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MOTIVES OF SOME ACYCLIC VARIETIES

ARAVIND ASOK

(communicated by Charles Weibel)

Abstract
We prove that the Voevodsky motive with Z-coefficients

(resp.Q-coefficients) of a Z-acylic (resp.Q-acyclic) smooth com-
plex variety of dimension 6 2 is isomorphic to that of a point
and discuss some related extensions.

Introduction

A smooth connected complex variety X such that X(C), viewed as a complex man-
ifold, has trivial reduced integral (resp. rational) singular homology will be called a
Z-acyclic (resp. Q-acyclic) variety. The only Z- or Q-acylic smooth variety of dimen-
sion 1 is A1. It is not immediately obvious that there exist Q-acyclic varieties besides
An, but in fact the theory of such varieties is extremely rich; see Example 5 for a
taste. We refer the reader to the excellent survey article [Zăı99] for many exam-
ples of Q-acyclic varieties. The goal of this note is to study the motive, in the sense
of Voevodsky, of such acyclic varieties, especially in the case where dimX = 2. In
particular, our goal is to prove the following result:

Theorem 1. If X is a Z-acyclic (resp. Q-acyclic) smooth complex variety of dimen-
sion 2, then the canonical morphism M(X) → Z (resp. M(X) → Q) is an isomor-
phism in DMgm(C,Z) (resp. DMgm(C,Q)).

Assuming some “standard” conjectures regarding motives, a reformulation of the
Hodge conjecture (see [Hub08, Proposition 3.4.1]) predicts that the Hodge realiza-
tion functor, from Voevodsky’s derived category of motives (with the Tate motive
inverted) to an appropriate (derived) category of Hodge structures, is conservative.
In particular, this conjecture implies that Q-acyclic smooth complex varieties should
have trivial rational motive. We can view the result above as providing a tiny amount
of evidence for this conjecture. Given the known rationality results for Q-acyclic vari-
eties of dimension 2, the proof is quite easy. Our main hope is that Theorem 1 points
to some interesting questions regarding the relationship between acyclic varieties and
the theory of motives. For example, is it true that the integral Voevodsky motive of
a Z-acyclic variety is necessarily isomorphic to Z?
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Proof of Theorem 1

For simplicity, we fix C as our base field.

Triangulated categories of motives

Regarding Voevodsky’s derived category of motives, our terminology will follow
Parts 4 and 5 of the book [MVW06]. Suppose R is a commutative unital ring.
Denote by DMeff

− (C, R) Voevodsky’s derived category of effective motivic complexes
with R-coefficients (see [MVW06] Definition 14.1); we will only consider the cases
R = Z or Q in the sequel. For a smooth schemeX, the motive ofX with either integral
or rational coefficients is an object of DMeff

− (C,Z) or DMeff

− (C,Q) that we denote
by M(X). We will also use the compactly supported motive Mc(X) (see [MVW06,
Definition 16.13]). We write DMgm(C, R) for Voevodsky’s derived category of geo-
metric motives (see [MVW06, p. 114]); this category can be most quickly described
as follows: take the category DMeff

− (C,Z), invert the operation of tensoring with the
Tate motive, and take the subcategory of compact objects in the resulting category.

Rationality results for Q-acyclic surfaces

Fujita’s structure theory for open algebraic surfaces [Fuj79] imposes strong topo-
logical restrictions on compactifications of an acyclic surface and, in particular, his
results establish rationality of Q-acyclic surfaces of logarithmic Kodaira dimension
6 0. Gurjar, Shastri and Pradeep pushed this significantly further by treating the
cases of acyclic surfaces of logarithmic Kodaira dimension 1 or 2. The proof of
Theorem 1 will rely on the difficult result, due to (subsets of) Gurjar, Shastri and
Pradeep [GP99, GPS97, GS89a, GS89b, PS97], that Q-acyclic smooth complex
surfaces are rational. The next statement recalls these results in the form in which
they will be applied.

Theorem 2 (Fujita, Gurjar, Pradeep, Shastri). If X is a Z-acyclic (resp. Q-acyclic)
smooth complex surface, then X is rational and affine. Furthermore, there exist a
smooth proper surface X̄ and an open immersion j : X →֒ X̄ having the following
properties:

(i) The variety X̄ is a smooth, projective, rational surface, the boundary X̄ \X is
a simple normal crossings divisor, and each irreducible component of X̄ is a
rational curve.

(ii) The group Pic(X̄) (resp. Pic(X̄)⊗Z Q) is freely generated by the irreducible
components of X̄ \X, and the intersection graph of these divisors forms a tree.

Proof. For the statements in (i), with the exception of the assertion of rationality,
we proceed as follows. By resolution of singularities, we may always choose a smooth
compactification X̄ of X whose boundary ∂X̄ = X̄ \X is a simple normal crossings
divisor, in particular, all its irreducible components are smooth. To simplify notation,
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in the remainder of this proof we abuse notation by writing X for X(C) and ∂X̄ for
∂X̄(C).

By either the assumption that X is Z-acyclic or Q-acyclic, we can conclude
by [Fuj82, Corollary 2.5] that X is affine, Gm(X) = C∗, Pic(X) is a torsion group,
X̄ has geometric genus and irregularity 0 and the first Betti number of ∂X̄ is zero.
To check that ∂X̄ has irreducible components consisting of smooth rational curves,
it suffices to check that the boundary ∂X̄ is both connected and simply connected.
By Lefschetz duality we know that

Hi(X̄, ∂X̄) ∼= H4−i(X), and Hi(X̄, ∂X̄) ∼= H4−i(X),

using Z-coefficients if X is assumed Z-acyclic and Q-coefficients if X is assumed
Q-acyclic. By the universal coefficient theorem, we deduce that Hi(X,Z) (resp.
Hi(X,Q)) vanishes for 1 6 i 6 4. Now, the usual exact sequences for homology of
a pair give rise to isomorphisms Hi(∂X̄)

∼

→ Hi(X̄). One concludes that ∂X̄ is con-
nected. Now, we already know that the first Betti number of ∂X̄ is 0, and there-
fore [Fuj82, Theorem 2.8] (due to C.P. Ramanujam) allows us to conclude that ∂X̄
is simply connected and, furthermore, a tree of rational curves.

For (ii), by [Fuj82, Corollary 2.9], we can conclude that Pic(X) ∼= H2(X,Z) and,
thus, is trivial if X is Z-acyclic or torsion if X is Q-acyclic. By Hodge theory and
Poincaré duality one knows that Pic(X̄) is isomorphic to H2(X̄). The isomorphism
H2(∂X̄)

∼

→ H2(X̄) then allows one to conclude that Pic(X̄) (resp. Pic(X̄)⊗Z Q) is
generated by the irreducible components of the boundary divisor.

As mentioned before the proof, the difficult part of the statement is the assertion
that X̄ is rational. In that case, Gurjar-Pradeep prove [GP99, p. 259], that any
Q-acyclic variety is rational (since any Z-acyclic variety is Q-acyclic, this implies
rationality in the Z-acyclic case as well); this theorem builds on [GPS97, PS97].
For historical reasons, let us mention that the Z-acyclic case was treated earlier in
the papers [GS89a, GS89b]; see [GS89b, Theorem 8.1], taking X and D in the
statement of Gurjar-Shastri’s theorem to be X̄ and ∂X̄ = X̄ \X respectively (since
we saw above that X has geometric genus 0).

Motives of acyclic surfaces
Proof of Theorem 1. We give the proof in the Z-acyclic case; in the Q-acyclic case
the proof is identical after replacing Z by Q throughout. Fix a topologically Z-acyclic
smooth complex surface X, let X̄ be a smooth compactification as described by
Theorem 2, and write ∂X̄ = X̄ \X.

The localization sequence for compactly supported motives (see [MVW06, The-
orem 16.15]) in our setup gives a triangle of the form:

Mc(∂X̄) −→ Mc(X̄) −→ Mc(X) −→ Mc(∂X̄)[1].

Since both X̄ and ∂X̄ are projective, it follows from loc. cit. that Mc(X̄) ∼= M(X̄)
and Mc(∂X̄) ∼= M(∂X̄). We will now describe the motive of the compactification X̄

and the boundary ∂X̄.
Since X̄ is a smooth projective rational surface, we know that it is isomorphic

to an iterated blow-up of either a Hirzebruch surface or projective space. Thus, we
can compute its motive using the projective bundle formula (see, e.g., ibid., Theorem
15.12) and the blow-up triangle (see, e.g., ibid., 14.5.4). Consider two base cases:
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either X̄ = P2, in which case M(P2) ∼= ⊕2
i=0

Z(i)[2i], or X̄ = Fa = P(OP1 ⊕OP1(a)),
in which case M(Fa) = Z⊕ Z(1)[2]⊕2 ⊕ Z(2)[4] by the projective bundle formula. If
Y is a smooth projective surface, then the blow-up distinguished triangle reduces to
the identity

M(Bly(Y )) ∼= M(Y )⊕ Z(1)[2],

where y ∈ Y (C). Thus, if X̄ is an iterated blow-up of a rational surface, it follows
that

M(X̄) ∼= Z⊕ Z(1)[2]⊕r ⊕ Z(2)[4]

for some integer r.

Next, let us compute the motive of the boundary ∂X̄; this boundary is a projective
curve. Recall that an abstract blow-up of a variety Y with center Z is a proper
morphism p : Y ′ → Y that induces an isomorphism (Y ′ − Z ′)red ∼= (X − Z)red, where
Z ′ = Z ×Y Y ′. Thus, any (partial) resolution of ∂X̄ gives rise to an abstract blow-up.
We know that ∂X̄ is connected and the number of irreducible components of ∂X̄ is
equal to the rank r of the Picard group of X̄. We claim that we have a decomposition
of the form

M(∂X̄) ∼= Z⊕ Z(1)[2]⊕r.

This is seen by induction on the number of connected components as follows.

By [MVW06, Theorem 13.26], we have a triangle associated with any abstract
blow-up:

M(Z ′) −→ M(Y ′)⊕M(Z) −→ M(Y ) −→ M(Z ′)[1].

If ∂X̄ has a single irreducible component, then this irreducible component is iso-
morphic to P1, and the result follows by the projective bundle formula above. Thus,
assume that ∂X̄ has two irreducible components. In this case, the resolution of ∂X̄
has two connected components and the above triangle gives the required isomorphism.
In general, there are a sequence of abstract blow-ups

Yr−1 −→ Yr−2 −→ · · ·Y1 −→ ∂X̄

such that at each stage Yi has exactly one more connected component than Yi−1 (blow
up the intersection points in X̄). Since each additional component is a smooth rational
curve, it follows that its motive is isomorphic to Z⊕ Z(1)[2] again by the projective
bundle formula. Thus, M(Yr) ∼= Z⊕r ⊕ Z(1)[2]⊕r, and the morphism Yi → Yi−1 thus
kills a copy of Z at each stage. In particular, M(∂X̄) ∼= Z⊕ Z(1)[2]⊕r.

Combining the discussion of the previous two paragraphs, we see that the com-
pactly supported motive of X fits into a triangle of the form

Z⊕ Z(1)[2]⊕r −→ Z⊕ Z(1)[2]⊕r ⊕ Z(2)[4] −→ Mc(X) −→ Z[1]⊕ Z(1)[3]⊕r.

Since both X̄ and ∂X̄ are connected, the irreducible components of ∂X̄ generate the
Picard group of X̄, and in the localization sequence, the first map of the triangle is
defined by the push-forward of cycles. It follows that the first map is split injective and
thus has cokernel exactly Z(2)[4]. Thus, the map Z(2)[4] → Mc(X) is an isomorphism
in DM−(C,Z).



MOTIVES OF SOME ACYCLIC VARIETIES 333

To obtain the statement about geometric motives, we use duality theory. The
morphism Z(2)[4] → Mc(X) is induced by “flat pullback” from the structure mor-
phism X → SpecC by [Voe00, Corollary 4.2.4]. The statement about geometric
motives then follows immediately from [MVW06, Example 20.11] or [Voe00, The-
orem 4.3.7.3].

Complements on motives of Z-acyclic varieties

There are several methods for producing new Z-acyclic smooth complex varieties
from a given one; here we review a procedure using affine modifications in the sense of
Zariski. SupposeX ⊃ D ⊃ C is a triple consisting of a smooth quasi-projective variety
X, an irreducible hypersurfaceD ⊂ X, and a smooth subvariety C ⊂ D everywhere of
codimension d > 2 in X. Let BlC(X) be the blow-up of X along C. Let D′ ⊂ BlC(X)
be the proper transform ofD. TheKaliman modification ofX alongD with center C is
defined by BlC,D(X) := BlC(X) \D′ (cf. [Zăı99, Definition 4.1]). Also, let E′ denote
the intersection of the exceptional divisor of the blow-up BlC(X) → X with BlC,D(X).
The following result summarizes the basic properties of Kaliman modifications.

Proposition 3 (See, e.g., [Zăı99, Lemmas 4.1 and 4.2]). Suppose X ⊃ D ⊃ C is a
triple as above and consider the Kaliman modification σC,D : BlC,D(X) → X. Assume
for simplicity that D is smooth.

(i) The morphism σC,D induces an isomorphism BlC,D(X) \ E′ → X \D.

(ii) The restricted morphism σC,D|E′ : E′ → C is a Zariski locally trivial bundle with
affine space fibers.

(iii) The morphism π1(BlC,D(X)) → π1(X) is an isomorphism.

(iv) If C and D are Z-acyclic, then BlC,D(X) is Z-acyclic if and only if the same
holds for X.

Similar statements can be made for Kaliman modifications of Q-acyclic varieties.
The next result follows easily by combining Proposition 3 with the existence and
functoriality of localization triangles for motives with compact support ([MVW06,
Theorem 16.25]), the triangulated category version of the 5-lemma, and the motivic
Thom isomorphism (see, e.g., [MVW06, Theorem 15.15]).

Proposition 4. Suppose ϕ : BlC,D(X) → X is a Kaliman modification, and let E′

be the exceptional divisor of ϕ. Then assuming C and D are smooth, M(ϕ) is an
isomorphism if and only if the map C →֒ D induces an isomorphism M(C) → M(D).
If, furthermore, M(C) → M(D) is an isomorphism and M(X) ∼= Z it follows that
M(X ′) ∼= Z as objects in DMZ(C).

Example 5. Consider A2 with coordinates x and y. Let Vn,m be the variety con-
structed in the following manner: blow up A2 at the point (1, 1), and remove the
proper transform of the curve Γn,m = {xn − ym = 0} (where n > m > 1 are coprime
natural numbers). We write Ln,m for the affine line corresponding to the comple-
ment of the intersection of the exceptional divisor of the blow-up and the curve
Γn,m. The resulting surface, called a tom Dieck-Petrie surface, is a topologically con-
tractible smooth surface of logarithmic Kodaira dimension 1 (see [tDP90] for the
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general theory of such surfaces). More explicitly, the surfaces Vn,m can be described
as hypersurfaces in A3 (see [tDP90, Theorem C and §6]) defined by the equations

(xz + 1)m − (yz + 1)n

z
= 1.

Performing repeated affine modifications on surfaces of this form allows one to pro-
duce positive dimensional families of non-isomorphic Z-acyclic varieties; see [Zăı99,
Theorem 2.6(d)] for more details.

Example 6. It is easy to construct situations satisfying the hypotheses of the previ-
ous proposition. For example, take any Z-acyclic smooth surface X not isomorphic
to A2 and consider the variety X × An for some integer n > 0. Fix a point x ∈ X

(or a contractible smooth curve) and consider a hypersurface of the form X × An−1;
this is a Z-acyclic hypersurface. We can perform a Kaliman modification of X × An

along X × An−1 with center x (or the contractible smooth curve) and, by combin-
ing Proposition 3(iii) and Proposition 4, obtain a Z-acyclic smooth complex variety
of dimension n+ 2 whose motive is isomorphic to Z. In many cases, the resulting
varieties are not isomorphic to affine space.
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