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THE EQUIVARIANT SLICE FILTRATION: A PRIMER

MICHAEL A. HILL

(communicated by Daniel Dugger)

Abstract
We present an introduction to the equivariant slice filtra-

tion. After reviewing the definitions and basic properties, we
determine the slice-connectivity of various families of naturally
arising spectra. This leads to an analysis of pullbacks of slices
defined on quotient groups, producing new collections of slices.
Building on this, we determine the slice tower for the Eilenberg-
Mac Lane spectrum associated to a Mackey functor for a cyclic
p-group. We then relate the Postnikov tower to the slice tower
for various spectra. Finally, we pose a few conjectures about the
nature of slices and pullbacks.

1. Introduction

1.1. Background

Essential to the solution with Hopkins and Ravenel to the Kervaire Invariant One
Problem is the construction of a new natural filtration of an equivariant spectrum, the
slice filtration [5]. This is a generalization of Dugger’s slice filtration for C2-equivariant
homotopy theory, and it is analogous to the motivic slice filtration of Voevodsky [2],
[15], [6]. The basic idea is simple: mirror the Postnikov tower construction using a
different collection of representation spheres (giving a different notion of “connected”
and “co-connected”). The slice and Postnikov towers are obviously closely related,
but the exact relationship is unclear.

This filtration is especially nice on the spectra MU (n) used in the proof and on the
relevant localizations thereof. For these, the homotopy groups of the layers compute
the homology and cohomology of regular representation spheres. This allowed us to
determine the vanishing of π−2 of the relevant localizations. In some sense, we were
very lucky; the slice filtration is very mysterious for many spectra other than these
localizations of MU (n).

The goal of this paper is two-fold:

1. Serve as a travelogue for the slice filtration and slice spectral sequence, recording
basic properties and interpretations, and
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2. Provide a bestiary of slices and the slice tower for a general Mackey functor for
cyclic p-groups.

We begin in §2 by recalling the basic facts about the slice filtration, drawing heavily
from [5]. Starting in §3, we set a course for uncharted territory. In §3, we will address
when there are natural connections between the dimension of a CW complex or of
a representation sphere and its slice-connectivity. We will relate slices to pullbacks
along surjective maps of groups in §4. In §5, we take an algebraic digression, using
this to directly compute the slice tower of the Eilenberg-Mac Lane spectrum for the
Burnside Mackey functor A and for a general Mackey functor M for a cyclic group of
prime-power order. Finally in §6, we build on the computations for HA, introducing
an algebraic criterion on the homotopy groups of a G-spectrum X which allows for
complete determination of slices of X. This provides a class of spectra for which the
connection between the slice and Postnikov towers is completely understood. We use
this to provide an interpretation of the slice tower for a general spectrum.

All of our discussion will take place in the genuine equivariant stable homotopy
category for a finite group G. In particular, we have natural transfers associated to
all subgroups. Good references are the work of May, et al. [9], [10], [11], unpublished
notes of Schwede [13], and the appendix to Hill-Hopkins-Ravenel [5]. We use freely
and liberally the language of Mackey functors. In particular, all homotopy groups are
Mackey functor valued, and we will follow standard notation, writing these with an
underline. We found papers and notes of Lewis especially helpful [7], [8].

1.2. Notation
Throughout all that follows G will be a finite group. When it appears, N will

always denote a normal subgroup, while H and K will be used for subgroups that
are not necessarily normal.

The real regular representation of G will be denoted ρG, and if there is no ambigu-
ity, we shall drop the subscript. If X is a finite G set, then we denote the permutation
representation generated by X by ρX . The quotient of ρ or ρG by the trivial subrep-
resentation will be denoted ρ̄G.
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2. Basic properties of the slice filtration

In this section, we recall the definition and basic properties of the slice filtration.
Essentially all of this material is from [5], especially subsections 3 and 4.

Definition 2.1. For each integer n, let τ>n denote the localizing subcategory of G-
spectra generated by G+ ∧H SkρH−ε, where H ranges over all subgroups of G, where
k · |H| − ε > n, and where ε = 0, 1.

If X is an object of τ>n, we say “X > n” and we say the “slice-connectivity of
X”, written scon(X), is greater than or equal to n.

If X is in τ>n but not in τ>n+1, we will say that the slice-connectivity of X is n.
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If we are considering τ>n for various groups, we shall adorn this symbol with a
superscript distinguishing between them: τG>n.

What does “localizing subcategory” mean? Simply put, this is the category of
acyclics for a localization functor on G-spectra [3]. In particular, we have the following
properties.

1. The category τ>n is a full subcategory, and if X is weakly equivalent to an
object in τ>n, then X is an object in τ>n.

2. τ>n is closed under cofibers: If X and Y are objects in τ>n and f : X → Y is a
map, then the cofiber C(f) is an object in τ>n.

3. τ>n is closed under extensions: IfX and Z are objects in τ>n, and ifX → Y → Z
is a cofiber sequence, then Y is an object in τ>n.

4. τ>n is closed under retracts and infinite wedges.

5. τ>n is closed under directed colimits.

Warning 2.2. It is very important that these are not triangulated subcategories. They
are closed under suspension and cofibers but not desuspension and fibers. In fact, it is
not even the case that desuspension always takes τ>n to τ>(n−1). Remark 3.12 below
illustrates this.

Associated to a localizing subcategory is a localization / nullification functor for
which the localizing category is the category of acyclics [3].

Definition 2.3. Let Pn−1(−) be the localization functor associated to τ>n.

Definition 2.4. We say “X is less than or equal to (n− 1)” if the localization map
X → Pn−1(X) is an equivalence.

There is an obvious inclusion of full subcategories τ>(n+1) ⊂ τ>n. This gives us
natural transformations Pn(−) → Pn−1(−), and so to any spectrum X, we have a
naturally associated tower.

Definition 2.5. The “slice tower” of X is the tower with stages Pn(X) and maps
the natural maps Pn(X) → Pn−1(X). The fiber of the map Pn(X) → Pn−1(X) is
the “nth slice of X”, denoted Pn

n (X).

In forming the nullification tower, we implicitly killed the G-space of all maps from
objects in τ>n toX in order to form Pn−1(X). However, we can see equivariance much
more easily as follows.

Proposition 2.6. Let i∗H denote the forgetful functor from G-spectra to H-spectra,
and let G+ ∧H (−) denote its left adjoint, induction. Then we have natural inclusions
of full sub-categories

i∗HτG>n ⊂ τH>n and G+ ∧H (τH>n) ⊂ τG>n.

The localizing subcategory generated by i∗H(τG>n) is τH>n.

This is actually immediate from the definitions. The restriction of any of the gen-
erators of τG>n to H is a wedge of generators of τH>n. Similarly, if we induce up a

generator of τH>n, then we get a generator of τG>n. This proves the two inclusions. For
the final part, X is a wedge summand of i∗H(G+ ∧H X), and therefore all generators
of τH>n are in the localizing subcategory generated by i∗H(τG>n).
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Corollary 2.7. The restriction to H of the slice tower of X is the slice tower of the
restriction of X to H:

Pni∗H(X) = i∗HPn(X).

For positive n, the slice tower receives a map from the Postnikov tower of the same
dimension.

Proposition 2.8. For all subgroups H of G and for all n > −1, the induced sphere
G+ ∧H Sn is in τ>n.

This is not difficult to show using induction on |G| and the closure of τ>n under
extensions, since G+ ∧H Sn is the bottom cell in G+ ∧H SnρH . We will use this tech-
nique exclusively. This result shows that the slice tower refines the Postnikov tower
in non-negative degrees.

Corollary 2.9. For all X and for all n > −1, Pn−1(X) is n-coconnected.

The case for n negative is also important both in determining the colimit of the
slice tower and in our later analysis of special slices. We postpone our discussion of
these cases briefly.

Now here are the only examples in which we completely understand τ>n.

Example 2.10. The generators of τ>0 which are not zero-connected are G+ ∧H S0ρH

and G+ ∧H Sρ̄H . Since G+ ∧H S0 = G/H+, and since all spectra which are (−1)-
connected are weakly equivalent to G-CW spectra, we learn that

τ>0 = {(-1)-connected G-spectra.}

Example 2.11. Just as with τ>0, we can understand τ>−1. Here the generators are all
in the localizing subcategory generated by Σ−1G/H+, and so

τ>−1 = {(-2)-connected G-spectra.}

Together this gives an important corollary:

Corollary 2.12. The (−1)-slice of any spectrum X is the (−1)-Postnikov layer:

P−1
−1 (X) ' Σ−1Hπ−1(X).

Corollary 2.13. For any Mackey functor M , Σ−1HM is a (−1)-slice.

We also have an algebraic description of 0-slices. A complete proof is in [5, Lemma
3.2]; we sketch a proof here.

Theorem 2.14. The category of 0-slices is the category of Mackey functors M such
that all restrictions are injections.

Sketch of Proof. Since G+ ∧H S1 is in τ>1 and since τ>0 is the category of (−1)-
connected spectra, we know that the zero slices are all of the form HM for some
Mackey functor M . We need only determine which are allowed.

The essential step is the equality

[SρG−1, HM ]G = {x ∈ M(G/G) | ResGH(x) = 0 ∀H ( G},

i.e., the collection of elements in M(G/G) that map to zero under all restriction maps.
Since our localizing subcategory is closed under induction and restriction, this shows
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that any element of M(G/H) which restricts to zero in M(G/K) for all subgroups
K ( H lifts to an element of

[G+ ∧H Sρ̄H ,HM ].

Thus, if these elements are all zero, so are these collections of maps. It is easy to see
that this implies that all restriction maps are injections.

Remark 2.15. It is not the case that any x ∈ M(G/G) = π0HM which restricts to
zero in some M(G/H) extends to a map Sρ̄G → HM . However, we do know that
by iteratively killing these elements off, in some eventual cofiber, the element x will
restrict to zero in all proper subgroups.

The previous theorem tells us the 0-slice of any spectrum X.

Corollary 2.16. The 0-slice of a G-spectrum X is HP 0
0 π0(X), where for a Mackey

functor M , P 0
0M is the largest quotient of M in which all restriction maps are

monomorphisms.
The value on G/H of this quotient is Im

(
M(G/H) → M(G/{e})

)
.

Corollary 2.17. A G-spectrum X is in τ>1 if and only if X is in τ>0 and

π0(X)(G/{e}) = 0.

After this point, we no longer have nice, easy Mackey functor descriptions. How-
ever, many of the categories of slices are secretly naturally equivalent to the afore-
described categories of Mackey functors. To see this, we introduce the final important
tool we will use: slices commute with suspension by copies of the regular representa-
tion in the same way that the Postnikov sections commute with ordinary suspension.

Theorem 2.18. For any X, for any n, and for any k,

Pn+k|G|(ΣkρGX) = ΣkρGPn(X),

and hence

P
n+k|G|
n+k|G| (Σ

kρGX) = ΣkρGPn
n (X).

This is simply because we have an underlying statement about the localizing sub-
categories.

Lemma 2.19. For all n and for all k, we have

SkρG ∧ τ>n = τ>(n+k|G|).

This result follows by noticing that smashing with SkρG induces a bijection on
isomorphism classes of generators and commutes with all of the properties.

Corollary 2.20. The category of (k|G| − 1)-slices is equivalent to the category of
Mackey functors via the suspension by kρG.

Corollary 2.21. The category of (k|G|)-slices is equivalent to the category of Mackey
functors in which all restrictions are injections via the suspension by kρG.

Suspension invariance of the categories τ>n will allow us to determine the slice-
connectivity of negative spheres.
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Proposition 2.22. For n > 1, the spectrum G+ ∧H S−n is in τ>−(n−1)|H|−1 but not
in τ>−(n−1)|H|.

Proof. Since the spectrum is induced and since induction preserves slice-connectivity,
it suffices to prove this for H = G. By our suspension invariance, showing that S−n is
in τ>−(n−1)|G|−1 but not in τ>−(n−1)|G| is equivalent to showing that S(n−1)ρ−n is in

τ>−1 but not in τ>0. This virtual representation sphere is S(n−1)ρ̄−1, and by looking
at fixed points, we see that this is (−2)-connected but not (−1)-connected.

With our understanding of connectivity and of which spheres occur in which slice-
connectivities, convergence of the slice tower is actually relatively straightforward
to prove. All of the generators of τ>n are at least (n/|G| − 1)-connected if n > 0
and (n− 1)-connected if n 6 −1. This means that all elements in τ>n share these
connectivity lower bounds. Thus,

∩
τ>n is the full subcategory of weakly contractible

spectra. Proposition 2.22 shows that
∪
τ>n is the full subcategory of bounded below

spectra. Thus, the limit of the slice tower is X and the colimit is contractible.
We close the section with a few remarks about slice filtration and smash prod-

ucts. In general, if X ∈ τ>n and Y ∈ τ>m, then we know very little about the slice-
connectivity of X ∧ Y (even if both m and n are non-negative). There are several
cases in which we know more.

Proposition 2.23. If X is in τ>0 and Y is in τ>n, then X ∧ Y is in τ>n.

Proof. The category τ>0 is generated by G/H+ for H a subgroup. Smashing Y with
this is equivalent to taking the restriction to H of Y and then inducing back to G,
and we have already seen that τ>n is closed under these operations.

Corollary 2.24. If X is in τ>k|G| and Y is in τ>n, then X ∧ Y is in τ>k|G|+n.

Proof. By suspension invariance, Σ−kρGX ∈ τ>0. Proposition 2.23 then tells us that
Σ−kρGX ∧ Y ∈ τ>n, and by suspension invariance again, X ∧ Y ∈ τk|G|+n.

3. Slice-connectivity and underlying dimension

At this point, we leave the more familiar waters of Hill-Hopkins-Ravenel and begin
our more specific discussions of examples of slices. We start with a surprisingly useful
generalization of Proposition 2.8.

Lemma 3.1. If Y is in τ>m, then ΣY is in τ>(m+1).

Proof. The proof of Proposition 2.8 actually shows this. We quickly review it here.
The proof is by induction on the order of the group. The base-case is the non-
equivariant statement that if Y is (m− 1)-connected, then ΣY is m-connected. We
have a cofiber sequence

ΣS(ρ− 1)+ → S1 → Sρ,

so smashing with Y yields another cofiber sequence. The group G acts without fixed
points on ΣS(ρ− 1)+, and it is 0-connected. Thus, it is built out of cells of the form
G/H+ ∧ Sk for k > 1 and H ( G. By the induction hypothesis,

ΣS(ρ− 1)+ ∧ Y

is in τ>(m+1). Similarly Sρ ∧ Y , being in τ>(|G|+m), is in τ>(m+1).
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This gives two closer connections between the slice and Postnikov towers. First,
we can relate connectivity and slice-connectivity.

Corollary 3.2. If X is (n− 1)-connected with n > 0, and if Y is in τ>m, then X ∧ Y
is in τ>(n+m).

Proof. The connectivity assumption shows that X can be built out of suspensions of
Sn and induced cells. Iterated applications of Lemma 3.1 then gives the result.

We can also slightly refine Theorem 2.18, providing a connection between slices
and suspensions. This follows from the inclusion

S1 ∧ τ>k ⊂ τ>(k+1).

Corollary 3.3. We have a natural map

ΣP k(Σ−1X) → P k+1(X).

For X = S0 and k = −1, this gives the natural map HA → HZ.
We now develop two closely related criteria which establish some bounds on the

slice size of skeleta of a finite G-CW spectrum X smashed with an arbitrary spectrum
Y . The two variants depend on which factor we have tight control of. We first assume
some control on Y , deducing results about the slice-connectivity of skeleta of X.

3.1. Slice-connectivity of skeleta
As a bit of notation, if X is an equivariant CW spectrum, let X [k] denote its

k-skeleton. We begin by generalizing the result that Sn is in τ>n for positive n.

Theorem 3.4. Let n be a non-negative integer, and let Y be in τ>m. If X is an
n-dimensional G-CW complex such that X ∧ Y is in τ>(n+m), then X [k] ∧ Y is in
τ>(k+m) for all 0 6 k 6 n.

Proof. We proceed by induction on the codimension. The base case of codimension
0 is by definition. Assume that the codimension (n− k − 1) skeleton is greater than
or equal to (k + 1 +m). We have a cofiber sequence∨

α

G+ ∧Hα Sk ∧ Y → X [k] ∧ Y → X [k+1] ∧ Y,

where the wedge is taken over all (k + 1)-cells eα of X. By assumption, the rightmost
term is greater than (k +m). By Lemma 3.1, the leftmost term is greater than or
equal to (k +m). Since we are looking at a localizing subcategory, we conclude that
the middle term is greater than or equal to (k +m), as required.

Applying this to Y = S0 shows us that if X is an n-dimensional complex which is
in τ>n, then the k-skeleton is in τ>k.

Remark 3.5. It is obviously not true that every n-dimensional G-CW complex is in
τ>n. If we wedge a copy of S0 onto a general element of τ>n, then we drop the slice-
connectivity to 0. Even if we insist on irreducible complexes, the result is far from
true, as the representation sphere example below shows.
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If X is in τ>m, then ΣnρX is in τ>(n|G|+m). Applying this and Theorem 3.4 to the

spheres S` for ` > −1, we deduce the following corollary.

Corollary 3.6. For all ` > −1 and for all k 6 n|G|+ `,
(
Snρ+`

)[k]
is greater than

or equal to k.

3.2. Slice-connectivity of representation spheres
In equivariant homotopy theory, there is a tension between G-CW complexes and

representation spheres: certain statements are easier to prove for one or the other. In
this case, we have a quite nice dual to the previous theorem but for representation
spheres.

Theorem 3.7. Let Y be in τ>m, and let W be a representation such that SW ∧ Y is
in τ>(dimW+m). Let V is a subrepresentation of W such that V G = WG. Then

scon(SV ∧ Y ) > min
({

scon(i∗H(SV ∧ Y )) | (W/V )H 6= {0}
}
∪
{
dimW +m

})
.

If the minimum is achieved by one of the restrictions, then

scon(SV ∧ Y ) = min
({

scon(i∗H(SV ∧ Y )) | (W/V )H 6= {0}
})

.

Proof. Let U denote the orthogonal complement of V in W . Since V G = WG, we
know UG = {0}. Pick a G-CW decomposition of S(U). Since UG = {0}, we know that
there are no fixed cells. The representation sphere SU is the unreduced suspension
S0 ∗ S(U), and so it therefore has a single trivial cell: the zero cell. Our direct sum
decomposition gives rise to a homeomorphism SV ∧ Y ∧ SU ∼= SW ∧ Y .

Our analysis of the skeleta of SU shows that we get SW ∧ Y from SV ∧ Y by
attaching “cells” of the form G+ ∧H er+1 ∧ SV ∧ Y with H a proper subgroup. The
attaching map for this is from G+ ∧H Sr ∧ SV ∧ Y , and by Lemma 3.1, the slice-
connectivity of this is greater than or equal to that of i∗H(SV ∧ Y ). Thus, by downward
induction, SV ∧ Y can be nested between things of slice-connectivity greater than or
equal to the minimum of these and the starting value of dimW +m.

Since for all spectra X and for all subgroups H we have an inequality

scon(X) 6 scon(i∗HX),

if the minimum for scon(SV ∧ Y ) is achieved on some subgroup (rather than dimW +
m), then we immediately have equality.

The inclusion of the term dimW +m is necessary to cover the cases in which the
restriction of Y to any proper subgroup of G is contractible. In this case, SV ∧ Y =
SW ∧ Y , and so they necessarily have the same slice-connectivity. Spectra of this form
will be studied more in Section 6.

If we add in more conditions, then we can get sharper bounds on the slice-
connectivity. The following proposition is identical in proof to the previous theorem.
In this, we explicitly assume tighter control of the slice-connectivity of the domains
of the attaching maps for the cells.

Proposition 3.8. Let Y be in τ>m and let V ⊂ W be representations such that

1. V G = WG,
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2. SW ∧ Y is in τ>dimW+m, and

3. for all H ( G and r ∈ N such that SW/V has a cell of the form G+ ∧H er+1,
the restriction i∗H(SV+r ∧ Y ) is in τ>dimV+r+m,

then SV ∧ Y is in τ>dimV+m.

It seems like these are unduly hard restrictions, requiring us to know almost every-
thing at the outset. In practice, the second condition is purely representation-theoretic
and easy to check based on the dimensions of fixed points. Using Lemma 3.1, we have
a very easy to check sufficient condition for Theorem 3.7.

Corollary 3.9. If Y is in τ>m, if SW is a representation sphere such that SW ∧ Y
is in τ>(dimW+m), and if V is a subrepresentation of W such that V G = WG and
the restriction to all proper subgroups of SV ∧ Y is in τ>(dimV+m), then SV ∧ Y is
in τ>(dimV+m).

For cyclic p-groups, this becomes a single condition to check: that the restriction to
the maximal proper subgroup is of the desired slice-connectivity.

Choosing Y = S0 in the previous theorems allows us to determine for various
representation spheres the slice-connectivity.

Corollary 3.10. For all finite dimensional representations V , there is a K such that
SV+k is in τ>dimV+k for all k > K.

Proof. Choose k0 such that

V + k0 ⊂ mρ+ ρ̄ = W0

and (V + k0)
G = WG

0 . By definition, SW0 is in τ>dimW0 , and by Lemma 3.1, for all
` > 0, SW0+` is in τ>dimW0+`. By induction on G, there is a k1 such that for all
H ( G,

scon(i∗HSV+k0+k1) > dimV + k0 + k1.

By Corollary 3.9, we conclude that we need only take K = k0 + k1.

There is one beautiful family in which we can get a slick result. This was originally
posed by Strickland, and it gives a clean view of a natural family of representations
that have the right slice-connectivity.

Theorem 3.11. If X is a finite G-set and ε is 0 or 1, then SρX−ε is in τ>|X|−ε.

Proof. This will be proved by induction on the order of G. For G the trivial group
(and therefore for any representation sphere induced up from the trivial group), this
is obvious since spheres are the representation spheres for the trivial group.

Now assume that for any proper subgroup of G the result is true and apply Theo-
rem 3.7. Let k = |X/G|. Since the permutation representation associated to an orbit
G/H embeds as a subrepresentation of the regular representation, we have a natural
inclusion

ρX − ε ⊆ kρG − ε.

Moreover, this has the property that

(ρX − ε)G = Rk−ε = (kρG − ε)G,

and by definition, SkρG−ε is in τ>k|G|−ε. Thus, the first hypothesis of Theorem 3.7 is
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satisfied. To prove the result, we need only show that the restriction of SρX−ε to any
proper subgroup is in τ>|X|−ε. However, ρX is the permutation representation ρX ,
and this restricts to the permutation representation

ρY = ρResGH(X).

Our desired representation sphere therefore restricts to SρY −ε. By our induction
hypothesis, this is greater than or equal to its dimension, and we have proved the
result.

Remark 3.12. Just as with CW complexes, it is not the case that every representation
sphere is greater than or equal to its dimension. For example, S2ρ−2 is not in τ2|G|−2.
The ρ-desuspension of S2ρ−2 is Sρ−2 which is in τ>−1 but not in τ>0 (since it is not
(−1)-connected). Thus, S2ρ−2 is in τ>(|G|−1) but not in τ>|G|.

Using similar methods, we can produce the Spanier-Whitehead dual of Theo-
rem 3.11. Rather than present it in full generality, we will give the form which we
will later use.

Theorem 3.13. If N �G, then the spectrum SρG−ρG/N is in τ>|N |−1.

Proof. We have an inclusion of representations

V = ρG − ρG/N ⊂ ρG − 1 = W,

and the G-fixed points agree. Thus, we can find a lower-bound on the size of SρG−ρG/N

by applying Theorem 3.7. The representation W/V is ρG/N − 1, and those subgroups
which occur in the G-CW decomposition all contain N . Thus, we need to understand
the slice-connectivity of

i∗H(SρG−ρG/N ) = S[G:H](ρH−ρH/N )

for N ⊂ H ⊂ G. By downward induction on [G : N ], it is obvious that the base case
of H = N has the minimum size, and for this, we are considering

S[G:N ](ρN−1).

By Remark 3.12, this is in τ>|N |−1 but not τ>|N |.

A consequence of Corollary 4.10 below is that this bound is sharp for N �G. For
non-normal subgroups H, we do not know the expected bound.

There is a somewhat depressing corollary to this: the norm and slice filtration can
behave less ideally than we might have hoped. If E is a connective genuine equivariant
commutative ring spectrum, then so is P k(E) for all k > 0. In particular, we have
norm maps

NG
H i∗HP k(E) → P k(E)

for all subgroups H and for all k > 0.

For spectra like those that occur in the solution to the Kervaire invariant one
problem, computation evidence suggests that for some E, there is a natural lift (in
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commutative rings)

P k[G:H]E

��
NG

H i∗HP kE

N

88ppppppppppp

N
// P kE

.

For very stupid reasons, this holds for all commutative E for k = 0, but our result
above shows that this cannot hold for a general E and k. The norm of SρN−1 is
SρG−ρG/N , and we saw that this is only in τ>|N |−1. So if we had to kill maps from
SρN−1 into E, then the norm of those maps might not be killed at the desired lift.

4. Pullbacks and slices thereof

In this section, we will describe an interesting and useful family of slices: pullbacks.
In the subsequent sections, we will use these to identify the slice towers of HM and
for an algebraically defined class of spectra. We begin with a quite general definition
and some elementary properties.

4.1. Properties of pullbacks
Let G be an arbitrary finite group, and let N �G. Then the functor X 7→ XN

defines a functor from finite G-sets to finite G/N -sets, and this functor preserves
pullback diagrams. Thus, given a Mackey functor M on G/N , we can compose with
the N -fixed point functor to get a Mackey functor φ∗

NM on G. For the orbits, this
has a particularly easy description:

φ∗
NM(G/H) =

{
M

(
(G/N)/(H/N)

)
N ⊆ H

0 otherwise.

These functors were studied extensively in [4].
This algebraic story is part of a much richer narrative in algebraic topology which

connects nicely to the geometric fixed points functor and to the slice filtration. Since
N is a normal subgroup, the collection

F [N ] = {H ⊆ G | N 6⊆ H}

is closed under subgroups and conjugation. There is, therefore, a universal space
EF [N ] for this family which is built out of cells induced up from members of F [N ].
The above description of the value of the Mackey functor φ∗

NM shows that the func-
tion spectrum F (EF [N ]+,Hφ∗

NM) is equivariantly contractible, and that we have a
natural equivalence

Hφ∗
NM → ẼF [N ] ∧Hφ∗

NM.

We use this to motivate a notion of “pullback” for a general G/N -spectrum X.

Definition 4.1. If X is a G/N -spectrum, then let φ∗
NX denote the G-spectrum

ẼF [N ] ∧X,

where here X is viewed as a G spectrum via the natural quotient map.
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Here we pause. The category of genuine G-spectra is a localization of G-diagrams
in spectra. The localization amounts to “invert representation spheres”, and this
is clearly preserved in passing from G/N -diagrams to G-diagrams. Smashing with
ẼF [N ] removes the additional homotopy groups this pullback might produce. More-
over, we have good control over the homotopy groups. Much of this material is also
discussed in Lewis-May-Steinberger [9, II. §9], but we briefly sketch the relevant facts.

With this definition, the following is immediate.

Proposition 4.2. If M is a Mackey functor on G/N , then

φ∗
NHM = Hφ∗

NM.

Proposition 4.3. The “N -fixed points” functor establishes an equivalence between
G/N -spectra and the image of φ∗

N .

The image is actually relatively easy to describe: smashing with ẼF [N ] is a local-
ization, and the image of φ∗

N is the subcategory of local objects. This is the heart of
Lewis-May-Steinberger’s chapter “the construction of G/N -spectra from G-spectra”
[9, II §9]. The next proposition is quite useful and is a generalization of Greenlees-
May’s analogous result for pullbacks of Eilenberg-Mac Lane spectra [4, Proposition
10].

Proposition 4.4. For any X, we have a natural isomorphism[
X,φ∗

NY
]
G
∼=

[(
ẼF [N ] ∧X

)N
, Y

]
G/N

.

Proof. Since smashing with ẼF [N ] is a localization, we have a natural isomorphism[
X,φ∗

NY
]
G
∼=

[
(ẼF [N ] ∧X), φ∗

NY
]
G
.

By the equivalence of homotopy categories described in Proposition 4.3, this final
group is isomorphic to [

(ẼF [N ] ∧X)N , (φ∗
NY )N

]
G/N

;

since “N -fixed points” is a left homotopy inverse to φ∗
N , we have the desired result.

Thus, the pullback in equivariant spectra is the right adjoint to the N -geometric
fixed points functor. This will be essential in our analysis of the role of φ∗

N in the slice
story.

Perhaps more interesting is a final proposition which links the monoidal structure
to pulling back. This follows from basic properties of ẼF [N ]. This proposition is
a kind of Frobenius reciprocity in spectra: the role of restriction is played by N -
geometric fixed points and the role of transfer is played by the pullback.

Proposition 4.5. If X is a G-spectrum and Y is a G/N -spectrum, then we have a
natural equivalence

X ∧ φ∗
NY ' φ∗

N

(
(ẼF [N ] ∧X)N ∧ Y

)
.
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Proof. The space ẼF [N ] is a homotopy idempotent under smash product, so this
shows us that

X ∧ (φ∗
N (Y )) ' (ẼF [N ] ∧X) ∧ (φ∗

N (Y )).

Now we apply Proposition 4.3 to deduce an equivalence

φ∗
N

(
(ẼF [N ] ∧X)N

)
' ẼF [N ] ∧X,

since ẼF [N ] ∧X is local. Pulling back is obviously weakly monoidal, so

X ∧ φ∗
N (Y ) ' φ∗

N

(
(ẼF [N ] ∧X)N

)
∧ φ∗

N (Y ) ' φ∗
N

(
(ẼF [N ] ∧X)N ∧ Y

)
.

Corollary 4.6. If X is a G-space, then

X ∧ φ∗
NY ' φ∗

N (XN ∧ Y ),

so in particular, if V is a representation of G, then

SV ∧ φ∗
NY ' φ∗

N

(
SV N

∧ Y
)

for any G/N -spectrum Y .

Corollary 4.7. The inclusion of the zero cell induces an equivalence

Hφ∗
NM → SρG−ρG/N ∧Hφ∗

NM

for any M on G/N .

Proof. The N -fixed points of ρG − ρG/N are {0}.

Corollary 4.8. The spectrum Hφ∗
NM is in τ>|N |−1.

Proof. By Theorem 3.13, the spectrum S−ρG/N is in τ>−|G|+|N |−1. Thus, S
ρG−ρG/N

is in τ>|N |−1. Since Hφ∗
NM is (−1)-connected, it is in τ>0, and hence the smash

product

SρG−ρG/N ∧Hφ∗
NM

is in τ>|N |−1 by Corollary 2.24. By Corollary 4.7, this spectrum is Hφ∗
NM .

4.2. Pullbacks and Slices

The relationship between theN -geometric fixed points and the pulled-back Mackey
functors generates for us a very large collection of slices. Simply put: certain slices
for G/N pull back to slices for G. We will first show an analogous result for spectra
less than or equal to a fixed number.

Theorem 4.9. If X is 6 (j − 1) for G/N , then φ∗
NX is 6 (j|N | − 1) for G.
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Proof. We must show that if G+ ∧H SkρH−ε is such that k|H| − ε > j|N |, then

[G+ ∧H SkρH−ε, φ∗
NX]G = 0.

We have a natural equivalence

(
ẼF [N ] ∧ (G+ ∧H SkρH−ε)

)N '

{
∗ N 6⊆ H,

(G/N)+ ∧H/N SkρH/N−ε N ⊆ H.

We therefore learn that we always have

[G+ ∧H SkρH−ε, φ∗
NX]G =

{
0 N 6⊆ H,[
(G/N)+ ∧H/N SkρH/N−ε, X

]
G/N

N ⊆ H.

Now our assumptions about X come into play. Since N ⊆ H, if k|H| − ε > j|N |,
then (k|H/N | − j)|N | > ε. Since the left-hand side is an integer divisible by |N |, we
conclude that (k|H/N | − j)|N | > |N |ε, and therefore k|H/N | − ε > j. By assumption
X was 6 (j − 1) for G/N , and therefore any maps from something greater than or
equal to j are zero. Thus, if k|H| − ε > j|N |, then[

(G/N)+ ∧H/N SkρH/N−ε, X
]
G/N

= 0,

and we are done.

Corollary 4.10. If HM is a zero slice for G/N , then Hφ∗
NM is a (|N | − 1)-slice

for G.

Proof. Corollary 4.8 shows that Hφ∗
NM is in τ>(|N |−1). Theorem 4.9 shows it is also

less than or equal to (|N | − 1), and therefore it is a slice.

This clearly points to a much deeper story.

Conjecture 4.11. The slice tower for a G/N -spectrum pulls back to the slice tower
for the pullback G-spectrum where the k-slice becomes the

(
(k + 1)|N | − 1

)
-slice.

We will see in our discussion of geometric spectra that this conjecture holds true
for N = G. For now, we provide a few more results in this vein. The first is a weaker-
than-desired lower bound.

Theorem 4.12. If X is in τ
G/N
>j−1, then φ∗

N (X) is in τG>(j−1)|N |.

If X is actually in the localizing subcategory generated by G+ ∧H SkρH for k · |H| >
j − 1, then φ∗

N (X) is in τ>j|N |−1.

Proof. Pulling back preserves cofiber sequences and extensions, so we need only show

that this is true for the generators of τ
G/N
>j−1. Since for any H containing N , we have

φ∗
N

(
(G/N)+ ∧H/N X

)
' G+ ∧H φ∗

NX

(the only possibly non-obvious step here is that ẼF [N ] for G restricts to ẼF [N ]
for H), it suffices to prove this for H = G. We therefore show that for any k and
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ε = 0, 1 such that k|G/N | − ε > j − 1, we have φ∗
N (SkρG/N−ε) is in τ>(j−1)|N |. By

Corollary 4.6, we have an equivalence

φ∗
N (SkρG/N−ε) ' SkρG−ε ∧ φ∗

N (S0).

Since φ∗
N (S0) is (−1)-connected, it is in τ>0. Thus, we need only show that

k|G| − ε > (j − 1)|N |.

This, however, is obvious.
For the second part, we observe that ε is always zero here. Now we are looking at

a kρG-suspension of φ∗
N (S0). Since

φ∗
N (S0) ' SρG−ρG/N ∧ φ∗

N (S0),

we conclude that φ∗
N (S0) is in τ>|N |−1. Hence

scon
(
SkρGφ∗

N (S0)
)
= k · |G|+ scon

(
φ∗
N (S0)

)
> j|N | − 1.

Remark 4.13. The second half of the previous theorem shows that if we consider
the localizing categories generated only by the regular representation spheres, then
Conjecture 4.11 is true. Ullman has recently studied this “regular slice filtration”,
and he independently proved that in this context, slices for G/N pull back to slice
for G [14].

Suspension invariance and the way suspensions pass through pullbacks show that
in two cases, we completely understand how slices pull back.

Proposition 4.14. If (j − 1) ≡ 0,−1 mod |G/N |, then (j − 1)-slices for G/N pull
back to (j|N | − 1)-slices for G.

Proof. If (j − 1) = k|G/N | − ε, then a (j − 1)-slice is a (kρG/N )-suspension of a (−ε)-

slice. By Corollary 4.6, SkρG/N pulls back to SkρG . Corollary 4.10 shows that zero
slices pull back to (|N | − 1)-slices. Proposition 4.2 shows that (−1)-slices pull back
to (−1)-slices, and the result is proved.

Corollary 4.15. If [G : N ] = 2, then slices for G/N pull back to slices for G.

5. The slices of HM for cyclic p-groups

We will use our understanding of pullbacks to determine all of the slices of HA
and HM for an arbitrary cyclic p-group, where A is the Burnside Mackey functor
and where M is arbitrary. Our method uses some amusing properties of A which are
specific to cyclic p-groups, namely the simplicity of the augmentation ideal. For a
general M , the story is slightly trickier, and interestingly, our slice filtration on HM
is essentially the same as the filtration used by Barwick in his proof of the Carlsson
conjecture [1].

5.1. The slice tower for HA
For G = Cpn , the slices of the Eilenberg-Mac Lane spectrum for the Burnside

Mackey A functor are actually shockingly simple and the slice filtration arises in an
obvious algebraic way.
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Since HA is (−1)-connected, we know that HA is in τ>0. We also know that the
zero slice assigns to G/H the group

Im
(
A(G/H) → A(G/{e})

)
= Im

(
A(H) → Z

)
,

where the map is the augmentation sending a finite H-set to its cardinality. This is
the well-known constant Mackey functor Z: the value on G/H is Z, all restriction
maps are the identity, and transfers are multiplication by the index. Let I denote
the augmentation ideal, the kernel of the map A → Z. This we can write as a sum of
pullbacks for G = Cpn .

For G = Cpn , we have a single subgroup Cpk for each 0 6 k 6 n. Instead of the
somewhat cumbersome φ∗

C
pk
, we will write φ∗

k.

Proposition 5.1. If I is the augmentation ideal of the Burnside Mackey functor for
Cpn , then we have an isomorphism of Mackey functors

I =
n⊕

k=1

φ∗
kZ

∗,

where Z∗ is the dual to the constant Mackey functor Z on Cpn−k .

Proof. Consider the subMackey functor generated by the element [Cpk+1/Cpk ]− p
in I(Cpn/Cpk+1). The transfer of this element to Cpm is [Cpm/Cpk ]− p[Cpm/Cpk+1 ],
and the collection of all elements generated by these elements for fixed k is clearly
a subMackey functor. This restricts to zero in I(Cpn/Cpk), and it is immediate that
this subMackey functor is φ∗

kZ
∗. Moreover, for fixed m and varying k, the elements

[Cpm/Cpk ]− p[Cpm/Cpk+1 ] are linearly independent and generate I(Cpn/Cpm).

Corollary 5.2. We have an equivalence

HI =

n∨
k=1

Hφ∗
kZ

∗.

We know also that HI is in τ>1, since it is the fiber of the map from HA to its zero
slice HZ. By Corollary 4.10, HI is a wedge of slices. These are therefore the slices
of HA, and the filtration by slices of degree less than or equal to m is the m-slice
section.

What is perhaps most curious here is that all of the slice sections are Mackey
functors associated to a natural filtration of the Burnside ring by summands. By
considering degrees, we see the following.

Theorem 5.3. If n is not of the form pk − 1, then the map Pn(HA) → Pn−1(HA)
is an equivalence. We also have an equivalence

P pk−1HA = H

A

/
n⊕

j=k+1

φ∗
kZ

∗

 .

In particular, the slice spectral sequence for HA is very simple. All groups are
concentrated in dimension zero, and their filtrations are exponentially distributed. In
fact, the groups lie at the very edge of the vanishing regions for various subgroups,
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which provides an interpretation for the vanishing lines in the slice spectral sequence
as lines detecting when restrictions vanish.

Since every Mackey functor is a module over the Burnside ring, the naturality of
the slice tower tells us that the corresponding filtration of an arbitrary Mackey functor
M is a good first approximation to the slice tower for HM . Each of the stages of the
slice tower for HA is the Eilenberg-Mac Lane spectrum for a Green functor (in fact,
a Tambara functor), so the A-module structure of a Mackey functor M shows that
the slices of HM are in the obvious module categories. We can do better, though,
and explicitly determine all of the slices of HM for a cyclic p-group.

5.2. The slice of HM for a cyclic p-group
We begin by defining a filtration on a Mackey functor M . For obvious reasons, we

will call it the coslice filtration.

Definition 5.4. If M is a Mackey functor, we define a filtration of M by saying that
the kth filtered piece F kM is the subMackey functor of M generated by all elements
which restrict to zero in all subgroups of order at most k.

We also let F 0M be M .

Remark 5.5. As stated, this definition obviously works for a general finite group G.
We return to the question of how much of this section holds in that case in the last
section.

For a cyclic p-group, it is obvious that F kM = F k−1M unless k is a power of p.

Similarly, by construction, F pk

M is pulled back from Cpn/Cpk . We can do signifi-
cantly better, though.

Proposition 5.6. If k > 1, then the spectrum H
(
F pk−1M/F pk

M
)
is the pullback of

a zero-slice for Cpn/Cpk−1 .
If k = 0, then the spectrum H

(
M/F 1M

)
is a zero-slice.

Proof. We prove the second part first, as the first follows easily from this.
By Theorem 2.14, zero slices are distinguished by the fact that all restriction maps

to the trivial group are injections. The subMackey functor F 1M is the subMackey
functor of all elements which restrict to zero in the trivial group, and so the quotient
M/F 1M is a zero slice.

For the first part, we note that F pk−1M is pulled back from Cpn/Cpk . In particular,

it is the pullback of F 0N for some N on Cpn/Cpk Similarly, F pk

M is the pullback of
F 1N . The quotient is therefore the pullback of N/F 1N , which is the pullback of a
zero slice.

Corollary 5.7. For any M over Cpn , H
(
F pk−1M/F pk

M
)
is a (pk − 1)-slice.

Theorem 5.8. For G = Cpn , then rth slice of HM is

P r
r (HM) = H

(
F rM/F r+1M

)
,

and the slice sections are

P r(HM) = H
(
M/F r+1M

)
.
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Proof. We rewrite the coslice filtration of M as a tower with limit M : P rM =
M/F r+1M . We have obvious short exact sequences

F rM/F r+1M → M/F r+1M → M/F rM.

Applying H(−) to this tower of Mackey functors produces a tower of fibrations in
spectra. Since our group is a cyclic p-group, we know that these only change when
(r + 1) is a power of p. By Corollary 5.7, the fibers in the tower are all slices, and by
construction, they are arranged in increasing order. We therefore conclude that this
tower of Eilenberg-Mac Lane spectra is the slice tower.

Now we give a small warning (which is in some sense obvious). While it is the case
that the Mackey functors M/F rM are modules over A/F rA (and this is true for any
finite group, in fact), in general

M/F rM 6∼= M �A/F rA.

There is always a map from the right to the left, but even for zero slices, it can fail
to be an isomorphism.

5.3. An example

To facilitate understanding of the coslice filtration on a Mackey functor, we get
our hands dirty with an example. Let G = C2, and we use the standard notation for
a Mackey functor:

M(G/G)

r

��

M =

M(G/{e})

t

^^

γ

WW

where r is the restriction, t is the transfer, and γ generates the Weyl group.

Our example will be the Mackey functor E defined by

Z⊕ Z/2
[
1 0

]
))

E =

Z/2

0
1


^^

1

WW

By definition, F 0E = E. Similarly, F 1E is the subMackey functor generated by all
elements which restrict to zero in E(G/{e}). This gives the following Mackey functors
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for F 1E and the quotient E/F 1E:

2Z⊕ Z/2

0

,,

F 1E =

0

0

^^

0

YY

Z/2

1

))

E/F 1E =

Z/2

0

ii

1

WW

.

The slice tower is in this case simply the fiber sequence HF 1E → HE → H(E/F 1E).
The module E also fails to satisfy E/F 1E ∼= E �Z. In this case, the latter is

Z/4

1

))

E �Z =

Z/2

2

ii

1

WW

and the map to the zero slice of E is the obvious quotient map.

6. Geometric spectra

The notion of pullback has already proved useful. We focus now on a special case,
“geometric spectra”, for which the slice tower is a reindexed form of the Postnikov
tower. These are actually distinguished by an algebraic condition on their Mackey
functor homotopy groups.

Definition 6.1. A Mackey functor M is concentrated on G/G if

M(G/H) = 0

for all proper subgroups H.

Thus, M is concentrated on G/G if M = φ∗
GM for some M an abelian group

(which is a Mackey functor for the trivial group). Thus, much of this section simply
exploits the fact that Conjecture 4.11 is true in this context, and we work out many
of the implications of this.

We have already encountered a number of examples.

Example 6.2.

1. If G = Cp, then the augmentation ideal I is concentrated on G/G.

2. For any G, π0F (SρG−1, HM) = H0(SρG−1;M) is concentrated on G/G for any
Mackey functor M .

These examples give some of the general algebraic flavor.

Proposition 6.3. Every Mackey functor M has a largest canonical quotient ẼP ⊗M
such that ẼP ⊗M is geometric. If M is a Green functor, then so is ẼP ⊗M .
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Proof. To form ẼP ⊗M , we quotient M by the sub-Mackey functor generated by
M(G/H) for all proper subgroups H. If M is a Green functor, then by definition,
this is a Mackey ideal, and hence ẼP ⊗M is a Green functor.

Remark 6.4. If M(G/G) is a division ring and M is geometric, then M is a Mackey
division ring. These have been studied extensively by Lewis and Oruc [8], [12]. We
believe that the pulled-back and fixed point Mackey functors associated to Galois
field extensions exhaust all Mackey fields.

We have chosen this notation to underscore the close connection between Mackey
functors concentrated on G/G and geometric fixed points. This connection will be
fleshed out further shortly.

Remark 6.5. The previous proposition is really a statement about pulled-back Mackey
functors. There is an identical proof which shows that every M has a canonical largest
quotient ẼF [N ]⊗M which is pulled back from G/N . Additionally, this is a Green
functor if M is. This is also the localization onto the full subcategory of Mackey
functors for which the pullback is the left adjoint, as described in [4, Proposition 4].

The second example above shows us the following proposition.

Proposition 6.6. Every M has a canonical maximal subMackey functor PM such
that PM is concentrated on G/G.

This reinforces the close connection between Mackey functors concentrated onG/G

and the slice filtration (since PM is the top slice of HM , P
|G|−1
|G|−1HM).

We now turn more fully to topological considerations, directly linking this algebraic
discussion to slice and geometric fixed point constructions. We have two essentially
equivalent consequences of the definition: if M is concentrated on G/G, then

1. G/H+ ∧HM ' ∗ and

2. F (G/H+, HM) ' ∗
for all proper subgroups H.

Since the cofiber of the inclusion SV G

↪→ SV is built out of cells with proper
stabilizer subgroup, the previous observation shows that

SV G

∧HM ' SV ∧HM,

and the equivalence is induced by the inclusion of the fixed point sphere. Coupled
with the stability of slices under suspension by copies of the regular representation,
this gives a huge list of slices.

Theorem 6.7. If M is concentrated on G/G, then Σn−1HM is a (n|G| − 1)-slice.

Proof. For any Mackey functor N , Σ−1HN is a (−1)-slice. We therefore learn that
ΣnρG−1HN is a (n|G| − 1)-slice, and if M is concentrated on G/G, then

ΣnρG−1HM ' Σn−1HM.

Remark 6.8. It is not the case that a Mackey functor concentrated on a proper sub-
group has this property. For G = C2, the fixed point Mackey functor associated to the
sign representation is concentrated on G/{e}, but it is easy to produce suspensions
which are not slices.
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Remark 6.9. The analogous result for pullbacks is that if M is a zero slice for G/N ,
then ΣkρG/NHφ∗

NM is an (k|G|+ |N | − 1)-slice. Similarly, for any Mackey functor
M , ΣkρG/N−1Hφ∗

NM is a (k|G| − 1)-slice. The proof is immediate from Corollary 4.6.

This property that the function spectrum from G/H+ to HM is contractible for
any M concentrated on G/G is shared by ẼP, where P is the family of proper
subgroups. As this spectrum is that with which we smash to get the geometric fixed
points, we give a topological version of our earlier algebraic statement.

Definition 6.10. A G-spectrum X is geometric if π∗(X) is concentrated on G/G.

Smashing with ẼP effects the localization nullifying all maps from induced objects,
so we derive the following equivalent form immediately.

Proposition 6.11. A spectrum is geometric if and only if the natural map

X → ẼP ∧X

is a G weak equivalence.

This gives the reason for calling such spectra “geometric”: the fixed and geometric
fixed points agree. Since ẼP is a smash idempotent in G-spectra, we have a lot of
geometric spectra.

Corollary 6.12. For all Y , ẼP ∧ Y is geometric.

In fact, all geometric spectra essentially arise in this way (due to the equivalence
described in Proposition 4.3). If M is a Mackey functor, then the Mackey functor
ẼP ⊗M of Proposition 6.3 is π0(ẼP ∧HM). Moreover, for X a (−1)-connected
G-spectrum,

π0(ẼP ∧X) = ẼP ⊗ π0X.

While all geometric spectra are of this form, they arise from seemingly unrelated
ways. The following proposition is obvious, but we have found it sufficiently useful
that it bears repeating.

Proposition 6.13. If f : X → Y is an equivariant map such that

π∗(X)(G/H) → π∗(Y )(G/H)

is an isomorphism for all proper subgroups H, then the fiber of f is geometric.

This seemingly simple condition of “geometric” actually allows us to completely
deduce the slices of a geometric spectrum X.

Theorem 6.14. If X is a geometric spectrum, then the slice tower of X is a reindexed
form of the Postnikov tower of X: the (n− 1)st Postnikov layer is the (n|G| − 1)st

slice and all other slices are contractible.

Proof. We first note that the Postnikov layers are in fact slices by Theorem 6.7. The
slice tower is a nullification tower, nullifying induced up representation spheres. Since
maps from anything induced from a proper subgroup are automatically null (this is
a restatement of X being geometric), we need only consider the effect of nullifying
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maps from regular representation spheres. In particular, we see that the slices only
change in dimensions congruent to −1 or 0 modulo the order of G.

Now we apply the same argument used for Theorem 6.7: the inclusion Sn−1 into
SnρG−1 is an inclusion modulo induced cells, and therefore the space of maps from
Sn−1 into X is the same as the space of maps of SnρG−1 into X. The nullification
towers are therefore the same, giving the result.

Remark 6.15. In [5, Proposition 4.41], it is shown that if the layers of a tower are
slices of increasing slice-connectivity, then the tower is the slice tower. Theorem 6.7
shows that the layers of the Postnikov tower are increasing slices, and so we conclude
that the two towers are the same.

This theorem gives us a way to interpret the slice tower for a general spectrum
Y . The Mackey functor homotopy groups of Y are essentially determined by the
homotopy groups of the H-geometric fixed points of Y for all subgroups H. Each of
these are restrictions of Y to subgroups, followed by smashing with the appropriate
ẼP, and since smashing with ẼP produces a geometric spectrum, the slices of these
are a smeared version of the ordinary Postnikov sections. Thus, we learn that the
slice tower is essentially an aggregation of stretched out Postnikov sections, scaled by
the order of the appropriate subgroups.

7. Here be dragons

We finish with a few observations and conjectures. These fall into two flavors:
algebraic and topological. As is common in algebraic topology, both are underlain by
the topology of the slice filtration.

On the algebraic side, we have the general question of the algebraic analogue of the
slice filtration. We defined a decreasing filtration of a general Mackey functor, and for
cyclic p-groups, this gives the slice filtration. The definition, however, was independent
of the structure of the finite group: the kth filtered piece is the subMackey functor
generated by all elements which restrict to zero in all subgroups of order at most k.
The obvious question is if the Eilenberg-Mac Lane spectra associated to the filtration
quotients realize the slices of HM . Our analysis of slices breaks down here, since we
do not understand how to handle non-normal subgroups and pullbacks therefrom1.

There is an additional subtlety: it is not immediately clear that the slices are all
Eilenberg-Mac Lane spectra. For HA and HM for G = Cpn , we showed this directly.
For other spectra, this is less clear (though we know that eventually the layers of
the slice tower will be Eilenberg-Mac Lane spectra). The process of forming the
intermediate stages could introduce and then kill higher homotopy groups. While we
believe all slices to be Eilenberg-Mac Lane spectra, we do not have an easy argument
showing it.

On the topological side, we have the general question of the relationship between
the slice tower of a quotient group G/N and the slice tower for G. We showed in
Theorem 4.9 that if X is less than or equal to (j − 1) for G/N then φ∗

N (X) is less
than or equal to j|N | − 1 for G. This provides the upper bound. We do not have the

1Since the submission of this paper, Ullman has used the regular slice filtration to prove this con-
jecture and the following [14].
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corresponding precise lower bound except in special cases. In other words, if X is a
(j − 1)-slice, then we do not know that φ∗

N (X) is in τ>(j|N |−1), which would imply
that φ∗

N (X) is a (j|N | − 1)-slice. The only examples in which we could completely
understand the connection are the geometric spectra, and here we see that this exactly
holds.

The notion of “pullback” used here is not the naive one. We have chosen to couple
pulling-back with the N -geometric fixed points to make more conceptual the connec-
tions between the homotopy groups and the obvious effect on Mackey functors. This
has the added advantage of establishing the N -geometric fixed points as a (homo-
topy) left adjoint to the N pullback functor. Coupled with our earlier conjecture
(Conjecture 4.11), this suggests a very clean and detailed story linking the slice tower
to various flavors of geometric fixed points and vastly generalizing Theorem 6.14 and
the remarks thereafter.
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