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CO-REPRESENTABILITY OF THE GROTHENDIECK GROUP OF
ENDOMORPHISMS FUNCTOR IN THE CATEGORY OF
NONCOMMUTATIVE MOTIVES

GONGCALO TABUADA

(communicated by Daniel Grayson)

Abstract

In this article we prove that the additive invariant co-
represented by the noncommutative motive Z[r] is the
Grothendieck group of endomorphisms functor KoEnd. Making
use of Almkvist’s foundational work, we then show that the ring
Nat(KoEnd, KoEnd) of natural transformations (whose multi-
plication is given by composition) is naturally isomorphic to the
direct sum of Z with the ring Wy (Z[r]) of fractions of polyno-
mials with coefficients in Z[r] and constant term 1.

1. Introduction and statement of results

A differential graded (=dg) category is a category enriched over complexes of
abelian groups; see §2.2. Dg categories enhance and solve many of the technical
problems inherent to triangulated categories; see Keller’'s ICM address [14]. In non-
commutative algebraic geometry in the sense of Drinfeld, Kaledin, Kontsevich, Orlov,
Van den Bergh, and others (see [4, 5, 7, 8, 13, 17, 18, 19, 20]), dg categories are
considered as dg enhancements of bounded derived categories of coherent sheaves on
a hypothetic noncommutative space. Let dgcat denote the category of dg categories.

All the classical invariants such as cyclic homology (and its variants), algebraic
K-theory, and even topological cyclic homology, extend naturally from rings to dg
categories. In order to study all these invariants simultaneously the author introduced
in [25] the notion of additive invariant; see Definition 4.1. Roughly speaking, these are
functors E': dgcat — D with values in additive categories which invert Morita equiva-
lences (i.e., dg functors inducing an equivalence on the associated derived categories)
and satisfy additivity. Thanks to the work of Blumberg-Mandell [3], Keller [15, 16],
and Quillen [22], all the mentioned invariants are additive. In [25] the universal
additive invariant

Up - dgcat — Hmoyg

was constructed; see Theorem 4.3. Given any additive category D, we have an induced
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equivalence of categories
(Z/[A)* : Funadd(Hmoo, D) = FunA(dgcat, D)7 (1)

where the left-hand side denotes the category of additive functors and the right-hand
side the category of additive invariants. Because of this universal property, which is
a reminiscence of motives, the category Hmog is called the category of noncommu-
tative motives. A fundamental problem in the theory of noncommutative motives is
the description of the additive invariants associated to noncommutative motives. An
example is given by the Grothendieck group functor Kjy. It is an additive invariant,
and hence by equivalence (1) it gives rise to an additive functor K. As proved in [25],
it becomes co-representable in Hmog by the noncommutative motive Ua(Z), where Z
is the dg category with one object and with Z as the dg algebra of endomorphisms. In
this article we study the additive invariant associated to the noncommutative motive
Un(Z[r]), where Z[r] is the ring of polynomials in the variable r.

Given a ring A, let P(A) be the category of finitely generated projective right
A-modules and End(P(A)) the associated category of endomorphisms. This latter
category inherits naturally from P(A) an exact structure in the sense of Quillen,
and so we can consider its Grothendieck group KoEnd(P(A)). We then obtain a
well-defined functor

Ring — Ab A s KoEnd(P(A)) (2)

from the category of (not necessarily commutative) rings to the category of abelian
groups; see §3.1 for details. Moreover, it comes equipped with classical natural trans-
formations such as the Frobenius operations (F),), the Verschiebung operations (Vy,),
and the substitution operations (Sp(,)) (where p(r) is a given polynomial); see [1,
page 319]. As explained in §3, the above functor (2) (as well as the natural transfor-
mations) extends naturally to a functor

KoEnd: dgcat — Ab (3)
defined on the category of dg categories. Our first main result is the following:
Theorem 1.1. The functor KoEnd is an additive invariant and there is a natural
isomorphism of additive functors

Hompmo, (UA(Z[r]), —) ~ KoEnd, (4)

where KoEnd is the additive functor associated to KoEnd via the equivalence (1).

By combining Theorem 1.1 with the universal property of Ua and with the (en-
riched) Yoneda lemma, we obtain the following result:

Proposition 1.2. There is a natural isomorphism of abelian groups
Nat(KoEnd, KoEnd) ~ KoEnd(Z[r]),

where Nat stands for the abelian group of natural transformations (with group struc-
ture given by objectwise addition,).
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Now, recall from [1, 2] Almkvist’s foundational computation of KoEnd(Z[r]). Let

Wo(Z[r]) = { T+ pi(r)t+ -+ pu(r)t" (), 45 () € Z[r]}

T4+ aq(r)t+ -+ gu(r)tm

be the multiplicative abelian group of fractions of polynomials (in the variable t)
with coefficients in Z[r] and constant term 1. Almkvist proved that there is a natu-
ral isomorphism of abelian groups KoEnd(Z[r]) ~ Z ® Wy(Z[r]). We then obtain the
following corollary:

Corollary 1.3. There is a natural isomorphism of abelian groups
Nat(KoEnd, KoEnd) ~ Z & Wy(Z][r]) . (5)
Moreover, under this natural isomorphism, we have the following identifications:

Fo < (L1+7"t) Vie (n,147rt") Sy < (1L, 1+p(r)t).

Corollary 1.3 shows us that all the information concerning a natural transformation
of the functor (3) can be completely encoded in an integer and in a fraction between
polynomials with constant term 1. Note also that the substitution operations are
the “simplest ones” with respect to the variable ¢, while the Verschiebung operations
are the “simplest ones” with respect to the variable r; note that F,, = S,». The
former ones correspond to the unit of Z and to the polynomials of degree one (in the
variable t), while the latter ones correspond to the natural numbers in Z and to those
polynomials concentrated in degree n (in the variable ¢) whose coefficient is simply
the polynomial r.

The abelian group Nat(KoEnd, KoEnd) naturally carries a (noncommutative) ring
structure given by composition of natural transformations. Via the isomorphism (5),
we then obtain a composition law on the abelian group Z @ Wy(Z[r]). In order to
describe it, we now introduce some notation. Given a square matrix B and a polyno-
mial p(r) = ag + a1 + - - - + a,r™ € Z[r], we write p(B) for the matrix agId +a; B +
-+ 4 a, B". Given an integer k > 1 and polynomials py(r),...,pr(r) € Z[r], let

[0 - o 0 (=1)FIpg(r) T
1 ' :
M(pi(r),...,pu(r)) = | ¢
: . . *p2(7’)
L0 -~ 0 1 p1(r)

4 (kxk)
Under these notations, our second main result is the following:
Theorem 1.4. Let P =1+ pi(r)t + -+ pr(r)th and H =1+ hy(r)t + -+ + hy(r)t!
be two arbitrary polynomials of Wo(Z[r]). Then, the assignment
(P,H) — PxH = det(Id +Mp.yt), (6)
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where Mp.3 is the block-matrix

F0 - o 0 (=D h(M(pi(r),...,pr(r)) ]
Id
0 . T : ’
S 0 —ha(M(pa(r),...,pr(r)))

L0 -~ 0 W hi(M(py(r),- .., pk(r)))

J4 (kxl)x(kxl)

determines a unique (noncommutative) ring structure x on the abelian group
Wo(Z[r]). The x-unit is the polynomial 1+ rt. Moreover, under this ring structure
on Wo(Z[r]), the above isomorphism (5) is a ring isomorphism.

Remark 1.5. As the proof of Theorem 1.4 shows, the ring Nat(KoEnd, KoEnd) of
natural transformations can be identified with the ring of endomorphisms of the
noncommutative motive Ua (Z[r]). Moreover, the multiplication law in the latter ring
is induced by the tensor product of bimodules. As the anonymous referee kindly
informed the author, the tensor product of bimodules was also used by Stienstra [24]
in his construction of operations on the K-theory of endomorphisms.

Informally speaking, Theorem 1.4 shows us that the ring of natural transforma-
tions decomposes as the direct sum of a “commutative piece” (the ring Z) and a
“noncommutative piece” (the ring (Wy(Zr]),-,*)). The ring Z corresponds to the
behavior of the natural transformations on the underlying modules, while the ring
(Wo(Z][r]),-,*) corresponds to the behavior of the natural transformations on the
endomorphisms per se.
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2. Preliminaries

2.1. Notations

Given categories C and D, we will denote by Fun(C, D) the category of functors
from C to D. Whenever F and G are two objects of Fun(C, D), we will write Nat(F, G)
for the set of natural transformations from F' to G. The adjunctions will be displayed
vertically with the left (resp. right) adjoint on the left- (resp. right-) hand side.

2.2. Differential graded categories

A differential graded (=dg) category is a category enriched over (unbounded)
cochain complexes of abelian groups in such a way that the composition operation ful-
fills the Leibniz rule: d(f o g) = d(f) o g+ (—1)%8) f 0 d(g). For a survey article on
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dg categories we invite the reader to consult Keller’s ICM address [14]. The category
of dg categories will be denoted by dgcat.

Let A be a dg category. Its opposite dg category A°P has the same objects and com-
plexes of morphisms given by A°P(x,y) := A(y,x). A right dg A-module (or simply a
A-module) is a dg functor A°® — Cyg(Z) with values in the dg category of complexes
of abelian groups. We will write C(.A) for the category of .A-modules. Recall from [14,
§3] that C(A) carries a standard projective model structure with weak equivalences
and fibrations defined objectwise. Let D(A) be the derived category of A, i.e., the
localization of C(A) with respect to the class of quasi-isomorphisms. Given a dg func-
tor F': A — B, we have a restriction/extension of scalars Quillen adjunction (on the
left-hand side)

c(B) D(B)
FT iF* LF!T iF*
C(A) D(A)

which can be naturally derived (on the right-hand side). We will say that F' is a
Morita equivalence if the derived functor LF: D(A) — D(B) is an equivalence of
(triangulated) categories; see [14, §4.6].

3. K-theory of endomorphisms

In this section we recall from [1, 2, 10, 11] the classical K-theory of endomor-
phisms and extend it to the setting of dg categories.

3.1. Classical setting

Recall from [22, §2] that given a ring A, the category P(A) of finitely generated
projective right A-modules carries a natural exact structure in the sense of Quillen.
Given a ring homomorphism A — B, the extension of scalars functor restricts to
an exact functor — ®4 B: P(A4) — P(B). Hence, we obtain a well-defined functor
P: Ring — {Exact} from the category of (not necessarily commutative) rings to the
category of exact categories. The category End(P(A)) of endomorphisms in P(A)
has as objects the pairs (M, «), where M € P(A) and « is an endomorphism of M.
Its morphisms (M, o) — (M’, o) are the ring homomorphisms M — M’ verifying the
equality fa = o' f. By declaring a sequence in End(P(A)) to be exact if the underlying
sequence in P(A) is exact, the category End(P(A)) inherits naturally from P(A) an
exact structure. By combining the above constructions we then obtain a well-defined
functor

Ring —» {Exact} 3 {Exact} =% Ab A+ KoEnd(P(A)),
where K| stands for the Grothendieck group functor of exact categories as defined

in [22, §2].

3.2. Extension to dg categories
Given a dg category A, let perf(A) be the full subcategory of C(.A) consisting of
those A-modules which are cofibrant in the projective model structure and which
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become compact (see [21, Def. 4.2.7]) in the derived category D(A). As explained
in [9, Example 3.5], the category perf(A) carries a Waldhausen structure (see [26,
§1.2]) whose cofibrations and weak equivalences are those of the projective model
structure on C(A). Given a dg functor F': A — B, the extension of scalars F: C(A) —
C(B) is a left Quillen functor; see [12]. Hence, it preserves cofibrant objects, cofibra-
tions, weak equivalences, and pushouts. Since it preserves, moreover, modules which
become compact in the derived category, it restricts to an exact functor

perf(F'): perf(A) — perf(B).

We then obtain a well-defined functor perf: dgcat — {Wald.} with values in the cat-
egory of Waldhausen categories. By declaring a morphism in End(perf(A4)) to be a
cofibration (resp. a weak equivalence) if the underlying morphism in perf(A) is a
cofibration (resp. a weak equivalence), we observe that the category End(perf(.A))
inherits from perf(.A) a Waldhausen structure. Note that the gluing axiom follows
automatically from the fact that pushouts in End(perf(A)) are computed on the
underlying category perf(A). By combining the above constructions we then obtain
a well-defined functor
perf End Ko
KoEnd : dgcat — {Wald.} — {Wald.} — Ab,

where Ky stands for the Grothendieck group functor of Waldhausen categories as
defined in [26, §1.3].

3.3. Agreement

Notation 3.1. Given a ring A, we will denote by A the dg category with a single
object * and with A as the dg algebra of endomorphisms (concentrated in degree
zero). Note that this gives rise to a fully-faithful functor Ring — dgcat, A — A.

Recall from [26, §1.9] that by declaring the cofibrations to be the admissible
monomorphisms and the weak equivalences to be the isomorphisms, every exact cat-
egory in the sense of Quillen becomes a Waldhausen category. Given a ring A, we
then have a well-defined exact functor P(A) — perf(A) which maps a A-module to
the associated complex of A-modules concentrated in degree zero.

Proposition 3.2. For every ring A, the exact functor P(A) — perf(A) gives rise to
an abelian group isomorphism

KoEnd(P(A)) — KoEnd(perf(A)). (7)

Proof. Let (M*®,«) be an object of End(perf(A4)). By definition, M*® € perf(A) and
« is an endomorphism of M®. Note that the A-linear endomorphisms a,,: M"™ —
M™ give rise to A-linear endomorphisms H"(«): H"(M*®) — H™(M?®). Since M*®
belongs to perf(A), the A-modules H™(M?*) are not only projective of finite type but,
moreover, they vanish for |n| > 0. Hence, the assignment

(M®, ) = Y (=1)"[(H"(M*), H" ()] € KoEnd(P(4)) (8)

is well-defined. By definition of KoEnd(P(A)) and KoEnd(perf(A)), we then conclude
that (8) gives rise to the inverse abelian group homomorphism of (7). O
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4. Noncommutative motives

In this section we recall from [25] the construction of the category of noncommuta-
tive motives and describe in Theorem 4.3 its precise universal property. This category
will play a key role in the proof of Theorems 1.1 and 1.4.

Let A be a dg category. Consider the dg category T'(A) whose objects are the pairs
(i,2), where ¢ € {1,2} and « is an object of A. The complex of morphisms in T'(A),
from (¢,2) to (¢/,2'), is given by A(z,2’) if ¢ > ¢ and is 0 otherwise. Composition
is induced by the one on A; see [25, §4] for details. Note that we have two natural
inclusion dg functors

i1: A— T(A), io: A— T(A).
Definition 4.1. Let E: dgcat — D be a functor with values in an additive category.
We say that F is an additive invariant if it satisfies the following two conditions:
(i) It maps the Morita equivalences (see §2.2) to isomorphisms;
(i) For every dg category A, the inclusion dg functors induce an isomorphism?
[E(i1) E(i2)]: B(A) ® E(A) — E(T(A)).

A morphism of additive invariants is a natural transformation of functors. We will
denote by Funa(dgcat, D) the category of additive invariants (with values in D).

As in the case of rings, we can form the tensor product A ® B of dg categories.
This tensor product admits a natural derived version A ®" B with respect to Morita
equivalence; see [14, §2.3]. The category Hmog of noncommutative motives is defined
as follows: its objects are the dg categories and its abelian groups of morphisms are
given by

Hompme, (A, B) := Korep(A, B).

Here, Korep(A, B) stands for the Grothendieck group (see [21, Def. 4.5.8]) of the full
triangulated subcategory rep(A, B) of D(A% ® B) spanned by those bimodules X
such that for every object  in A the B-module X (—, z) belongs to perf(B). Compo-
sition in Hmoyg is induced by the (derived) tensor product of bimodules; see [25, §6]
for details. The category Hmog is additive and there is a natural functor

Up : dgcat — Hmoy, (9)

which is the identity on objects and which maps a dg functor F': A — B to the
class in the Grothendieck group Ky rep(A, B) of the bimodule in rep(.A, B) naturally
associated to F'.

Notation 4.2. Since the functor Up is the identity on objects we will write simply A
instead of Ua(A) in what follows.

Theorem 4.3. The functor (9) is the universal additive invariant, i.e., given any
additive category D, we have an induced equivalence of categories

(Ur)*: Funagg(Hmog, D) — Funa (dgcat, D), (10)

where Fun,gq(Hmog, D) denotes the category of additive functors (with values in D).

! Condition (ii) can be equivalently formulated in terms of a general semi-orthogonal decomposition
in the sense of Bondal-Orlov; see [25, Thm. 6.3(4)].
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Proof. Let E be an object of Funa(dgcat, D), i.e., an additive invariant with values
in D. Thanks to [25, Thms. 5.3 and 6.3] the functor F factors uniquely through Ua,
giving rise to an additive functor E: Hmog — D. If i) is an element of Nat(E, E'), i.e
a morphism 7n: E = E’ of additive invariants, then 7j: E = E’, with 1j(A) := n(A)
for every dg category A, is a natural transformation of additive functors. We then
obtain a well-defined functor

(—): Funa(dgcat, D) — Fun,gq(Hmog, D) . (11)
Making use of [25, Thms. 5.3 and 6.3], we observe that the functors (10) and (11)
are (quasi-)inverse of each other. This concludes the proof. O

Proof of Theorem 1.1

Recall that we are using Notation 4.2. The functor Homyme, (Z[r], —) is clearly
additive. Hence, by (10), its pre-composition with Ua gives rise to an additive invariant
Hompmo, (Z[r],Ua(—)). The proof will consist on showing that we have a natural
isomorphism of functors

KoEnd >~ Hompmo, (Z[r], Ua(—)) - (12)

Note that such an isomorphism implies automatically that the functor KyEnd is an
additive invariant. Moreover, since the functors (10) and (11) are (quasi-)inverse of
each other, it implies also the natural isomorphism (4). Let us then show the natural
isomorphism (12) of functors. Given a dg category A, we need to show that the
abelian groups

KoEnd(perf(A)) Hompme, (Z[r],Ua(A)) := Korep(Z]r], A)
are naturally isomorphic. Since the underlying abelian group of Z[r] is torsionfree [27,
Cor. 3.1.5] implies that the ring Z[r] (and hence the dg category Z[r]) is flat. As a

consequence, Z[r] @ A~ Z[r] ® A, and so rep(Z[r], A), identifies with the full tri-

angulated subcategory of D(Z[r]® @ A) spanned by those Z[r]-A-bimodules X such
that the A-module X (—, %) belongs to perf(.A). Note that such a bimodule X consists
of the same data as an object in the category End(perf(A)). Therefore, if we denote
by rep(Z[r], A) the full subcategory of C(Z[r]°® ® A) with the same objects as those
of rep(Z [ ], A), we have natural equivalences of categories

End(perf(A)) ~ rep(Z[r], A) ~ rep(Z[r], A)[w™"],

where rep(Z[r], A)[w™'] denotes the localization of rep(Z[r], A) with respect to the
class of quasi-isomorphisms. As a consequence, we obtain an isomorphism
KoEnd(perf(A))[w™'] ~ Korep(Z[r], A) .
By definition of the (different) Grothendieck groups, we observe that the localiza-
tion functor End(perf(.A)) — End(perf(A))[w~!] induces an isomorphism between
KoEnd(perf(A)) and KoEnd(perf(A))[w~?]. Hence, by concatenating all of the above
arguments, we finally obtain a natural abelian group isomorphism
KoEnd(perf(A)) ~ Korep(Z[r], A) .

This concludes the proof.
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Proof of Proposition 1.2
We start with the following result:

Lemma 4.4. Let E: dgcat — Ab be an additive invariant with values in (the additive
category of ) abelian groups. Then, the canonical map
Nat(KoEnd, E) — E(Z[r])  n— n(Z[r)([(Z[r], 7)) (13)

is an isomorphism of abelian groups. Here, the group structure on Nat(KoEnd, F) is
given by objectwise addition, and -r denotes the endomorphism of Z[r] (considered as
a module over itself) given by multiplication by r.

Proof. Thanks to Theorem 1.1, the functor KoEnd is an additive invariant. Hence,
KoEnd and E belong to the category Funa(dgcat, Ab). Using the equivalence (11),
we then obtain an abelian group isomorphism

Nat(KoEnd, E) — Nat(KoEnd, E) 7+ 7. (14)

By Theorem 1.1, the additive functor KoEnd is co-representable in Hmoy by the
dg categories Z[r|. Therefore, since every additive functor is a Ab-functor (see [6,
Def. 6.2.3]), the enriched Yoneda lemma [6, Thm. 8.3.5] furnish us an abelian group
isomorphism

Nat(KoEnd, E) — E(Z[r]) n— ﬁ(@)([id@]) . (15)

As explained in the proof of Theorem 1.1, there is a natural abelian group isomor-
phism
Korep(Z[r], Z[r]) ~ KoEnd(perf(Z[r]))

which identifies the class [idz] of the bimodule associated to the identity of Z[r]

with the class [(Z[r],-7)]. Hence, since E(Z[r]) = E(Z[r]) and 5(Z[r]) = n(Z[r]), we

conclude that the canonical map (13) is the composition of the isomorphisms (14)
and (15). This concludes the proof. O

Now, by combining Proposition 3.2, Theorem 1.1, and Lemma 4.4, we conclude
that the canonical map

Nat(KoEnd, KoEnd) — KoEnd(P(Z[r])) ~ KoEnd(Z][r]), (16)

sending a natural transformation n to n(Z[r])([(Z[r], -r)]), is an isomorphism of abelian
groups. This achieves the proof.

Proof of Corollary 1.3

Given a commutative ring A, let

Wo(A) = § LEPrbd e pal”
0 o 1+qit+ -+ gut™

| pi, qj EA}

be the multiplicative abelian group of fractions of polynomials (in the variable t)
with coefficients in A and constant term 1. Almkvist established in [2] the following
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natural isomorphism of abelian groups:
KoEnd(P(A)) — Ko(A) @ Wo(4) (M, )] = ([M], Ae(a)), (17)

where A\;(«) := det(Id +at) denotes the characteristic polynomial (in the variable ) of
the endomorphism «. The natural isomorphism (5) is then the following composition:

Nat(KoEnd, KoEnd) % KoEnd(P(Z[r])) =5 Z & Wo(Z[r]), (18)

where the right-hand side isomorphism is obtained by combining (17) (with A = Z[r])
with the natural isomorphism Ky(Z[r]) ~ Z (see [23, Cor. 3.2.13]).

Let us now show the identifications. Recall from [1, page 319] that the Frobenius
operations are given by

F,: KoEnd = KoEnd (M, a)] — [(M,a™)],
that the Verschiebung operations are given by

Vot KoEnd = KoEnd (M, a)] — [(M®™, V,(a))],

where
[0 0 (—1)"a
1 0
‘/n(a) = 0 5
: t. 0 :
o -~ 0 1 0

L 4 (nxn)

and that the substitution operations are given by
Sp(ry: KoEnd = KoEnd [(M,a)] = [(M,p(a))],

where p(r) is a given polynomial. Therefore, under the above composed isomor-
phism (18), we have the following identifications:

Fo & ((ZI], )] e (L1417t
Vo & 2] Vi(r)] < (n,1+7rt")
Snry ¢+ [(2[r)sp(r))] & (L1+4p(r)t).
The equality
A (Vi (-r)) := det(Id +V,, (-r)t) = 1 + ™,

which implies the identification [(Z[r]®™, V,,(-r))] <> (n,1 + rt"), is a simple exercise
which we leave for the reader.

5. Proof of Theorem 1.4

We start by reviewing the construction of the natural isomorphism (5). Thanks
to Theorem 1.1, the functor KyEnd is an additive invariant. Hence, by Theorem 4.3,
it factors through Hmog giving rise to an additive functor KoEnd. Making use of
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equivalence (11), we then obtain a ring isomorphism

Nat(KoEnd, KoEnd) — Nat(KoEnd, KoEnd) n—=n, (19)

where multiplication is given by composition of natural transformations. By Theo-
rem 1.1, the additive functor KyEnd is co-representable in Hmoy by the dg category
Z[r]. As a consequence, the enriched Yoneda lemma [6, Thm. 8.3.5] furnish us a ring

isomorphism

Nat(KoEnd, KoEnd) — HoMumo, (Z[r], Z[r]) 7= T(Z[r])([idz]),  (20)

where the multiplication on the right-hand side is given by composition. Recall from
§4 that Hompme, (Z[r], Z[r]) := Korep(Z|r], Z[r]) and that the composition operation

is induced by the tensor product of bimodules

Korep(Z[r], Z[r]) ®z Korep(Z[r], Zr]) — Korep(Z[r], Z[r]) (21)

which maps [X] ® [Y] to [X ®z Y]. Now, making use of Proposition 3.2 and Theo-
rem 1.1, we obtain a natural abelian group isomorphism

Hompme, (Z[r], Z[r]) = Korep(Z[r], Z[r]) ~ KoEnd(P(Z[r])) . (22)

Via this isomorphism, the composition operation on Homyme, (Z[r], Z[r]) then corre-
sponds to a bilinear composition law * on KoEnd(P(Z[r])). Note that the unit of *
is given by the class [(Z]r], -r)]. Finally, using Almkvist’s abelian group isomorphism

KoEnd(P(Z[r])) = Z & Wo(Z[r]) (M, o) — ([M],det(Id +at)), (23)

we transfer the bilinear composition law * to Z & Wy(Z[r]); note that the unit corre-
sponds to (1,14 rt). Recall that the natural isomorphism (5) is the concatenation of
the above isomorphisms (19), (20), (22) and (23).

Let us now study the composition law x on the direct summand Z. Recall that the
unit of the multiplicative group Wy(Z]r]) is the polynomial 1. Given natural numbers
k,l > 1, we have the following identifications:

[(Z[r]®,00) ¢ (k, 1) [(Z[r]*,0)] ¢ (1,1) (24)

under the above isomorphism (23). Making use of isomorphism (22) and of the above
description (21) of the composition operation, we observe that

(Z[1)®*, 0] % [(Z[r]*, 0)] = [(Z[1]1**D, 0)].

As a consequence, (k,1)«(I,1) = (k x,1). Since the composition law * on Z &
Wo(Z[r]) is bilinear, we conclude not only that it restricts to the direct summand
Z but, moreover, that its restriction to Z agrees with the ring of integers.

Let us now study the composition law x on the direct summand Wy (Z[r]). Recall
that the unit of the additive group Z is 0. Given arbitrary polynomials P =1+
pr(r)t+ -+ pp(r)tF and H =1+ hy(r)t + - + hy(r)t! of Wy(Z[r]), a simple exer-
cise (which we leave for the reader) shows us that, under the above isomorphism (23),
we have the following identifications:

ME = (IR, M (i (r), -, pi(1)))] < (K, P)

M =2 M (ha(r), . ka(r)] < (LH)
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Hence, making use of (24), we obtain the following identifications:

(M, = [ZITZ500) & (0.P) (M, o, = [ZE],0))) < (0,7).
Since the composition law x on KoEnd(P(Z[r])) is bilinear, the element
(Mg, — [Z[FFF,00]) % (M, n, — (2], 0)]) (25)

is the sum of (M’;l,“

»PE T T TR, 1

= (Mg, < (2%, 00) = (%, 00« My, )

+ ([(Z[1°8, 0] * [(Z[r]*',0)]) -

Making use of the isomorphism (22) and of the above description (21) of the compo-
sition operation, we observe that

(Mp,. e * Mi n) = [(ZI]PED, M)
and that the three terms of the above linear combination are all equal to
[(Z[r]2*D, 0).
As a consequence, the above element (25) agrees with
[(Z[r]®®D, Mpge)] = (Z[r)1**<, 0)].
Via the above isomorphism (23), we then obtain the equality
(0,P) x (0,H) = (0, P x H := det(Id + Mp.3t)) .

Therefore, since the composition law * on Z & Wy(Z]r]) is bilinear, we conclude that
it restricts to the direct summand Wy (Z[r]). We then obtain a well-defined (noncom-
mutative) ring (Wy(Z[r]), -, ) whose multiplication is completely characterized by the
assignment (6).

Finally, the above arguments combined with the bilinearity of the composition
law * on Z & Wy(Z[r]) allow us to conclude that this (noncommutative) ring is the
direct sum of Z with the ring (Wo(Z[r]), -, x). The fact that the abelian group isomor-
phism (5) is a ring isomorphism is now clear. This concludes the proof.
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