(x){i}
��

��

x{j} // //

����

x∅ // //

����

Hj
0(x)∅

����

Hi
0(x){j}

// // Hi
0(x)∅

// // y.

Lemma 3.12. Assume that x is admissible. Then, for any pair of disjoint subsets U
and V of S, x|VU is admissible. In particular, all faces of x are also admissible when
#S > 1.
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Proof. If #U 6 1, then the assertion is trivial. We assume that #U > 2. For any
distinct elements u, s1, · · · , sr of U , since Hu

1 (x) and Hu
1 (H

s1
0 (Hs2

0 (· · · (Hsr
0 (x)) · · · )))

are trivial by assumption and 3.10, Hu
1 (x|VU ) and Hu

1 (H
s1
0 (Hs2

0 (· · · (Hsr
0 (x|VU )) · · · ))) are

also trivial by the equalities

Hu
1 (x|VU ) = Hu

1 (x)|VUr{u},

Hu
1 (H

s1
0 (Hs2

0 (· · · (Hsr
0 (x|VU )) · · · ))) = Hu

1 (H
s1
0 (Hs2

0 (· · · (Hsr
0 (x)) · · · )))|VUr{u,s1,··· ,sr}

which come from 3.3. Hence x|VU is admissible.

Proposition 3.13. Let us assume that S is a non-empty set and all faces of x are
admissible. Then

(1) For any element k in S, we have the following isomorphisms

ωp
k,S,x : Hp(Totx)

∼→

{
Hk

p(H
Sr{k}
0 (x)) for p = 0, 1

0 otherwise

which is functorial in the following sense: For any S-cube y in A such that all
faces are admissible and for any morphism f : x→ y of S-cubes, the following
diagram is commutative for p = 0, 1:

Hp Totx
Hp Tot(f)

//

oωp
k,S,x

��

Hp Tot y

o ωp
k,S,y

��

Hk
p H

Sr{k}
0 (x)

Hk
p H

Sr{k}
0 (f)

// Hk
p H

Sr{k}
0 (y).

(2) In particular, if x is admissible, then we have the isomorphisms.

ηpS,x : Hp(Totx)
∼→

{
HS

0 (x) for p = 0

0 otherwise.

Proof. First we prove that assertion (1) implies assertion (2). Assume x is admissible.

Then all faces of x and H
Sr{k}
0 (x) for all k ∈ S are admissible by 3.12 and the

definition of admissibility. In particular Hk
1 H

Sr{k}
0 (x) is trivial. Hence we obtain

the result by (1).
Next we will prove assertion (1). We proceed by induction on the cardinality of

S. Let us assume that the assertion is true for any S r {k}-cubes in A which satisfy

the assumption. For simplicity, we put T = S r {k} and y1 = x|{k}T and y0 = x|∅T and

d := dx,kT . We regard x as the {k}-cube x = [y1
d→ y0] in CubT A. Since we have the

isomorphisms TotCone d
∼→ ConeTot d

∼→ Totx, there is a distinguished triangle

Tot y1
Tot d→ Tot y0 → Totx

+1→ (3)

in the homotopy category of bounded complexes on A. Here Hp Tot yq is trivial for
any p > 1 and q = 0, 1 by the inductive assumption and assertion (2). Therefore the
long exact sequence induced from the distinguished triangle (3) shows that Hp Totx
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is trivial for p > 2 and yields the top exact sequence in the commutative diagram
below.

0 // H1 Totx //

ω1
k,S,x o

��
�
�
�
�
�
�
�
�

H0 Tot y1
H0 Tot d

//

oη0
T,y1

��

H0 Tot y0 //

o η0
T,y0

��

H0 Totx //

ω0
k,S,xo

��
�
�
�
�
�
�
�
�

0

HT
0 (y1) HT

0 (y0)

0 // Hk
1 H

T
0 (x)

// HT
0 (x){k}

d
HT
0 (x),k

{k}

// HT
0 (x)∅

// Hk
0 H

T
0 (x)

// 0.

Then there are the isomorphisms ωp
k,S,x : Hp Totx

∼→ Hk
p H

T
0 (x) for p = 0, 1 which

make the diagram above commutative. By construction, ωp
k,S,x is functorial.

Corollary 3.14. For a pair of disjoint finite subsets U , V of S, let us assume that
x|VU is admissible. Then we have the isomorphisms below:

Hp(Tot(x|VU ))
∼→

{
HU

0 (x)V for p = 0

0 otherwise.

Proof. If U = ∅, we have the equality x|VU = xV = H∅
0(x)V . Therefore the assertion

is obvious. If U 6= ∅ applying 3.13 to x|VU and noticing that the equality HU
0 (x|VU )∅ =

HU
0 (x)V , we get the result.

Corollary 3.15. The following conditions are equivalent:

(1) x is admissible.

(2) Totx is 0-spherical and all faces of x are admissible.

Proof. Condition (1) implies condition (2) by 3.12 and 3.13 (2). Conversely let us
assume that x satisfies condition (2). We may assume #S > 1. We prove that for any
disjoint pair V and W ∈ P(S)r {S} and k ∈W , the boundary morphism

d
HV

0 (x),k
W : HV

0 (x)W → HV
0 (x)Wr{k}

is a monomorphism. If #(S r V ) = 2, set x′ equal to x|Wr{k}
V t{k} and then we can identify

the boundary morphism above with the following morphism

d
H0(x

′),k
{k} : H0(x

′){k} → H0(x
′)∅.

Therefore the assertion follows from admissibility of x′. If S r V is the singleton {k},
thenW = {k} and by 3.13, we have the isomorphisms Hk

1(H
Sr{k}
0 (x))

∼→ H1(Totx) =
0. This means that we get the desired result.

Corollary 3.16 (Inductive characterization of admissibility). Assume that S
is a non-empty set. Then the following conditions are equivalent:
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(1) x is admissible.

(2) For some s ∈ S, x satisfies the following three conditions:

(i) x|{s}Sr{s}, x|
∅
Sr{s} are admissible.

(ii) dx,sTt{s} is a monomorphism for any T ∈ P(S r {s}).
(iii) Hs

0(x) is admissible.

(3) For any s ∈ S, x satisfies the three conditions (i), (ii) and (iii) in (2).

Proof. We can easily check that condition (1) implies condition (3) and condition (3)
implies condition (2). We need only prove that condition (2) implies condition (1).
We prove this assertion by induction on #S. If #S = 1, the assertion is trivial. For
#S > 1, we will prove that

(a) all faces of x are admissible, and

(b) Totx is 0-spherical.

Proof for assertion (a): We prove that for any k ∈ S, the faces x|{k}Sr{k} and x|∅Sr{k}
are admissible. If k = s, it is just condition (i). If k 6= s, then they satisfy conditions
(i), (ii) and (iii) and therefore by the inductive hypothesis, they are admissible.

Proof for assertion (b): Fix an element t ∈ S r {s}. Since we have the isomorphism

H
Sr{t}
0 (x)

∼→ H
Sr{s, t}
0 (Hs

0(x)),

we learn that H
Sr{t}
0 (x) is admissible by condition (iii). In particular, Ht

1(H
Sr{t}
0 (x))

is trivial. On the other hand, by 3.13, we have the isomorphism

Hp(Totx)
∼→

{
Ht

p(H
Sr{t}
0 (x)) for p = 0, 1

0 otherwise.

Therefore we notice that Totx is 0-spherical. Hence by 3.15, x is admissible.

Corollary 3.17. For a subset T ⊂ S, if the following two conditions are verified,
then x is admissible:

(1) x is degenerate along the k-direction for any k ∈ T .
(2) x|∅SrT is admissible.

Proof. Since for any element in t ∈ T , we have the equality

(x|∅Sr(Tr{t}))|
∅

SrT
= x|∅SrT ,

by the induction of #T , we shall assume that T is the singleton T = {k}. In this
case, x satisfies conditions (i), (ii) and (iii) in 3.16 (2) for s = k. Therefore x is
admissible.

Definition 3.18 (Multi semi-direct products). Let F = {FT }T∈P(S) be a family
of full subcategories of A. Then
(1) We definenF = n

T∈P(S)
FT themulti semi-direct product of the family F as follows.

n
T∈P(S)

FT is the full subcategory of CubS(F∅) consisting of those cubes x such

that x is admissible and each vertex of HT
0 (x) is in FT for any T ∈ P(S). If S is

a singleton, then n
T∈P(S)

FT is just the semi-direct product FS n F∅ in 2.9.
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(2) Suppose in addition that FS has a class of weak equivalences w = w(FS). Then
a morphism f : x→ y in nF is said to be a total weak equivalences if HS

0 (f) is
in w. We denote the class of total weak equivalences in nF by tw( n

T∈P(S)
FT ) or

simply tw.

Proposition 3.19. Let F = {FT }T∈P(S) be a family of full subcategories of A. Then

(1) For each s ∈ S, we have the equality

n
T∈P(S)

FT =

(
n

T∈P(Sr{s})
FTt{s}

)
n
(

n
T∈P(Sr{s})

FT

)
.

(2) In the equality in (1), the class of quasi-isomorphisms in n
T∈P(S)

FT is equal to

the class of weak equivalences induced from the class of quasi-isomorphisms in
n

T∈P(Sr{s})
FTt{s} as in 2.11. Namely we have the equality

tw

(
n

T∈P(S)
FT

)
= t

(
tw

(
n

T∈P(Sr{s})
FTt{s}

))
.

(3) In the situation (2), we have the equality(
n

T∈P(S)
FT

)tw

=

(
n

T∈P(Sr{s})
FTt{s}

)tw

n
(

n
T∈P(Sr{s})

FT

)
.

Proof. Proof of assertion (1): Let us fix an element s ∈ S. For simplicity, we put

G =

(
n

T∈P(Sr{s})
FTt{s}

)
n
(

n
T∈P(Sr{s})

FT

)
.

Let x be an object in nF . To prove that x is in G, we need to check the following
two assertions:

(a) x|{s}Sr{s}, x|
∅
Sr{s} are in n

T∈P(Sr{s})
FT .

(b) Hs
0(x) is in n

T∈P(Sr{s})
FTt{s}.

We put W = ∅ or W = {s}. First let us notice that x|WSr{s} and Hs
0(x) are admissible

by admissibility of x. For each T ∈ P(S r {s}) and V ∈ P(S r (T t {s})), we have
the equalities

HT
0 (H

s
0(x))V = H

Tt{s}
0 (x)V and (4)

HT
0 (x|WSr{s})V = HT

0 (x)V tW . (5)

Therefore both objects above are in FTtW . Hence we get assertions (a) and (b) and
we learn that x is in G. Conversely next let x be an object in G. Since x satisfies
conditions (i), (ii) and (iii) in by 3.16 (2), x is admissible. Moreover by the equalities
(4) and (5) above, we learn that HT

0 (x)V is in FT for any disjoint pair of subsets T ,
V ∈ P(S). Therefore x is in nF.
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Proof of assertion (2): By 3.14, a morphism f : x→ y in

n
T∈P(S)

FT

is a quasi-isomorphism if and only if H0(Tot f) : H0(Totx)→ H0(Tot y) is an isomor-
phism. Since H0(Tot z) = H0(TotH

s
0(z)) (z = x, y), this condition is equivalent to the

assertion that the induced morphism Hs
0(f) : Hs

0(x)→ Hs
0(y) is a quasi-isomorphism.

Hence we get the result.

Proof of assertion (3): By virtue of the equality in (1), we may assume that S
is a singleton. Namely #S = 1. For simplicity we put E = F∅ and F = FS . For any
object x in F n E , the canonical morphism 0→ x is in tw if and only if the canonical
morphism 0→ H0(x) is in w and the last assertion is equivalent to H0(x) being in
Fw. Hence we get the desired result.

Corollary 3.20. Let E = {ET }T∈P(S) and F = {FT }T∈P(S) be families of subcate-
gories of A such that for each T ∈ P(S), FT ↪→ ET are strict exact subcategories of
A and the inclusion functor ET ↪→ A is closed under extensions. Then

(1) nE is closed under extensions in CubS A. In particular nE naturally becomes
an exact category.

(2) If FT ↪→ ET is closed under extensions (resp. taking admissible sub- and quo-
tient objects, taking kernels of admissible epimorphisms, taking finite direct sum)
for any T ∈ P(S), then the inclusion functor nF ↪→ nE is also closed under
extensions (resp. taking admissible sub- and quotient objects, taking kernels of
admissible epimorphisms, taking finite direct sum).

(3) Assume that the following two conditions hold:

(i) For any pair of subsets T ⊂ U in S, EU is full subcategory of ET .
(ii) For any subset T in S, every object in FT is a projective object in ET . Then

every object in nF is a projective object in nE.

Proof. Utilizing the inductive description of nE and nF as in 3.19 (1), we get the
results by induction and 2.14, 2.15, 2.16 and 2.17.

Remark 3.21. Let F = {FT }T∈P(S) be a family of strict exact subcategories of A.
Assume that for any disjoint decomposition S = U t V , n

T∈P(U)
FTtV is a strict exact

subcategory of CubU (A).
(1) Since boundary morphisms of admissible cubes are monomorphisms, for each

s ∈ S, the functor

Hs
0 : n

T∈P(S)
FT → n

T∈P(Sr{s})
FTt{s}

is exact. Moreover by induction on the number of elements, we learn that for any
W ∈ P(S),

HW
0 : n

U∈P(S)
FU → n

T∈P(SrW )
FWtT

is also an exact functor.
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(2) In particular, since for the functors HS
0 , H0 Tot: n F→ FS , we have the iso-

morphism HS
0

∼→ H0 Tot by 3.13 (2), H0 Tot is also an exact functor from nF to
FS .

4. Koszul cubes

In this section, we define Koszul cubes in 4.8 and relate them to semi-direct prod-
ucts of exact categories of pure weight modules as in 4.20. The pivot of the theory is
Theorem 4.15 which says that the total complexes associated with free non-degenerate
Koszul cubes are 0-spherical. Let us commence defining and recalling elementary facts
about regular sequences. Let R (resp., A) be a commutative ring with 1 (resp., com-
mutative noetherian ring with 1).

By an A-sequence we mean an A-regular sequence f1, · · · , fq such that any per-
mutation of the fj is also an A-regular sequence.

Example 4.1. We enumerate fundamental properties of A-sequences from [19, §16].
(1) For any A-regular sequence f1, · · · , fq and a prime ideal p in A such that fi ∈ p for

any i ∈ (q], f1, · · · , fq is an Ap-regular sequence in Ap. In particular if f1, · · · , fq
is an A-sequence, then it is also an Ap-sequence in Ap.

(2) For any A-regular sequence f1, · · · , fq and positive integers µ1, · · · , µq, f
µ1

1 , · · · ,
f
µq
q is again an A-regular sequence. In particular if f1, · · · , fq is an A-sequence,
then fµ1

1 , · · · , fµq
q is also an A-sequence.

(3) Any A-regular sequence contained in the Jacobson radical of A is automatically
an A-sequence.

The following lemma might be well-known. But I do not know a reference and we
give a proof in minute detail:

Lemma 4.2. Let R be a commutative ring with unit and f1, · · · , fn, g1, · · · , gn ele-
ments in R. We put hi = figi for each 1 6 i 6 n and assume that each fi is not a unit
and the sequence h1, · · · , hn is an R-sequence. Then f1, · · · , fn is also an R-sequence.

Proof. If n = 1, f1 is actually a non zero divisor. For n > 1, by induction on n, we

shall only check that if for some elements x and y
(0)
i in R (1 6 i 6 n), we have the

equality

fnx =

n−1∑
i=1

fiy
(0)
i , (6)

then we have the equality x =
n−1∑
i=1

fizi for some elements zi in R. Multiplying the

equality (6) by g =
n∏

i=1

gi, we get the equality

hn

(
n−1∏
i=1

gi

)
x =

n−1∑
i=1

hi

(
g

gi
y
(0)
i

)
.

Since the sequence h1,· · · ,hn is an R-sequence, there are elements y
(1)
1 , · · · , y(1)n−1 in
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R such that (
n−1∏
i=1

gi

)
x =

n−1∑
i=1

hiy
(1)
i .

Now let us define the polynomials ϕx,i(Y1, · · · , Yn−1) in R[Y1, · · · , Yn−1] (1 6 i 6 n)
by the formula

ϕx,i(Y1, Y2, · · · , Yn−1) =



g1(x − f1Y1) if i = 1 and n = 2

g1


n−1∏

j=2

gj

 x − f1Y1

 −
n−1∑
j=2

hjYj if i = 1 and n > 3

gi


 n−1∏

j=i+1

gj

 x − fiYi

 −

i−1∑
j=1

fjYj +

n−1∑
j=i+1

hjYj

 if 2 6 i 6 n − 2

gn−1(x − fn−1Yn−1) −
n−2∑
j=1

fjYj if i = n − 1 and n > 3

x −
n−1∑
j=1

fjYj if i = n.

Claim. For 1 6 i 6 n− 1, if ϕx,i = 0 has a solution in R, then the equation ϕx,i+1 = 0
also has a solution in R.

Proof of claim. Let a system Yj = yj (1 6 j 6 n− 1) be a solution of ϕx,i = 0. If gi
is a unit, then the system

Yj =

{
g−1
i yj if j 6= i

yi if j = i

is a solution of ϕx,i+1 = 0. If gi is not a unit, then by inductive hypothesis, the
sequence

g1 (if i = 1 and n = 2)

h2, · · · , hn−1, g1 (if i = 1 and n > 3)

f1, f2, · · · , fi−1, hi+1, · · · , hn−1, gi (if 2 6 i 6 n− 2 and n > 4)

f1, · · · , fn−2, gn−1 (if i = n− 1 and n > 3)

is an R-sequence. Therefore we have elements zj in R (1 6 j 6 n− 1, j 6= i) such
that the system

Yj =

{
zj if j 6= i

yi if j = i

is a solution of ϕx,i+1 = 0.

Since the system Yj = y
(1)
j (1 6 j 6 n− 1) is a solution of ϕx,1 = 0, by induction on

i, finally we have a solution of ϕx,n = 0 and this is just the desired result.

The following assertion is a very basic fact about regular sequences and useful to
handle Koszul cubes:

Lemma 4.3. For a non-zero divisor f in R, an R-sequence g, h in R, we have the
equalities

R×
f ∩R = {r ∈ R; fm = ru for some m ∈ N, u ∈ R} and

R×
g ∩R×

h = R×

in the total quotient ring of R.
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Proof. We will give a proof of the second equality above. An element u ∈ Rg ∩Rh is of

the form u =
x

gn
=

y

hm
for some positive integers n andm. Then we have the equality

hmx = gny. Since the sequence gn, hm is an R-sequence by 4.1 (2), there is an element

z in R such that x = gnz and therefore u =
z

1
. Hence we have Rg ∩Rh = R in the

total quotient ring of R and it implies the desired equality R×
g ∩R×

h = (Rg ∩Rh)
×
=

R×.

Next we will make ready for the general jargons of cubes in the category of Modules
over a commutative ring with unit R.

Definition 4.4 (Free, projective, finitely generated cubes). We say that a
cube x in the category of R-Modules is free (resp. projective, finitely generated) if all
vertexes of x are free (resp. projective, finitely generated) R-Modules.

Definition 4.5 (Localization of cubes in the category of Modules). For any
S-cube x in the category of R-Modules and a multiplicative subset S ⊂ R, S−1x will
denote the S-cube in the category of S−1R-Modules defined by (S−1x)T := S−1(xT )
for any T ∈ P(S). IfS = {fn}n>0 (reps. Ar p) for some element f ∈ R (resp. a prime
ideal p in R), we write xf (resp. xp) for S

−1x.

Definition 4.6. Let the letter p be a natural number or ∞ and I an ideal of A. Let
MI

A(p) denote the category of finitely generated A-modules M such that
ProjdimAM 6 p and SuppM ⊂ V (I). We write MI

A for MI
A(∞). Since this cat-

egory is closed under extensions inMA, it can be considered to be an exact category
in the natural way. Notice that if I is the zero ideal of A, then MI

A(0) is just the
category PA.

Remark 4.7. In [15], a pseudo-coherent OX -Module on a scheme X is said to be of
Thomason-Trobaugh weight q if it is supported on a regular closed immersion Y ↪→ X
of codimension q and if it is of Tor-dimension 6 q. The following are equivalent for any
finitely generated A-module M and any ideal I which is generated by an A-regular
sequence f1, · · · , fr:
(1) The quasi-coherent OSpecA-module associated withM is of Thomason-Trobaugh

weight r supported on V (I).

(2) M is inMI
A(r).

This is a consequence of the two facts that TordimAM = ProjdimAM (see [30,
Proposition 4.1.5]) and that SpecA/I → SpecA is a regular closed immersion of codi-
mension r.

In this section, from now on, assume that S is a finite set and let {fs}s∈S be an
A-sequence and let us fix 0 6 p 6∞.

Definition 4.8 (Koszul cube). A Koszul cube x associated with {fs}s∈S is an S-
cube in the category of finitely generated projective A-modules PA such that for each
subset T of S and k in T , dkT is an injection and Coker dkT is inMfkA

A (1). We denote

the full subcategory of CubS PA consisting of those Koszul cubes associated with
{fs}s∈S by KosfSA . Notice that if S = ∅, then KosfSA is just the category PA.
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Example 4.9. The typical cube associated with {fs}s∈S in 2.7 is obviously a non-
degenerate free Koszul cube associated with {fs}s∈S .

By 4.1 (1), we can get the following lemma easily:

Lemma 4.10 (Localization of Koszul cubes). Let x be a Koszul cube associated
with an A-sequence {fs}s∈S and p a prime ideal in A. We put T := {t ∈ S; ft ∈ p}.
Then

(1) xp is degenerate along the t-direction for any t ∈ S r T .

(2) xp|∅T is a Koszul cube associated with the Ap-sequence {ft}t∈T .

Lemma-Definition 4.11 (Determinant of free Koszul cubes). Let x be a free
Koszul S-cube associated with {fs}s∈S . Then

(1) All vertexes of x have same rank.

(2) By virtue of (1), if we fix bases α of all vertexes of x, a boundary map dk,xT of x

is represented by a square matrix Dk,x
T and we write detα d

k,x
T or simply det dk,xT

for detDk,x
T . For each T ∈ P(S), k ∈ T , there is a unit element uT,k such that

det dx,kS = uT,k × det dx,kT . We call the family {det dx,kS }k∈S consisting of elements
in A determinant of x (with respect to the bases α) and denote it by detα x or
simply detx. If we change bases of x into others, then detx is changing up to
units.

Proof. First we prove assertion (1). For any T ∈ P(S), k ∈ T , since Coker dx,kT is

inMfkA
A (1), we learn that dx,kT induces the isomorphism (xT )fk

∼→ (xTr{k})fk
. This

isomorphism implies the equality rankxT = rankxTr{k}. Hence we get the result.
Next we prove assertion (2). We need only check that for any T ∈ P(S) and a
pair of distinct elements k, k′ ∈ T , there is a unit element vT,k,k′ in A such that

det dx,kT = vT,k,k′ × det dx,kTr{k′}. Since in the total quotient ring of A, we have the

equality vT,k,k′ : =
det dx,kT

det dx,kTr{k′}

=
det dx,k

′

T

det dx,k
′

Tr{k}

, the element vT,k,k′ is in A×
fk
∩A×

fk′ .

Hence by 4.3, we learn that vT,k,k′ is the desired element.

Corollary-Definition 4.12 (Non-degenerate part of Koszul cubes). Let x be
a Koszul S-cube. If for some T ∈ P(S), t ∈ T , dx,tT is an isomorphism, then x is
degenerate along the t-direction. We put

Nx := {s ∈ S;x is not degenerate along the s-direction.}

and call xnondeg := x|∅Nx
the non-degenerate part of x.

Proof. We need to check that for any U ∈ P(S) such that t ∈ U , dx,tU is an isomor-
phism. Let us notice that the property of isomorphisms between modules is a local
property. We fix a prime ideal p in A and put V := {s ∈ S; fs ∈ p}. By 4.10 and
replacing A, x with Ap, (xp)|V , respectively, we shall assume that A is local and x is

free Koszul cube. Then by 4.11 (2), det dx,tT is equal to det dx,tU up to a unit element.
Hence we get the result.
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Lemma 4.13. Let φ : R⊕n → R⊕n be a homomorphism of R-modules and assume
that Cokerφ is annihilated by a non-zero divisor g ∈ R. Then
(1) There exists an element b ∈ R and a non-negative integer m such that we have

the equality detφ× b = gm.

(2) detφ is a non-zero divisor in R.

(3) φ is an injection.

Proof. Localizing by g, we get the surjection R⊕n
g

φg� R⊕n
g . Since in general, a sur-

jective homomorphisms between finitely generated free modules with same ranks are
isomorphisms, it turns out that detφg is in R×

g . Therefore we get assertion (1) by 4.3.
Since g is a non-zero divisor, detφ is also a non-zero divisor. Hence we get assertion
(2). Let φ∗ be the adjugate of φ, namely φ∗ : R⊕n → R⊕n is an R-module homo-
morphism such that φ∗φ = detφ idR⊕n . Since detφ idR⊕n is an injection, we conclude
that φ is also an injection.

Recall the definition of non-degenerate cubes from 3.4.

Proposition 4.14. For any non-degenerate free Koszul S-cube x, detx is an A-
sequence.

Proof. Since x is non-degenerate, for each s ∈ S, det dx,sS is not a unit element.
By 4.13, there are a family of positive integers {ms}s∈S such that det dx,sS is a divisor
of fms

s for each s ∈ S. Therefore by 4.1 (2) and 4.2, detx forms an A-sequence.

Theorem 4.15. For any non-degenerate free Koszul S-cube x, Totx is 0-spherical.

To prove the theorem, we use the Buchsbaum-Eisenbud Theorem 4.18 below.

Definition 4.16 (Fitting ideal). Let U be an m× n matrix over A, where m and n
are positive integers. For t in (min(m,n)] we then denote by It(U) the ideal generated
by the t-minors of U , that is, the determinant of t× t sub-matrices of U .

For an A-module homomorphism φ : M → N between free A-modules of finite
rank, let us choose a matrix representation U with respect to bases of M and N .
One can easily prove that the ideal It(U) only depends on φ. Therefore we put
It(φ) := It(U) and call it the t-th Fitting ideal associated with φ.

Definition 4.17 (Grade). For an ideal I in A, we put

SI := {n; There are f1, · · · , fn ∈ I which forms an A-regular sequence.},

and

grade I :=


0 if SI = ∅
maxSI if SI is a non-empty finite set

+∞ if SI is an infinite set.

Theorem 4.18 (Buchsbaum-Eisenbud [4]). For a complex of free A-modules of
finite rank.

F• : 0→ Fs
φs→ Fs−1

φs−1→ → · · · → F1
φ1→ F0 → 0,

set ri :=
s∑

j=i

(−1)j−i rankFj. Then the following are equivalent:
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(1) F• is 0-spherical.

(2) grade Iri(φi) > i for any i in (s].

Proof of Theorem 4.15. Without loss of generality, we may assume that S = (n] and
x is a free non-degenerate Koszul cube associated with an A-sequence f1, · · · , fn. We
put m = rankx and

ri =

n∑
j=i

(−1)j−i rankTotTyp(fS)j =

n∑
j=i

(−1)j−i

(
n
j

)
.

Then we have
n∑

j=i

(−1)j−i rankTotx = mri.

It is well-known that in this case, the complex TotTyp(fS) is 0-spherical. (See [30,

Corollary 4.5.4]). Therefore by 4.18, it follows that grade Iri(d
TotTyp(fS)
i ) > i for any

i in (n]. Now inspection shows that for each i ∈ (n], Iri(d
TotTyp(fS)
i ) ⊂ Imri(d

Tot x
i ).

Therefore we use Theorem 4.18 again, it turns out that x is 0-spherical.

Corollary 4.19. A Koszul cube is admissible.

Proof. Let x be a Koszul cube associated with an A-sequence {fs}s∈S . Since the
notion of admissibility is a property of certain exactness of morphisms of modules,
we learn that it is a local property. We take a prime ideal p of A and put T :=
{s ∈ S; fs ∈ p}. Then by 3.17, 4.10, 4.12 and replacing A, x with Ap, ((xp)|T )nondeg,
respectively, we shall assume that A is local and x is a non-degenerate free Koszul
cube. We are going to prove the assertion by induction of #S and check that x
satisfies the conditions in 3.15 (2). For #S = 1, the assertion is trivial. Now we assume
that #S > 1. Since every faces of x are again non-degenerate free Koszul cubes, by
inductive hypothesis, they are admissible. On the other hand, Totx is 0-spherical
by 4.15. Therefore we get the result.

Recall the definition for n from 3.18 andMfT
A (#T ) from 4.6.

Corollary 4.20. We have the equality

KosfSA = n
T∈P(S)

MfT
A (#T ).

Proof. For any Koszul cube x associated with the A-sequence {fs}s∈S , we need to
check the following two assertions:

(1) x is admissible.

(2) For any T ∈ P(S) and U ∈ P(S r T ), HT
0 (x)U is inMfT

A (#T ).

Assertion (1) has been proven in 4.19. We prove assertion (2). First let us notice that
we have

SuppHT
0 (x)U ⊂ ∩

t∈T
SuppHt

0(x)U ⊂ ∩
t∈T

V (ft).

By 3.14, Tot(x|UT ) is a projective resolution of HT
0 (x)U and therefore

ProjdimA HT
0 (x)U 6 #T.

This means that HT
0 (x)U is inMfT

A (#T ).



40 SATOSHI MOCHIZUKI

5. Koszul resolution theorem

In this section, we will prove the first main theorem 5.14 by utilizing theorem 2.21.
To check the hypothesis in 2.21, the key ingredient is Koszul resolution theorem 5.12
which gives a resolution process of pure weight modules by finite direct sums of typical
Koszul cubes. Let us recall that A is a commutative noetherian ring with unit and in
this section, let us fix a finite set S and an A-sequence fS = {fs}s∈S and the letter p
means a non-negative integer or ∞. Recall the definition ofMI

A(q) from 4.6.

Definition 5.1 (Reduced modules). An A-moduleM inMfS
A is said to be reduced

if fSM = 0. The full subcategory of reduced A-modules is just MA/fSA. We write

MfS
A,red(p) for the full subcategory of reduced modules inMfS

A (p). SinceMfS
A,red(p) is

closed under taking sub- and quotient objects inMfS
A (p), applying Lemma 5.3 below,

we learn thatMfS
A,red(p) naturally becomes an exact category. We also writeMfS

A,red

forMfS
A,red(∞).

Notation 5.2. To emphasize the contrast with the index red, we sometimes denote
MfS

A (p), KosfSA and so on byMfS
A,∅(p), KosfSA,∅, respectively.

Lemma 5.3. Let E be an exact category and F a full subcategory which satisfies the
following two conditions:

(1) F is closed under taking finite direct sums. In particular F has a zero object 0.

(2) F is closed under taking admissible sub- and quotient objects in E. That is, for
an admissible exact sequence in E

x� y � z,

if y is isomorphic to an object in F , then x and z are also.

Then we can consider F as an exact category by declaring that a sequence x� y � z
is an admissible exact sequence in F if and only if it is in E.

Proof. For simplicity, we may suppose that F is closed under isomorphisms in E .
Namely for an object x in F and an object y in E , if x ∼→ y, then y is also in F .
We shall just check that the class of admissible monomorphisms (resp. admissible
epimorphisms) in F is closed under compositions and co-base (resp. base) change by
arbitrary morphisms. We only check for the admissible monomorphisms case. For the
admissible epimorphisms case, almost the same arguments work.

Let x� y and y � z be admissible monomorphisms in F . By (2), z/x can be
taken in F . Therefore the sequence

x� z � z/x

is an admissible exact sequence in E and the composition x� z is an admissible
monomorphism in F .
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Next consider the following commutative diagram in E :

x // //

��

F

y // //

��

z

x′ // // y′ // // z,

where the square F is coCartesian and we assume that x, y, z and x′ are in F . Then
by [16, p.406 step 1], we have an admissible exact sequence

x� x′ ⊕ y � y′.

By (1), x′ ⊕ y is in F and by (2), y′ is also in F .

Recall the definition of n from 3.18.

Definition 5.4. Let S = U t V be a disjoint decomposition of S.

(1) We define the categoriesMA(fU ; fV )(p),MA,red(fU ; fV )(p) which are full subcat-

egories of CubV MA by

MA,?(fU ; fV )(p) = n
T∈P(V )

MfUtT

A,? (p+#T ),

where ? = ∅ or red. In particular, we write KosfSA,red for MA,red(f∅; fS)(0). This

notation is compatible with the equality (7) in 5.5 (3). A cube in KosfSA,red is said
to be a reduced Koszul cube (associated with an A-sequence {fs}s∈S).

(2) A morphism f : x→ y inMA,?(fU ; fV )(p) is a (total) quasi-isomorphism if Tot f
is a quasi-isomorphism. We write tq(MA,?(fU ; fV )(p)) or simply tq for the class
of total quasi-isomorphisms inMA,?(fU ; fV )(p).

Remark 5.5. In the notation above, using 3.20, we have the following:

(1) MA(fU ; fV )(p) is closed under extensions in CubV MA. In particular it becomes
an exact category in the natural way.

(2) MA,red(fU ; fV )(p) ↪→MA(fU ; fV )(p) is closed under taking finite direct sums and
admissible sub- and quotient objects. In particular,MA,red(fU ; fV )(p) naturally
becomes an exact category by virtue of 5.3.

(3) By 4.20, we have the equality

MA(f∅; fS)(0) = KosfSA . (7)

(4) By definitions of multi semi-direct products in 3.18 (1) and MA,?(fU ; fV )(p),
cubes inMA,?(fU ; fV )(p) are admissible. A morphism f : x→ y inMA,?(fU ; fV )(p)

is a total quasi-isomorphism if and only if HV
0 (f) is an isomorphism by 3.13 (2).

(5) We put FT :=MfT
A (p+#T ) for any T ∈ P(S) and F = {FT }T∈P(S) and for any

disjoint decomposition S = U t V , we put F|UV := {FUtT }T∈P(V ). Then since
we have the equality nF|UV =MA,?(fU ; fV )(p+#U), the family F satisfies the
condition 3.21.
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Remark 5.6. Let S = U t V be a disjoint decomposition of S with V 6= ∅. Then for
any v ∈ V , by 3.19 (1) and (3), we have the following equalities

MA,?(fU ; fV )(p) =MA,?(fUt{v}; fVr{v})(p+ 1)nMA,?(fU ; fVr{v})(p)

MA,?(fU ; fV )(p)
tq

=MA,?(fUt{v}; fVr{v})(p+ 1)
tq nMA,?(fU ; fVr{v})(p)

for ? = ∅ or red.

To prove Proposition 5.8, we need to recall the following facts:

Review 5.7. Notice that for a short exact sequence of A-modules

0→ N → N ′ → N ′′ → 0,

we can easily prove the following assertions by utilizing the Ext-criterion of projective
dimensions. (see [30, pd Lemma 4.1.6]).

(1) If ProjdimAN
′′ 6 n+ 1 and ProjdimAN

′ 6 n, then ProjdimAN 6 n.

(2) If ProjdimAN 6 n and ProjdimAN
′′ 6 n, then ProjdimAN

′ 6 n.

Proposition 5.8. Let n be an integer such that #S 6 n <∞ and ? = ∅ or red. Then
(1) MfS

A,?(n) is closed under extensions and taking kernels of admissible epimor-

phisms inMfS
A,?(n+ 1).

(2) Moreover the inclusion functor of opposite categories

(MfS
A,?(n))

op
↪→ (MfS

A,?(n+ 1))
op

satisfies the resolution conditions in 1.9. In particular, we have a homotopy equiv-
alence on K-theory:

K(MfS
A,?(n))→ K(MfS

A,?(n+ 1)).

Proof. For (1), we need only check the projective dimension conditions and they are
easily done by (1) and (2) in 5.7. For (2), we need to prove the following two assertions
for ? = ∅ and red, respectively.

(a) For anyM ∈MfS
A (n+ 1), there exists an A-module N inMfS

A,?(n) and an admis-
sible epimorphism N �M .

(b) For any admissible short exact sequence L� N �M inMfS
A,?(n+ 1), if N and

M are inMfS
A,?(n), then L is also inMfS

A,?(n).

Proof of assertion (a): For any M ∈MfS
A (n), there are positive integers ts such that

f tss M = 0 for any s ∈ S. We put gs := f tss and B := A/J , where J is the ideal gener-
ated by {gs}s∈S . Therefore we can consider M to be a finitely generated B-module
and there is a surjection from a finitely generated free B-module N to M . Since
ProjdimAN = #S, N is in MfS

A (n). If M is reduced, we can take ts = 1 for each
s ∈ S. Then in this case N is also reduced.

Proof of assertion (b): We get the result by 5.7 (1) for ? = ∅. If N is reduced, then
L is also reduced.

Corollary 5.9. For ? = ∅ or red, any disjoint decomposition S = U t V and any
integer p > #U , MA,?(fU ; fV )(p) is closed under extensions and taking kernels of
admissible epimorphisms inMA,?(fU ; fV )(p+ 1).
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Proof. By virtue of 3.20 (2), we need only check thatMfTtU

A,? (p+#T ) is closed under

extensions and taking kernels of admissible epimorphisms inMfTtU

A,? (p+ 1 +#T ) for
any T ∈ P(V ). This was done in 5.8.

Remark 5.10. Let us assume that A is Cohen-Macaulay. Recall that a commutative
noetherian ring C is Cohen-Macaulay if and only if every ideal of height at least p
contains an C-regular sequence of length p. (See [3, §2.5, Proposition. 7].) Notice that
the ordered set X of all ideals of A that contains an A-regular sequence of length p
with usual inclusion is directed. ThereforeMp

A(p) is the filtered limit lim−→gS
MgS

A (p),

where gS runs through any regular sequence such that #S = p.

Corollary 5.11. Let us assume that A is regular. Then for any natural number p,
the inclusion functorMp

A(p) ↪→M
p
A induces a homotopy equivalence on K-theory:

K(Mp
A(p))→ K(Mp

A).

Proof. By regularity of A, we may ignore the projective dimension condition in 5.8
(2). The assertion follows from 5.8 (2) and 5.10.

Theorem 5.12 (Koszul resolution theorem). Let n be a non-negative integer,
S = U t V a disjoint decomposition of S and p > #U an integer. Fix an object
z ∈ HOM([n],MA(fU ; fV )(p+ 1)),

z : z(0)→ z(1)→ · · · → z(n).

(1) For each s ∈ S, there is a family of non-negative integers {ms}s∈S such that
fmu
u z(j)T = 0 for any T ∈ P(V ), j ∈ [n] and u ∈ U and fmv

v H0(Tot(z(j))) = 0
for any j ∈ [n] and v ∈ V . We put gs = fms

s for each s ∈ S and B := A/gU ,
where gU is the ideal generated by {gu}u∈U .

(2) There is an object y ∈ HOM([n],MA(fU ; fV )(#U)) such that for each i ∈ [n],
y(i) is of the following form:

y(i) =
⊕

T∈P(V )

TypB(g
T
V )

⊕lT (i)

and such that there is an admissible epimorphism y � z. Here the notation gTV
means the family {gχT (v)

v }v∈V , where χT is the characteristic function associated
with T (see 2.2) and for the definition of the typical Koszul cube Typ, see 2.7.

Proof. Since z(j)T is inMfU
A for any T ∈ P(V ) and H0(Tot(z(j))) is inMfS

A , assertion
(1) is trivial. We are concentrating on proving assertion (2). We first prove that for
the case n = 0 by induction on #V . In this case, we consider z to be an object
in MA(fU ; fV )(p+ 1). Let us assume that V = ∅. Since z is a finitely generated B-
module, there is an integer l1 and a surjection B⊕l1 → z. We put y = B⊕l1 and
by 5.8, the map y → z is an admissible epimorphism. Next we assume that #V > 1
and let us fix an element v ∈ V and an object z ∈MA(fU ; fV )(p+ 1). Then by the

formula 5.6, we can consider z to be a complex [z1
dz

→ z0] inMA(fU ; fVr{v})(p+ 1).
By the inductive hypothesis, there is an admissible epimorphism y′ � z0, where y

′ is
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of the form

y′ =
⊕

T∈P(Vr{v})

TypB(g
T
Vr{v})

⊕l1,T
.

Therefore by the cube lemma 2.8, we get a term-wised surjection morphism
y′′ → H0 z, where y

′′ is of the form

y′′ =
⊕

T∈P(Vr{v})

TypB/(gv)(g
T
Vr{v})

⊕l1,T

and it makes the diagram below commutative:

y′ // //

����

z0

����

y′′ // // H0 z,

where the vertical maps are the canonical projections. Therefore we get a map y′ → z1
which makes the diagram below commutative:

y′ //

gv

��

z1

dz

��

y′ // // z0.

By the induction hypothesis, there is a term-wised surjective morphism y′ ⊕ y′′′ → z1,
where y′′′ is of the form

y′′′ =
⊕

W∈P(Vr{v})

TypB(g
W
Vr{v})

⊕l0,W

and it makes the diagram below commutative:

y1 // //

dy

��

z1

dz

��
y0 // // z0,

where yi = y′ ⊕ y′′′ for i = 0, 1 and dy =

(
gv 0
0 1

)
and we put y = [y1

dy

→ y0]. Thus

by 5.9, we learn that y → z is an admissible epimorphism and therefore we get the
conclusion for the case of n = 0. Next we consider the case of general n. For each

z and each i ∈ [n], by the previous argument, we have y(i) =
⊕

T∈P(V )

TypB(g
T
V )

⊕lT (i)

for a suitable non-negative integer lT (i) and an admissible epimorphism y(i) � z(i).
So we need only prove that for each i ∈ [n− 1], there is a map y(i)→ y(i+ 1) which
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makes diagram below commutative:

y(i) //___

����

y(i+ 1)

����

z(i) // z(i+ 1).

Since y(i) is in n
T∈P(V )

PB/gT
, by applying 3.20 (3) to FT = PB/gT

and ET =MgT

B,red

for each T ∈ P(V ), we learn that y(i) is a projective object in n
T∈P(V )

MgT

B,red. More-

over since y(i+ 1), z(i+ 1) are in n
T∈P(V )

MgT

B,red, there is the dotted map in the

commutative diagram above by projectivity of y(i).

Recall the definition of strongly adroit systems from 2.20 and the definition of tq
from 5.4.

Corollary 5.13. For ? = ∅ or red, any decomposition S = U t V with V 6= ∅, any
element v in V and any integer p > #U , triples

X = (MA,?(fU ; fVr{v})(p),MA,?(fU ; fVr{v})(p+ 1),MA,?(fUt{v}; fVr{v})(p+ 1))

and

X ′ = (MA,?(fU ; fVr{v})(p),MA,?(fU ; fVr{v})(p+ 1),MA,?(fUt{v}; fVr{v})(p+ 1)tq)

are strongly adroit systems.

Proof. Consider the triple

E1 :=MA,?(fU ; fVr{v})(p),

E2 :=MA,?(fU ; fVr{v})(p+ 1) and

F :=MA,?(fUt{v}; fVr{v})(p+ 1).

Claim. F is contained in E2.

Proof of claim. If V = {v}, then E2 =MfU
A,?(p+ 1), F =MfUt{v}

A,? (p+ 1) and there-
fore we get the assertion. If #V > 2, then let us fix an element v′ ∈ V r {v}. Then
by 5.6, we have equalities

E2 =MA,?((fUt{v′}; fVr{v, v′})(p+ 2)nMA,?(fUt{v′}; fVr{v, v′})(p+ 1) and

F =MA,?(fUt{v, v′}; fVr{v, v′})(p+ 2)nMA,?(fUt{v, v′}; fVr{v, v′})(p+ 2).

Hence we learn that F is contained in E2.

Since F is closed under extensions (resp. sub- and quotient objects) inCubVr{v}MA

if ? = ∅ (resp. ? = red), F n Ei (i = 1, 2) are strict exact subcategories of CubV MA

by 2.10. The conditions (Adr 2) and (Adr 3) follow from 5.9. Finally the condition
(Adr 5) follows from 5.12. The proof for X ′ is similar. Therefore we get the result.

Corollary 5.14. For ? = ∅ or red, any decomposition S = U t V and any integer
p > #U , we have the following:
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(1) (Local weight theorem). Assume that V is a non-empty set and v is an ele-
ment in V . Then the exact functor

Hv
0 : (MA,?(fU ; fV )(p), tq)→ (MA,?(fUt{v}; fVr{v})(p+ 1), tq)

induces a homotopy equivalence on K-theory:

K(Hv
0) : K(MA,?(fU ; fV )(p); tq)→ K(MA,?(fUt{v}; fVr{v})(p+ 1); tq).

In particular the exact functor

H0 Tot: (MA,?(fU ; fV )(p), tq)→MfS
A,?(p+#V )

induces a homotopy equivalence on K-theory:

K(MA,?(fU ; fV )(p), tq)→ K(MfS
A,?(p+#V )).

In particular the exact functor H0 Tot: (KosfSA,?, tq)→M
fS
A,?(#S) induces a

homotopy equivalence on K-theory:

K(KosfSA,?, tq)→ K(MfS
A,?(#S)).

(2) The exact functors

λ :MA,?(fU ; fV )(p)→
∏

T∈P(V )

MfUtT

A,? (p+#T ) and

λ′ :MA,?(fU ; fV )(p)
tq →

∏
T∈P(V )r{V }

MfUtT

A,? (p+#T )

which sends an object x to (HUtT
0 (x))T∈P(V ) and (HUtT

0 (x))T∈P(V )r{V }, respec-
tively, induce homotopy equivalences on K-theory:

K(MA,?(fU ; fV )(p))→
∏

T∈P(V )

K(MfUtT

A,? (p+#T )) and

K(MA,?(fU ; fV )(p)
tq
)→

∏
T∈P(V )r{V }

K(MfUtT

A,? (p+#T )).

(3) (Split fibration theorem). The inclusion functors

MA,?(fU ; fV )(p)
tq
↪→MA,?(fU ; fV )(p)

and the identity functor onMA,?(fU ; fV )(p) induce a split fibration sequence:

K(MA,?(fU ; fV )(p)
tq
)→ K(MA,?(fU ; fV )(p))→ K(MA,?(fU ; fV )(p); tq).

In particular we have a split fibration sequence:

K(KosfSA,?

tq
)→ K(KosfSA,?)→ K(KosfSA,?; tq).

Proof. Proof of assertion (1): Consider the strongly adroit system X = (E1, E2,F)
in (the proof of) 5.13. We have an equality F n E1 =MA,?(fU ; fV )(p) by 5.6. We
apply 2.21 (2) to X and obtain the proof. The second assertion comes from the
isomorphism H0 Tot

∼→ HV
0 by 3.21, 5.5 (5) and the first assertion. The third result

follows from the equality (7) in 5.5 (3) and the second assertion.
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Proof of assertion (2): We proceed by induction on the cardinality of V . If V = ∅,
then MA,?(fU ; fV )(p) =MfU

A,?(p) and MA,?(fU ; fV )(p)
tq

= {0}. Therefore the asser-
tion is trivial. If #V > 1 and v is an element in V , then by the equalities in 5.6 λ
and λ′ have the factorizations

K(MA,?(fU ;fV )(p))
I→K(MA,?(fUt{v};fV r{v})(p+1))×K(X)

II→
∏

T∈P(V )

K(MfUtT
A,? (p+#T ))

K(MA,?(fU ;fV )(p)tq)
I→K(MA,?(fUt{v};fV r{v})(p+1)tq)×K(X)

II→
∏

T∈P(V )r{V }
K(MfUtT

A,? (p+#T )),

where X denotesMA,?(fU ; fVr{v})(p), and the maps I and II are homotopy equiva-
lences by 2.21 (3) and the inductive hypothesis, respectively. Hence we get the result.

Proof of assertion (3): Let us consider the commutative diagram below:

K(MA,?(fU ; fV )(p)tq) //

K(λ′) o
��

K(MA,?(fU ; fV )(p)) //

K(λ) o
��

K(MA,?(fU ; fV )(p); tq)

K(H0 Tot)o

��∏
T∈P(V )r{V }

K(MfUtT
A,? (p+#T )) //

∏
T∈P(V )

K(MfUtT
A,? (p+#T )) // K(MfS

A,?(p+#V )).

Here vertical maps are homotopy equivalence by (1) and (2) and the bottom horizontal
line is a split fibration sequence. Hence we get the result.

Recall the definition ofMI
A(p) from 4.6 and KosfSA from 4.8.

Proof of Theorem 0.2. Since A is local, every A-regular sequence is an A-sequence
by 4.1 (4) (i). Let us assume that #S = p and let fS = {fs}s∈S be an A-sequence.

Then the exact functor H0 Tot: (KosfSA , tq)→ (MfS
A (p), i) induces a homotopy equiv-

alence on K-theory by 5.14 (1). On the other hand we have the homotopy equivalence
K(Mp

A(p))
∼→ lim−→gS

K(MgS

A (p)), where V (gS) ↪→ SpecA runs over the regular closed

immersion of codimension p by 5.10. Therefore the Grothendieck group K0(Mp
A(p))

is generated by modules of the form

H0(Totx)
∼→ Coker(

p⊕
i=1

x{i}

(
dx,1 · · · dx,p

)
→ x∅)

∼→ x∅/ < Im dx,1{1}, · · · , Im dx,p{p}〉,

where x is a non-degenerate free Koszul cube associated with some A-sequence
g1, · · · , gp and dx,i{i} : x{i} → x∅ is a boundary morphism of x. Since the sequence

det dx,1{1}, · · · ,det d
x,p
{p} forms an A-sequence by 4.14, we obtain the result.

6. A dévissage theorem for K-theory of Koszul cubes on
regular rings

In this section, we assume that A is a commutative regular noetherian ring with
unit and that the global homological dimension of A is n and S is a finite set. Let us
fix an A-sequence {fs}s∈S and let I be the ideal in A generated by {fs}s∈S . The aim
of this section is to prove a dévissage theorem 6.3 for Koszul cubes on A.
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Recall from 4.6 and 5.1 thatMI
A(p) is the category of finitely generated A-modules

of projective dimension6 p and SuppM ⊂ V (I) andMI
A,red(p) is the full subcategory

of modules M with IM = 0, and that #S = ProjdimAA/I.

Proposition 6.1. For any integer p > #S, the inclusion functor ι : MI
A,red(p) ↪→

MI
A(p) induces a homotopy equivalence on K-theory:

K(ι) : K(MI
A,red(p))→ K(MI

A(p)).

Proof. First assume that p > n. Then every A-module M has ProjdimM 6 n, so
MI

A(p) =MI
A and MI

A,red =MA/I . In this case, the result was proven by Quillen
in [22].

Next we assume that n > p > #S. Then the inclusion functors

MI
A,?(p) ↪→MI

A,?(n) and MI
A,red(k) ↪→MI

A(k) (k = p, n)

yield the commutative diagram below:

K(MI
A,red(p)) //

o
��

K(MI
A(p))

o
��

K(MI
A,red(n))

∼
// K(MI

A(n)).

Here the vertical maps and the bottom horizontal map are homotopy equivalences
by 5.8 and the first paragraph, respectively. Hence we obtain the result.

Recall the definition ofMA,?(fU ; fV )(p) as a subcategory of CubV (MfU
A ) from 5.4.

Corollary 6.2. For any disjoint decomposition S = U t V , and integer p > #U , the
inclusion functor MA,red(fU ; fV )(p) ↪→MA(fU ; fV )(p) induces a homotopy equiva-
lence on K-theory:

K(MA,red(fU ; fV )(p))→ K(MA(fU ; fV )(p)).

Proof. The inclusion functorsMfUtT

A,red(p+#T ) ↪→MfUtT

A (p+#T ) for any T ∈ P(V )
andMA,red(fU ; fV )(p) ↪→MA(fU ; fV )(p) and the exact functor λ in 5.14 (2) yield the
commutative diagram below:

K(MA,red(fU ; fV )(p)) //

K(λ) o
��

K(MA(fU ; fV )(p))

K(λ)o
��∏

T∈P(V )

K(MfUtT

A,red(p+#T )) ∼
//

∏
T∈P(V )

K(MfUtT

A (p+#T )).

Here the vertical maps and the horizontal bottom map are homotopy equivalence
by 5.14 (2) and 6.1, respectively. Hence we obtain the result.

Recall the definitions of KosfSA from 4.8 and KosfSA,red and tq from 5.4.
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Corollary 6.3. The canonical inclusion functor ι : KosfSA,red ↪→ KosfSA induces the
following homotopy equivalences on K-theory:

K(KosfSA,red)→ K(KosfSA )

K(KosfSA,red; tq)→ K(KosfSA ; tq).

Proof. If S = ∅, then KosfSA = KosfSA,red = PA. In this case, the assertion is trivial.
We assume #S > 1. Since we have the equality (7) in 5.5 (3), the first homotopy
equivalence is just the special case U = ∅, p = 0 of 6.2. Let us consider the com-
mutative diagram induced from the exact functor H0 Tot: (KosfSA,?, tq)→M

fS
A,?(#S)

defined in 5.14 (1) and the inclusion functors KosfSA,red ↪→ KosfSA andMfS
A,red(#S) ↪→

MfS
A (#S) below:

K(KosfSA,red; tq)
//

K(H0 Tot) o
��

K(KosfSA ; tq)

K(H0 Tot)o
��

K(MfS
A,red(#S))

∼
// K(MfS

A (#S)).

The vertical lines above are homotopy equivalences by 5.14 (1). The bottom hori-
zontal line above is also a homotopy equivalence by 6.1. Hence we obtain the second
homotopy equivalence.

Proof of Corollary 0.5. By 5.10 and 5.11, we have the homotopy equivalences

lim−→
gS

K(MgS

A (#S))
∼→ K(M#S

A (#S))
∼→ K(M#S

A ),

where gS runs over A-regular sequences indexed by S. Therefore Gersten’s conjecture
for A is equivalent to the following assertion:

For any A-regular sequence {gs}s∈S in A, the inclusion functor MgS

A (#S) ↪→
M#S−1

A induces the zero maps on K-groups.

Since A is local, every A-regular sequence is an A-sequence by 4.1 (3). Fix an A-

regular sequence fS = {fs}s∈S in A and write j for the inclusion functorMfS
A (#S) ↪→

M#S−1
A . Then let us consider the commutative diagram below:

K(KosfSA,red)
I

//

����

K(KosfSA )

����

K(j H0 Tot)

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

K(KosfSA,red; tq)
I

// K(KosfSA ; tq)
II

K(H0 Tot)
// K(MfS

A (#S))
K(j)

// K(M#S−1
A ).

Here the maps I and II are homotopy equivalences by 6.3 and 5.14 (1), respectively,
and the vertical maps are (split) epimorphisms by 5.14 (3). Hence K(j) is trivial

if and only if the composition K(jH0 Tot) : K(KosfSA,red)→ K(M#S−1
A ) is trivial.

Therefore we get the desired result.
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