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ON THE ALGEBRAIC K-THEORY OF THE COORDINATE AXES
OVER THE INTEGERS

VIGLEIK ANGELTVEIT and TEENA GERHARDT

(communicated by Michael A. Mandell)

Abstract
We show that the relative algebraic K-theory group

K2i(Z[x, y]/(xy), (x, y)) is free abelian of rank 1 and that
K2i+1(Z[x, y]/(xy), (x, y)) is finite of order (i!)2. We also find
the group structure of K2i+1(Z[x, y]/(xy), (x, y)) in low degrees.

1. Introduction

In general algebraic K-theory groups are difficult to compute, and relatively few
computations exist in the literature. More than 30 years ago the relative algebraic K-
theory group Kq(Z[x, y]/(xy), (x, y)) was considered by Dennis and Krusemeyer [4],
who computed this group when q = 2. About 20 years ago, work of Geller, Reid, and
Weibel [6] showed that for every nonnegative integer q the abelian group
Kq(Z[x, y]/(xy), (x, y)) has rank 0 if q is odd and 1 if q is even. We prove the following
more precise result:

Theorem 1.1. For any i > 0

1. The abelian group K2i(Z[x, y]/(xy), (x, y)) is free of rank 1.

2. The abelian group K2i+1(Z[x, y]/(xy), (x, y)) is finite of order (i!)2.

In [7], Hesselholt evaluated the algebraic K-groups K∗(k[x, y]/(xy), (x, y)) when
k is a regular Fp-algebra in terms of the big deRham-Witt forms of k. Here we
use a similar approach but exploit new equivariant homotopy computations for the
topological Hochschild homology of the integers to obtain the results in Theorem 1.1.

For a ring A, the cyclotomic trace map [3], trc : K(A) → TC(A), relates the alge-
braic K-theory of A to the topological cyclic homology of A. This map is often close
to an equivalence [8, 9, 5], so in good cases the computation of algebraic K-theory,
Kq(A) can be reduced to the computation of topological cyclic homology, TCq(A).

Topological cyclic homology is defined by looking at fixed points of topological
Hochschild homology, T (A). The circle S1 acts on T (A), and we define TRn(A; p) =
T (A)Cpn−1 to be the fixed point spectrum under the action of the cyclic group of
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order pn−1 considered as a subgroup of S1. To compute topological cyclic homology
it is essential to compute the homotopy groups of these spectra:

TRn
q (A; p) = πq(T (A)

Cpn−1 ) = [Sq ∧ S1/Cpn−1+, T (A)]S1 .

In the case where the ring in question is a pointed monoid algebra, A(Π), we take
advantage of the following equivalence of S1-spectra

T (A(Π)) ' T (A) ∧Bcy(Π).

Here Bcy(Π) denotes the cyclic bar construction on the pointed monoid Π. Then the
TR-groups relevant to the calculation of K∗(A(Π)) are those of the form

TRn
q (A(Π); p) = πq(T (A(Π))

Cpn−1 ) = [Sq ∧ S1/Cpn−1+, T (A) ∧Bcy(Π)]S1 .

If one can understand how Bcy(Π) is built out of S1-representation spheres, this gives
a formula for these TR-groups in terms of groups of the form

TRn
q−λ(A; p) = πq−λ(T (A)

Cpn−1 ) = [Sq ∧ S1/Cpn−1+, T (A) ∧ Sλ]S1 .

In other words, the computation of the ordinary (Z-graded) TR-groups of A(Π) can be
reduced to the computation of the RO(S1)-graded TR-groups of A. If these RO(S1)-
graded TR-groups can be computed, then in good situations information about the
K-theory groups, K∗(A(Π)) can be recovered using the cyclotomic trace.

To prove Theorem 1.1 we apply the approach outlined above as follows. We first
use the cyclotomic trace map to relate the K-groups in question to certain birelative
topological cyclic homology groups. Work of Hesselholt [7, Theorem B] gives a formula
for these topological cyclic homology groups in terms of RO(S1)-graded TR-groups
of Z, TRn

q−λ(Z; p). We recall this formula in Section 2. Thus the K-groups we are
studying can be written in terms of these RO(S1)-graded TR-groups.

The proof of the main theorem is then reduced to computing TR-groups of the
form TRn

q−λ(Z; p). In Section 3 we make the computations necessary to finish the
proof.

Although we are unable to determine the group structure of the odd K-groups in
general, in Section 4 we compute the odd K-groups in some low degrees.

2. From K-theory to TR-theory

We begin by reducing the proof of the main theorem to the computation of certain
RO(S1)-graded TR-groups. To begin we would like to have a comparison theorem
relating algebraic K-theory to topological cyclic homology via the cyclotomic trace,
as described in the Introduction. Often such comparison theorems relate relative K-
theory and relative topological cyclic homology. In this case, we need to consider
birelative groups in order to get the desired comparison theorem. We first recall how
the relevant birelative groups are defined.

For A = k[x, y]/(xy), B = k[x]× k[y] the normalization of A, and I = (x, y) the
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augmentation ideal, one could consider the diagram:

K(A) //

��

K(A/I)

��
K(B) // K(B/I).

(1)

The birelative algebraic K-theory group K(A,B, I) is defined to be the iterated map-
ping fiber of this diagram. The analogous construction for topological cyclic homology
would yield birelative TC. There is a comparison theorem due to Geisser and Hessel-
holt [5, Theorem 1], which says that the cyclotomic trace map induces an isomorphism

Kq(A,B, I;Z/pv) → TCq(A,B, I; p,Z/pv)

for each prime p and any v > 1. For our computations we are interested in the relative
K-group Kq(A, I). Note that for a regular ring k the bottom horizontal map in
diagram 1, K(k[x]× k[y]) → K(k × k), is a weak equivalence by the Fundamental
Theorem of K-theory. It follows that the relative group Kq(A, I) is isomorphic to
the birelative group Kq(A,B, I). So, the above comparison theorem allows us to
compare the group Kq(A, I) to a topological cyclic homology group. We now focus
our attention on computing TCq(A,B, I; p,Z/pv), when k = Z.

We note that Z[x, y]/(xy) is a pointed monoid algebra. We consider the pointed
monoid Π = {0, 1, x, x2, . . . , y, y2, . . .}. Then Z[x, y]/(xy) = Z(Π). As outlined in the
Introduction, in order to study the algebraic K-theory of Z(Π) using the RO(S1)-
graded TR-groups of Z, one must first understand the S1-equivariant homotopy type
of Bcy(Π). Hesselholt studied this equivariant homotopy type in [7, Section 1], which
lead to a splitting of birelative topological Hochschild homology

T (k[x, y]/(xy), k[x]× k[y], (x, y)) '
∨
i>1

T (k) ∧ Sλi ∧ Σ−1(S1/Ci)+.

Here Sλi is the 1-point compactification of the real S1-representation

λi = C(1)⊕ · · · ⊕ C(i),

where C(i) denotes the one-dimensional complex S1-representation defined by C(i) =
C with S1 acting from the left by z · w = ziw.

Recall that there is an action on birelative topological Hochschild homology by
S1. We write TRn(A,B, I; p) = T (A,B, I)Cpn−1 for the fixed point spectrum under
the action of Cpn−1 ⊂ S1, the cyclic group of order pn−1. These TR-spectra are con-
nected by maps R,F , and V . The birelative topological cyclic homology spectrum
TC(A,B, I; p) is formed by taking a homotopy limit over R,F : TRn(A,B, I; p) →
TRn−1(A,B, I; p). Hesselholt’s splitting yields the following formula:

TCq(k[x, y]/(xy), k[x]× k[y], (x, y); p) ∼=
∏
p-d

lim
R

TRn
q−λpn−1d

(k; p).

Hesselholt was studying the case when the ring k is a regular Fp-algebra, but this
formula is valid even without that hypothesis.

The K-theory groups of Z[x, y]/(xy) are finitely generated. Therefore to prove
the main theorem it suffices to show that TC2i(Z[x, y]/(xy),Z[x]× Z[y], (x, y); p) ∼= Z
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and TC2i+1(Z[x, y]/(xy),Z[x]× Z[y], (x, y); p)(p) has order the p-primary component
of (i!)2 for each prime p.

3. Calculation of TR-groups

In Section 2 above, we reduced the proof of the main theorem to the proof of the
following proposition.

Proposition 3.1. Let n be a positive integer and let i be a non-negative integer. Then
for every prime number p:

i) The Z(p)-module
∏

limR TRn
2i−λpn−1d

(Z; p)(p) has rank 1.

ii) The Z(p)-module
∏

limR TRn
2i+1−λpn−1d

(Z; p)(p) has finite length vp((i!)
2).

Here both products are taken over the set of positive integers d which are not divisible
by p.

Proof. We fix a prime p and let Ip denote the set of positive integers not divisible by
p. Given a virtual representation α ∈ RO(S1), there is a prime operation defined by
α′ = ρ∗pα

Cp , where ρp : S1 → S1/Cp is the isomorphism given by the pth root. There
is a fundamental long exact sequence for RO(S1)-graded TR-groups [8, Theorem 2.2]:

· · · / / πq−λT (Z)hCpn−1
// TRn

q−λ(Z; p)
R // TRn−1

q−λ′(Z; p) // · · ·

Here T (Z)hCpn−1 = (ES1
+ ∧ T (Z))Cpn−1 is the homotopy orbit spectrum. There is a

first quadrant spectral sequence

E2
s,t = Hs(Cpn−1 , πt(T (Z) ∧ Sλ)) ⇒ πs+t−λT (Z)hCpn−1 .

It follows that πq−λT (Z)hCpn
= 0 when q < dimR(λ). Therefore the map

R : TRn
q−λ(Z; p) → TRn−1

q−λ′(Z; p)

is an isomorphism when q < dimR(λ). Hence, in computing the limit

lim
R

TRn
q−λpn−1d

(Z; p)

we find that the maps become isomorphisms when n is large enough that
q < dim(λpn−1d) = 2pn−1d. If s is the smallest integer such that q < 2psd, then

lim
R

TRn
q−λpn−1d

(Z; p) ∼= TRs
q−λps−1d

(Z; p).

So, we compute the group TRs
q−λps−1d

(Z; p) for this s.
We first we consider the TR-groups graded by even-dimensional representations.

By [2, Theorem B], the group TRs
2i−λps−1d

(Z; p) is torsion free of rank equal to the

number of integers 0 6 m < s such that i = dimC(λ
Cpm

ps−1d). Since λ
Cpm

ps−1d = λps−1−md,
the group in question is torsion free of rank equal to the number of integers 0 6 m < s
such that i = ps−1−md. Hence, the abelian group limR TRn

2i−λpn−1d
(Z; p), for p not

dividing d, is free of rank 1 if i = pn−1d for some n > 1 and zero otherwise. It follows
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that the abelian group ∏
d∈Ip

lim
R

TRn
2i−λpn−1d

(Z; p)

is free of rank 1. This proves part (i) of Proposition 3.1.
We now prove part (ii) of the proposition. As above, limR TRn

2i+1−λpn−1d
(Z; p) is

isomorphic to TRs
2i+1−λps−1d

(Z; p) for the unique s with 2ps−1d 6 q < 2psd. By [2,

Theorem B], for any n > 0,

|TRn
2i+1−λpn−1d

(Z; p)| = |TRn−1

2i+1−λ
Cp

pn−1d

(Z; p)|pn−1(i+ 1− dimC(λpn−1d)).

= |TRn−1
2i+1−λpn−2d

(Z; p)|pn−1(i+ 1− pn−1d).

Using this result and induction we find that

|TRs
2i+1−λps−1d

(Z; p)| =
∏

06k6s−1

pk ·
∏

06k6s−1

(i+ 1− pkd).

Hence

lengthZ(p)
lim
R

TRn
2i+1−λpn−1d

(Z; p)(p) =
∑

06k6s−1

(k + vp(i+ 1− pkd)).

Taking the product over d not divisible by p, and recalling that ps−1d 6 i < psd, we
find that the length of the Z(p)-module

∏
limR TRn

2i+1−λpn−1d
(Z; p)(p) is∑

16d6i

d∈Ip

∑
06k6s−1

(k + vp(i+ 1− pkd)) =
∑

16n6i

(vp(n) + vp(i+ 1− n)) = 2
∑

16n6i

vp(n).

Hence, the Z(p)-module ∏
d∈Ip

lim
R

TRn
2i+1−λpn−1d

(Z; p)(p)

has finite length vp((i!)
2).

This finishes the proof of Theorem 1.1.

4. Low-dimensional calculations

Now we turn to explicit computations of the K-groups in low degrees. We find the
following:

Theorem 4.1. Let A = Z[x, y]/(xy) and let I = (x, y). Then

K1(A, I) = 0

K3(A, I) = 0

K5(A, I) ∼= Z/4
K7(A, I) ∼= Z/2⊕ Z/2⊕ Z/9
K11(A, I) ∼= Z/2⊕ Z/32⊕ Z/9⊕ Z/25.
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Proof. It follows immediately from Theorem 1.1 that K1(A, I) = K3(A, I) = 0. For
the rest of the proof we will freely use [1, Theorem 1.4], which tells us the number
of summands of each TR-group, and [2, Theorem B], which tells us the order of each
TR-group.

We find thatK5(A, I) ∼= TR2
5−λ2

(Z; 2), which has order 4 and one summand. Hence
K5(A, I) is as claimed. Similarly,

K7(A, I) ∼= TR2
7−λ2

(Z; 2)⊕ TR2
7−λ3

(Z; 3).

The 2-primary part has order 4 and two summands, and the 3-primary part has order
9 and one summand. Hence K7(A, I) is as claimed.

For K11(A, I), we find that

K11(A, I) ∼= TR3
11−λ4

(Z; 2)⊕ TR2
11−λ3

(Z; 3)⊕ TR2
11−λ5

(Z; 5).

We find that TR2
11−λ3

(Z; 3) ∼= Z/9 and TR2
11−λ5

(Z; 5) ∼= Z/25, while TR3
11−λ4

(Z; 2)
is identified in Proposition 4.2 below.

To compute TR3
11−λ4

(Z; 2), we will use the Tate spectral sequence. Recall that
we have the following fundamental diagram of horizontal long exact sequences [8,
Equation 49]:

. . . // πq−λThCpn
N //

=

��

TRn+1
q−λ

R //

Γn

��

TRn
q−λ′

Γ̂n

��

// . . .

. . . // πq−λThCpn
Nh

// πq−λT
hCpn

Rh
// πq−λT

tCpn // . . .

Here T = T (Z) is the topological Hochschild spectrum, T tCpn is the Tate spectrum,
ThCpn is the homotopy fixed point spectrum, ThCpn

is the homotopy orbit spectrum,

and TRn = TRn(Z; p). As earlier, [1], λ′ = ρ∗p(λ
Cp), where ρp : S1 → S1/Cp is the

p’th root map. By Tsalidis’ Theorem [11, Theorem 2.4] extended to the RO(S1)-
graded context [8, Addendum 9.1], the maps Γn and Γ̂n are isomorphisms for q >
2 dimC(λ

′).
The Tate spectral sequence, which computes π∗−λT

tCpn , has E2 term

Ês,t
2 = Ĥs(Cpn ;πt−λT (Z)).

Here πt−λT (Z) ∼= πt−2 dimC(λ)T (Z). By restricting to the second quadrant, we get a

corresponding spectral sequence which computes π∗−λT
hCpn . These spectral

sequences were studied in detail with mod p coefficients in [1]. While understanding
the Tate spectral sequence with integral coefficients remains an extremely difficult
problem, an essential ingredient in the proof of [2, Theorem B] is that all non-zero
differentials go from even to odd total degree. A partial understanding of the C4-Tate
spectral sequence with mod 4 coefficients will be enough to compute TR3

11−λ4
(Z; 2).

Proposition 4.2. We have

TR3
11−λ4

(Z; 2) ∼= Z/2⊕ Z/32.

Proof. We know that TR3
11−λ4

(Z; 2) has order 26 and consists of two summands.

Hence it is enough to show that TR3
11−λ4

(Z; 2,Z/4) has order 8. We do this by
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studying the Tate spectral sequence converging to π∗−λ4(T (Z)tC4 ;Z/4) and restricting
to the second quadrant.

We start by computing TR2
11−λ2

(Z; 2) ∼= Z/8, which means that

π11−λ4(T (Z)tC4 ;Z/4) ∼= Z/4.

When restricting to the second quadrant (which in this case means filtration less
than or equal to 8) we pick up one extra class for each differential entering the second
quadrant. The only possible classes that can support such differentials with target in
total degree 11 are t−6, 2t−6 and t−5u2λ1.

There is a differential d4(t
−7u2) = t−5u2λ1, so t−5u2λ1 does not give us an extra

class. (In the corresponding Tate spectral sequence with integral coefficients the class
t−7u2 does not exist, and t−5u2λ1 supports a differential giving an extra integral
class.) We also know that there is a differential d12(t

−6) = λ1µ
2
1. Hence it suffices to

show that 2t−6 is a permanent cycle. (Again, 2t−6 supports a longer differential in
the corresponding Tate spectral sequence with integral coefficients.)

The C2-Tate spectral sequence with mod 4 coefficients has been worked out by
Rognes, and is (mostly) described in [10, Fig. 4.3]. In particular t−4 is a permanent
cycle. The RO(S1)-graded C2-Tate spectral sequence is a shifted copy of the integral
one, and it follows that t−6 is a permanent cycle in the spectral sequence converging
to π∗−λ4(T (Z)tC2 ;Z/4).

Next we use that the Verschiebung (or transfer) map V : T (Z)tC2 → T (Z)tC4 gives
a map of spectral sequences, and that V (t−6) = 2t−6. It follows that 2t−6 is a per-
manent cycle in the spectral sequence converging to π∗−λ4(T (Z)tC4 ;Z/4), which was
what we needed to show.

We also conjecture the computation of two other K-theory groups.

Conjecture 4.3. Let A = Z[x, y]/(xy) and let I = (x, y). Then

K9(A, I) ∼= Z/2⊕ Z/2⊕ Z/16⊕ Z/3⊕ Z/3
K13(A, I) ∼= Z/2⊕ Z/2⊕ Z/8⊕ Z/8⊕ Z/3⊕ Z/3⊕ Z/9⊕ Z/5⊕ Z/5.

Sketch proof. This conjecture is based on a conjectural understanding of the C4-Tate
spectral sequence with integral coefficients. We compute that

K9(A, I) ∼= TR3
9−λ4

(Z; 2)⊕ TR1
9−λ3

(Z; 2)⊕ TR2
9−λ3

(Z; 3)⊕ TR1
9−λ2

(Z; 3).

We find that TR1
9−λ3

(Z; 2) ∼= Z/2, TR2
9−λ3

(Z; 3) ∼= Z/3 and TR1
9−λ2

(Z; 3) ∼= Z/3. The
final group, TR3

9−λ4
(Z; 2), is conjecturally computed in Conjecture 4.4 below.

Similarly we compute

K13(A, I) ∼= TR3
13−λ4

(Z; 2)⊕ TR2
13−λ6

(Z; 2)⊕ TR1
13−λ5

(Z; 2)⊕ TR2
13−λ3

(Z; 3)
⊕TR2

13−λ6
(Z; 3)⊕ TR1

13−λ4
(Z; 3)⊕ TR2

13−λ5
(Z; 5)⊕ TR1

13−λ2
(Z; 5).

We conjecture the group structure of TR3
13−λ4

(Z; 2) in Conjecture 4.5 below, and the
other groups are readily computed.

Conjecture 4.4. We have

TR3
9−λ4

(Z; 2) ∼= Z/2⊕ Z/16.
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Figure 1: Degree 9 and 10 of the Tate spectral sequence converging to π∗−λ4T (Z)tC4

Sketch proof. We know that TR3
9−λ4

(Z; 2) has order 25 and consists of two sum-
mands. To compute this term we study the Tate spectral sequence converging to
π∗−λ4T (Z)tC4 and restrict to the second quadrant. (Which, again, means filtration
less than or equal to 8.) We start by computing TR2

9−λ2
(Z; 2) ∼= Z/8. Now we con-

jecture that the C4-Tate spectral sequence in total degree 9 and 10 behaves as in
Figure 1. The d4 and d5 differentials follow by comparing with the C2-Tate spec-
tral sequence, but we have not been able to rule out that the longer differentials
could behave in a more complicated way. In the Tate spectral sequence converging to
π9−λ4T (Z)tC4 ∼= Z/8, the following classes should survive:

{t−1λ1µ1, t
3λ1µ

3
1, t

7λ1µ
5
1}.

These are then connected by hidden multiplication by 2 extensions.
When restricting to the second quadrant we pick up two more classes, coming

from the differentials originating from t−5 and 2t−5. So we would have the following
classes, circled in Figure 1:

{t−3λ1, t
−1λ1µ1, t

3λ1µ
3
1, t

7λ1µ
5
1, t

11λ1µ
7
1}.

Now consider the class t4u2λ1µ
4
1. This class kills 2t

7λ1µ
5
1, while in the correspond-

ing spectral sequence with mod 2 coefficients it kills t11λ1µ
7
1. This implies that we

have a hidden multiplication by 2 extension connecting the classes t7λ1µ
5
1 and t11λ1µ

7
1.

Hence the class t−1λ1µ1 has order 16 and TR3
9−λ4

(Z; 2) ∼= Z/2⊕ Z/16.

Conjecture 4.5. We have

TR3
13−λ4

(Z; 2) ∼= Z/2⊕ Z/8.

The argument in support of this conjecture is similar to the one for Conjecture 4.4.
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