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SUPPORT VARIETIES AND REPRESENTATION TYPE
OF SELF-INJECTIVE ALGEBRAS

JÖRG FELDVOSS and SARAH WITHERSPOON

(communicated by Claude Cibils)

Abstract
We use the theory of varieties for modules arising from

Hochschild cohomology to give an alternative version of the
wildness criterion of Bergh and Solberg [7]: If a finite dimen-
sional self-injective algebra has a module of complexity at least
3 and satisfies some finiteness assumptions on Hochschild coho-
mology, then the algebra is wild. We show directly how this
is related to the analogous theory for Hopf algebras that we
developed in [23]. We give applications to many different types
of algebras: Hecke algebras, reduced universal enveloping alge-
bras, small half-quantum groups, and Nichols (quantum sym-
metric) algebras.

Introduction

The cohomology of a finite dimensional algebra holds information about its rep-
resentation type. Rickard first made this observation about group algebras, and it
inspired him to develop a theory for self-injective algebras (see [41]). Since then
mathematicians have applied homological methods to determine representation type
in various contexts (see [2, 3, 20, 30, 31, 40]), and they have partially filled a gap
in a wildness criterion of Rickard [41] (see [2, Corrigendum] and [7, 22, 23]).

For example, Farnsteiner [22] proved that if the Krull dimension of the cohomology
ring of a cocommutative Hopf algebra is at least 3, then the Hopf algebra has wild
representation type; more precisely he gave a block version of this statement. He
used the result of Friedlander and Suslin [26] that the cohomology ring of a finite
dimensional cocommutative Hopf algebra is finitely generated, as well as the theory
of support varieties developed by Suslin, Friedlander, Bendel, and Pevtsova [25, 45].
In [23] we gave a direct generalization of Farnsteiner’s results to all Hopf algebras
satisfying finiteness assumptions on their cohomology. Bergh and Solberg [7] gave a
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wildness criterion even more generally for self-injective algebras, under some finiteness
assumptions on the cohomology of given modules.

In this paper, we begin by showing how a wildness criterion for self-injective alge-
bras may be obtained using Hochschild cohomology and the theory of support vari-
eties developed for Hochschild cohomology by Erdmann, Holloway, Snashall, Solberg,
and Taillefer (see [19] and [42]). Bergh and Solberg have weaker hypotheses than
ours (see, for example, [7, Example 4.5]) due to the flexibility their relative theory
provides, however our finiteness assumptions are known to hold for many types of
algebras. Most of this article is devoted to applications: We apply the theory to Hecke
algebras, reduced universal enveloping algebras of restricted Lie algebras, small half-
quantum groups, and Nichols (quantum symmetric) algebras. In the last section, we
show that for a Hopf algebra, one may make a choice so that the support varieties
for a module defined in terms of Hochschild cohomology herein are isomorphic to the
support varieties defined in [23] in terms of the cohomology ring of the Hopf alge-
bra. Thus we give a direct connection between these two seemingly different support
variety theories for Hopf algebras.

Throughout this paper we will assume that all associative rings have unity elements
and that all modules over associative rings are unital. Moreover, all modules are left
modules and all tensor products are over the ground field unless indicated otherwise.
Finally, the principal block of an augmented k-algebra A is the unique indecomposable
ideal direct summand of A whose unity element acts as the identity on the trivial
A-module k.

1. Complexity and support varieties

Let A be a finite dimensional self-injective algebra over an algebraically closed field
k of arbitrary characteristic unless stated otherwise. In this section we recall some
definitions and results that will be needed later.

Let Ae := A⊗Aop denote the enveloping algebra of A. Then the graded ring
Ext

q
Ae(A,A) is isomorphic to the Hochschild cohomology ring HH

q
(A) of A. For any

A-bimoduleM , Ext
q
Ae(A,M) is isomorphic to the Hochschild cohomology HH

q
(A,M).

We make the following assumption in order to obtain an affine variety, namely
VH defined below, in which to consider the support varieties of finite dimensional
A-modules.

Assumption (fg1). There is a graded subalgebra H
q
of HH

q
(A) such that H

q
is a

finitely generated commutative algebra and H0 = HH0(A).

For any A-module M there is a homomorphism of graded rings ϕM : HH
q
(A) →

Ext
q
A(M,M) given by ϕM (η) := η ⊗A M (see [42, p. 707]). Combined with Yoneda

composition, the homomorphisms ϕM and ϕN induce right and left HH
q
(A)-actions

on Ext
q
A(M,N) for any two A-modules M and N (see [42, p. 707]), and by restriction

they also induce right and left H
q
-actions on Ext

q
A(M,N).

Denote by NH the ideal in H
q
generated by the homogeneous nilpotent elements

of H
q
and the Jacobson radical of H0. Since NH is a homogeneous ideal of H

q
and the

latter is commutative by assumption (fg1), it follows from [42, Lemma 2.2(b)] that
every maximal ideal of H

q
contains NH . Consequently, there is a bijection between
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the maximal ideals of H
q
and the maximal ideals of H

q
:= H

q
/NH . In the following

we denote by VH the maximal ideal spectrum of H
q
.

Now let M and N be finite dimensional A-modules. Let IH(M,N) be the subset
of those elements in VH whose inverse images in H

q
contain the annihilator of the

action of H
q
on Ext

q
A(M,N). (The action may be taken to be either the left or right

action; their annihilators coincide according to [42, Lemma 2.1].) Then IH(M,N)
is a homogeneous ideal of H

q
. Let VH(M,N) denote the maximal ideal spectrum of

the finitely generated commutative k-algebra H
q
/IH(M,N). As the ideal IH(M,N)

is homogeneous, the variety VH(M,N) is conical. If M = N , we write IH(M) :=
IH(M,M) and VH(M) := VH(M,M). The latter is called the support variety of M
(see [42, Definition 2.3]).

In order to be able to apply the results of [19] and [42], we also need the following
assumption, where Jac(A) denotes the Jacobson radical of A.

Assumption (fg2). Ext
q
A(A/ Jac(A), A/ Jac(A)) is a finitely generated H

q
-module.

Remark 1.1. By [19, Proposition 2.4], the assumption (fg2) is equivalent to either of
the following two statements:

(i) For all finite dimensional A-modulesM and N , Ext
q
A(M,N) is finitely generated

over H
q
.

(ii) For all finite dimensional A-bimodules M , HH
q
(A,M) is finitely generated over

H
q
.

Further, the statement (i) is equivalent to the corresponding statement in which
M = N , since we may apply the latter to the direct sum of two finite dimensional
modules to obtain (i).

In the following we show that every block of a finite dimensional self-injective
algebra for which assumptions (fg1) and (fg2) hold is self-injective and also satisfies
the same conditions (fg1) and (fg2).

Lemma 1.2. Let A be a finite dimensional algebra over an arbitrary field k and let
B be a block of A. Then the following statements hold:

1. If A is self-injective, then B is self-injective.

2. If A satisfies (fg1), then B satisfies (fg1).

3. If A satisfies (fg2), then B satisfies (fg2).

Proof. (1) Since direct summands of injective modules are injective, B is injective as
an A-module and therefore also as a B-module.

(2) Let e be the primitive central idempotent of A corresponding to B, and consider
the algebra homomorphism from Ae onto Be defined by a⊗ a′ 7→ ea⊗ ea′. Letting
e act on f ∈ Homk(A

⊗n, A) as (ef)(x1 ⊗ · · · ⊗ xn) = e(f(ex1 ⊗ · · · ⊗ exn)), one sees
that HHn(B) is isomorphic to eHHn(A) where the latter is a direct summand of
HHn(A) for every non-negative integer n. In particular, eH

q
is a finitely generated

commutative subalgebra of the direct summand HH
q
(B) = eHH

q
(A) of HH

q
(A). Hence

B satisfies (fg1).
(3) For all A-modules M and N , ExtnB(eM, eN) is isomorphic to eExtnA(M,N)

where the latter is a direct summand of ExtnA(M,N). If ξ1, . . . , ξs are generators
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for the H
q
-module Ext

q
A(M,N), then eξ1, . . . , eξs are generators for the eH

q
-module

Ext
q
B(eM, eN). Hence B satisfies (fg2).

Let V q be a graded vector space over k with finite dimensional homogeneous com-
ponents. The rate of growth γ(V q) of V q is the smallest non-negative integer c such that
there is a number b for which dimk Vn 6 bnc−1 for all positive integers n. If no such
c exists, then γ(V q) is defined to be ∞. The complexity cxA(M) of an A-module M
may be defined in the standard way: Let P q : · · · → P1 → P0 → M → 0 be a minimal
projective resolution of M . Then cxA(M) := γ(P q).

We will need the following lemma stating that for a module belonging to a block
of a finite dimensional self-injective algebra, the complexity is the same whether it is
considered as a module for the block or for the whole algebra.

Lemma 1.3. Let A be a finite dimensional self-injective algebra over an arbitrary
field and let B be a block of A. Then cxB(M) = cxA(M) for every B-module M .

Proof. Every projective A-module is projective as a B-module, and consequently
cxB(M) 6 cxA(M). On the other hand, B is a direct summand of A, and as such B
is a projective A-module. Hence every projective B-module is also projective as an
A-module and therefore cxB(M) > cxA(M).

Finally, we will need the following connection between complexity, support vari-
eties, and the rate of growth of the self-extensions of a module. The first equality is
just [19, Theorem 2.5(c)]. Note that the indecomposability of A is not used in the
proof (see the proof of [19, Proposition 2.1(a)]). The second equality is implicitly
contained in the suggested proof (see also the first part of the proof of [23, Propo-
sition 2.3] for Hopf algebras that transfers to this more general situation under the
assumptions (fg1) and (fg2).

Theorem 1.4. Let A be a finite dimensional self-injective algebra over an alge-
braically closed field k of arbitrary characteristic for which assumptions (fg1) and
(fg2) hold. Let M be a finite dimensional A-module. Then

cxA(M) = dimVH(M) = γ(Ext
q
A(M,M)).

2. Complexity and representation type

Theorem 2.1 below generalizes [22, Theorem 3.1] and [23, Theorem 3.1] (cf. [7,
Theorem 4.1]). Thus we recover a result of Rickard [41, Theorem 2], whose proof
contains a gap (see [2, Corrigendum] and [22]), under the assumptions (fg1) and
(fg2). We apply the general theory developed in [19] and [42] (the needed parts of
which are summarized in Section 1) to adapt Farnsteiner’s proof to this more general
setting. Theorem 2.1 is similar to [7, Theorem 4.1] with slightly different hypotheses;
for completeness we give a proof in our context.

Recall that there are three classes of finite dimensional associative algebras over
an algebraically closed field (see [12, Corollary C] or [5, Theorem 4.4.2]): An algebra
A is representation-finite if there are only finitely many isomorphism classes of finite
dimensional indecomposable A-modules. It is tame if it is not representation-finite
and if the isomorphism classes of indecomposable A-modules in any fixed dimension
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are almost all contained in a finite number of 1-parameter families. The algebra A is
wild if the category of finite dimensional A-modules contains the category of finite
dimensional modules over the free associative algebra in two indeterminates. (For
more precise definitions we refer the reader to [5, Definition 4.4.1].) The classification
of indecomposable objects (up to isomorphism) of the latter category is a well-known
unsolvable problem, and so one is only able to classify the finite dimensional inde-
composable modules of representation-finite or tame algebras.

Theorem 2.1. Let A be a finite dimensional self-injective algebra over an alge-
braically closed field k of arbitrary characteristic for which assumptions (fg1) and
(fg2) hold and let B be a block of A. If there is a B-module M such that cxA(M) > 3,
then B is wild.

Proof. Let M be a B-module for which cxA(M) > 3. It follows from Lemma 1.3 that
cxB(M) = cxA(M) > 3. According to Lemma 1.2, B is also a finite dimensional self-
injective algebra over k for which assumptions (fg1) and (fg2) hold. As a consequence,
it is enough to prove the assertion for A and one can assume that A = B.

It follows from Theorem 1.4 and our hypotheses that n := dimVH(M) = cxA(M)
> 3. For each ζ ∈ H

q
, denote by 〈ζ〉 the ideal of H

q
generated by ζ. For each ideal

I of H
q
, denote by Z(I) its zero set, that is the set of all maximal ideals of H

q
containing I. Since VH(M) is a conical subvariety of VH , an application of the Noether
Normalization Lemma (see [22, Lemma 1.1]) yields non-zero elements ηs (s ∈ k) in

Hd for some d > 0 such that

(i) dimZ(〈ηs〉) ∩ VH(M) = n− 1 for all s ∈ k,

(ii) dimZ(〈ηs〉) ∩ Z(〈ηt〉) ∩ VH(M) = n− 2 for s 6= t ∈ k.

According to [19, Proposition 4.3 and Definition 3.1], there are A-bimodules Mηs for
which the corresponding A-modules Nηs := Mηs ⊗A M satisfy

VH(Nηs) = Z(〈ηs〉) ∩ VH(M) and dimk Nηs 6 bA,

where bA := (dimk M)(dimk A)(dimk Ω
d−1
Ae (A)), for all s ∈ k. Decompose Nηs into a

direct sum of indecomposable A-modules. By [42, Proposition 3.4(f)] and (i) above,
for each s there is an indecomposable direct summand Xs of Nηs such that

VH(Xs) ⊆ VH(Nηs) = Z(〈ηs〉) ∩ VH(M)

and dimVH(Xs) = n− 1. We claim that VH(Xs) 6= VH(Xt) when s 6= t: Note that if
VH(Xs) = VH(Xt), then

VH(Xs) ⊆ Z(〈ηs〉) ∩ Z(〈ηt〉) ∩ VH(M),

and the latter variety has dimension n− 2 if s 6= t. It follows that the varieties VH(Xs)
are distinct for different values of s, implying that the indecomposable A-modules Xs

are pairwise non-isomorphic. The dimensions of the modules Xs are all bounded by
bA, since Xs is a direct summand of Nηs . Consequently, there are infinitely many
non-isomorphic indecomposable A-modules Xs of some fixed dimension. According
to Theorem 1.4, cxA(Xs) = dimVH(Xs) = n− 1 > 2.

If A is not wild, then by [12, Corollary C], A is tame or representation-finite.
It follows from [12, Theorem D] that only finitely many indecomposable A-modules
of any dimension (up to isomorphism) are not isomorphic to their Auslander-Reiten
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translates. Since A is self-injective, the Auslander-Reiten translation τA is the same as
NA ◦ Ω2

A = Ω2
A ◦ NA where NA denotes the Nakayama functor of A (see [4, Propo-

sition IV.3.7(a)]). The Nakayama functor preserves projective modules and so any
A-module isomorphic to its Auslander-Reiten translate is periodic and thus has com-
plexity 1. Hence in any dimension there are only finitely many isomorphism classes
of indecomposable A-modules with complexity not equal to 1. This is a contradic-
tion, since we have shown that for some dimension, there are infinitely many non-
isomorphic indecomposable A-modules of complexity greater than 1. Therefore A is
wild.

An application of Theorem 2.1 and the Trichotomy Theorem [12, Corollary C] is

Corollary 2.2. Let A be a finite dimensional self-injective algebra over an alge-
braically closed field k of arbitrary characteristic for which assumptions (fg1) and
(fg2) hold and let B be a block of A. If B is tame, then cxA(M) 6 2 for every finite
dimensional B-module M .

Remark 2.3. Note that the tameness of an algebra A implies the tameness of every
block of A. In particular, Corollary 2.2 holds also for the whole algebra.

3. Hecke algebras

Let Hq be the Hecke algebra associated to a finite Coxeter group of classical type
over a field k, with non-zero parameter q in k. It is well-known that Hq is self-injective
(see [15, Theorem 2.3] for type A and [15, Remark after Theorem 2.8] for types B
and D). Let H

q
:= HHev(Hq) :=

⊕
n>0 HH2n(Hq), the subalgebra of HH

q
(Hq) gener-

ated by elements of even degree. It follows from a recent result of Linckelmann [34,
Theorem 1.1], Remark 1.1, and [27, Corollary 1, p. 281] that assumptions (fg1) and
(fg2) hold for Hq as long as the characteristic of the ground field is zero and the
order of q is odd if Hq is of type B or D, as stated in the next theorem. To obtain
this statement for the even part of the Hochschild cohomology from Linckelmann’s
result, first note that we may take as generators of the full Hochschild cohomology
ring a finite set of homogeneous elements. If we take those generators of even degree
combined with all products of pairs of generators in odd degree, we obtain a finite
set of generators of the even subring, since squares of odd degree elements are zero.
A similar argument applies to modules over the Hochschild cohomology ring.

Theorem 3.1. Assume that the characteristic of k is zero. Let q be a primitive `th
root of unity in k, for some integer ` > 1, and assume that ` is an odd integer if Hq

is of type B or D. Then the even Hochschild cohomology ring HHev(Hq) is a finitely
generated commutative algebra. Moreover, Ext

q
Hq

(M,N) is finitely generated as an
HHev(Hq)-module for all finite dimensional Hq-modules M and N .

A crucial tool in finding the representation types of blocks of Hecke algebras by
applying Theorem 2.1 is the following lemma.

Lemma 3.2. If A and A′ are finite dimensional self-injective augmented algebras
over an arbitrary field k for which assumptions (fg1) and (fg2) hold, then cxA⊗A′(k) =
cxA(k) + cxA′(k).
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Proof. By the Künneth Theorem, the tensor product of projective resolutions of k as
an A-module and as an A′-module is a projective resolution of k as an A⊗A′-module,
and moreover, Ext

q
A⊗A′(k, k) ∼= Ext

q
A(k, k)⊗ Ext

q
A′(k, k). It is well-known that the

Hochschild cohomology of a tensor product of algebras is the super tensor product of
the Hochschild cohomology of the factors (see, e.g., [35, Theorem 4.2.5] for the analog
for Hochschild homology). As (fg1) and (fg2) hold for A and A′ by hypothesis, (fg1)
and (fg2) also hold for A⊗A′. Hence the result follows from Theorem 1.4. (Note that
the proof of Theorem 1.4 does not use the self-injectivity of the algebra.)

Let Hq(Ar) denote the Hecke algebra of type Ar at a primitive root of unity q of
order ` where 2 6 ` 6 r. Erdmann and Nakano [20] investigated the representation
types of the blocks of Hq(Ar) over an arbitrary field. (Note that according to [16,
Theorem 4.3], Hq(Ar) is semisimple unless 2 6 ` 6 r.) The simple Hq(Ar)-modules
are in bijection with the `-regular partitions of r (see [15, Theorem 7.6]). Let Dλ

denote the simple Hq(Ar)-module corresponding to the `-regular partition λ. Then
Dλ and Dµ belong to the same block of Hq(Ar) if and only if λ and µ have the
same `-core (see [16, Theorem 4.13]). The `-core of a partition λ of r is the partition
whose Young diagram is obtained from the Young diagram of λ by removing as many
rim `-hooks as possible. Let Bλ denote the block of Hq(Ar) that contains the simple
module Dλ. The weight w(λ) of the block Bλ is defined by |γ|+ ` · w(λ) = r, where
γ is the `-core of λ.

Erdmann and Nakano [20, Proposition 3.3(A)] gave a proof of the following result
for fields of arbitrary characteristic by applying Rickard’s wildness criterion [41, The-
orem 2] whose proof contains a gap. By using our Theorem 2.1 and Linckelmann’s
result (Theorem 3.1) we can recover the result of Erdmann and Nakano for fields of
characteristic zero.

Theorem 3.3. Let Bλ be a block of the Hecke algebra Hq(Ar) over an algebraically
closed field k of characteristic zero at a primitive root of unity q in k of order `, where
2 6 ` 6 r. If w(λ) > 3, then Bλ is wild.

Proof. Let Y λ denote the q-Young module that is the unique indecomposable direct
summand of the q-permutation module of the partition λ containing Dλ (see [14,
Section 2]). Let Hq(ρ) denote the q-Young vertex of Y λ. Erdmann and Nakano [20,
Theorem 2.2] proved that cxHq(Ar)(Y

λ) = cxHq(ρ)(k). As w(λ) > 3, Hq(ρ) is a free
module over the subalgebraHq(A`)⊗Hq(A`)⊗Hq(A`) (see [20, proof of Proposition
3.3(A)]). By virtue of [16, Theorem 4.3], Hq(A`) is not semisimple and therefore
cxHq(A`)(k) > 1. It follows from the above and Lemma 3.2 that

cxHq(Ar)(Y
λ) = cxHq(ρ)(k) > cxHq(A`)⊗Hq(A`)⊗Hq(A`)(k) = 3 · cxHq(A`)(k) > 3.

Now the q-Young module Y λ belongs to Bλ by definition, and thus Theorem 2.1 in
conjunction with Theorem 3.1 yields the assertion.

Remark 3.4. For the principal block of the Hecke algebra Hq(Ar), the conclusion of
Theorem 3.3 is also an immediate consequence of Theorem 1.4, [6, Theorem 1.1], and
Theorem 2.1.

Linckelmann’s result [34, Theorem 1.1] neither covers the two-parameter Hecke
algebras nor the one-parameter Hecke algebras of types B and D at parameters of even
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order. Ariki applies Rickard’s wildness criterion in his paper only in the two-parameter
case or for parameters of degree two (see [2, Corrigendum]), so Theorem 2.1 cannot
be used to give an alternative approach to fix the gap as for type A. On the other
hand, as in Remark 3.4, we obtain from Theorem 1.4 and [6, Theorem 6.2, Theorem
6.6, and Theorem 1.1] in conjunction with Theorem 2.1 the following result.

Theorem 3.5. Let Hq be the Hecke algebra of type Br or Dr over an algebraically
closed field k of characteristic zero at a primitive `th root q of unity in k for some
odd integer ` > 1. If r > 3`, then the principal block of Hq is wild.

Now let Hq be the Hecke algebra of type Br or Dr over an arbitrary field k of
characteristic zero at a primitive `th root q of unity in k for some odd integer ` > 1.
Then it follows from [17, Theorem 4.17] (see also [2, Theorem 38]) for type Br, [39,
(3.6) and (3.7)] for type Dr (r odd), and [32, Main result, p. 410] for type Dr (r even)
in conjunction with Uno’s result for type A (see [3, (1.1)]) that Hq is representation-
finite if and only if r < 2` (see also [3, pp. 135–136] for the two-parameter Hecke
algebra). Consequently, Theorem 3.5 reduces the proof of [2, Theorem 57(1)] to the
cases 2` 6 r < 3` in which, according to Linckelmann’s result [34, Theorem 1.2] and
Theorem 1.4, all Hq-modules have complexity at most 2 and therefore a wildness
criterion à la Rickard would never apply.

On the other hand, a similar argument as above can be used to give a short proof
for the wildness of the Hecke algebra Hq of type Br or Dr over an arbitrary field
k of characteristic 6= 2 at a primitive `th root q of unity in k for some odd integer
` > 1 by applying [20, Proposition 3.3(B)]. According to the latter, Hq(A2`) is wild.
Then [17, Theorem 4.17] (or [2, Theorem 38]) for type B and [32, Main result, p. 410]
for type D imply that Hq(B2`) and Hq(D2`) are wild as they contain Hq(A2`) as an
ideal direct summand. Now [2, Corollary 4(2)] shows that Hq(Br) and Hq(Dr) are
wild as long as n > 2`.

4. Reduced universal enveloping algebras

Let g be a finite dimensional restricted Lie algebra over a field k of prime charac-
teristic, let χ be any linear form on g, and let u(g, χ) denote the χ-reduced universal
enveloping algebra of g (see [44, Section 5.3]). Note that u(g, χ) is always a Frobenius
algebra (see [44, Corollary 5.4.3]), and therefore u(g, χ) is self-injective but it is a
Hopf algebra only if χ = 0. In this section we give a unified proof of the wildness
criterion for χ-reduced universal enveloping algebras. In [22, Theorem 4.1 and Corol-
lary 4.2] this was done by repeating parts of the proof for χ = 0 in the general case.
We need the following result assuring that assumptions (fg1) and (fg2) hold for finite
dimensional χ-reduced universal enveloping algebras.

Lemma 4.1. Let g be a finite dimensional restricted Lie algebra over a field k of
prime characteristic and let χ be any linear form on g. Then there is a finitely gener-
ated commutative graded subalgebra H

q
of HH

q
(u(g, χ)) such that H0 = HH0(u(g, χ))

and Ext
q
u(g,χ)(M,N) is finitely generated as an H

q
-module for all finite dimensional

u(g, χ)-modules M and N .
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Proof. According to [21, Theorem 2.4], there exists a natural isomorphism

HH
q
(u(g, χ)) ∼= Ext

q
u(g,χ)e(u(g, χ), u(g, χ))

∼= Ext
q
u(g,0)(k, u(g, χ)),

where u(g, χ) is a restricted g-module (or equivalently, u(g, χ) is a u(g, 0)-module)
via x · u := xu− ux for every x ∈ g and every u ∈ u(g, χ). It is clear that the unit
map from k to u(g, χ) is a homomorphism of restricted g-modules (i.e., a u(g, 0)-
module homomorphism), and therefore there exists a natural homomorphism from
Ext

q
u(g,0)(k, k) into Ext

q
u(g,0)(k, u(g, χ))

∼= HH
q
(u(g, χ)). In particular, by virtue of [26,

Theorem 1.1], the factor algebra E
q
of Ext

q
u(g,0)(k, k) modulo the kernel of this homo-

morphism is a finitely generated graded subalgebra of HH
q
(u(g, χ)). Now set

H
q
:=


HH0(u(g, χ)) ·

∞⊕
n=0

En, if char k = 2,

HH0(u(g, χ)) ·
∞⊕

n=0
E2n, if char k 6= 2.

Then H
q
is a finitely generated commutative graded subalgebra of HH

q
(u(g, χ)) such

that H0 = HH0(u(g, χ)). Finally, the second part of the assertion follows from [21,
Corollary 2.5] and another application of [26, Theorem 1.1].

Theorem 2.1 and Corollary 2.2 in conjunction with [44, Corollary 5.4.3] and
Lemma 4.1 imply [22, Theorem 4.1] and [22, Corollary 4.2], respectively. We give
precise statements here for completeness.

Theorem 4.2. Let g be a finite dimensional restricted Lie algebra over an alge-
braically closed field of prime characteristic, let χ be any linear form on g, and let B
be any block of the χ-reduced universal enveloping algebra u(g, χ) of g. If there is a
B-module M such that cxu(g,χ)(M) > 3, then B is wild.

Corollary 4.3. Let g be a finite dimensional restricted Lie algebra over an alge-
braically closed field of prime characteristic, let χ be any linear form on g, and let B
be any block of the χ-reduced universal enveloping algebra u(g, χ) of g. If B is tame,
then cxu(g,χ)(M) 6 2 for every B-module M .

5. Small half-quantum groups

In this section, we give a wildness criterion for some small half-quantum groups,
that is those corresponding to certain nilpotent subalgebras of complex simple Lie
algebras. These are not Hopf algebras themselves, and so our main results in [23] do
not apply directly.

Let g be a finite dimensional complex simple Lie algebra, Φ its root system, and
r := rk(Φ) its rank. Let ` > 1 be an odd integer and assume that ` is not divisible
by 3 if Φ is of type G2. Let q be a primitive complex `th root of unity and let uq(g)
denote Lusztig’s small quantum group [36].

Fix a set of simple roots and let Φ+ and Φ− be the corresponding sets of posi-
tive and negative roots, respectively. Then g has a standard Borel subalgebra cor-
responding to Φ+ and an opposite standard Borel subalgebra corresponding to Φ−.
Let u>0

q (g) (denoted u+
q (g) in [23]) be the Hopf subalgebra of uq(g) corresponding

to the standard Borel subalgebra of g and let u60
q (g) denote the Hopf subalgebra of
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uq(g) corresponding to the opposite standard Borel subalgebra of g. Furthermore, we
will use the notation u>0

q (g) to denote the subalgebra of uq(g) corresponding to the
largest nilpotent ideal of the standard Borel subalgebra of g and u<0

q (g) to denote
the subalgebra of uq(g) corresponding to the largest nilpotent ideal of the opposite

standard Borel subalgebra of g. Note that u60
q (g) ∼= u>0

q−1(g) and u<0
q (g) ∼= u>0

q−1(g)

(see [13, (1.2.10)]).
Drupieski [18, Theorem 6.2.6] proved the following result for the full cohomology

ring. In the usual way (see the argument before Theorem 3.1) one obtains from this
the corresponding result for the even degree cohomology ring. In fact, Drupieski more
generally deals with Frobenius-Lusztig kernels of quantum groups.

Theorem 5.1. Let q be a primitive complex `th root of unity and assume that ` > 1
is an odd integer not divisible by 3 if Φ is of type G2. Then the even cohomology
ring Hev(u>0

q (g),C) :=
⊕

n>0 H
2n(u>0

q (g),C) is finitely generated. Moreover, if M is

a finite dimensional u>0
q (g)-module, then H

q
(u>0

q (g),M) is finitely generated as an
Hev(u>0

q (g),C)-module.

Let G := (Z/`Z)r, a subgroup of the group of units of u>0
q (g). Then u>0

q (g) is a
skew group algebra formed from its subalgebra u>0(g) and the action of G by conju-
gation. Consequently G acts on the cohomology of u>0

q (g). Let H
q
:= HH0(u>0

q (g)) ·
Hev(u>0

q (g),C)G = HH0(u>0
q (g)) · Extevu>0

q (g)(C,C)
G. By Theorem 5.1, H

q
is finitely

generated. We show next that it embeds into HH
q
(u>0

q (g)); for details in a more gen-
eral context, see the next section. By standard arguments, there is an isomorphism
of Hochschild cohomology, HH

q
(u>0

q (g)) ∼= HH
q
(u>0

q (g), u>0
q (g))G. Similarly there is

an isomorphism Ext
q
u
>0
q (g)

(C,C) ∼= Ext
q
u>0
q (g)(C,C)

G. Since u>0
q (g) is a Hopf algebra,

there is an embedding of Ext
q
u
>0
q (g)

(C,C) into its Hochschild cohomology HH
q
(u>0

q (g))

(see the last section for details and references). It can be checked that the image of
Ext

q
u>0
q (g)(C,C)

G in HH
q
(u>0

q (g), u>0
q (g))G, under these isomorphisms, is contained in

HH
q
(u>0

q (g))G. Therefore (fg1) holds for u>0
q (g). We now claim that by Theorem 5.1

and Remark 1.1, (fg2) holds for u>0
q (g): We must show that for all finite dimensional

u>0
q (g)-modules M and N , Ext

q
u>0
q (g)(M,N) is finitely generated as an H

q
-module.

Since N is a u>0
q (g)-direct summand of the module u>0

q (g)⊗u>0
q (g) N induced to

u>0
q (g) and restricted back to u>0

q (g), this will be true if it is true for N replaced by
this induced module. By the Eckmann-Shapiro Lemma we have

Ext
q
u>0
q (g)(M,u>0

q (g)⊗u>0
q (g) N) ∼= Ext

q
u
>0
q (g)

(u>0
q (g)⊗u>0

q (g) M,u>0
q (g)⊗u>0

q (g) N).

The latter is finitely generated over Extev
u
>0
q (g)

(C,C) ∼= Extevu>0
q (g)(C,C)

G, which em-

beds into H
q
. Since the actions correspond under these isomorphisms, (fg2) does

indeed hold for u>0
q (g). For ease of reference we summarize this in the next result.

Corollary 5.2. Let q be a primitive complex `th root of unity and assume that
` > 1 is an odd integer not divisible by 3 if Φ is of type G2. Then the algebra H

q
:=

HH0(u>0
q (g)) ·Hev(u>0

q (g),C)(Z/`Z)r is finitely generated. Moreover, Ext
q
u>0
q (g)(M,N)

is finitely generated as an H
q
-module for all finite dimensional u>0

q (g)-modules M
and N .
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In order to be able to apply Theorem 2.1, we will need the following relation
between the complexities of the trivial modules for u>0

q (g) and for u>0
q (g).

Lemma 5.3. Let q be a primitive complex `th root of unity and assume that ` > 1 is
an odd integer not divisible by 3 if Φ is of type G2. Then cxu>0

q (g)(C) = cx
u
>0
q (g)

(C).

Proof. Since u>0
q (g) is a free u>0

q (g)-module, every projective resolution of u>0
q (g)-

modules restricts to a projective resolution of u>0
q (g)-modules. Consequently, we have

that cxu>0
q (g)(C) 6 cx

u
>0
q (g)

(C).
On the other hand, it follows from u>0

q (g) ∼= (Z/`Z)r · u>0
q (g), the Hochschild-Serre

spectral sequence, and Maschke’s Theorem that

Hn(u>0
q (g),C) ∼= Hn(u>0

q (g),C)(Z/`Z)
r

for every non-negative integer n. By Theorem 1.4, cxA(C) = γ(Ext
q
A(C,C)) for both

A = u>0
q (g) and A = u>0

q (g). We conclude that cxu>0
q (g)(C) > cx

u
>0
q (g)

(C), finishing
the proof of the assertion.

The following theorem was proved by Cibils (see the proof of [10, Proposition 3.3])
in the simply laced case for any ` > 5 by completely different methods.

Theorem 5.4. Let r > 2 and let q be a primitive complex `th root of unity. Assume
that ` > 1 is an odd integer not divisible by 3 if Φ is of type G2. Then u>0

q (g) is wild.

Note that the trivial module C is the only simple u>0
q (g)-module (up to isomor-

phism) and thus u>0
q (g) has only one block. If r = 1, then u>0

q (g) is isomorphic to

the truncated polynomial algebra C[X]/(X`) and therefore u>0
q (g) is representation-

finite.

Proof. According to Lemma 5.3 and the proof of [23, Theorem 4.3], we obtain
cxu>0

q (g)(C) = cx
u
>0
q (g)

(C) > 3 unless r = 1. Since u>0
q (g) is a Yetter-Drinfeld Hopf

algebra over the group algebra C[(Z/`Z)r], u>0
q (g) is a Frobenius algebra (see [24,

Corollary 5.8] or [43, Proposition 2.10(3)]) and therefore self-injective. Thus, if r > 2,
Theorem 2.1 in conjunction with Corollary 5.2 implies that u>0

q (g) is wild.

Remark 5.5. A more direct proof for the fact that u>0
q (g) is a Frobenius algebra can

also be given along the lines of the proof of [9, Theorem 7.2] for the quantum Borel
subalgebra u>0

q (g) by using the PBW-basis of the De Concini-Kac quantum group
associated to g [9, Section 6.1]. By this method one also finds that the Nakayama
automorphism u>0

q (g) is trivial.

Gordon [30, Theorem 7.1(b)(i)] proved the wildness of certain finite dimensional
factor algebras of the quantized function algebra of a simply-connected connected
complex semisimple algebraic group at roots of unity of odd degree (not divisible by
3 if the group has a component of type G2) by using Rickard’s wildness criterion.
We leave it to the interested reader to fix the gap in Gordon’s proof by proceeding
similarly to Section 4. Here [29, Theorem 5.2] plays the role of of [26, Theorem
1.1] in order to establish an analogue of Lemma 4.1 and [44, Corollary 5.4.3] is
replaced by [9, Theorem 8.4]. Then Theorem 2.1 and [30, Theorem 6.20] show that
the finite dimensional quantized function algebras in [30, Theorem 7.1(b)(i)] are wild.
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But note that in [8, Theorem 4.5(ii)] the same result including the borderline case
l(w1) + l(w2) = 2N − 2 is proved by using completely different methods even without
assuming that ` is larger than the Coxeter number.

6. Nichols algebras

In this section we apply Theorem 2.1 to Nichols algebras, also known as quantum
symmetric algebras, generalizing the application to small half-quantum groups of the
previous section. We summarize some of the definitions first; for more details, see,
e.g., [1].

If G is a finite group, then a Yetter-Drinfeld module over kG is a G-graded vector
space V =

⊕
g∈G Vg that is also a kG-module for which g · Vh = Vghg−1 for all g, h ∈

G. The grading corresponds to a kG-comodule structure: δ(v) = g ⊗ v for all g ∈ G
and v ∈ Vg. The category G

GYD of all Yetter-Drinfeld modules over kG is a braided

monoidal category with braiding c : U ⊗ V
∼→ V ⊗ U determined by c(u⊗ v) = g(v)⊗

u whenever g ∈ G, u ∈ Ug, v ∈ V . A braided Hopf algebra in G
GYD is an object R of

G
GYD having structure maps (unit, multiplication, counit, comultiplication, coinverse)
that are morphisms in the category and satisfy the usual commutative diagrams,
e.g., the multiplication µ is associative in the sense that µ ◦ (µ⊗ idR) = µ ◦ (idR ⊗µ).
Examples of braided Hopf algebras in G

GYD are the tensor algebra T (V ) and the
Nichols algebra B(V ) associated to a Yetter-Drinfeld module V over kG (the latter
is defined to be a particular quotient of the tensor algebra T (V ) that can be finite
dimensional).

Given a braided Hopf algebra R in G
GYD, one may form its Radford biproduct

(or its bosonization) A := R#kG: As an algebra, this is just the skew group algebra,
that is the free R-module with basis G and multiplication (rg)(sh) = r(g · s)gh for
r, s ∈ R and g, h ∈ G. It is also a coalgebra, ∆(rg) =

∑
r(1)(r(2))(−1)g ⊗ (r(2))(0)g for

all r ∈ R and g ∈ G, where ∆(r) =
∑

r(1) ⊗ r(2) in R as a Hopf algebra in G
GYD and

δ(r) =
∑

r(−1) ⊗ r(0) is its kG-comodule structure. These two structures make A into
a Hopf algebra.

We assume that the characteristic of k does not divide the order of G, and let
k be an R-module via the counit map from R to k. We will be interested in the
G-invariant subalgebra Ext

q
R(k, k)

G of Ext
q
R(k, k). Some results in [38, Appendix]

generalize to show that this subalgebra embeds into the Hochschild cohomology
HH

q
(R). We summarize these ideas here for completeness. We will use the fact that

Ext
q
A(k, k)

∼= Ext
q
R(k, k)

G, where A = R#kG, valid since the characteristic of k does
not divide the order of G.

First define a map δ : A → Ae by δ(a) =
∑

a1 ⊗ S(a2) for every a ∈ A. This is an
injective algebra homomorphism by [38, Lemma 11]. Let

D :=
⊕
g∈G

(Rg ⊗Rg−1),

a subalgebra ofAe. Note that sinceR is in G
GYD, the algebraD contains the subalgebra

δ(A) ∼= A. The proof of [38, Lemma 11] shows that as induced modules from δ(A)
to D and to Ae, there are isomorphisms D⊗δ(A) k ∼= R and Ae ⊗δ(A) k ∼= A. Thus
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induction from A ∼= δ(A) to D, and then to Ae, yields a sequence of isomorphisms

Ext
q
A(k, k)

∼= Ext
q
D(R, k) ∼= Ext

q
Ae(A, k).

The last space Ext
q
Ae(A, k) embeds, as an algebra, into Ext

q
Ae(A,A) ∼= HH

q
(A) via

the unit map from k to A (see [28, Section 5.6] or [38, Lemma 12]). In fact, HH
q
(A) ∼=

Ext
q
Re(R,A)G ∼= Ext

q
D(R,A), and so the second of the above isomorphisms results in

an embedding of Ext
q
D(R, k) into Ext

q
D(R,A). Its image is in Ext

q
D(R,R) ∼= HH

q
(R)G,

and the latter embeds into HH
q
(R).

We will identify Ext
q
R(k, k)

G with its image in HH
q
(R) in what follows. Let

H
q
:=


HH0(R) ·

∞⊕
n=0

ExtnR(k, k)
G, if char k = 2,

HH0(R) ·
∞⊕

n=0
Ext2nR (k, k)G, if char k 6= 2,

guaranteeing that H
q
is a commutative algebra.

Theorem 6.1. Let G be a finite group and let k be an algebraically closed field whose
characteristic does not divide the order of G. Let R be a finite dimensional Hopf
algebra in G

GYD. Assume (fg1) and (fg2) hold for H
q
defined as above. If there is an

R-module M such that cxR(M) > 3, then R is wild.

Proof. Since A = R#kG is a finite dimensional Hopf algebra, it is a Frobenius alge-
bra. Standard arguments show that R is itself a Frobenius algebra: A is a free
R-module, that is, A ∼= Rn as an R-module, where n denotes the order of G. As
A is Frobenius, A ∼= A∗ as A-modules, so Rn ∼= (Rn)∗ ∼= (R∗)n as R-modules. By the
Krull-Remak-Schmidt Theorem, R ∼= R∗ as R-modules, and so R is Frobenius. (For
a proof in a much more general context, see [24, Corollary 5.8] or [43, Proposition
2.10(3)].) Since R is Frobenius, it is self-injective, and the result now follows from
Theorem 2.1 by choosing the block in which an indecomposable summand of M of
complexity at least 3 lies.

In order to apply Theorem 6.1, the following proposition may be useful in some
cases. It is the analog of Lemma 5.3 in this setting.

Proposition 6.2. Let G be a finite group and let k be an algebraically closed field such
that the characteristic of k does not divide the order of G. Let R be a finite dimensional
Hopf algebra in G

GYD. Then cxR(M) = cxR#kG(M) for any R#kG-module M .

Proof. The skew group algebra R#kG is free as an R-module, so a projective res-
olution of M as an R#kG-module restricts to a projective resolution of M as an
R-module. Therefore cxR(M) 6 cxR#kG(M). On the other hand, the R#kG-module
M is a direct summand of the induced module (R#kG)⊗R M : Since the charac-
teristic of k does not divide the order |G| of G, the canonical projection from this
induced module to M splits via the map m 7→ 1

|G|
∑

g∈G g ⊗ g−1m. Since a projec-

tive resolution of M as an R-module may be induced to a projective resolution of
(R#kG)⊗R M as an R#kG-module, we now have

cxR(M) > cxR#kG((R#kG)⊗R M) > cxR#kG(M).
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Alternatively, we may use the following lemma combined with results from [23],
applied to the Hopf algebra R#kG, to obtain a wildness criterion for Nichols algebras.
The abelian case of the lemma is [8, Lemma 4.2]; the proof is valid more generally
using Morita equivalence of A and (A#kG)#(kG)∗ (see [11]).

Lemma 6.3. Let G be a finite group and let k be an algebraically closed field such that
the characteristic of k does not divide the order of G. Let R be a finite dimensional
algebra with an action of G by automorphisms. Then R and R#kG have the same
representation type.

We next apply Theorem 6.1 to a large class of examples from [37]. These are
the Nichols algebras and corresponding Hopf algebras arising in the classification of
finite dimensional pointed Hopf algebras having abelian groups of group-like elements
by Andruskiewitsch and Schneider [1]. Each such algebra is defined in terms of the
following data: Let θ be a positive integer and let (aij)16i,j6θ be a Cartan matrix of
finite type, i.e., its Dynkin diagram is a disjoint union of copies of some of the diagrams
An, Bn, Cn, Dn, E6, E7, E8, F4, G2. Let Φ be the root system corresponding to (aij).

Let G be a finite abelian group and let Ĝ be its dual group of characters. For each i,
1 6 i 6 θ, choose gi ∈ G and χi ∈ Ĝ such that χi(gi) 6= 1 and χj(gi)χi(gj) = χi(gi)

aij

for all 1 6 i, j 6 θ. Let D be the set of data (G, (gi)16i6θ, (χi)16i6θ, (aij)16i,j6θ). The
finite dimensional Hopf algebra u(D) (also denoted u(D, 0, 0) in [1]) is defined to be
the Radford bosonization of the Nichols algebra R corresponding to the following
Yetter-Drinfeld module over kG: V is a vector space with basis x1, . . . , xθ. For each
g ∈ G, let Vg be the k-linear span of all xi for which gi = g, and let g(xi) = χi(g)xi

for 1 6 i 6 θ and g ∈ G.

Example 6.4. Let g be a complex simple Lie algebra of rank θ, let (aij) be the cor-
responding Cartan matrix, and let α1, . . . , αθ be distinct simple roots. Let q be a
primitive `th root of unity, ` odd and prime to 3 if g has a component of type G2. Let
G := (Z/`Z)θ with generators g1, . . . , gθ. Let (−,−) denote the positive definite sym-
metric bilinear form on the real vector space spanned by the simple roots α1, . . . , αθ

that is induced from the Killing form of g. For each i, set χi(gj) := q(αi,αj) and extend
this to a character on G. The Nichols algebra R is u>0

q (g) and its Radford bosonization

is R#kG ∼= u>0
q (g).

We assume that the order Ni of χi(gi) is odd for all i, and is prime to 3 for all i
in a connected component of type G2.

Theorem 6.5. Let R be the Nichols algebra and let u(D) be the complex Hopf algebra
described above in terms of the data D with θ > 2. Assume that χNi

i is the trivial
character for all i and that the only common solution (c1, . . . , cθ) ∈ {0, 1}θ of the
equations

χ1(g)
c1 · · ·χθ(g)

cθ = 1

for all g ∈ G is (c1, . . . , cθ) = (0, . . . , 0). Then R and u(D) are both wild.

We note that under some conditions, u>0
q (g) and u>0

q (g) are included among the
Nichols algebras and Hopf algebras of the form R and u(D) satisfying the hypotheses
of the theorem: For these classes of examples, χi(gi) = q(αi,αi), whose order Ni is
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just the order ` of q. Thus χNi
i is indeed the trivial character for all i. A common

solution (c1, . . . , cθ) of the equations χ1(g)
c1 · · ·χθ(g)

cθ = 1 for all g ∈ G is equivalent
to a common solution for the generators g = gj for all j, which is a solution to the
equations

(α1, αj)c1 + · · ·+ (αθ, αj)cθ ≡ 0 (mod `)

for all j. Ginzburg and Kumar [28, Section 2.5, pp. 187–188] showed that under their
hypotheses, no non-zero solution exists in {0, 1}θ: They assume that the order ` of
the root of unity q is odd, greater than the Coxeter number of g, and prime to 3 if g
has a component of type G2. This provides an alternative approach to the results in
Section 5.

Proof of Theorem 6.5. Let

H
q
:=


HH0(R) ·

∞⊕
n=0

Extnu(D)(k, k), if char k = 2,

HH0(R) ·
∞⊕

n=0
Ext2nu(D)(k, k), if char k 6= 2.

By [37, Corollary 5.5], Ext
q
u(D)(k, k) is isomorphic to the G-invariant subalgebra of a

polynomial algebra in |Φ+| > 3 indeterminates (in cohomological degree 2), and the
group G acts diagonally on these indeterminates. Therefore assumption (fg1) holds
for R. Similarly, for u(D), we take H

q
as for R but replace the factor HH0(R) with

HH0(u(D)), and see that (fg1) holds for u(D).
We claim that by Remark 1.1, (fg2) holds for R: By [37, Theorem 5.3], (fg2) holds

for the corresponding Hopf algebra u(D) ∼= R#kG, since

Ext
q
u(D)(U, V ) ∼= Ext

q
u(D)(k, V ⊗ U∗)

for all finite dimensional u(D)-modules U and V . Next, let N be a finite dimensional
R-module. By the Eckmann-Shapiro Lemma,

Ext
q
R#kG((R#kG)⊗R M, (R#kG)⊗R N) ∼= Ext

q
R(M, (R#kG)⊗R N).

NowN is a direct summand of (R#kG)⊗R N as anR-module; therefore, Ext
q
R(M,N)

is finitely generated over Ext
q
R#kG(k, k)

∼= Ext
q
R(k, k)

G since Ext
q
R(M, (R#kG)⊗R

N) is. Under our assumptions, cxR(k) > 3, so by Theorem 6.1, R is wild. Replacing
R by u(D), we obtain the analogous conclusion for u(D).

The hypothesis regarding solutions (c1, . . . , cθ) in the theorem is surely not neces-
sary. However, in general, it is more difficult to determine precisely the Krull dimen-
sion of the relevant G-invariant cohomology ring.

7. Comparison of varieties for Hopf algebras

In this section, we look at finite dimensional Hopf algebras in general, explaining
the connection between the varieties defined in terms of Hochschild cohomology used
in this article and those defined in terms of the cohomology of the trivial module used
in [23].

Let A be a finite dimensional Hopf algebra over k. Then A is a Frobenius algebra
and therefore self-injective. Let H

q
(A, k) := Ext

q
A(k, k), and let
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Hev(A, k) :=


∞⊕

n=0
Hn(A, k), if char k = 2,

∞⊕
n=0

H2n(A, k), if char k 6= 2.

We will need the following assumption, as in [23].

Assumption (fg). Assume that Hev(A, k) is finitely generated, and that, for any two
finite dimensional A-modules M and N , the Hev(A, k)-module Ext

q
A(M,N) is finitely

generated.

In [23], the cohomology ring Hev(A, k) was used to define varieties for modules:
For each A-module M , VA(M) is the maximal ideal spectrum of Hev(A, k)/IA(M),
where IA(M) is the annihilator of the action of Hev(A, k) on Ext

q
A(M,M).

As mentioned in Section 6, the cohomology ring H
q
(A, k) embeds into Hochschild

cohomology HH
q
(A) as a graded subalgebra (see [28, Section 5.6] or [38, Lemma 12]).

Let B0 be the principal block of A. Note that H
q
(A, k) in fact embeds into HH

q
(B0).

Under assumption (fg), let

H
q
:= HH0(B0) ·Hev(A, k),

that is, H
q
is the subalgebra of HH

q
(B0) generated by HH0(B0) and the image of

Hev(A, k) in HH
q
(B0). Then H

q
satisfies (fg1) and (fg2). By Theorem 1.4, Lemma 1.3,

and [23, Proposition 2.3], for any finite dimensional B0-module M ,

dimVH(M) = cxB0(M) = cxA(M) = dimVA(M). (1)

That is, dimVH(M) = dimVA(M), as one expects, since HH0(B0) ∼= Z(B0) is finite
dimensional. In fact, the varieties VH(M) and VA(M) are isomorphic. We explain
this next.

By [38, Lemma 13], the following diagram commutes for every finite dimensional
A-module M :

H
q
(A, k)

−⊗kM

))SSSSSSSSSSSSSS

Ae⊗A−
��

HH
q
(A)

−⊗AM // Ext
q
A(M,M).

The vertical arrow is an embedding that is induced by an embedding from A to
Ae (see, e.g., [38, Lemma 11 and Lemma 12]). This diagram shows that the action
of Hev(A, k) on Ext

q
A(M,M) factors through HH

q
(A), resulting in a commutative

diagram

Hev(A, k)

−⊗kM

))SSSSSSSSSSSSSSS

��
H

q −⊗AM // Ext
q
A(M,M).

Again, the vertical arrow is an embedding and induces an embedding

Hev(A, k)/IA(M) −→ H
q
/IH(M).

As HH0(B0) ∼= Z(B0) is a local algebra, the above embedding induces an isomorphism
modulo radicals. Thus VH(M) and VA(M) are isomorphic.
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Applying Theorem 2.1 and Corollary 2.2, in light of (1), we recover versions of [23,
Theorem 3.1 and Corollary 3.2] for the principal block. These results were originally
proven using Hopf-theoretic techniques. In particular, tensor products of modules
were used in [23, Corollary 2.6], crucial in the proofs of [23, Theorem 3.1 and Corol-
lary 3.2].

Remark 7.1. In case G is a finite group and A = kG, much more is true: Linckel-
mann [33] proved that one may take H

q
instead to be the full even Hochschild coho-

mology ring HHev(B0) and still obtain a isomorphism between the varieties VH(M)
and VA(M). More generally, Linckelmann defined block cohomology for non-principal
blocks in this setting and proved that the resulting variety of a module is isomorphic
to that obtained via Hochschild cohomology of the block.
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[43] Y. Sommerhäuser, Ribbon transformations, integrals, and triangular decom-
positions, J. Algebra 282 (2004), no. 2, 423–489.

[44] H. Strade and R. Farnsteiner, Modular Lie algebras and their representations,
Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Mar-
cel Dekker, Inc., New York, 1988.

[45] A. Suslin, E.M. Friedlander, and C.P. Bendel, Support varieties for infinitesimal
group schemes, J. Amer. Math. Soc. 10 (1997), no. 3, 729–759.

Jörg Feldvoss jfeldvoss@jaguar1.usouthal.edu

Department of Mathematics and Statistics, University of South Alabama, Mobile, AL
36688–0002.

Sarah Witherspoon sjw@math.tamu.edu

Department of Mathematics, Texas A&M University, College Station, TX 77843–
3368.


