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TOPOLOGICAL INVARIANCE OF THE COMBINATORIAL
EULER CHARACTERISTIC OF TAME SPACES

TIBOR BEKE

(communicated by Gunnar Carlsson)

Abstract
We prove the topological invariance of the combinatorial

Euler characteristic with the help of a canonical, topologically
defined stratification of tame spaces by locally compact, tame
strata.

1. Introduction

Intuitively, tame topology studies those subcategories of the category of topological
spaces and continuous maps for which an appropriate version of the Hauptvermutung
holds: any two triangulations of a tame space will be combinatorially equivalent. (The
term tame space is a bit of a misnomer; it is not a topological space as such that
deserves to be called tame, but an object of a category of tame spaces and tame
maps. In particular, one should talk of tame triangulations of tame spaces and so on.
But let us postpone precise definitions till the next section.) The proofs by Hironaka
and  Lojasiewicz of the triangulability of algebraic and analytic varieties led to the
discovery of the paradigmatic tame category: that of affine semi-algebraic spaces and
semi-algebraic maps. Recall that a subset of Rn is semi-algebraic if it can be written
as a finite boolean combination of subsets of Rn defined by polynomial equalities
and inequalities. Such a set need not be locally compact (let alone compact), so the
definition of triangulation has to be modified a little: a triangulation of a (semi-
algebraic) space X is a (semi-algebraic) decomposition of X, the pieces of which are
(semi-algebraically) homeomorphic to the relative interiors of affine simplices. (See
Knebusch and Delfs [DK82] for details.) The usual formula

eu(X) =
∑

α∈Simp(X)

(−1)dim(α), (†)

the sum running over the set of simplices in the triangulation, defines the combinato-
rial Euler characteristic. For example, if X is the union of the interior of a 3-simplex
with vertices ABCD with the relative interior of the face ABC and the vertex A
(this example not being locally compact), then eu(X) = 1.
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To be sure, if X is compact, then eu(X) =
∑dim(X)

i=0 (−1)i dimHi(X;Q), which is
a homotopy invariant. If X is locally compact, then

eu(X) =

dim(X)∑
i=0

(−1)i dimHi
c(X;Q),

the compactly supported cohomological Euler characteristic, which is a proper homo-
topy invariant. The modest goal of this note is to prove that the combinatorial Euler
characteristic is always a homeomorphism invariant. The two facts that give this
statement its context are Milnor’s disproof of the polyhedral Hauptvermutung and
the apparent lack of cohomological interpretation of the combinatorial Euler charac-
teristic of tame spaces that are not locally compact.

The main result will be proven in the setting of o-minimal structures over R. These
emerged in the 1990’s as the leading axiomatization of Grothendieck’s vision of tame
topology, and include and extend semi-algebraic topology in several directions.

2. Tame topology and o-minimal structures

Definition 2.1. An o-minimal structure S over the reals is a collection {Sn}, n ∈ N
such that

(1) for each n, Sn is a boolean algebra of subsets of Rn

(2) if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m

(3) for any 1 6 i < j 6 n, the set {(x1, x2, . . . , xn) | xi = xj} belongs to Sn

(4) if A ∈ Sn+1 and π : Rn+1 → Rn is a projection, then π(A) ∈ Sn

(5) singleton sets belong to S1 and the set {(x, y) | x < y} belongs to S2

(6) if A ∈ S1, then A is a finite union of intervals (points and half-infinite intervals
being also counted among intervals).

This definition is adopted from van den Dries [vdD98]. The axioms are satisfied
if Sn is the collection of semi-algebraic subsets of Rn; property (4) is then the Tarski-
Seidenberg theorem. The definition itself, however, is the outgrowth of logicians’
examination of the structure of definable sets in certain first-order logical theories.
The key property — and reason for the nomenclature “o-minimal”, short for “order-
minimal” — is (6), stating that no more one-dimensional sets belong to S than what
must be definable in any first-order structure containing a linear order <. It is a
deep insight that the combinatorial property (6) implies for o-minimal sets the very
same tame topological features that, for semi-algebraic sets, are usually derived from
commutative algebra.

Semi-linear sets (cf. Schanuel [Sch91]) form an example of an o-minimal structure
that is properly included in semi-algebraic sets. Starting from the 90’s, remarkable
o-minimal structures have been discovered extending semi-algebraic sets. One can
think of these as the result of permitting special families of real-analytic functions
besides polynomials to serve in the equations and inequalities defining subsets. It is
a corollary of a deep result of Rolin–Speissegger–Wilkie [RSW03] that there is no
maximal o-minimal structure over the reals. In fact, they give an example of two
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o-minimal structures S(1), S(2) and sets Xi belonging to S(i) (i = 1, 2) such that no
o-minimal structure can contain both X1 and X2.

van den Dries [vdD98] found a construction of the combinatorial Euler character-
istic eu that works for any o-minimal structure and avoids the use of triangulations in
favor of the more order-theoretic cylindrical cell decompositions. For semi-algebraic
sets, these were introduced by Collins; see Basu-Pollack-Roy [BPR06] Ch. 5. For
reference, let us recall their definition after van den Dries [vdD98]. Fix an o-minimal
structure S over the reals. For all topological intents and purposes, the sets belonging
to Sn for some n should be called and thought of as tame. (See for example Nico-
laescu [Nic10] for this usage.) However, owing to the logical and model-theoretic
origins of the subject, the term definable is also used to refer to them. We will defer
to van den Dries [vdD98], a superb guide to the subject, and maintain this logical
terminology. A function between definable sets is called definable if its graph is.

Let 〈i1, i2, . . . , im〉 be a sequence of 0’s and 1’s. The collection of cylindrical
〈i1, i2, . . . , im〉-cells is defined by induction on m. A 〈0〉-cell is a singleton in R; a 〈1〉-
cell is an open (possibly unbounded) interval in R. If 〈i1, i2, . . . , im−1〉-cells in Rm−1

have already been specified, an 〈i1, i2, . . . , im−1, 0〉-cell is the graph of a continuous,
definable, R-valued function on some 〈i1, i2, . . . , im−1〉-cell X. An 〈i1, i2, . . . , im−1, 1〉-
cell is the set of points

{(x, y) ∈ Rm | x ∈ X, f(x) < y < g(x)},

where X is an 〈i1, i2, . . . , im−1〉-cell and f , g are continuous, definable R-valued func-
tions on X with f < g. (Here f ≡ −∞ or g ≡ +∞ are also permitted.) The dimension
of an 〈i1, i2, . . . , im〉-cell is

∑m
k=1 ik. (For o-minimal structures over R, this is the same

as the topological dimension; in the axiomatic setting, this formula serves as a defi-
nition.) Note that any cylindrical cell is definable.

Any definable set X possesses finite decompositions into cylindrical cells and one
can let

euS(X) =
∑

α∈cell(X)

(−1)dim(α),

for any such decomposition. When S is the collection of semi-algebraic sets, this
definition is consistent with the one involving triangulations into relatively open sim-
plices, as in Knebusch and Delfs [DK82]. We will need the following property of the
combinatorial Euler characteristic: if U is a definable subset of the definable set X
then euS(X) = euS(U) + euS(X − U). This follows from the fact that the collection
of cylindrical cell decompositions of X, ordered under refinement, is a filtered poset
that is cofinal in the poset of all decompositions of X into definable pieces.

Let S(1), S(2) be o-minimal structures over R; let A be an S(1)- and B an S(2)-
definable set. The main result is

Theorem 2.2. If A is homeomorphic to B, then euS(1)(A) = euS(2)(B).

Specializing to S(1) = S(2) = semi-algebraic sets:

Corollary 2.3. If A, B are affine semi-algebraic sets that are homeomorphic, then
eu(A) = eu(B).
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In Thm. 2.2 it is not assumed that S(1) and S(2) have a common o-minimal exten-
sion. Of course, the generality afforded by stating the theorem in the above form is
partly a mirage. If S(1) and S(2) both extend semi-algebraic sets, then there is an S(1)-
definable homeomorphism between A and a semi-linear set (i.e., an S(1)-triangulation
of A), and also an S(2)-triangulation of B. Since euS is certainly invariant under S-
definable homeomorphisms, under the assumption that S(1) and S(2) both extend
semi-algebraic sets Thm. 2.2 follows from Cor. 2.3.

A result closely related to Cor. 2.3 was proved by McCrory and Parusinski by
entirely different methods, cf. Remark A.7. of [MP97]: Let h : X → X be a home-
omorphism (not necessarily semi-algebraic) of semi-algebraic sets. Let φ ∈ F (X) be
such that φ′ = φ ◦ h ∈ F (X). Let Y ⊂ X be a compact semi-algebraic subset such
that Y = h−1(Y ) is also semi-algebraic. Then∫

Y

φ =

∫
Y ′

φ′.

(Here F (X) is the ring of semi-algebraically constructible functions and integration
is with respect to Euler characteristic as measure.) Taking Y = X and F to be the
characteristic function of a semi-algebraic subset of X, this means that the combina-
torial Euler characteristic of an embedded semi-algebraic set is invariant with respect
to homeomorphisms that extend to some compact semi-algebraic neighborhood. The
proof by McCrory and Parusinski uses the possibility of expressing any semi-algebraic
set as a topologically defined boolean combination of (possibly larger) closed semi-
algebraic subsets of the ambient space. The argument in this paper stays inside the
given set, with the help of a topologically defined stratification of o-minimal sets.

3. The canonical stratification

Given a topological space X, let us, as it were, try to extract its locally compact
‘core’ by a ‘greedy algorithm’. That is, set

z(X) :=
{
x ∈ X | x has a compact neighborhood in X

}
.

Lemma 3.1. (i) z(X) is open (possibly empty) in X. (ii) If X is Hausdorff, then
z(X) is locally compact.

Proof. (i) If x ∈ U ⊆ C with U open and C compact, then U ⊆ z(X) as well. (ii) For
all y ∈ C − U , let Vy,Wy be disjoint opens in X with x ∈ Vy, y ∈ Wy. Since C − U
is compact, there is a finite I ⊆ C − U such that {Wi | i ∈ I} covers C − U . Then

x ∈ U ∩
(∩
i∈I

Vi

)
⊆ C −

(∪
i∈I

Wi

)
⊆ U ⊆ z(X).

But U ∩
(∩

i∈I Vi

)
is open and C −

(∪
i∈I Wi

)
is compact.

Note that a topological space need not have a maximal locally compact subspace,
and z(X) could well be empty (e.g., take X to be the rationals with the metric
topology) even though any space has locally compact subsets, namely, the finite ones.
Thankfully, z(−) is well-behaved on o-minimal sets over R.
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Definition 3.2. A stratification of a topological space X will mean a finite decom-
position

X =
⊔
α∈I

α

such that the closure α of any stratum is a union of strata. A stratum α is maximal
if α ⊆ β with β a stratum implies α = β.

We will not need to place manifold or regularity conditions on stratifications.

Lemma 3.3. (i) Any maximal stratum is open. (ii) If the strata are locally compact,
then z(X) contains all maximal strata.

Proof. (i) If α is maximal, then it must be the complement of the union of the
closures of the other strata. (ii) By (i), a compact neighborhood of x in α is a
compact neighborhood of x in X.

Let us now work in a fixed o-minimal structure over R. We will freely use the
results of chapters 3 and 4 of van den Dries’s monograph, and will also follow his
convention of setting the dimension of the empty set to be −∞.

Proposition 3.4. If X is a definable set, so is z(X) and dim
(
X − z(X)

)
< dim(X).

Proof. Thanks to locally compact and locally closed being the same for subsets of
Rn, z(X) is first-order definable via

z(X) =
{
x ∈ X | there is an ε > 0 such that for all y ∈ B(x, ε)

if y 6∈ X then there is a δ > 0 such that B(y, δ) ∩X = ∅
}
,

where B(x, r) is the open and B(x, r) the closed ball of radius r centered at x. (Replace
‘ball’ with ‘box’ if it is desirable to work over the structure 〈R, <〉.)

Now any definable set permits a stratification into cylindrical cells. Since those are
locally compact, this is precisely the situation of Lemma 3.3. Hence z(X) contains all
maximal cells. Let d = dim(X). Since for any definable set U , dim(U − U) < dim(U),
all d-dimensional cells in the stratification are maximal. X − z(X) is therefore a
definable subset of a union of cells of dimension less than d and dim

(
X − z(X)

)
<

dim
(
z(X)

)
= dim(X).

Definition 3.5. The canonical decomposition of a definable set X is set up by induc-
tion as follows

• X0 := z(X)

• for i > 0,

Xi := z
(
X − (X0 ∪X1 ∪ · · · ∪Xi−1)

)
.

By Prop. 3.4, each Xi is definable and dim(Xi) > dim(Xi+1) as long as Xi is
non-empty. Therefore the iteration terminates and

X =

n⊔
i=0

Xi

for some n, with Xi 6= ∅. By Lemma 3.1, each Xi is locally compact.
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The canonical decomposition is actually a stratification, and the best bound for n

is bdim(X)
2 c rather than the obvious dim(X). Since these facts are not needed for the

proof of the main theorem, we will return to them later.
The next statement is well-known, but let us include it for completeness. Let K be

any field and let H∗
c (X,K) be sheaf cohomology with compact support with constant

coefficients K. (All spaces will be assumed Hausdorff.) Let

χc(X) :=

dim(X)∑
i=0

(−1)i dimK Hi
c(X,K)

be the cohomological Euler characteristic with compact support.

Lemma 3.6. If X is definable and locally compact, then euS(X) = χc(X).

This is a consequence of two facts:
(1) For any cylindrical cell α, euS(α) = (−1)dimα = χc(α) since α is homeomorphic

to (0, 1)dimα.
(2) If X = U t Z is an open-closed decomposition of a locally compact space X,

and if the total cohomology H∗
c (U,K) as well as H∗

c (Z,K) are finite-dimensional, then
the total cohomology H∗

c (X,K) is finite-dimensional too; hence the corresponding
Euler characteristics are well-defined, and

χc(X) = χc(U) + χc(Z).

(Cf. Iversen [Ive86] III.7.6.) Given a locally compact definable X, fix a stratification
of X by cylindrical cells. Now take away from X one maximal (a fortiori, open) cell
U at a time and iterate, noting that a closed subset of a locally compact space is
locally compact.

Proof of Theorem 2.2. Let h : A → B be a homeomorphism. Since the stages of the
canonical decomposition are defined purely topologically, h restricts to homeomor-
phisms hi : Ai → Bi between the stages of A and of B, i = 0, 1, . . . , n. By Lemma 3.1,
3.6 and the additivity of the combinatorial Euler characteristic

euS(1)(A) =

n∑
i=0

euS(1)(Ai) =

n∑
i=0

χc(Ai) =

n∑
i=0

χc(Bi) =

n∑
i=0

euS(2)(Bi) = euS(2)(B).

Let us return to study some further properties of the canonical decomposition.
For strata α, β of a stratified topological space X, introduce the notation α � β for
α ⊆ β. This is always a preorder (i.e., � is reflexive and transitive). If X is a definable
set stratified into definable subsets, then � is even a partial order, since α � β and
α 6= β will imply dim(α) < dim(β), so � will be antisymmetric.

Proposition 3.7. The canonical decomposition of any definable set X is a stratifi-
cation.

Indeed, z(X) is open in X for any space, cf. Lemma 3.1. Assume now X definable
and fix a stratification of X by cylindrical cells. By Lemma 3.3, z(X) contains all
maximal cells. But any cell is contained in the closure of a maximal one; hence,
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for X definable, z(X) is dense and open in X. Iterating, Xi is relatively open and
dense in

(
X − (X0 ∪X1 ∪ · · · ∪Xi−1)

)
which is closed in X. That is to say, Xi =∪

i6j6n Xj .
Since the canonical stratification is defined by a ‘greedy algorithm’, it is somewhat

natural to guess that it is the coarsest among all stratifications of X with locally
compact, definable strata. But that can fail:

Example 3.8. Let X be the subset of the plane α ∪ β where α is the interior of the
triangle with vertices (0; 0), (1; 0) and (0; 1) and β is the interval [0, 1]. Then z(X) is
the union of α with the interval (0, 1), so it is not a union of existing strata.

This is to be blamed, it turns out, not on the fact that X is not locally compact,
but on the fact that the given stratification of X does not extend to R2. The canonical
stratification of a definable X is coarsest among those that are part of a stratification
of an ambient locally compact definable space. A consequence of this is that for
definable sets the dimension between successive strata of the canonical stratification
drops by at least 2; cf. Cor. 3.12.

Let W be a stratified topological space. In what follows, lowercase greek letters
range over strata of W .

Lemma 3.9. Let Z be a union of strata of W .

(i) Z is closed in W if and only if for every γ ⊆ Z, if β � γ then β ⊆ Z.

(ii) Z is open in W if and only if for every α ⊆ Z, if α � β then β ⊆ Z.

(iii) Z is locally closed in W if and only if for every α, γ ⊆ Z, if α � β � γ then
β ⊆ Z.

Proof. (i) is saying that Z is a union of closures of strata. (Note that stratifications
are required to be finite.) (ii) says that Z is the complement of a union of closures of
strata.

(iii), if : Let Z↓ be the union of {β ⊆ W | β � γ for some γ ⊆ Z}; let Z↑ be the
union of {β ∈ W | α � β for some α ∈ Z}. Z↓ is closed by (i), Z↑ is open by (ii).
Z ⊆ Z↓ ∩ Z↑ clearly. Z ⊇ Z↓ ∩ Z↑ by the given condition.

(iii), only if : Suppose Z = U ∩ V with U open and V closed, α, β, γ as assumed.
β ⊆ V since β ≺ γ and V is closed. β ∩ U 6= ∅ since α ≺ β and U is open. Thence
β ∩ Z 6= ∅. So β ⊆ Z since Z is a union of strata.

The next proposition says that if the stratification of a definable X is part of the
stratification of an ambient locally compact definable W , then z(X) is the union of
the ‘top intervals’ in the poset of strata of X.

Proposition 3.10. Let W be definable, locally compact and stratified into definable
sets. Let X be a union of strata. Define

top(X) = union of {α ⊆ X | for all β ⊆ W and γ ⊆ X, if α � β � γ, then β ⊆ X}.

Then z(X) = top(X).

Proof. z(X) ⊇ top(X): Lemma 3.9(ii) implies that top(X) is open in X. (Indeed, let
α ⊆ top(X), β ⊆ X with α � β and let β � β1 � β2 with β1 ⊆ W , β2 ⊆ X. β1 ⊆ X
since α ⊆ top(X). But that means β ⊆ top(X) by the definition of top(X).)
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Lemma 3.9(iii) implies that top(X) is locally closed in W . (Indeed, let α, γ ⊆
top(X), β ⊆ W , α � β � γ. β ⊆ X since α ⊆ top(X) and then β ⊆ top(X) as before.)

So top(X) is open in X and locally compact. A fortiori every point of top(X)
belongs to z(X).

z(X) ⊆ top(X): say x ∈ z(X) and x ∈ α ⊆ X. Let α � β � γ be arbitrary with
β ⊆ W , γ ⊆ X. z(X) is locally compact by Lemma 3.1, hence locally closed in W .
Write z(X) = U ∩ V with U open and V closed in W . Let γ1 be maximal in X
and γ � γ1; then γ1 ⊆ top(X) ⊆ z(X) ⊆ V . So β ⊆ γ1 ⊆ V . β ∩ U 6= ∅ since U is a
neighborhood of x and x ∈ β. So β ∩ z(X) 6= ∅. Since X is a union of strata, β ⊆ X.
But this means α ⊆ top(X).

Corollary 3.11. Let X ⊂ RN be definable. Let X be stratified by definable sets in
a way that is part of a stratification of all of RN . Then the canonical stratification
X =

⊔n
i=0 Xi is coarser than the given one, i.e., each Xi is a union of existing strata.

Corollary 3.12. Let X be definable, with canonical stratification X =
⊔n

i=0 Xi. Then

dim(Xi) − dim(Xi+1) > 2

for 0 6 i 6 n. (Recall that Xn+1 = ∅ and dim(∅) = −∞ by convention.)

Proof. If X ⊂ RN , find a stratification of RN into cylindrical cells that partitions X
(cf. van den Dries [vdD98] Ch. 4 Prop. 1.13). Apply Prop. 3.10 with W = RN and
note that if d = dim(X) then top(X) contains all cells of dimension d and of d− 1.
Now iterate.

Cor. 3.12 cannot be improved further:

Example 3.13. Let Pi, i = 0, 1, 2, . . . , 2n, be points in general position in R2n. Let
int〈P0, P1, . . . , P2i〉 denote the relative interior of the simplex 〈P0, P1, . . . , P2i〉 and
define

X =
n∪

i=0

int〈P0, P1, . . . , P2i〉.

Set W to be the closed simplex 〈P0, P1, . . . , P2n〉 stratified into the relative interiors
of all its subsimplices and apply Prop. 3.10. That shows Xi = int〈P0, P1, . . . , P2(n−i)〉
whence dim(Xi) = 2(n− i).

For general X, of course, the strata will not be equidimensional. In fact, it could
happen that for all 0 6 i 6 n and all 0 6 d 6 dim(Xi), the stratum Xi contains points
where the local dimension is d.

Closing ruminations. I do not know of a counterexample to eu(X) = χc(X), nor
to eu being a proper homotopy invariant. For a space that is not locally compact, the
textbook theory of cohomology with compact support does not provide an obvious
way to determine the cohomology groups. The reason seems to be that the classical
repertoire of homological algebra — Mayer-Vietoris sequences, tautness, continuity,
Künneth formula, extension by zero and so on — works best for sheaf cohomology
with support in a paracompactifying family, and the family of compact subsets of X
is paracompactifying if and only if X is Hausdorff and locally compact. Sheaf coho-
mology with a non-paracompactifying family of supports can indeed be paradoxical;
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for example, the cohomological dimension of RN is N + 1 if one allows all families of
supports. (See Bredon [Bre97].)

After ‘definable’, the most frequently occurring phrase in this note must be ‘locally
compact’, but what the arguments turn on is not so much being locally compact as
being locally closed in RN ; more precisely, the boolean depth of a definable set. For
X ⊂ RN , let C0 = X and inductively, Ci+1 = Ci − Ci. For definable X, the itera-
tion terminates and writing Zi = Ci, one can express X canonically as a boolean
combination

X = Z0 −
(
Z1 −

(
Z2 − (· · · − (Zk−1 − Zk) . . .

))
of closed definable subsets of RN , with Z0 ⊃ Z1 ⊃ · · · ⊃ Zk 6= ∅. X is closed if and
only if k = 0 in this expression, and locally closed (but not closed) if and only if k = 1.
(The space of Ex. 3.8 has boolean depth 2.) For closed, definable subsets X of RN ,
eu(X) = χ(X). The study of cohomology with compact support of a locally compact,
Hausdorff space X is basically that of ordinary cohomology of the pair (X̌, x0) where
X̌ is the Cech compactification of X and x0 the point at infinity; in our context, this
can be substituted by the pair (Z0, Z1). This suggests that the combinatorial Euler
characteristic of a definable set of boolean depth k is a filtered homological invariant
constructed from a suitable k-ad, which is functorial (and even homotopy invariant)
under compatible continuous maps (resp. homotopies), but this class of morphisms
gets smaller and smaller as k increases.
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